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Transition Amplitudes in 3D Quantum
Gravity: Boundaries and Holography in the
Coloured Boulatov Model

Christophe Goeller®, Daniele Oriti and Gabriel Schmid

Abstract. We consider transition amplitudes in the coloured simplicial
Boulatov model for three-dimensional Riemannian quantum gravity. First,
we discuss aspects of the topology of coloured graphs with non-empty
boundaries. Using a modification of the standard rooting procedure of
coloured tensor models, we then write transition amplitudes systemati-
cally as topological expansions. We analyse the transition amplitudes for
the simplest boundary topology, the 2-sphere, and prove that they factor-
ize into a sum entirely given by the combinatorics of the boundary spin
network state and that the leading order is given by graphs representing
the closed 3-ball in the large N limit. This is the first step towards a more
detailed study of the holographic nature of coloured Boulatov-type GFT
models for topological field theories and quantum gravity.
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Introduction

The holographic principle, the study of boundary symmetries, boundary con-
ditions and boundary states have become one of the main points of interest
over the last years for many approaches to quantum gravity. The holographic
principle, historically motivated from the study of the entropy of black holes
[1,2], in particular from the discovery of the area law, and formulated in its
original form by Susskind [3] and 't Hooft [4], refers to the idea of fully de-
scribing a theory in a region of spacetime in terms of a dual theory solely
living on its boundary. One of the prime examples is the famous AdS/CFT
correspondence [5], which conjectures a duality between (quantum) gravity
on d-dimensional (asymptotically) anti-de Sitter (AdS) space and a conformal
field theory (CFT) on its (d — 1)-dimensional flat boundary at spatial infinity.

Quantum gravity in three dimensions turns out to be particularly useful
when studying holographic dualities. It is an example of a topological field the-
ory (classically as well as quantum mechanically, it only deals with constant
curvature geometries, in the absence of matter), and it is well known that it can
be formulated as a Chern—Simons theory [6], or equivalently, as a BF theory [7].
Due to the absence of local degrees of freedom, it provides us with a simple set-
up for studying the interplay between the choice of boundary states and holo-
graphic dualities. Recently, there have been many works regarding quasi-local
holographic dualities in the context of the Ponzano—Regge spin foam model
for three-dimensional quantum gravity [8-12]. The term quasi-local means that
one is looking at a finite, bounded region of spacetime instead of an asymp-
totic one, as in the standard AdS/CFT correspondence. Spin foam models are
background-independent approaches to quantum gravity, formulated as state
sum models, in which one assigns local weights to discrete building blocks
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of spacetime. The Ponzano—Regge model mentioned above is a particular in-
stance of a spin foam model [13,14] for three-dimensional Riemannian quantum
gravity without a cosmological constant and can be understood as being the
discretization of the quantum partition function of three-dimensional gravity
formulated as a BF-theory [15]. The model was in fact the first spin foam model
ever proposed and has also been related to other approaches to 3d quantum
gravity, such as loop quantum gravity (LQG) [16] and Chern—Simons theory
[11,17]. Furthermore, it corresponds to the limit of the Turaev—Viro model
[18] for vanishing cosmological constant [9]. The Turaev—Viro model, in turn,
computes the Reshetikhin—Turaev invariant [19,20], which reflects the relation
between three-dimensional quantum gravity and Chern—Simons theory [21-23].
With respect to holographic dualities, it has been shown that the Ponzano—
Regge model on a 3-ball is dual to two copies of the two-dimensional Ising
model on its boundary 2-sphere, in the sense that the partition function of
the Ponzano—Regge model is proportional to the square of the boundary Ising
partition function [24,25]. In a recent series of paper [26-30], the Ponzano-
Regge model on the solid torus with boundary given by the 2-torus was sys-
tematically studied and related to the BMS group [31,32]—the asymptotic
symmetry group of continuum three-dimensional asymptotically flat gravity—
for a boundary state encoding the intrinsic geometry of a solid torus. Both
these works provide us with clear insights into the holographic nature of the
Ponzano—Regge model.

When discussing transition amplitudes in quantum gravity models, which
are the physical scalar products between two spatial boundary topologies, it
is natural to ask whether one should also include a sum over all topologies
in addition to a sum over geometries, in order to treat also the topology as
a dynamical variable. There are several arguments for the necessity of doing
so [33-35]. The next question, however, is how to do so in a systematic and
controllable manner, in a given quantum gravity framework. In the context of
spin foam models, initially defined on a given cellular complex, such a sum
over (bulk) topologies can be defined by introducing the corresponding Group
Field Theory (GFT) [36-38]. From the physical point of view, a GFT can be
understood as the completion of a given spin foam model in the sense that it
gives us a prescription on how to systematically organize the spin foam ampli-
tudes corresponding to different complexes, for different topologies, but also
for given topology, since in dimensions higher than three, where gravity is not
topological, a restriction to a given complex implies a truncation to a subset of
quantum gravity degrees of freedom, that has to be removed to define the full
theory. GFTs are quantum field theories of spacetime, instead of on space-
time. In more technical terms, GFTs are generically non-local field theories
defined on (copies of) a Lie group (or quantum group, homogeneous space,
etc.) and can be viewed as generalizations of matrix models [39,40] of (pure)
two-dimensional quantum gravity to higher dimensions. They can also be un-
derstood as generalizations of random tensor models [41-43], enriched with
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group-theoretic data, which allows for imposing additional symmetry prop-
erties of their fields and for richer dynamical amplitudes.! Furthermore, the
quantum states of GFT models are in fact (generalized) tensor networks; thus,
GFTs can be understood as defining a dynamics (probability distributions) for
tensor networks, which in turn have proven themselves very useful to study
holographic properties of quantum gravity models [44-48]. Last but not least,
GFT can also be seen as a second quantized formulation of LQG [49,50].

In this paper, we aim at setting up a formalism for studying holographic
dualities in Boulatov—Ooguri-type GFT models [51,52]. Focussing on the Boula~
tov model—the completion of the Ponzano—Regge model—describing three-
dimensional gravity, we will construct and classify amplitudes for boundary
states describing the trivial topology—the sphere. It will allow us to exhibit
a clear holographic behaviour of the model, in the sense that the amplitudes
will only depend on boundary data. This is an important step in the context
of discrete models for quantum gravity with spacetime emerging from more
fundamental degrees of freedom. It expands insights from LQG and spin foam
models into a broader framework, opening the road towards a better under-
standing of dualities in GFTs and tensor network models.

A first step towards a study of holographic properties of such models is
to define boundary observables and transition amplitudes. For doing so, the
coloured version of the Boulatov model [53,54] is most convenient. A colouring
of tensor models and GFT's has been proven to be useful for two main reasons.
First, the colouring allows full control over the topology of (complexes dual
to) the Feynman diagrams of the models. Second, these Feynman diagrams are
then dual to manifolds or normal pseudomanifolds (topologies which contain
at most isolated and point-like singularities). In other words, coloured GFTs
do not produce more singular topologies, which are generically present in un-
coloured models and which tend to dominate in power counting [55]. These
features also permit the definition of the large N limit [56-58] of all such GFT
(and tensor) models, the analytic study of the critical behaviour and contin-
uum limit [59], as well as to derive key universality results showing that the
tensors are distributed by a Gaussian in the large N limit [60]. It has also been
observed that colouring might be a crucial ingredient in order to define a suit-
able notion of a discrete counterpart (or, better, remnant) of diffeomorphism
invariance [61,62] in GFT, as a field-theoretic counterpart of what has been
done in simplicial gravity, e.g. [63,64].

While there is extensive literature about the topology of closed coloured
graphs in the context of tensor models and GFTs [65—68], much less is known
about open coloured graphs, i.e. graphs admitting external legs. In [69], the
notion of a boundary graph and its corresponding complex was introduced. A
further analysis of open coloured graphs and their degree of divergence can be

1Tensor models and GFTs can be seen as specific examples of models within the common
framework of Tensorial Group Field Theories (TGFTs), defined to encompass all models
with a tensorial field (regardless of the domain) and combinatorially non-local interactions
(regardless of the specific action), such that the perturbative expansion produces a sum over
cellular complexes as Feynman diagrams.
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found for example in [70-72] and other works on renormalization in group field
theory. However, it turns out that the topology of coloured graphs is not only
studied in the context of quantum gravity, but also in Crystallization Theory
[73-75], a branch of geometric topology. Many result have been obtained in
the crystallization theory literature, pioneered by M. Pezzana, C. Gagliardi,
M. Ferri and others in the late 1960s and 1970s. In order to find suitable
tools for defining transition amplitudes, we will also give a detailed review of
techniques developed in the crystallization theory for the particular case of
general open coloured graphs representing pseudomanifolds with non-empty
boundaries, which can be viewed as generalizations of the well-known tech-
niques used in coloured tensor models and GFTs to graphs with external legs.

This paper is organized as follows: In Sect. 1, we introduce the coloured
(bosonic, simplicial) Boulatov model for three-dimensional quantum gravity
and briefly review the different representations of its Feynman graphs. In par-
ticular, we systematically define both closed and open coloured graphs and
explain their simplicial interpretation. We discuss the Feynman amplitudes
corresponding to closed (vacuum) diagrams and briefly review their relation
to the Ponzano—Regge spin foam model. This section can also be skipped by
readers familiar with general notions of coloured graphs and coloured tensor
models/GFTs.

In Sect. 2, we turn our attention to open coloured graphs, i.e. Feynman
graphs of the coloured Boulatov model with external legs. We mainly discuss
aspects of the topology of coloured graphs with non-empty boundary, based on
the literature on crystallization theory. More precisely, we look at the bubble
structure of these graphs, the relation between the boundary graph and the
boundary complex, as well as moves allowing for transforming one graph into
another (in a topology preserving way).

Next, we discuss transition amplitudes of the coloured Boulatov model
in Sect. 3. First of all, we define suitable boundary observables out of spin net-
work states living on some fixed boundary graph representing a fixed topology.
Using these observables, we then define transition amplitudes, which are given
by a sum over all bulk topologies with respect to the fixed boundary graph.
Afterwards, we rewrite this sum as a topological expansion, using a similar
rooting procedure as introduced by R. Gurau to study the large N limit of the
free energy.

In Sect. 4, we apply the formalism to the simplest boundary topology, the
2-sphere. We show that the transition amplitude factorizes into a sum entirely
given by the combinatorics of the boundary spin network state. More pre-
cisely, we see that every manifold with spherical boundary has a contribution
proportional to the spin network evaluation. We end this section by quickly
discussing the case of the boundary 2-torus to illustrate why the previous re-
sult is not just a consequence of the topological nature of the theory (which
would diminish its general interest), but it is due to the simple topology of the
chosen boundary, so that one can expect a similar holographic behaviour, but
more intricate details of the map, for more involved topologies.
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Finally, in Sect.5, we show that the leading-order contribution to the
transition amplitude of some spherical boundary graph, when restricted to
manifolds, is given by certain graphs representing the closed 3-balls. We show
that these graphs generalize the melonic graphs from the large N limit of
coloured tensor models, in the sense that they are exactly those graphs for
which a suitable generalization of the Gurau degree to open graphs vanishes.

In Appendix A, the reader can find a short discussion of pseudomanifolds
and an overview of the terminology used for simplicial complexes. Furthermore,
we give some further details on the topology of coloured graphs with non-empty
boundaries by reviewing general existence theorems of crystallization theory
and by discussing a connected sum operation in Appendix B. Appendix C
contains instead a derivation of a family of open coloured graphs representing
the solid torus.

1. The Coloured Boulatov Model

This section mainly introduces notations, definitions and standard properties
of coloured GFT model and their Feynman graphs and can be safely skipped
for readers familiar with the subject. For the notation of a particular set of
coloured graphs, which we will use throughout the present paper, see Defini-
tion 1.12.

The Boulatov model [51] is defined using a single (R-valued) bosonic
scalar field. The colour extension of the model [53,54] were shown to be very
useful for studying, for example, exact power counting [55], the large N limit
[56-58] and the critical behaviour and continuum limit [59]. In this paper,
we consider the bosonic version of the model [54,62,76]. The bosonic model
lacks an SU(4) colour symmetry of the fermionic one [53,54], but this does
not change the combinatorial structure of the Feynman diagrams, nor their
amplitudes.

In this section, we start with the definition of the model, then we discuss
the structure of its Feynman diagrams with and without external legs and
discuss the amplitudes of closed (vacuum) diagrams. Furthermore, we review
briefly the relation to the Ponzano—Regge spin foam model [8-12].

1.1. Definition of the Model

Let {¢1}7_o € L?(SU(2)3,dg; C), with dg the normalized SU(2) Haar measure,
be four bosonic and C-valued scalar fields defined on three copies of SU(2).
They are labelled by a “colour indexz” 1 € {0,...,3} and we assume that they
are SU(2) gauge invariant, i.e.

Vh € SU(Z) @l(hgh thv hg&) = @l(gl»gZ»gB) (11)
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for all g1,92,93 € SU(2) and [ € {0,1,2,3}.2 Note that we do not assume
any supplementary invariance of the fields. In particular, we do not assume
any action of the permutation group (or any of its subgroups) leaving them
invariant. Such assumption often appears in the uncoloured case to guarantee
that only orientable simplicial complexes are produced [77]. In the coloured
case, however, this is already guaranteed by taking the fields to be complex.
Additionally, the colouring allows to describe the Feynman diagrams as bipar-
tite edge-coloured graphs. We define the SU(2) delta function at some cut-off?
N € N/2 using the Plancherel decomposition following [17]

SUR) 29—V = Y. (2i+1Dx(9), (1.2)
JEN/2,4<N

where x? denotes the characters of the unitary and irreducible representations
of SU(2), labelled by spins j € N/2. The action of the coloured Boulatov model
is then defined by

3 3
Salen @ ::Z/ ; (Hdgi> 01(g1, 92, 93) |
1—o Y SU(2)3

§ 6 (1.3)
- \/(gj)\\fw /SU(Q)6 (Hdgi) Folgn g2:0)

©1 (937 94, 95)4102(95’ g2, 96)303(96’ 94, gl) +c.c.,

where 1 denotes the identity of SU(2). The scaling in the action coincides with
[56-58,76,80,81] and is chosen in order for maximally divergent graphs to have
a uniform degree of divergence at all orders. Indeed, providing this scaling, the
degree of divergence of Feynman graphs is independent under a certain type
of transformation, called “internal proper 1-dipole moves”, as we will discuss
later on (see Sect. 3.2).

The geometric interpretation of the action (1.3) is shown in Fig. 1. First,
note that each field ¢;(g1, g2, g3) encodes the kinematics of a quantum triangle
described by three dual edges labelled by g1, g2, g3 [38,82]. In other words, the
GFT field ¢; lives on the space of possible geometries of the triangle. Having
four distinct fields, we have four different triangles, labelled by the field colour
index [. The four kinetic terms represent the gluing of two triangles of the same
colour, while the two interaction terms describe the gluing of four triangles
along their edges such that they form a tetrahedron (3-simplex). We therefore
have two different types of tetrahedra, one for the ¢;-fields and the other for
the @;-fields, corresponding to the two different choices of orientation of a
tetrahedron.

2The choice of imposing either right or left translation is just a convention as one can
always redefine ¢; — @, where ¢;(g1, 92,93) = @1 (gfl,ggl,ggl) are now right-invariant
fields. The action does not change under this transformation, i.e. Sx[y;,%;] = Sx[1, @] by
unimodularity of the Haar measure of compact Lie groups.

3See [78,79] and references therein for a discussion about this cut-off and its application for
integration purposes.
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FiGure 1. Fields ¢; describe triangles, equipped with a cor-
responding colour index [, and the interaction terms produce
tetrahedra with opposite orientation (color figure online)
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FIGURE 2. Interaction vertices of the coloured Boulatov
model drawn in their stranded diagram representation and
their corresponding geometric interpretation (color figure on-
line)

1.2. Feynman Graphs: Closed and Open Coloured Graphs

As usual in GFT, Feynman graphs can be represented as “stranded diagrams”
[36-38]. Figure2 shows the two interaction vertices together with their geo-
metrical interpretation.

Each strand of colour i represents a triangle of colour i and a free line
of colour ij represents an edge, which connects the triangles of colours i and
j. Since we have not assumed any additional symmetry properties of the field
arguments, the structure of the kinetic term tells us that we can glue two
faces of the same colour belonging to two different tetrahedra only in a unique
way: in the stranded picture, a free line with colours ¢, j € {0,1, 2,3} is always
glued to a free line with the same pair of colours. Geometrically, it means
that the colouring of faces of a tetrahedron induces a colouring of its vertices,
obtained by labelling each vertex with the colour of the opposite triangle in
the tetrahedron. The gluing of two faces is then such that all the colours of
vertices agree. The stranded structure of the Feynman diagrams is therefore
rigid, and there are no twists within the strands such that we can collapse
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FI1GURE 3. Feynman graphs of the coloured Boulatov model
can equivalently be viewed as coloured graphs (color figure
online)

each strand to a single thin edge and represent Feynman graphs equivalently
as edge-coloured graphs, see Fig. 3.

In this graphical representation, tetrahedra are represented as vertices
and the coloured edges of the graph represent the corresponding coloured tri-
angles. Whenever two vertices are connected by an edge of colour 7, the corre-
sponding tetrahedra are glued together on their faces of colour 4 in the unique
way explained above. Let us discuss the structure of these graphs in a more
systematic way. To start with, let us briefly set up the following terminology
from graph theory, which we will use throughout the paper:

e A “graph” is always meant to be a multigraph without loops. More pre-
cisely, this means that a graph is defined as a pair G = (Vg, Eg), where
Vg is a set called the “vertex set” and where &g is a multiset containing
sets of the form {v,w} € Vg x Vg, called the “edge set”. Allowing £g to
be a multiset means that two vertices can be connected by several edges.
However, note that an edge is by definition a proper set, which means
that we do not allow for tadpole lines, i.e. edges starting and ending at
the same vertex.

e A graph G is called “bipartite” if there is a partition Vg = Vg U Vg such
that every edge connects a vertex in Vg with a vertex in V¢. If in addition
|Vg| = |V g, the graph is called “balanced”.

e A “(d+ 1)-edge-colouring” is a map vy : Eg — Cq, where Cy is some set
with cardinality |C4| = d+ 1, called the “colour set”. In the following, we
will choose Cq := {0,...,d} for definiteness. An edge-colouring is called
“proper” if y(e1) # ~y(ez) for all edges e, es € & incident to the same
vertex v € Vg

For the sake of generality, in the remaining of this section, we will con-
sider the general d-dimensional case unless specified otherwise. The follow-
ing discussion also applies to higher-dimensional Boulatov—Ooguri-type mod-
els. Closed (vacuum) Feynman diagrams of the coloured Boulatov model are
“closed coloured graphs”.

Definition 1.1 (Closed Coloured Graphs). A “closed (d+ 1)-coloured graph” is
a pair (G,v), where G is a (d + 1)-valent and bipartite graph G = (Vg, Eg) and
where 7 : &g — Cq4 is a proper (d + 1)-edge-colouring of G.
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L(3,1)

FIGURE 4. Four closed (3 + 1)-coloured graphs representing
the manifolds S3, St x §2, RP3 and L(3,1) (color figure on-
line)

Remarks 1.2.  (a) In the following, we usually omit writing the colouring map
~ explicitly and we simply call G a closed (d + 1)-coloured graph.

(b) A closed (d + 1)-coloured graph G is always balanced, i.e. |Vg| = [Vg|.
To see this, observe that the graph obtained by deleting all the edges of
colours 4 # 0 results in a disconnected graph containing pairs of vertices,
which are connected by an edge of colour 0. In other words, vertices
always come in pairs.

The following figure shows four examples of closed (34 1)-coloured graphs
representing 3-manifolds [73,83].

In order to define transition amplitudes, we also have to discuss open
(non-vacuum) Feynman graphs, i.e. Feynman graphs, which admit external
legs.

Definition 1.3 (Open Coloured Graphs). An open (d + 1)-coloured graph is a
finite, bipartite and proper (d + 1)-edge-coloured graph G = (Vg,&g) with
the following extra property: the vertex set admits a decomposition Vg =
Vg.int U Vg9, where Vg iy consists of (d + 1)-valent vertices, called “internal
vertices”, and where Vg 5 consists of 1-valent vertices, which we call “boundary
vertices”.

As a consequence, the edge set of an open (d+1)-coloured graph G can be
decomposed as g = &g ,int UEG, 5, where edges in &g int, called “internal edges”,
connect two internal vertices and an edge in £ sg—an external leg—connects
an internal vertex with a boundary vertex.

Remarks 1.4. (a) An open coloured graph is in general not balanced. As
an example, take the open (d + 1)-coloured graph consisting of a single
(d+ 1)-valent vertex with (d + 1) external legs, which represents a single
d-simplex.

(b) There are other conventions for open graphs in the literature. Some au-
thors define open graphs to be “pregraphs”, in which external legs are
defined to be half-edges, i.e. they do not end at a 1-valent vertex (e.g. in
[72]). Furthermore, open graphs in crystallization theory are usually de-
fined without external legs at all, i.e. they define graphs with two types
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of vertices: “Internal” (d + 1)-valent vertices and vertices with valency
< d, which they then call “boundary vertices” [73,84].

Having defined the notion of coloured graphs, we can now define the
corresponding simplicial complex. For the terminology and notation used for
complexes and PL-manifolds, see Appendix A. For completeness, we summa-
rize the construction in the following definition*:

Definition 1.5. Let G = (Vg, Eg) be some open or closed (d+1)-coloured graph.
Then we define its dual simplicial complex Ag in the following way:

(1) Assign a d-simplex o, to each vertex v € Vg and colour the (d — 1)-faces
of o, by d+ 1 colours. This induces a vertex-colouring, where each vertex
is labelled by the colour of the (d — 1)-face on the opposite.

(2) If two vertices v,w in G are connected by an edge of colour ¢ € C4, we
glue the two d-simplices together along their (d — 1)-face of colour 7 in
the unique ways such that all the colours of vertices agree.

The underlying graph of some open (d+ 1)-coloured graph is nothing else
than the internal dual 1-skeleton of the simplicial complex Ag. The boundary
dual 1-skeleton can be read off as follows [69,73]:

Definition 1.6 (Boundary Graph). Let G be an open (d + 1)-coloured graph.
Then, we define the “boundary graph” 0G as follows: there is a vertex in
0G for each external leg in G and each vertex has a colour coming from the
colour of the corresponding external leg. Two vertices of G are connected by
a bicoloured edge of colour ij whenever there is a bicoloured path in G with
colours 7, j starting and ending at the corresponding external legs.

The following figure shows an example of an open (3 + 1)-coloured graph
together with its boundary graph G and its simplicial complex Ag.”

Remark 1.7. A boundary graph of some open (d+ 1)-coloured graph is always
d-valent but is in general neither proper edge-coloured nor bipartite (see the
example in Fig. 5). However, every boundary vertex has a colour i € C4 and
its d adjacent edges have colours {ij | j € C4\{i}}. Note that this implies that
an edge of colour 7j can only connect vertices of colours {1, 5}, {,i} or {j,j}.

As already mentioned, the advantage of working with coloured models is
the fact that we only produce pseudomanifolds and no other types of topolog-
ical singularities. This is summarized in the following theorem:

Theorem 1.8. Let G be an open (d + 1)-coloured graph. Then, |Ag| is an ori-
entable and normal pseudomanifold with boundary.

4Strictly speaking, complexes dual to coloured graphs are pseudo(simplicial)-complexes [85],
since two d-simplices can share more than one face. As usual in the GFT literature, we won’t
make such a distinction and just speak about “simplicial complexes”.

5We will omit drawing 1-valent boundary vertices in open graphs in order to make the
concept of external legs more visible.



3612 C. Goeller et al. Ann. Henri Poincaré

1 .\
13 ﬁ2 INE
3 3 —0 3

\
3 0 |
3\ ‘ % "
23 | 23
\6 02 '/
2 2 5 '2
g G Ag

FIGURE 5. An open (3 + 1)-coloured graph G with its bound-
ary graph 0G and its corresponding simplicial complex Ag
(drawn with its dual 1-skeleton) (color figure online)

Proof. The proof that a graph represents a normal pseudomanifold for the
closed case can be found in [55]. A generalization for the open case is straight-
forward. For orientability, see for example, [73,86] and [80]. O

Remark 1.9. In the case of real coloured GFTs, we are also producing non-
orientable manifolds since for coloured graphs orientability is equivalent to
bipartiteness [73,86]. In that sense, working with complex models seems to be
more natural from a physical point of view.

In the following, it will be more convenient to restrict to those open
coloured graphs for which the boundary graph becomes again a closed coloured
graph as defined in Definition 1.1. This condition can be imposed using the
following proposition:

Proposition 1.10. Let G be an open (d + 1)-coloured graph with the property
that all external legs have the same colour. Then, the boundary graph 0G is
a closed d-coloured graph as defined in Definition 1.1 and G is bipartite and
balanced.

Proof. If all external legs of G have the same colour, say 0, then there is
no information encoded in the vertex colouring of G and we can ignore it.
Furthermore, all the edges of 9G are coloured by 0i for some i € C4\{0} and
hence, we can just colour them by i. This shows that G admits an obvious
proper d-edge colouring v5 : £56 — C;;_; induced by the colouring v of G, where
C;_y :={1,...,d}. To see that OG is bipartite, observe that every edge in 9G
comes from a bicoloured path of G, which starts and ends at an external leg
of the same colour. The number of edges contained in this path is odd, which
means that the number of vertices contained in this path is even. Therefore,
the source and target vertex of an edge of 0G are of different kind. For the
second claim, note that the graph G’ obtained from G by deleting all the edges
of colour 0 is in this case a (possibly disconnected) d-valent and proper d-edge-
coloured graph and such a graph is always balanced (by similar arguments as
in Remark 1.2(b)). O
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Remark 1.11. Note that in crystallization theory, open graphs are usually de-
fined directly with the property that all their external legs have the same
colour [73,84]. Furthermore, also in tensor models using a single, uncoloured,
tensor with bubble interactions, Feynman graphs are (open) coloured graphs
of this type [65,87].

From now on, we will mainly work with this restricted class of graphs
and so we introduce the following notation:

Definition 1.12. We will denote by &, the set of all open (d+1)-coloured graphs
in which all external legs have colour 0. The subset of closed (d + 1)-coloured
graphs is denoted by &4 C &,.

An immediate consequence of the definition is

Lemma 1.13. IfG € &, then 0G € &4_1. Furthermore, 0G is the empty graph
if and only if G € &4. In particular, this means that 0(0G) is the empty graph
for every G € &.

1.3. Feynman Amplitudes of Closed Graphs and Ponzano—Regge Model

The generating functional of the coloured Boulatov model is given by the path
integral [37,38,51]

3
ZCBM :/ (H D(PZDQDI> eisA[ipl’al] = Z Sym(g) AQ’ (14)

1=0 GEG3

where sym(G) denotes the symmetry factor of the graph G. The Feynman
amplitude Ag corresponding to some closed (3 + 1)-coloured graph G € &3
can be derived by convoluting the propagators and interaction kernels, which
can be read off the action (1.3) and are given by

Plst = [ an Ha 1g)  and

Vidash = [ (Hdh ) ot s 05)

SU(2)4 oy
where g;; is the group element assigned to the dual edge living on the triangle
i of colour 5. The amplitude A’g\ is then precisely the partition function of the

Ponzano—Regge spin foam model [8-12] multiplied by a prefactor depending
on N and A coming from the interaction term:

Vgl

e (8 [ (1) (). 09

e€ég feFg ecf

where Fg denotes the “set of faces” of the graph G, i.e. the bicoloured paths
within G, where we write e € f for an edge belonging to the face f and where
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e(e, f) is equal to 1 if the orientation of e and f agrees and —1 otherwise.5

The amplitudes above take the standard spin foam expression in terms of
irreducible representations of the rotation group, once expanded using the
Peter—Weyl decomposition of functions on the group [8-12]. The “free energy”
of the model is given by

Fepm[A = In(Zepm) = Z #Aé (1.7)
_ sym(G)

GE®B3 connected
As shown in [56], the leading-order graphs of this expansion in the large N limit
are the so-called melonic diagrams, which are certain coloured graphs dual to
the 3-sphere S3. This result generalizes the well-known fact that planar graphs
form the leading order in matrix models for pure two-dimensional quantum
gravity [88]. A similar result has been obtained for higher-dimensional Ooguri-
Boulatov-type models [57,58]. See also [59,66,67] for an extended discussion
in the setting of simplicial coloured tensor models and [60,65] for a discussion
in the setting of coloured tensor models with bubble interactions.

2. Topology of Coloured Graphs with Non-empty Boundaries

As seen above, the Feynman diagrams of coloured tensor models and GFT's
are certain types of edge-coloured graphs. The topology of these graphs is not
only studied in quantum gravity, but also in crystallization theory—a branch
of geometric topology. In this section, we discuss some general concepts and
important results from the topology of coloured graphs, combining notions
which are used both in quantum gravity and in crystallization theory. We will
mainly focus on the general notion of coloured graphs representing pseudo-
manifolds with non-empty boundaries. For a general review of the topology of
coloured graphs in the context of coloured tensor models and GFT's, see for ex-
ample [65-67]. For surveys on crystallization theory, see [73-75] and references
therein. Further details on the topology of coloured graphs with non-empty
boundary can be found in Appendix B.

2.1. Bubbles and Their Multiplicities

The underlying graph of some closed (resp. open) (d+1)-coloured graph G is the
dual 1-skeleton (resp. internal dual 1-skeleton) of the corresponding simplicial
complex Ag. However, as discussed previously, the simplicial complex assigned
to G is unique and hence we expect that also the higher-dimensional dual cells
and their nested structure are encoded in the graph G. This leads to the notion
of “bubbles” [66], or equivalently, “residues” [73] in the mathematical literature
on crystallization theory:

6Note that a coloured graph can always be assigned a canonical orientation of edges, i.e. by
orienting each edge from a black vertex to a white vertex. Furthermore, we have implicitly
chosen a starting point in the product for each face. The amplitude does not depend on
these choices, by the properties of the Haar measure and delta function [11].
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FIGURE 6. Elementary melonic 3-ball G (1.h.s.) and its four 3-bubbles

Definition 2.1 (Bubbles). Let G € &4 (see Definition 1.12) be an open (d 4 1)-
coloured graph and iy,...,i; € Cq with i3 < -+ < i, k € {0,...,d}. We
call a connected component of the graph obtained by deleting all the edges
of colours C4\{i1,...,ir} a “k-bubble of colours i1, ...,4;". We denote such a
bubble by B;’;-)--“, where p labels the various bubbles of the same colours. The

total number of k-bubbles of arbitrary colours is denoted by Bl¥],

“ele-

Figure 6 shows an open (3 4 1)-coloured graph G € &3, called the
mentary melonic 3-ball” [67], together with all its 3-bubbles:

Note that the set of 0-bubbles is precisely the vertex set Vg of G. In prin-
ciple, this also includes the 1-valent boundary vertices. However, we consider
in the following the convention where only the (d 4 1)-valent internal vertices
are considered 0-bubbles so that 0-bubbles correspond to the d-simplices of
the simplicial complex. It is immediate to see that 1-bubbles are edges and so
correspond to the (d — 1)-simplices of the complex. Similarly, 2-bubbles are
called the “faces of the graph” and they correspond to the (d — 2)-simplices of
the complex. This correspondence can be extended to all dimensions:

Proposition 2.2. There is a one-to-one correspondence between the k-bubbles
of some open (d + 1)-coloured graph G € B4 and the (d — k)-simplices of the
corresponding simplicial compler Ag.
Proof. Tt is not too hard to see that a k-bubble B is exactly the graph, which
is dual to the (disjoint) link (see Appendix A) of a (d — k)-simplex o of Ag,
ie.

AB ZLkAg(O'). (21)
More precisely, recall that the colouring of the d + 1 faces of each d-simplex
in the complex induces a colouring of vertices. Now, a k-simplex o has (k+ 1)
vertices, which have some colours, lets say {i1,...,ik+1} C Cq. The link of o
is by definition a (d — 1 — k)-dimensional complex, which is dual to a (d — k)-
coloured graph. This (d — k)-coloured graph is exactly a (d — k)-bubble in G
with colours Cg\{é1,...,%ik+1}- O

In particular, this means that there is the following correspondence in
the case of dimension d = 3:

0-bubbles (internal vertices) of G
1-bubbles (edges) of G

2-bubbles (faces) of G

3-bubbles of G

3-simplices (tetrahedra) of Ag

(
2-simplices (triangles) of Ag
1-simplices (edges) of Ag

(

K R

O-simplices (vertices) of Ag



3616 C. Goeller et al. Ann. Henri Poincaré

Remarks 2.3. (a) A k-bubble is by itself a k-coloured graph that can either
be open or closed. If a k-bubble B is open, then the corresponding (d —
k)-simplex lives purely on the boundary of the simplicial complex Ag.
Instead, if B is closed, then the corresponding simplex lives in the interior
of Ag (possibly touching the boundary). As an example, the complex dual
to the graph in Fig. 6 has three boundary vertices and only one internal
vertex (the vertex dual to B123).

(b) The proposition above tells us that there is a family of bijective maps of
the form ¢y : Agp — Bl4—H where Ag ), denotes the set of k-simplices
of the complex Ag. Note also that these maps are inclusion reversing:
Consider a k-simplex o and let 7 be some [-face of o. Then, (o) is a
(d — k)-bubble within the (d —I)-bubble ¢;(7). Hence, the colouring does
not only include information about higher-dimensional dual cells but also
about their nested structure.

The topology of bubbles can be used to determine whether a coloured
graph describes a manifold or a pseudomanifold:

Proposition 2.4. Let G € &, be an open (d + 1)-coloured graph. Then |Ag| is
a manifold if and only if all the d-bubbles of G represent either (d — 1)-spheres
7 (d —1)-balls.

Proof. Every triangulation with the property that all the links of its vertices
(=the d-bubbles of the graph) represent spheres or balls (a so-called combina-
torial triangulation, see Appendix A) is a manifold (in fact, a PL-manifold),
see [89]. For the reverse, see [73] and references therein. O

Previously, we have defined the boundary graph 9G of some open (d+1)-
coloured graph G € &, and said that the underlying graph is exactly the
boundary dual 1-skeleton of the complex Ag. Since 0G is a closed d-coloured
graph, we can construct the corresponding simplicial complex Ayg. Naively,
we would guess that this simplicial complex is exactly the boundary of the
simplicial complex dual to G, i.e. Agg = 0Ag. However, it turns out that
0Ag is in general just a quotient of the simplicial complex Ayg obtained by
identifying some of its simplices. This is actually well known in crystallization
theory and goes under the name “multiple residues” [84,90,91]. Let us discuss
this point in more detail using an explicit example. Consider the following
closed (2 + 1)-coloured graph v € &, called the “pillow graph”, as boundary
graph:

The graph represents a 2-sphere, as can be seen by looking at the simpli-
cial complex A, dual to . Now, consider the two open (3+1)-coloured graphs
G1,G2 € B3 of Fig. &:

Both of these graphs satisfy 0G; = 0Go = 7. One can easily see that the
boundary of the simplicial complex Ag,, which describes a 3-ball, is given by
the complex A, i.e.

0Ag, = Aog = A, (2.2)

However, this is not the case for the simplicial complex dual to Gs. Indeed,
note that the graph G5 has in total four 3-bubbles, from which three are open
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FIGURE 7. A closed (2+ 1)-coloured graph v (Lh.s.) together
with its simplicial complex A, (r.h.s.) (color figure online)

G1 Go

FIGURE 8. Two open (3 + 1)-coloured graphs G; o € &3 with
boundary graph given by the graph v (color figure online)

38012

FIGURE 9. Unique 3-bubble B%'? of colour 012 of the graph
Go together with its boundary graph 9B%2 (color figure on-
line)

graphs. One of them, the 3-bubble of colour 012, has two disconnected bound-
ary components, see Fig. 9.

As explained above, the 3-bubbles of some open (3 + 1)-coloured graph
G correspond to the vertices of the simplicial complex Ag, whereas the 2-
bubbles of its closed (2 + 1)-coloured boundary graph 9G correspond to the
vertices of the complex Ayg. Hence, we see that in the above example, the
two vertices dual to the two 2-bubbles of colour 12 of ~ are identified in the
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simplicial complex Ag,, since they both correspond to the same 3-bubble in
Gs. In other words, the boundary of the simplicial complex Ag, is the complex
obtained by identifying the two vertices v and w of the complex A, drawn on
the right-hand side in Fig. 7, i.e. we can write

00, = A/ (2.3)

The geometric realization of this complex is the “pinched torus”, i.e. the pseu-
domanifold obtained by identifying two distinct points on a 2-sphere. This
discussion leads to the following definition:

Definition 2.5 (Multiplicity of Bubbles [91]). Let G be an open (d+ 1)-coloured
graph. We call the number of boundary components of some bubble B the
“multiplicity of B” and denote it by mult(B). If mult(B) € {0, 1}, then we call
the bubble “simple”.

If G € B, only has simple bubbles, then we clearly have that Agg = 0Ag.
This is in particular the case if G represents a manifold, since all its d-bubbles
are spheres and balls. Furthermore, this is also clearly true for pseudomanifolds
without boundary singularities, i.e. pseudomanifolds for which all the open 3-
bubbles represents (d — 1)-balls. Using the discussion of the example above,
one can easily see that there is the following general relationship between the
complex of the boundary graph and the boundary of the simplicial complex of
the corresponding open graph:

Proposition 2.6 (Boundary Complex of a General Open Graph). Let G be an
open (d + 1)-coloured graph with boundary graph G. Then

0Ag = Aag/ ~,

where ~ identifies for each non-simple k-bubble B of G with k € {3,...d} the
corresponding (d — k)-simplices belonging to the various boundary components

of B.

The appearance of this additional pinching effect on the boundary could
have been expected since the boundary graph only takes the 1-skeleton of the
complex JAg into account. While it does encode a full simplicial complex,
it does not contain any information about these possible identifications of k-
simplices with k& < d — 3, which are coming from the bulk graph. In other
words, the boundary graph only describes the “desingularized” boundary of
the complex Ag.

2.2. Combinatorial and Topological Equivalence

Every manifold admits a coloured graph representing it (see Appendix “Exis-
tence of Coloured Graphs and Crystallizations”); however, there are in general
infinitely many inequivalent graphs representing the same topology. In order
to properly describe a manifold of a given topology, we need transformations
changing the graph but leaving the topology of the associated manifold invari-
ant. For PL-manifolds, Pachner’s theorem [92] states that two PL-manifolds
are PL-homeomorphic if and only if they are related by a finite sequence of so-
called Pachner moves. In three dimensions, there are only two different types
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of Pachner moves, the (1 — 4)- and the (2 — 3)-move. For our purpose, these
moves do not work since they are in general not respecting the underlying
structure of the coloured graph. For example, applying a (1 —4)-move to some
tetrahedron results into a complex which is not bipartite anymore. It turns
out that a suitable set of moves is given by so-called dipole moves, which were
introduced in [93]:

Definition 2.7 (Dipoles and Dipole Contraction). Let G € &4 be an open (d +
1)-coloured graph, such that |Vg int| > 2. We call a subgraph dj, consisting of
two internal vertices v, w € Vg int, which are connected by k edges of colours
i1,...,1, € Cq, “k-dipole of colours i1, ...,1;”, if the two (d + 1 — k)-bubbles
of colour Cq\{i1,...,ir} containing v and w, respectively, are distinct.

If some coloured graphs admits a dipole, then we define another graph
by “contracting the dipole” [84,93]:

Definition 2.8 (Dipole Contraction). Let G € &4 be an open (d + 1)-coloured
graph and dj a k-dipole within G with vertices v, w. Then we define the graph
G/di € &4 by deleting the two vertices v and w of G and by connecting
the “hanging pairs” of edges respecting their colouring. We say that “G/dj is
obtained by contracting the k-dipole dj in G”. The inverse process is called
“creating a dipole”. See Fig. 10 for examples in dimension d = 3.

Remarks 2.9. (a) If both vertices v and w admit an adjacent external leg,
then the procedure would produce a disconnected part containing a single
edge of colour 0 connecting two boundary edges. In this case, we do not
include this additional disconnected piece in the definition of G/dj, as a
convention (e.g. see Fig. 10b).

(b) Note that performing a k-dipole move in some open (d + 1)-coloured
graph G is geometrically one and the same as performing the graph-
connected sum (see Appendix “Connected Sum of Coloured Graphs”) of
two (d + 1 — k)-bubbles within the graph G.

Figure 10 shows three examples of 1-dipole contraction in open (3 + 1)-
coloured graphs.

Note that the boundary graph only changes in example (b). The reason
for this is that the two vertices involved in the dipole admit adjacent exter-
nal legs, and therefore, after contracting the dipole, the number of boundary
triangles is reduced by two. On the other hand the boundary graph is left
untouched whenever one of the separated (d + 1 — k)-bubbles is closed, as in
example (a) and (c) above:

Proposition 2.10 (Boundary Complex and Dipole Moves). Let G € &, be an
open (d + 1)-coloured graph and dy, a k-dipole within G. If at least one of the
two (d + 1 — k)-bubbles separated by the dipole is closed, then 0G = 9(G/dy)
and also 0Ag = 0Ag,q, . We call such a dipole “internal”.

Proof. Let us assume without loss of generality that the colours involved in the
k-dipole are 1,..., k, because if 0 is involved in the dipole, the two (d+ 1 —k)-
bubbles separated by dj are both closed and the claim is trivially true in this
case. The general situation is sketched in Fig. 11



3620 C. Goeller et al. Ann. Henri Poincaré

g G/dy

FIGURE 10. Three examples of 1-dipole contractions in open
(3 4 1)-coloured graphs (color figure online)

G/dy
“w— 0 — M
G k1 b1

a4 b

FiGURE 11. Contraction of a generic k-dipole of colours
1,...,k (color figure online)

P

By assumption, one of the (d + 1 — k)-bubbles separated by dj, is closed
and we choose without loss of generality the bubble BX+1~* containing v. Note
that the vertices a; do not necessarily have to be distinct and similarly for the
b;’s. Furthermore, by could in principle be a 1-valent boundary vertex. Clearly
all the bicoloured paths starting and ending at an external leg of colour 0:
with ¢ € {1,...,k}, which are going through the dipole, necessarily contain
the vertices ag and by and still exist after contracting dj. Next, consider a
bicoloured path containing the vertex w of colour 0j with j € {k+1,...,d}.
Such a path connects the vertex by with w and the vertex w with b;. Now,
if we contract the dipole dj, then this bicoloured path still exists precisely
because we have assumed that B4T1=% is closed: The path in G/d; connects
the vertex by with ap, the vertex ag with a; by a bicoloured path of colours
07 and the vertex a; with b;. This shows that all the non-cyclic faces of G are
still contained in G/dj. Furthermore, it is also clear that we do not produce
new non-cyclic faces, since the number of external legs is left untouched in
this case. Therefore, we conclude that 0G = 9(G/dy). Since there is a natural
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inclusion of bubbles of G/d} into bubbles of G, the multiplicities of bubbles do
not change, which implies that also the boundary complexes are the same. [J

Note that a dipole move does not always preserve the topology. This can
easily be seen by the fact that performing a dipole move is the same as perform-
ing the connected sum of two submanifolds, as mentioned in Remark 2.9(b).
For example, whenever both of these two submanifolds are neither spheres nor
balls, a dipole move will change the topology of the manifold. Let us introduce
the following terminology:

Definition 2.11 (Proper Dipole Moves). Let G € &4 be an open (d+1)-coloured
graph and dy a k-dipole within G. We say that dj is “proper”, if |Ag| and
|Ag/q,| represent the same manifold (up to PL-homeomorphism).

As an example, all the dipole moves drawn in Fig. 10 are proper, because
all the graphs represent 3-balls. More generally, as proven in [93] (for closed
graphs) and in [84] (for open graphs), one can define two classes of dipole
moves, which preserve the topology:

Theorem 2.12 (Gagliardi-Ferri). Let G € &4 be an open (d+1)-coloured graph
and dj, a k-dipole involving vertices v, w € Vg int-

(1) If at least one of the (d+ 1 —k)-bubbles separated by the dipole represents
a (d — k)-sphere, then dy, is proper. We call such dipoles “internal proper
dipoles”.

(2) If both v and w admit an adjacent external legs and at least one of the
(d+ 1 — k)-bubbles separated by the dipole represents a (d — k)-ball, then
dy, is proper. We call such dipoles “non-internal proper dipoles”.

Proof. For a complete geometrical proof see Proposition 5.3. in [84]. Using
the graph-connected sum discussed in Appendix “Connected Sum of Coloured
Graphs”, one can actually give an alternative proof of the statement, as already
observed in [94]: In case (1), we basically just perform the (internal) connected
sum of a spherical (d + 1 — k)-bubble with some other topology (possibly
with boundary), which is trivial and hence leaves the topology invariant (see
Corollary B.7). In case (2), we perform the boundary connected sum of some
(d 4+ 1 — k)-bubble representing a (d — k)-ball with some other topology and
hence we do not change the topology either (see Theorem B.6 (1)). O

The three examples of Fig. 10 do have these properties. More precisely,
the dipoles in the graphs (a) and (c) are internal proper 1-dipoles and the
dipole in (b) is a non-internal proper 1-dipole.

Remarks 2.13.  (a) Note that by Proposition 2.10, an internal proper dipole
leaves the boundary complex invariant whereas a non-internal proper
dipole changes the boundary complex explicitly, since it does reduce the
number of boundary (d — 1)-simplices by two.

(b) Every non-internal proper k-dipole move induces an internal proper k-
dipole move on its boundary graph. The reverse is in general not true.
However, it turns out that every proper dipole on the boundary graph
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corresponds to a “wound move”, another set of moves discussed in [84],
in the open graph.

(¢) Note that the theorem of Gagliardi-Ferri is not an “if-and-only-if” state-
ment and there are also proper dipoles, which do not fall into the two
classes defined above. See Appendix A.4 in [95] for a short discussion and
examples. However, as it turns out, the two classes of proper dipole moves
discussed in the Theorem of Gagliardi-Ferri are sufficient to characterize
topological invariance, as stated in Theorem 2.15.

Let us mention the following immediate consequences of the above theo-
rem:
Corollary 2.14. Let G € B4 be some (d + 1)-coloured graph.
(1) Ewvery d-dipole is proper. If G is closed, then also every (d — 1)-dipole is
proper.
(2) If G is closed and represents a manifold, then every dipole is proper.
(8) If G represents a manifold—possibly with boundary—then every k-dipole
involving the colour 0 is proper.
(4) If G is open and represents a manifold, then every k-dipole in which both
vertices admit adjacent external legs is a mon-internal proper one.

Proof. This follows from the previous theorem as well as Proposition 2.4,
i.e. the fact that for manifolds all d-bubbles represent spheres or balls. O

Up to now, we have introduced a set of moves for general coloured graphs
leaving the topology invariant. However, it is not yet clear if this set of moves
are enough to relate any two coloured graphs describing the same topology to
each other. It turns out to be the case:

Theorem 2.15 (Equivalence Criterion of Casali [94,96]). Let G1,G2 € &4 be
two open (d + 1)-coloured graphs representing manifolds. Then, the manifolds
M = |Ag,| and Mz := |Ag,| are PL-homeomorphic if and only if G1 and
Go are related by a finite sequence of proper dipole moves of the two types
defined in Theorem 2.12. Moreover, if 0G1 = 0Go, then M1 and My are PL-
homeomorphic if and only if Gy and Gy are related by a finite sequence of
internal proper dipole moves.

Therefore, we are free to use proper dipole moves in order to study the
different graphs associated with a manifold of a given topology.

3. Transition Amplitudes

Having discussed the graph-theoretical and topological properties of the Feyn-
man graphs emerging from the coloured Boulatov model, we now move on to
the transition amplitudes. The purpose of this construction, from a canonical
quantum gravity point of view, is in fact to define a physical scalar prod-
uct between two boundary states.” In the context of the Boulatov model, the

"Therefore, the label “transition amplitudes” should be understood loosely. For the difference
between spin foam amplitudes defining the canonical scalar product and those encoding
quantum gravity “transitions”, see [97-100].
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boundary states are spin networks states [101,102] living on some fixed bound-
ary graph, which are dual to some fixed boundary topology. The transition
amplitudes should then provide us with a sum over all topologies with bound-
ary given by our fixed boundary graphs, each weighted by their corresponding
spin foam amplitude. In this section, we will start by defining suitable GFT
boundary observables, which can then be used to define transition amplitudes.
Afterwards, we will apply the techniques from crystallization theory discussed
in the previous section, in order to rewrite the amplitudes as topological ex-
pansions similar in spirit to the topological expansion of the free energy in the
large N limit proposed by Gurau [56-58]. The results of this section are based
on the Master’s thesis of one of the authors (GS) [95].

3.1. Boundary Observables and Transition Amplitudes

GFT boundary states are described by spin networks [101,102]. To start with,
let us recall that a “SU(2) spin network” is defined to be a triple (v, p, 7), where
v = (Vy,&,) is a directed and finite graph, p = (pe, He)ece, is an assignment
of irreducible and unitary representations of SU(2) to edges of the graph v and
i = (iy)vey, is an assignment of intertwiners of the type

e @ M- @ He (3.1)

eeT (v) e€S(v)

where 7 (v) denotes the collection of edges incoming to v and S(v) the col-
lection of edges outgoing from v. To every spin network ¥ := (v, p,), one
can associate a corresponding “spin network function”, which is a map ¢ €
L2(SUIS dg; C) satisfying

V({9e}ece,) = V({ky 0y 9eks(e) Yeee,) (3.2)
for all {ke}ecy, € SU(2)V7!, defined by

dlaee) = (@) o (@ nulo) (33)

vEV, ec&,

where o, means contracting at each vertex v € V, the upper indices of the ma-
trices corresponding to the incoming edges in v, the lower indexes of the matri-
ces assigned to the outgoing edges in v and the corresponding upper and lower
indices of the intertwiners i,. The Hilbert space L?(SU(2)/€+1/SU(2)VI, dg; C)
is spanned by spin network states [102]. Furthermore, from the physical point
of view, spin network states are kinematic states representing quantum 3-
geometries [82,103].

In order to describe transition amplitudes between spin network states
defined on the boundary, we have to introduce suitable boundary observables,
which are endowed with the corresponding quantum geometric data. Since
we are working in the language of field theory, these observables should be
functionals of the fundamental fields and compatible with the SU(2) gauge
symmetry of the model. Following the general idea of [36], we define GFT
boundary observables in the following way:
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Definition 3.1 (Boundary Observables of the Coloured Boulatov Model). Con-
sider a closed (2 + 1)-coloured graph v € &5, which we fix to be our boundary
graph and which we equip with source and target maps s,¢ : £, — V. Further-
more, let us choose a spin network W = (v, p,¢) on v with corresponding spin
network function 1 € L?(SU(2)!1/SU(2)VI). Then, we define the Boulatov
boundary observable to be the functional

3
O\D[‘ﬁOa@O] ::/ ( H Hdgvi)/(p({gs(e)ﬁ(e)gt(i)ﬁ(e)}EES’Y)X

SU(2)*M ! vEV, i=1
X ( H <P0(9v379v2,9v1)>( H (Po(gv3;gv27gvl)>a
veVy veV,

where g,; are the three group elements of colours i = 1,2, 3 assigned to the
three half-edge adjacent to the vertex v € V., and wherey : &, — C5 = {1,2,3}
is the proper edge-colouring of the graph ~.

It is important to stress that we restrict only to a certain class of bound-
ary states, namely to boundary states living on closed (2 + 1)-coloured graphs.
Hence, all the open graph appearing in the expansion of the transition ampli-
tudes will be such that all external legs have the same colour 0. This is done
for purely technical reasons. Note that the boundary observables can straight-
forwardly be generalized to arbitrary admissible bicoloured boundary graphs.
In this case, the corresponding observables are then functionals of the fields of
all colours.

Remark 3.2. Note that we do not only fix a boundary graph, but already a
boundary graph with a fixed orientation and colouring and hence with a fixed
topology. This is an important difference to the general definition in [36], since
in the uncoloured version, we only fix a graph and the (dual) 1-skeleton alone
is not enough to determine a topology.

With the observables defined above, it is straightforward to define the
corresponding transition amplitudes of the coloured Boulatov model:

Definition 3.3 (Transition Amplitudes for the Coloured Boulatov Model). Let
v € B3 be a closed (2 + 1)-coloured graph and ¥ = (v, p,4) be a spin network
living on ~. Then the transition amplitude is defined by

3
(Zepm|¥) = / (H D@lD%) em e Oy [0, By
1=0
For the following discussion, let us briefly recall and set up the following
terminologies and notations which we use for open (3 + 1)-coloured graph
G € B3 with boundary graph v := 9G:

(1) Recall that the vertex set can be decomposed as Vg = Vg int UVg, 9, where
vertices in Vg iny are 4-valent internal vertices and vertices in Vg g are 1-
valent boundary vertices and are in one-to-one correspondence with the
vertices of the boundary graph V.
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(2) Similarly, we decompose the edge set as Eg = Eg.int U Eg,9, where edges
in &g iny connect two internal vertices and edges in &g 5 are external legs,
i.e. edges connecting a vertex in Vg jn, with a vertex in Vg 5. Note that
the set £g o is also in one-to-one correspondence with V.

(3) The set of faces (=2-bubbles) of G is denoted by Fg. This set can also
be decomposed as Fg = Fg int UFg 0, where Fg int is the set of “internal
faces” i.e. the set of closed 2-bubbles of G (they correspond to the internal
edges of the simplicial complex Ag) and where Fg o is the set of open
2-bubbles of G, i.e. faces starting and ending at an external leg (they
correspond to the edges on the boundary of Ag). There is a one-to-one
correspondence between the sets of edges of the boundary graph £, and
the set Fg 5. We denote this bijection by

e:0Fg — &,
[ e(f).
From a geometrical point of view, an open 2-bubble f is the interior part
of a face of the dual complex touching the boundary and the edge e(f)

is the corresponding edge on the boundary dual complex, “closing” the
face.

(3.4)

Expanding the interaction term of the action in the coupling, we can write
the formal path integral of Definition 3.3 as a sum over Gaussian integrals,
which will lead to a sum over all pair-wise contractions of fields in the product
of interaction Lagrangians and the given fields within the boundary observable.
Renaming g, := gseig;}- for each edge e € &, of colour i € {1,2,3}, we are
left with an integration over all boundary edges, where the integrand is given
by the spin network ¢ weighted by the corresponding spin foam amplitude for
each Feynman diagram. More precisely, we can write

L P N — Ty (3.5)

ge®; with 9G=v sym(G)

where the sum is over all open (3 + 1)-coloured graphs in 3 with G = v and
where the amplitude Aé [¥] for a given open (341)-coloured graph G is given by
the Ponzano—Regge transition function together with a prefactor depending on
N and \. More precisely, the amplitude is the L? (SU(2)|5w| ,dg)-inner product

ANW] = (AR ) e = /

SU(2)!&!

< H dge) Aé [{ge}ee&,] '1/)({5].3}@657),
ec&,
(3.6)

where ) € L?(SU(2)/+1/SU(2)V71) is the corresponding spin network function
of W. The functionals A}[{ge}ece | are defined by

Vg int|
2

Aé[{ge}eefw] = (5]\)7\(/\11)> ZgR[{ge}eESW]a (37)
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where the “Ponzano—Regge functional” ZgR[{ge}eesﬂ is the well-known spin

foam amplitude given by
N
e () L)

Su(2)l€gl

ec&g fEFG int ecf
€ TTpelers)
N elelt), e(e,
><{ IT ¢ (ge(f) S >} (3.8)
f€.7‘—g=a ecf

The starting points of the products within the delta functions corresponding
to the non-cyclic faces (second line) are fixed to be one of the corresponding
boundary vertices.

The interpretation of the quantity (Z.gpm| V) is the following. If 4 has two
boundary components, then it computes the probability amplitude (overlap)
between these two states, where we sum over all topologies matching the given
boundary topologies, each weighted by the Ponzano—Regge partition function.
If v has a single boundary component, then (Z.gym|¥) can be interpreted as
the probability for the transition of the state from the vacuum.

Remark 3.4. More precisely, we should take the logarithm in the definition of
(Z.5Mm|¥), since then we only produce connected Feynman graphs. However, we
will mainly work with connected boundary graphs in the following and hence,
all the disconnected parts produced in the amplitude are closed graphs and
these additional vacuum diagrams are anyway cancelled by the normalization
one usually puts in front of the path integral.

3.2. Bubble Rooting and Core Graphs

The guiding idea of the following section is to collect different coloured graphs
with the same amplitude, the same boundary and the same topology together.
This essentially generalizes the bubble rooting procedure for closed graphs
introduced in [56-58] to open graphs. We will restrict our attention to the
three-dimensional case, although everything can easily be generalized to higher
dimensions.

A suitable way to relate graphs in a topology- and boundary-preserving
way is given by performing internal proper dipole moves, as discussed in
Sect. 2.2. Hence, we should have a look how amplitudes change when perform-
ing such a transformation. Before stating the result, let us prove the following
preliminary lemma:

Lemma 3.5. Consider a closed (2 + 1)-coloured graph -y representing the 2-
sphere equipped with group elements on its edges. Furthermore, let P be a
closed 3-coloured path within the graph ~v. Then

5<ﬁhg<@~f>> IT o™ (ﬁh?“”) =oN) I oV (ﬁhf@f')).
ecP fer, ecf feFry ecf

The same is true if v is an open (24 1)-coloured graph representing the 2-ball
(=disc) and P is a closed 3-coloured path in the interior, i.e. not including
external legs and edges of the boundary graph, if we replace F., by F int-
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FIGURE 12. A planar (3 4 1)-coloured graph representing a
2-sphere and a closed 3-coloured path P (orange) equipped
with group elements on its edges. Using all the faces enclosed
in the path P, the delta function associated with P can be
replaced by 67V (1) (color figure online)

Proof. Since ~ represents the 2-sphere, it is in particular a “planar” graph,
which means that it can be drawn in such a way that all the faces of the
underlying graph (=regions bounded by a closed set of vertices and edges)
are actually also faces in the coloured sense, i.e. they are bicoloured. In other
words, if we represent « in the stranded diagram picture, which in the two-
dimensional case is just a ribbon graph, it can be drawn in such way that there
are no crossing of lines. As a consequence, every closed path within v enclosed
a set of faces of the graph and using all the corresponding delta functions
allows to contract the path to a point. As an example, consider the graph
drawn in Fig. 12.

The example shows a closed (2 + 1)-coloured graph ~ representing a 2-
sphere, drawn in a planar representation, and the right-hand side shows a
closed path, denoted by P, within . Due to planarity, we can use all the delta
functions corresponding to the faces enclosed by P in order to shrink P until
it becomes a face of the graph itself and can hence be replaced by 1:

0N (hi ' hahy M hahs Yhehs ' hshg  hiohiy hys) <SR, 6N (1) (3.9)

In other words, due to planarity, the path can always be shrunk to identity by
using all the delta functions, which are enclosed. The same is true if v is an
open graph representing a disc as long as the closed path lies in the interior and
is not touching the boundary. Note that from the topological point of view,
the result is a consequence of the simply-connectedness of the 2-sphere and
2-disc, since every closed path can be contracted to a point. A more technical
and rigorous proof of a similar statement can be found in [56,58]. O

Using the above lemma, we can now show how amplitudes change under
performing internal proper dipole moves, which essentially generalizes Lemma
6 in [58] to the case of graphs with boundary:

Lemma 3.6. Let G € &3 with v := 0G and dj, with k € {1,2,3} be an internal
proper k-dipole in G. Then the amplitudes of G and G/dy, satisfy

k=1:  AiH{getees,] = ANAZ, 4, [{getece,]
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G/dy

ao.\ho/Obo
s me—M oy

az by

Ficure 13. A 1-dipole contraction involving an edge of
colour 3 and group elements assigned to all the edges (color
figure online)

k=2 A§l{getees,] = QNN (1) AG g, [{ge ece, ]
F=3: Al{gedece) = ONAY g, gdece, ]

Proof. We only prove the case of k = 1 since the proofs for the other two cases
are analogues.

We need to distinguish between the cases where the dipole edge has
colour 4 # 0 or colour ¢ = 0. In the first case, the general situation is sketched
in Fig. 13.

We consider a 1-dipole consisting of an edge, which without loss of gen-
erality is taken of colour 3, connecting two internal vertices v,w € Vg int.
Furthermore, we assume that the 3-bubble Bgiﬁal% of colour 012 containing
the vertex v represents a 2-sphere, whereas the 3-bubble BS}(IQMW , of colour 012
containing w is allowed to be open and to have arbitrary topology. Note that
the vertices a; do not have to be distinct and similar for the b;’s. Furthermore,
the vertex by could in principle also be a 1-valent boundary vertex. Now, let us
denote the group elements living on the edges va; by h,.;, the group elements
living on b;w by huw:i and the group element assigned to the dipole edge vw
by hs. The contribution of all these edges to the Ponzano-Regge transition
function is given by the following integrals:

2
dh ( dhwidhwﬂ>
Jrr (11

=0
O™ (husohs  asso HO [g))6N (st by st H')6™ (g s H?)
5N (hv;Oh;%Hgl)éN (hv;2h;(l)H32)5N (hv;lh;%Hz?)
6N (hiph huso HO g8 (hig b2 H2[g)6™ (hphhun HE?). (3.10)

The group elements H® for i € {0, 1,2} denote the products of group elements
assigned to the bicoloured path of colour i3 starting at b; and ending at a;.
The product H? could in principle contain a boundary group element, which
is indicated by the notation [g], since the corresponding face could be non-
cyclic. The group elements HY with i,j € {0,1,2} and i < j are the product
of the remaining group elements of the edges belonging to the faces of colour
ij containing the vertex v. Since the 3-bubble BY1? is closed, all these faces
are cyclic and hence these products do not contain boundary group elements.
Lastly, HY with i,5 € {0,1,2} and i < j are the product of the remaining
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group elements of the edges belonging to the faces of colour ij containing the
vertex w. The faces of colour 01 and 02 could in principle be non-cyclic and
hence HO! and HO? could again contain one of the boundary group elements,
which we again indicate by [g]. To start with, let us change the variables h,.;
to h; := hv;ihglhw;i for all ¢ € {0,1,2}. Under this transformation, we see that
the integrand is no longer dependent on hg and hence, we can integrate trivially
over it. Using dh}, ; = dh, the contribution from the dipole becomes

2
o (Tt

6N (ho HO[g))8™ (hy H'®)6N (ha H?) (3.11)
6N( Uohv%H(n)(SN(hU 2hv éHO2)6N<h hv éH12)
5N( 1hv 1h hon[ D‘SN( 01hv;0hv;2h2H2;2[g])éN(hglhv;Qh;&th;?)-

Next, we can use the two delta functions 5N(hv;oh;%H31) and 5N(hv;2h;éH32)
to integrate over the group elements h,.; and h,;2, which results into the
replacements h,,1 := H)'h,0 and h_2 = h, CH?. We are left with

/ dho.odhodhy dhy
SU(2)4 ’

N (ho HP[g])6™ (ha H'*)8 (ho H??) (3.12)
5]\7 (H01H02H12>
N (hi " H, ho Hy! [g) 6™ (hg " HYho Hy? [g) 8" (hy ' H 2o H, ).

We see that the integration over h,.q is now trivial and so it can be taken out
thanks to the Haar measure normalization.

The interpretation of this result is as follows. We integrate over three
group elements hg, hy, ho which are the group elements living on the three
edges a;b; in the graph G/d;. The first row of delta functions corresponds to
the bicoloured paths i3 for i € {0, 1,2} containing one of the three edges a;b;.
For the third line, before contracting the dipole, we had for each pair 75 with
i,7 € {0,1,2} and i < j precisely two bicoloured faces in our integration, one
containing v and one containing w. After contracting the dipole, we get rid of
the colour 3 edge and connect all the lines with colours i € {0, 1,2} to each
other. As a consequence, we combine for each 7,j the two bicoloured paths,
which before contracting the dipole were disconnected by the colour 3 edge.
To sum up, the third line of delta functions corresponds to all the faces with
colour 4, j € {0,1,2} of the graph containing two of the edges a;b;. At the end
of the day, we see that the first and third line of our result above precisely
corresponds to the contribution of the three edges a;b; of the contracted graph
G/dy. Hence, we have related the amplitude of G to the amplitude of G/d;
up to the additional factor of 6V (HO'H?H!?). To get rid of this term, we
make use of the assumption that the bubble Bg}lialaz is spherical. The product
HOYHO2H!? corresponds to a closed 3-coloured path, which completely lies
within the graph obtained by cutting the vertex v from the spherical 3-bubble
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Bgigalw. The latter is a graph representing the 2-disc and since all the delta

function corresponding to closed faces of this planar graph are also contained in

the amplitude of G/d;, we can replace 6~ (H HO? H1?) by 6V (1), according to

Lemma 3.5. As a consequence, taking into account that we reduce the number

of internal vertices by two, we have that

AN -
Ag[{ge}eefw] = W(SN(]I)Aé/dl [{ge}ee&] = (AN '-Aé/d1 [{ge}eef,\,]a

(3.13)

which concludes the proof. In the second case, i.e. the case where the dipole
edge is of colour 0, the proof is exactly the same with the difference that now all
the faces containing the dipole edge could contain a boundary group element
and none of the faces containing the vertex w. O

Remark 3.7. The reason for the additional factor of 6% (1) which cancels the
factor 1/6% (1) is not the same for 1 and 3-dipoles move. Instead of obtaining
a redundant delta as in the 1-dipole move, for 3-dipoles, the amplitudes of G
and G/d3 can be directly related, but there is by definition one redundant face
within in the 3-dipoles giving the factor of 6V (1).

Next, let us generalize the bubble rooting procedure introduced in [56-58]
to the case of open graphs. Let v € &, be a closed (2+ 1)-coloured graph—our
boundary graph—and let G € &3 be a connected and open (d + 1)-coloured
graph with 0G = . For every colour ¢ € C4, we have two possibilities:

(1) All d-bubbles without colour i are closed and represent d-spheres.

(2) There exists at least one d-bubble without colour ¢, which is not spherical.
Note that this includes both the case of open and closed but not spherical
d-bubble.

Remark 3.8. For any graph G in &5 with G non-empty, property (1) can only
be satisfied in the case i = 0, since for any 2-bubble B in 9dG of colour ij
for i,j € {1,2,3}, there exists a 3-bubble in G of colour 0ij, whose boundary
contains B as a connected component. If G represents a manifold, then property
(1) is necessarily satisfied in the case ¢ = 0, since all its internal 3-bubbles
represent 3-spheres.

In case (1), we choose one of the spherical 3-bubbles without colour ¢ as
“principal root” and denote it by Rél). In case (2), we choose one of the non-
spherical 3-bubbles without colour i as “principal root” R, and all other non-
spherical 3-bubbles without colour i as “branching roots”, which we denote by
Rz ) with some labelling parameter p. Next, we need the “connectivity graph
of colour 7", which is defined as follows:

Definition 3.9 (Connectivity Graphs). Let G € &3 be some open (3 + 1)-
coloured graph. Then the “connectivity graph of colour i € C3” is the graph
C'[G] defined as follows:

(1) There is a vertex in C*[G] for each 3-bubbles without colour i in G.
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FiGUrE 14. Rooting procedure per iteration j

(2) Two vertices in C¢[G] are connected by an edge if and only if there is an
edge of colour i in G connecting the two 3-bubbles corresponding to the
two vertices.

Remark 3.10. The connectivity graphs corresponding to some coloured graph
G are in general pseudographs, i.e. multigraphs in which also tadpole lines
(=edges starting and ending at the same vertex) are allowed.

The bubble rooting procedure is now defined via the following algorithm:

(1) Take the graph C°[G] and choose a maximal tree 7° in it. There are two
different types of vertices in this graph, namely the roots and all the other
vertices representing spherical 3-bubbles. Now, every vertex is connected
to the principal root by a unique path contained in the maximal tree.
For each branch root, let us draw the incident edge belonging to the tree,
which is contained in this path, as a dashed line. All the other edges we
draw as solid lines.

(2) The solid lines in the tree 79 are internal proper 1-dipoles and we contract
them. Repeating this procedure for all solid lines, we are left with either
a unique 0-bubble, which is spherical, or with a bunch of non-spherical
0-bubbles.

(3) Next, we choose a maximal tree 7! in the l-connectivity graph in the
graph obtained after step (2). Note that this tree in general depends on
the tree 7°. Then, we repeat step (2), i.e. we contract the internal proper
1-dipole corresponding to the solid lines.

(4) We repeat this procedure for all other colours by choosing trees 77 for
all j € {0,...,3}, which depend on the chosen trees 7= ... 79,

The procedure described in the algorithm above for some colour j € Cs
is sketched in Fig. 14.

The graph obtained after some iteration j clearly depends on the choice
of tree 77. However, the obtained graph is independent of the order of proper
1-dipoles contracted within some fixed tree. Furthermore, note that the pro-
cedure is well defined, since when we contract the tree of colour j, we do
not change the number of internal proper 1-dipoles of colours # j. This is a
consequence of the following lemma:
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Lemma 3.11. Let G be an open (d + 1)-coloured graph. An internal proper
1-dipole move of colour i € Cyq does not change the number as well as the
topologies of all d-bubbles of G involving colour i.

Proof. Tt is clear that we do not touch the number of all these bubbles. For the
second claim, observe that every internal proper 1-dipole move in G consisting
of an edge e € &g of colour i € Cy also corresponds to an internal proper 1-
dipole move within all the d-bubbles of G involving the edge e, because every
(d — 1)-bubble contained in the spherical bubble separated by the dipole is
itself a closed bubble representing a (d — 2)-sphere. O

In other words, contracting the connectivity graph of some colour j might
change the connectivity graphs of colour i # j, but there is still either a unique
spherical i-bubble for i < J, or all the i-bubbles for i < J are non-spherical and
hence, we do not produce any new internal proper 1-dipole of colour ¢ < j.
Furthermore, the number of dipoles we can contract in the connectivity graphs
with ¢ > j stays the same, since the number of spherical bubbles and roots
stays the same. After this procedure, we are left with a graph in which we
cannot perform any more internal proper 1-dipole contractions. In accordance
to [56-58], we call these objects “core graphs”:

Definition 3.12 (Core Graphs with Boundary). A “core graph with boundary -y
of order p” is an open (d+1)-coloured graph G, € &3 with 2p internal vertices,
such that 0G, = v and such that for every colour i € C3 one of the following
applies:
(1) There is unique closed and spherical 3-bubble without colour i.
(2) All 3-bubbles without colour ¢ are non-spherical. Note that this includes
both non-spherical closed 3-bubbles as well as open 3-bubbles.

Remark 3.13. A closed core graph representing a manifold is nothing else than
a crystallization as defined in “Existence of Coloured Graphs and Crystalliza-
tions” section. For open graphs, this is in general not true. While every crys-
tallization of a manifold with boundary is clearly a core graph, the reverse is
only true if we choose a boundary graph, which is by itself a core graph.

The core graph obtained from a coloured graph by the rooting procedure
introduced above does in general depend on the chosen trees. However, their
amplitudes are independent of these choices:

Proposition 3.14. Let G € &3 be an open (3+ 1)-coloured graph with boundary
graph v := 0G and G. some core graph obtained by rooting G. Then the order
of G. is given by

_ WVaointl _ [Vg,indl [ pld

where R4 denotes the total number of roots in G. Their associated Boulatov
amplitudes are related by

AYHgeteee,) = ONF R AL [{ge)eee, ]

Pe
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Proof. The number of contracted 1-dipoles does not depend on any choices by
Lemma 3.11 and one can easily convince oneself that it is given by B4 — Rl
The second claim follows from Lemma 3.6. O

Therefore, it makes sense to introduce the following notion of equivalence:

Definition 3.15 (Core Equivalence Classes). We shall call two core graphs with
the same boundary, the same amplitude, the same topology and the same order
“core equivalent”. This defines an equivalence relation ~. and we denote the
set of all equivalences classes for some given boundary graph + € &5 by

G5 == {G € 3 | G is core graph and 0G =7}/ ~c .

Furthermore, let us decompose this set as &5 = UZOZWW‘ /2 &7, where &7°7°¢
denotes the subsets containing all the core equivalence classes with boundary
v for some fixed order p.

Remark 3.16. The smallest order core equivalence class for some given bound-
ary graph v € &5 has order p = |V,|/2 and contains only one representative,
namely the open graph obtained by adding an external leg of colour 0 to each
vertex in . We call these graphs the “smallest matching graphs”. See Sect. 5
for more details.

3.3. Topological Expansion of the Transition Amplitude

Let v € B be some closed (2 + 1)-coloured graph of arbitrary topology and
U = (v, p,i) be some spin network state living on it. As explained in the last
section, every open (3 + 1)-coloured graph G € &3 can be rooted to some
core graph G.. As previously stated, the resulting core graph depends on the
choice of trees in the rooting procedure, however, following Proposition 3.14,
every other open (3 + 1)-open coloured core graph GVC obtained from G is core
equivalent to G.: G. ~ GVC. In other words, every open (3 + 1)-coloured graph
G can be rooted into a unique core equivalence class [G.]. This motivates the
expansion of the transition amplitude (3.5) in terms of the core equivalence
classes

(Zepm|¥) = Z >IN A [, (3.14)

p=|V,|/2 [Gle®gxre

where C191(\, X) is a combinatorial factor counting all the factors of A\ coming
from graphs, which root back to some graph in the equivalence class [G] as well
as their symmetry factors. More precisely, the factor of some core equivalence
class [G] of order p can be written as

hZ g mt\
ClO(AN) = > (W) (3.15)

R
Sym
Ge®B3 with 9G=v and G [g] Yy (g)

where the sum is over all open (3 + 1)-coloured graphs with boundary v and
which can be rooted to one of the members of the core equivalence class [G].
Note that this combinatorial factors do not contain the cut-off parameter N,
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since all the divergences are contained in the amplitude of the corresponding
core equivalence class. This is also the main reason for our choice of scaling. In-
deed, with this choice, internal proper dipole 1-moves do not change the degree
of divergence and all the graphs rooting back to some given core equivalence
class have the same power of 6™ (1).

The expansion written above is a topological expansion, in the sense that

each term in the sum corresponds to some fixed bulk topology. Note that
(1) Two core graphs at the same order p might have the same amplitude,
but might not be topological equivalent.
(2) Conversely, two core graphs at the same order p might be topological
equivalent but still have different amplitudes.

To sum up, every core equivalence class represents a fixed topology but
there are in general an infinite number of distinct equivalence classes represent-
ing the same (pseudo)manifold. In fact, for every topology there is a smallest
order p € N for which there is a core graph representing it and it exists core
graphs for all higher orders. Examples can be obtained by performing internal
proper 2-dipole moves.

4. Spherical Boundary and Factorization

In this section, we apply the above formalism to the simplest possible boundary
topology, the 2-sphere. We start by considering the simplest possible bound-
ary graph representing the 2-sphere, the elementary melonic 2-sphere, and
show that the transition amplitude, restricted to topologies without singular-
ities touching the boundary, is proportional to the spin network evaluation.
Afterwards, we extend this result to the next-to-simplest boundary graph rep-
resenting the 2-sphere, the pillow graph, and to arbitrary spherical boundary
graphs. In other words, we show that the transition amplitude with respect
to some spherical boundary graph factorizes and only depends on boundary
data. Afterwards, we argue by briefly discussing the next-to-simplest bound-
ary topology, namely the 2-torus, that the transition amplitudes contains non-
trivial information about the admissible bulk topology, a fact careful hidden
in the ball case due to the simple result obtained.

4.1. Simplest Boundary Graph Representing the 2-Sphere

As an example of the formalism developed so far and to fix ideas, let us discuss
the simplest possible example: a spherical boundary topology with the “ele-
mentary melonic 2-sphere®” as boundary graph . It is represented, together
with its triangulation, in Fig. 15.

Figure 16 shows five open (3+1)-coloured graphs with boundary given by
~. Each of them is a core graph and defines a distinct core equivalence class.
They are in fact all inequivalent core graphs up to order p = 3:

8Elementary melonic spheres are also known as “dipoles” in the literature. However, we have
already used this name for the concept of dipole moves.

9Note that these graphs exactly correspond to the radiative corrections of the propagator
from the group field-theoretic point of view.
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v

FIGURE 15. Elementary melonic 2-sphere v (Lh.s.) and its
corresponding simplicial complex (r.h.s.), where the gluing of
edges is as indicated by the dashed lines

FIGURE 16. Representative of all inequivalent core equiva-
lence classes with boundary + up to order p = 3

The core graphs drawn in the first line—G;, G and Gi—represent 3-
balls: The graph G is usually called the “elementary melonic 3-ball” [67] and
the graphs G, and G3 can be reduced to G; by performing internal proper
2-dipole moves. The two core graphs G2 and G3 both represent pseudomani-
folds, which can be seen from the fact that they both contain a 3-bubble of
toroidal topology. They are, however, not homeomorphic (and not even homo-
topy equivalent): the Euler characteristic of Agz is x(Agz) = 3 whereas the
Euler characteristic of Ags is x(Agz) = 2.10

A straightforward calculation gives the Ponzano—Regge amplitudes to-
gether with their prefactor coming from the interaction term corresponding to
the five core equivalence classes represented above:

Af\gl][{gl,92793}] = (M) (9195 )6 (9295 1) (4.1a)
Afg, {91592, 933 = QN)?[6N (1)) 71 0% (9195 )0 (9295 ) (4.1b)
A[)\g§][{glag2793}] = (AN (1)) 26N (9195 1) (gag5 ) (4.1c)

10The Euler characteristic is a homotopy invariant of general CW-complexes and therefore
in particular also of pseudomanifolds [104].
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0
(52 x SY\B3 RP3\ B3

FIGURE 17. Three open (3 + 1)-coloured graphs representing
manifolds with spherical boundary (color figure online)

Algz {9192, 933] = OV [V (1)) 720 (9195 1)6™ (9295 )
/ dedydz 6N (zyz(zyz) 1) (4.1d)
SU(2)3

A[)\gg] {91, 92,93} = OV (1)] 726 (9195 )™ (9295 ) (4.1e)

The group element g; is assigned to the boundary edge of colour i € {1,2,3}. In
all three cases, the amplitudes encode the flatness of the boundary connections,
as expected from the Bianchi identity. The remaining integral in the amplitude
of graph G comes from the non-trivial bulk topology. Note also that the
amplitudes of G, and G can be obtained from the amplitude of Gy, by applying
Lemma 3.6.

By the Theorem (B.3), we know that, at the very least, all manifolds
with spherical boundary appear in the transition amplitude. Let us discuss
some explicit examples of other manifolds appearing in the transition ampli-
tudes. Note that every compact, orientable and connected 3-manifold M with
boundary M =2 S? can be obtained by cutting out the interior of a (suf-
ficiently nicely) embedded ball inside some closed, orientable and connected
3-manifold N. Hence, every open (3 + 1)-coloured graph representing a man-
ifold, whose boundary graph is given by the elementary melonic 2-sphere 7,
can be obtained by cutting an edge of colour 0 in some closed (3 + 1)-coloured
graph representing a closed 3-manifold. As an example, consider the three non-
trivial graphs of Fig. 4 representing S? x S!, RP3 = [(2,1) and L(3,1). The
graphs obtained by cutting an edge of colour 0 are drawn in Fig. 17'!:

A straightforward calculation gives the following amplitudes for each
manifold:

‘A§2X51\é3 [{glv 92, 93}] = (AX)[I[&N (]]')]_26N (9193_1)6]\7(9293_1) (428“)

11Note that the manifold obtained by cutting out the interior of a ball from some closed
manifold does not depend on the chosen ball. This follows essentially from the annulus
theorem [105,106].
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FI1GURE 18. Graph v equipped with group elements g; 2 3 as
well as a sketch of an open (3 + 1)-coloured graph G with 9G.
The dotted lines represent the non-cyclic faces, which lead to
the corresponding boundary edges (color figure online)

A gl 92 933) = O 16 (1)) 726 (019516 (0095 ) | R
(4.2b)

A gy, s 92, 93] = OV (0] 6% (0150 g5 ™) [ ko™ (&)
SU(2) (4.20)

We see that all of them are proportional to the spin network evaluation
when applied to some boundary spin network state. Let us now prove that this
is true more generally.

Proposition 4.1. If G is an open (34 1)-coloured graph with 0G = ~ represent-
ing a manifold, then its amplitude satisfies

A getees,] < 0™ (9195 )N (g195 ).

The same holds true for pseudomanifolds, for which all the singularities are in
the bulk. As a consequence, we get that

<ZCBM|\IJ>| manifolds+pseudomanifolds — C[N, )‘a ] "(/)({gi = IL}i:l,2,3)-
without boundary singularities
Proof. Figure 18 shows the boundary graph v equipped with group elements
91,23 € SU(2), as well as the general structure of an open (3 + 1)-coloured
graphs G € &3 with 0G = ~.

The dotted lines in the graph G represent the non-cyclic faces of G, which
lead to the corresponding boundary edges. We equip these paths by the product
of group elements H 5 3. Note that these paths do not have to be independent:
there could be an internal edge of colour 0 in G, which is then contained in
several paths. The external legs of G are labelled by the corresponding vertices
of the boundary graph and we equip them with group elements h, .. If G
represents a pseudomanifold without boundary singularities, we know that all
its open 3-bubbles represent 2-balls. Hence, by Lemma 3.5, we know that the
group elements H o 3 satisfy

HHy''=1 (4.3a)
HH''=1 (4.3b)
HyH; ' =1 (4.3c)
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CLCF”

where “=7” means using all the delta functions associated with closed faces of
G, since these three products describe closed 3-coloured paths living in some
open 3-bubble representing the disc. Using this notation, let us write down the
contribution to the amplitude coming from all the faces involving boundary
group elements:

/ dhy dhy 0N (grhy ' Hihy ' )oN (g2hy  Hali, )0N (g3hy ' Hshy,') - (4.4)
SU(2)2
Integrating over h, using the first delta function, this becomes

w

/ dhy dhy 6N (gogy the  Hy'Ho  hp')6™(g3gy *he  Hy 'Hs R,
SU(2)? ~— N——

closed faces closed faces
_—

' 1 (4.5)

which is equivalent to 6™ (g1g5 ")0™ (9195 ') when using the closed faces of G
and the relations explained above. Therefore, the contribution A[¥] for some
spin network ¥ living on v with spin network function 1 is proportional to

/ dg1dgadgs 0™ (9195 )™ (9195 )Y (91, 92, 93)

SU@? (4.6)

=/ dgv(g,9,9) = ¥(1,1,1),
SU(2)

where we have used the SU(2)-invariance of ¢ in the last step. O

Remark 4.2. For the case of manifolds, there is also an alternative proof using
dipole moves, i.e. see [95, p.92f.].

To summarize: we can write the transition amplitude (restricted to man-
ifolds and pseudomanifolds without boundary singularities) for some arbi-
trary spin network ¥ on v with corresponding spin network function v €
L?(SU(2)3/SU(2)?) in the following form:

<ZCBM‘\IJ> ‘manifolds+pscud0manifolds without boundary singularities

= C[N7 )\7 A] : w({gz = 1}1’:1,2,3)
—_———
remaining bulk integrations & factors of AX and 6N (1) spin network evaluation
(@.7)

In other words, the transition amplitude for any boundary state living
on the spherical boundary graph - factorizes into a sum entirely given by
the combinatorics of the boundary spin network state regardless of the bulk
topology. The prefactor is in general infinite, since we sum over an infinite
number of graphs. However, note that the prefactor is a priori independent of
the boundary state and can always be reabsorbed in the normalization chosen
for the path integral.
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FIGUre 19. Pillow graph v and its simplicial complex A,
where the gluing of edges is indicated by the dotted edges

some G with 9G =~

Ficure 20. Pillow graph ~ equipped with group elements,
as well as the general structure of an open (3 + 1)-coloured
graph G with 0G = ~, equipped with group elements on some
of its edges and paths. The dotted lines represent the non-
cyclic faces, which lead to the corresponding boundary edges
(color figure online)

4.2. The General Case of a Spherical Boundary

After having discussed the simplest possible spherical boundary graph, let us
now show that a similar factorization theorem can be obtained for a generic
boundary graph representing the 2-sphere. In order to illustrate the main proof
strategy, let us first look into the next-to-simplest example, the so-called pillow
graph (see Fig. 19)—in the following denoted by 7 € ®s.

As usual, we label the boundary edges by group elements, as shown on
the Lh.s. in Fig. 20. Let us now consider a generic open (3 + 1)-coloured graph
G € B3 with boundary given by v = 9G and label some of its edges and paths
as shown on the r.h.s. of Fig. 20.

The notation is essentially the same as in the simple example above. We
label the vertices of the boundary graph by Latin letters. Since to every vertex
on the boundary graph there is a corresponding external leg in the open graph,
we label these external legs by the same letters and denote the group element
assigned to these edges by h; for i = a, b, ¢, d. Furthermore, recall that for every
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edge of colour ¢« = 1,2, 3 on the boundary graph, there is a corresponding non-
cyclic face of colour 0i in the open graph. The corresponding bicoloured paths
enclosed by the two corresponding external legs are drawn as dotted lines in
the figure above and are equipped with the product of all the group elements
assigned to its edges, which we denote by H;. Last but not least, we equip
the edges of the boundary graph by group elements g; as usual. Let us stress
again that the paths equipped with H; are not necessarily independent, as
there could be an edge of colour 0 appearing in more than one of these parts.
In other words, there could be a group element appearing in more than one of
the products H;. Now, let us observe the following:

Lemma 4.3. If G is an open (3+ 1)-coloured graph with 0G = v representing a
manifold or pseudomanifold without singularities touching the boundary, then

(a): HiH;' <

(b): HsH; ' <

(c): HyH; 'HyHy ' <

(d): HyH; "HoH; ' < 1,
where “Z 7 means using all the delta functions corresponding to the closed
faces of G.

Proof. This is a consequence of Lemma 3.5. If G represents a manifold or a
pseudomanifold without boundary singularities, then all the open 3-bubbles
of G represent discs (=2-balls). For example, all the dotted green and blue
lines form a 3-bubble of colour 023 representing the 2-ball with exactly one
boundary component, namely the face of the boundary graph with colour 23.
Now, the closed path H2H4_1H6H3_1H6 is totally contained in the 3-bubble of
colour 023, and hence can be replaced by 1, using the relations encoded in all
the closed faces of G. O

Using this lemma, we are now able to prove the following general result.

Proposition 4.4. If G is an open (3+1)-coloured graph with G = v represent-
ing a manifold, then its amplitude satisfies

Ag[{geteee,] < 6™ (9195 )0 (9596 )0 (9195 " 9595 ).

The same holds true for pseudomanifolds, for which all the singularities are in
the bulk. As a consequence, we get that

<ZCBM |\I}> |manifolds+pseudomanifolds without boundary singularities

=CIN, M A -v({gi = 1}iz1,2.34)-

Proof. Let us write down the contribution to the amplitude from all the faces
involving boundary group elements, using the general notation introduced in
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a b
O g3
O
c d
Y
FIGURE 21. A maximal tree (in orange) within the boundary
graph -y
Fig. 20:
/ dhodhpdh.dhg
SU(2)4

_ _ _ _ _ _ 4.8
5N (grhs VHL )N (gahy \Hah DY (gshy Hahy ) (D)

0N (gahg Hah V)N (gshy ' Hshy 1) (gshy ' Hehy ')

As a next step, let us choose a maximal tree 7 in the boundary graph =, i.e. a
subgraph containing all the vertices of =y, which does not contain cycles. A
possible choice is drawn in Fig. 21.

The idea is now to integrate over all the delta functions associated with
the boundary edges contained in the tree using one of the group elements h;
assigned to the external legs. Since 7 is a tree, we will end up with only one
remaining integration variable and three delta functions, which correspond to
the three edges, which are not contained on the tree. In this specific example,
we could for example integrate over h. using 0™ (g1h; ' Hih '), over h, using
6N (gah; ' Hshy ') and over hy, using 6V (goh; ' Hhy '). Hence, we are left with
only one remaining integration variable, namely hg4, and the contribution to
the amplitude becomes

/ dhy
SU(2)

5™ (95 '9391 9295 'g6hy  HeHy ' HoHy ' HyHg 'hy)
5™ (96 ' 939y " gahy ' HyH ' HsHy ' hy)
6N(gglg5h;1H5Hglhd). (49)

Now, the point is that all the products of elements H; enclosed in the expression
h;l ... hg describe closed paths in the graph drawn on the r.h.s. of Fig. 20. The
latter is a planar graph, as it has the same structure as the boundary graph
and hence, using Lemmas 3.5 and 4.3, we can replace all of these products by
the identity. Hence, we end up with

N (97" 92)6™ (95 ' 9397 "94)0™ (95 " g5) (4.10)

as claimed. The same is of course true if G is a pseudomanifold with the
property that all its singularities are in the interior, as in this case Lemma 4.3
is still valid. The fact that we recover the spin network evaluation can again
be shown by using the SU(2)-invariance of the spin network function. O
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Following the idea of the previous proof, let us now generalize the result
to arbitrary boundary graphs representing the 2-sphere.

Theorem 4.5. Consider an arbitrary closed 2-coloured graph ~y € B4 represent-
ing a 2-sphere. If G is an open (3+ 1)-coloured graph with 0G = ~y representing
a manifold, then its amplitude satisfies

Al{geteee, ] o< [ o (Hgs(" f))

feFy ecf

i.e. we get a theory of flat boundary connections and no other constraints or
mized terms connecting bulk and boundary elements. The same holds true for
pseudomanifolds, for which all the singularities are in the bulk. As a conse-
quence, we get that
<ZCBM|\II>| manifolds+pseudomanifolds = C[Na A, >\] . w({ge = ]l}eeé'ﬂ,)
without boundary singularities

Proof. As before, we label the edges of the boundary graph « by group elements
{ge}ece, . Furthermore, we label the external legs of G by the vertices of the
boundary graph and the corresponding group elements living on these edges by
{hv}vev, . We also label the non-cyclic faces of G by the edges of the boundary
graph and the product of group elements living on the part of these faces
connecting the two external legs by {Hc}cee, . Then, the contribution of all
the boundary group elements to the amplitude can be written as

dh SN (gehy L Heh,
/SU(2>V~|<H )H (9ehye Hehygoy) (4.11)

e€&,

Let us choose a maximal tree 7 in the boundary graph ~. Integrating over all
the delta functions involving a g., e € 7, we are left with only one integration,
which corresponds to some remaining vertex vy. In total, there are exactly

|87|—|£T|:|SV|—|V7|+1:|.7-'7|—1 (4-12)

delta functions left, where we have used the fact that « represents a 2-sphere,
ie. |Vy| — & + |Fy| = 2. All of these delta functions have the following
structure:

6N (Ghy Hhy,), (4.13)

where G is some product of boundary group elements {gc}cce, and H is a
product of elements contained in {He}eegw. Now, the product H describes
some closed path on the graph G and using similar arguments as previously,
it can be replaced by 1 using all the closed faces of the graph since the dotted
graph is planar and since all the closed paths in this graph can be replaces by
1 as a consequence of Lemma 3.5. Hence, we are left with a product of delta
functions only containing closed paths consisting of boundary group elements.

Next, let us recall the well-known fact that the Ponzano—Regge amplitude
always encodes flatness of the boundary connection [29]. To see this, let us look
at a generic face of the boundary graph and the general structure of some open
3-bubble of G leading to this face, as sketched in Fig. 22.
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a face f of v of colour 12

3-bubble B of G with 9B = f

FIGURE 22. A face f of the boundary graph v containing n
edges and the general structure of an open 3-bubble B in G
with OB =~

The figure above shows some face f of the boundary graph ~ of colour
12, for definiteness, consisting of n € 2N edges, which are equipped with
the boundary group elements {g;}icq1,....n}. The right-hand side shows the
general structure of an open 3-bubble B leading to this boundary face, i.e.
0B = f. The bicoloured paths are equipped with the product of group ele-
ments {H;}ic(1,....ny and the external legs with group elements {%;}ic(1,... n}»

as usual. To an edge i € {1,...,n} of f, there is a corresponding delta function
6N (g;h; " Hihi}l) for even i and 6™ (g;h;.! Hihy ') for odd i in the amplitude
of G, where we use cyclic indices, i.e. i + n := 4. Using the delta functions

successively, we see that they encode the constraint:
1= glhnglhl_l = glgglthnglhl_l
= =q105'93--.9n hiH " Hyy ... Hih{" (4.14)

Now, the relation H, 'H,_;...H; can again be replaced by 1, using the fact
that B represents a disc as well as Lemma 3.5. Hence, we are left with

1=g195"93...9,", (4.15)
which exactly tells us that the connection of the boundary face f is flat. Ap-
plying the same logic for all faces of the boundary graph, we get the claim,
i.e. that the Ponzano—Regge amplitude always encodes flatness of the boundary
connection. Note again that G does not need the represent a manifold for this
argument to work, since we only need to require that all the open 3-bubbles
of G represent 2-balls, or in other words, that G represents a pseudomanifold
without singularities on the boundary. Furthermore, this fact applies of course
also to arbitrary boundary topologies.

Since the Ponzano—Regge amplitude of some manifold with boundary
always recovers the flatness of the boundary, the product of delta functions
only containing boundary group elements can be rewritten in such a way that
they contain the flatness condition for the boundary connection. However,
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there cannot be something more. Any additional constraint corresponds to
some closed 3-coloured path on the boundary graph and, by Lemma 3.5, it
can be replaced by 1, using all the other delta functions corresponding to
the boundary faces. This also matches the fact that there are |F,| — 1 delta
functions left, since one of the delta functions in the product over boundary
faces is redundant. To sum up, the amplitude of G is proportional to a product
of delta functions encoding flatness of the boundary connections and it is a
well-known fact that the Ponzano—Regge transition amplitude in the case of a
flat, spherical boundary is proportional to the spin network evaluation, i.e. see
[29]. O

Before moving on, it is important to point out that the result is not as
trivial as it might appear, in the light of the fact that we are describing here a
topological field theory. For any manifold with boundary, the implication of the
topological nature of the model is that the amplitude encodes the flatness of the
boundary. Now, in principle, the Ponzano—Regge partition function depends
on both the boundary data and the topology of the bulk. What we have
shown here in the context of the Boulatov model is that there are virtually no
contributions of the bulk topology to the Boulatov partition function. They all
collapse to a normalization factor. This is not a consequence of the topological
nature of the theory, but of the simple topology of the chosen boundary itself.
To illustrate this fact, in the next section we quickly discuss the next-to-trivial
boundary topology, i.e. the 2-torus. In that case, we show that we obviously
recover the flatness of the boundary, but the Boulatov amplitude will also have
terms explicitly depending on the associated bulk topology.

4.3. Toroidal Boundary

The smallest closed (2 4 1)-coloured graph representing the next-to-trivial
topology, the 2-torus T2 = S' x S', which we denote in the following by ~,
has six vertices and can be seen in Fig. 23, together with its corresponding
simplicial complex.

The smallest possible open (3+1)-coloured graph with boundary given by
~v—called the smallest matching graph (see Sect. 5.1)—is the graph obtained by
adding an external leg to all the vertices of v, see Fig. 24. However, while this
graph—denoted by Gyp—is a core graph, it clearly represents a pseudomanifold:
its 123-bubble is exactly given by ~ and so is non-spherical. More precisely,
the pseudomanifold dual to Gy is homeomorphic to the topological cone of T72.
In Fig. 24, we also represent two more complicated graphs Gi,G] € &3 with
boundary +, which are also both core graphs but represent a manifold (in fact

the solid torus T, see Appendix Q).
A straightforward calculation shows that the graphs G; and Gj have the
same amplitude'? given by
A A * N -1 -1
-’4g1 Hg1,- - 99} = W d (9192 9397 ) X Ars(g1,---,99), (4.16)

12This can also be seen by Lemma 3.6 and the fact that they are related by two internal
proper 1-dipole moves (see Fig. 40).
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v {gi}i=1,...0 C SU(2) JAS A, | = T?

FIGURE 23. The smallest closed (2 + 1)-coloured graph rep-
resenting the 2-torus (Lh.s.) together with a labelling of its
edges with group elements and its corresponding simplicial
complex—where the gluing of edges is as indicated by the
Roman numbers—as well as its geometric realization, i.e. the
2-torus (r.h.s.) (color figure online)

Go G 1
Pseudomanifold with x =1 Solid Torus Solid Torus

FIGURE 24. Three core graphs Gy, G1,G1 € B3 with 0Gg 1,2 =
7. The graph G represents a pseudomanifold with one point-
like singularity in the bulk and y = 1. The graphs G; and G}
represent the solid torus

where App(g1,...,99) is an abbreviation for the expression

Arg(g1,---.99) = 0N (9195 '9391 '9595 )™ (9195 ' 9596 ‘9397 ")
6N (9295 ' 9497 ' 9695 ") (4.17)

encoding the flatness of the boundary. Since they clearly also have the same
boundaries, topologies and orders, they are contained in the same core equiv-
alence class. Note that one of the three delta functions in Agp is actually re-
dundant since we can always replace one of the faces by 7V (1) using the other
two faces and the constraint 6%V (g1 g, Lgs g7 1). Hence, the degree of divergence
of these graphs is actually 6% (1)~3. The geometric interpretation of this result
is the following: The term Apg(g1,...,99) encodes flatness of the boundary,
which we always recover for the Ponzano—Regge model of some manifold (see
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A
v Ag1 - Agi
gr gs
gu
9 2 4 /
99 9 | '
g n 3 \ \
g8 ar

N (9195 9397 ")

FIGURE 25. Boundary complex A, and the solid torus dual to
Gi1,G1. When gluing a solid torus to the torus boundary, there
are two choices of which of the two non-contractible cycles of
~ becomes contractible through the bulk. This information is
specified by the constraint g; g, ! 9397 ! = 1 contained in the
amplitude of G »

the proof of Theorem 4.5), and the additional constraint 6™V (g1g5 'g3g7 ") tells
us which cycles of the boundary graph becomes contractible through the bulk,
as sketched in Fig. 25.

Now, this is not the end of the story. At the continuum level, there are two
a priori boundary cycles of T2 that can become contractible through the bulk
when gluing it to the solid torus (m(T?) = Z?). As sketched in Fig. 25, our
initial choice of bulk makes the “vertical” direction contractible. It is expected
that it should exist a choice of bulk such that the “horizontal” direction is
contractible instead. Following the notation of Fig. 25, it should take the form
of the constraint 6N(glgglggggl). As a matter of fact, it is indeed possible
to find such an admissible bulk (see Go below). In both cases, the constraint
takes the form of a closed 3-coloured paths on the boundary and one might
wonder if more choices are possible. A list of all possible 3-coloured cycles on
the boundary graph v—up to flatness of the boundary and which do not go
twice to the same edge—are drawn in Fig. 26.

The solid torus graphs G; and G; are examples of graph encoding the
constraint 1). It is not too hard to construct examples of graphs representing
manifolds having the other constraints encoded in their amplitudes. Examples
can be seen in Fig. 27.

The graphs G, 3 clearly represent the solid tori, as they are essentially the
graphs obtained by rotating G; and by interchanging some of its colours. In
other words, G 3 are isomorphic to G; as coloured graphs and hence represent
the solid torus too.'® The three graphs G4,5,6 have been constructed by trial and
error and it is a priori not clear which topology they represent. However, they

13Two coloured graphs G1,2 € &4 with colouring maps 1,2 : €g112 — Cq are called “iso-
morphic”, if they are isomorphic as graphs and if there colours are related by a bijective
recolouring of their edges, i.e. there is a graph isomorphism & : Vg, — Vg, as well as a
bijection ¥ : C4 — C4 such that ¢ 0 ® = U o 3. By definition, two isomorphic coloured
graphs are isomorphic if and only if they represent simplicial isomorphic complexes [73].
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1) 2) 3)
Notation:
gt gs
5 9n Cy = 6(g195 "g397") Co :=6(g195 " 9095 ") Cy = 0(g195 " 9595 ")
2
99 99
BN 4) 5) 6)
9gs g7
A'T

Cy = 0(9295 " 9595 "9795 ") Cs :=0(9195 '9095 "9a97 ") Co := (9195 9495 " 9095 ")

FIGURE 26. A list of all independent (by flatness) possible
closed 4-colour paths on the boundary, which to not go twice
to some given edge and their associated boundary constraint
(color figure online)

FIGURE 27. Six core graphs G; with 0G; = v represent-
ing manifolds, whose amplitudes encode the constraints C;
sketched in Fig. 26
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clearly represent manifolds with boundary, as all of their 3-bubbles represent
spheres or balls, as one can easily check.'* Furthermore, the three graphs also
clearly represent the same topology, as they are again isomorphic as coloured
graphs.

The amplitudes of the graph G; is given by

\ A\
Agi[{gl, . 799}] = (M) Ci X AFB(gla . ,gg) (418)
for all i € {1,...,6}, where C; are the constraints defined in Fig. 26. Since C;
cannot be related using the flatness of the boundary, the six amplitudes are in
principle different.

To sum up, we see that in the case of a toroidal boundary, there are
different contributions to the full transition amplitude of the coloured Boula-
tov model. These contributions differ by the choice of which cycle becomes
contractible through the bulk. That is, they differ by how the bulk is glued
to the boundary and by the topology of the bulk. We have only discussed six
explicit examples, but there might be many more cases, e.g. by combining the
six cases, which geometrically correspond to different winding numbers, cycles
and combinations thereof. A complete analysis of the torus boundary topology
is left for future work [108].

5. Leading-Order Contribution to a Spherical Boundary

In this last section, we show that the leading-order contribution of the tran-
sition amplitude of some spherical boundary graph, when restricted to mani-
folds, is given by the equivalence class representing the closed 3-ball defined by
the smallest possible open graph matching the given boundary graph. Further-
more, we show that these graphs essentially generalize the melonic diagrams,
which are the leading-order diagrams in the large N limit of the free energy of
the Boulatov model [56-58], in the sense that they have the smallest possible
Gurau degree [66].

5.1. Smallest Matching Graphs and Gurau Degree

Let us first introduce a certain class of graphs which are the smallest possible
open (3+ 1)-coloured graphs matching some given boundary graph. As we will
discuss in this section, this type of graphs can be viewed as a generalization
of melonic graphs in the sense that they minimize a suitable generalization of
the Gurau degree to open graphs. Let us introduce the following terminology.

Definition 5.1 (Smallest Matching Graph). Consider a closed (2 + 1)-coloured
graph 7 € B5. We define an open (3 + 1)-coloured graph Gsyg € &3 with
0G = =, called the “smallest matching graph”, by adding an external leg of
colour 0 to all the vertices of ~, after interchanging the type of vertices (black
> white) within ~.

14 A closer analysis reveals that the graphs Ga,5,6 indeed represent solid tori too, e.g. by
using Theorem 14 of [107], which tells us that every core graph representing a manifold with
boundary v and with strictly less than 14 internal vertices represents the solid torus.
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boundary graph:

FIGURE 28. Three examples of closed (2+ 1)-coloured graphs
and their smallest matching graphs (color figure online)

Figure 28 shows three examples of boundary graphs and their correspond-
ing smallest matching graphs.

The first two examples represent 2-spheres and the corresponding small-
est matching graphs clearly represent closed 3-balls. The third example repre-
sents the 2-torus and the corresponding smallest matching graph represents a
pseudomanifold with one internal point-like singularity. The smallest matching
graph corresponding to some boundary graph + is clearly a core graph since
it only has one internal 3-bubble, which by construction is equivalent to ~.
Furthermore, it is also clear that the smallest matching graph is the unique
open (3 + 1)-coloured graph with boundary ~ with minimal possible number
of internal vertices, |V,|. Last but not least, note that the simplicial complex
Aggne is precisely what is usually called the “cone” of the simplicial complex
A, i.e. the simplicial complex obtained by adding to A, a vertex vy as well
as a (k +1)-simplex {vg} Uo for each k-simplex o of A,. Therefore, the pseu-
domanifold |Agg,,| is the topological cone of the surface S := |A,|, usually
denoted by CS, e.g. see [104].

If v does not represent a 2-sphere, then the smallest matching graph
cannot be a manifold since its unique 3-bubble of colour 123 is equivalent to
~ and is by assumption non-spherical. In fact, the Euler characteristic of the
simplicial complex dual to the smallest matching graph is generically given by
one, independently of the boundary topology, as the following short calculation
shows:

X(AQSMG): \8[3], - |fgSMG‘ + |€gSMG| 7|VgSMG,int|:]‘7 (5'1)
SHFL <1E e =1 1+ Vs =V,

where Bl?! denotes the number of 3-bubbles of Ggye. Since the Euler char-
acteristic of any odd-dimensional compact and orientable manifold M has to
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fulfil x(M) = 1x(0M), we see that

1 !
1—-gy= §X<A’7) = X(AgSMG) =1, (5'2)

where g, denotes the genus of the surface dual to v, can only be fulfilled for
boundary graphs representing the 2-sphere, i.e. the genus 0-surface. Indeed, if
v is a 2-sphere, then one can easily check that the smallest matching graph
always represents a manifold, since all its 3-bubbles are either 2-spheres or discs
(=2-balls). Furthermore, a closer look reveals that they generically represent
the 3-ball in this case:

Proposition 5.2. The smallest matching graph Gsmc of an arbitrary closed (2+
1)-coloured graph v € &y representing the 2-sphere represents the 3-ball.

Proof. As explained above, the smallest matching graph represents the cone
over the boundary surface. Therefore, if v represents a 2-sphere, then Ggnmg
clearly represents a 3-ball. 0

We now show that the smallest matching graph of some spherical bound-
ary graph generalizes melonic graphs in the sense that they have the smallest
possible Gurau degree. In the case of closed graphs, this combinatorial quan-
tity labels the large IV expansion of the free energy of coloured tensor models.
Furthermore, it allows to give bounds on the amplitudes of coloured GFTs
[68,66]. For coloured graphs with non-empty boundary, the Gurau degree can
be defined following [70,72].

Definition 5.3 (Gurau Degree). Let G € &, be a connected open (d + 1)-
coloured graph with boundary graph v := 9G. Then, the “(Gurau) degree
of G” is defined to be the rational number

d-1) (d(d— 1)

w(g) =" 1

d—1)!/d—
Vg int| +d — |.7'—g,int\) - ( ) (

> (Sl cm)

where C(v) denotes the number of connected components of the boundary
graph ~.

Remarks 5.4. (a) In the two-dimensional case, the degree is equivalent to the
genus of the surface dual to the graph. To see this, let us write the degree
for some (2 + 1)-coloured graph G with boundary 9G = v as

1 C(0G
0lG) =1~ 1 (1Faml + 6] = 16l + Vsm]) ~ 00
=x(Ag)
1 1 3
+3 (1621~ ol = 321+ SVl ) 6.3

Let us analyse the last term. First of all, since v is a closed (1 + 1)-
coloured graph, we clearly have that |£,| = |V,|. Furthermore, we have
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that 3|Vg int| + [Vy| = 2|&g| for every open (2 + 1)-coloured graph. To
sum up, the last term vanishes and we get

w(G) =1 — w — 4o, (5.4)
where we used that the genus of a surface with boundary is defined by
X(Ag) =:2 —2gg — C(0G).

(b) Clearly, the definition reduces to the definition of the Gurau degree for
closed graphs [58,66] in the case of empty boundary 9G = (.

(c) Similarly as for closed graph, the degree can be rewritten in terms of the
genera of the “jackets” of the graph. More precisely, it can be written
as the sum over the genera of the “pinched jackets” of the open graph
minus the sum over the genera of jackets of the boundary graph, i.e. the
degree of its boundary graph. See [70,72] for more details. Note that the
definition of the degree in these papers differs by a factor of (d — 1)!/2
compared to our definition, since they define what is usually called the
“reduced degree” [109].

The Gurau degree of some open coloured graph is in general not a topo-
logical invariant, i.e. graphs representing the same topology might have a dif-
ferent degree. However, it is invariant under internal proper 1-dipole moves.

Lemma 5.5 (Dipole Contractions and Degree). Let G € &4 be a connected
(d 4 1)-coloured graph and dy be an internal k-dipole, i.e. at least one of the
two (d + 1 — k)-bubbles separated by dy, is closed. Then

(d—1)!
w@) =

In particular, it follows that w(G) = w(G/dy), i.e. the degree is invariant under
internal 1-dipole moves.

(k(d+1—k)—d)+w(G/dy).

Proof. The proof is a straightforward generalization of the proof for closed
graphs given in [58,66]: The number of internal vertices of G and G/dy, is
decreased by two, [Vg,a, int| = [Vg,int| — 2, and the number of faces by
E(k—1) (d+1-k)(d—k)

P/l = 1Fgl = ——— ~ 5 : (5.5)
By assumption, the dipole is internal. Hence, the number of non-cyclic faces is
left untouched, since G = 9(G/dy,) (see Proposition 2.10). As a consequence,
we have that

k(k—1)  (d+1—k)(d—k)

|'7:Q/dk,int| = |'7:g,int| - B - 5 . (5.6)
Using these relations and the definition of the degree, we obtain the claimed
relation. g

This lemma is a generalization of the result stated in [58,66] for closed
graphs. Furthermore, as shown in [58,66], the degree of some closed coloured
graph can be written in terms of the degrees of its bubbles. Let us generalize
this to the case of open coloured graphs.
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Proposition 5.6. Let G € B3 be a connected open (d + 1)-coloured graph with
boundary graph v := 0G. Then

(d B 1)' ( B 1)|V 1nt| | | aB[d_l]
w(g) = 2 < Z(dg— 1) + d— B[d] + ﬁ - C(’y))
d
+ ZZL‘J(Bz
=0 p

where Bl denotes the number of d-bubbles of G and where BEP) are the internal
d-bubbles without colour i of G, labelled by some parameter p.

Proof. Let us split the set of d-bubbles for some colour 7 into internal d-bubbles,
labelled by pint, and open d-bubbles (those including external legs), labelled
by ps. Hence, we can write

d s d o d -
DD wB) =D wB,)) T D> wB,,) (5.7)

=0 p =0 pint i=1 po

Note that 0-bubbles cannot be open, since all the external legs have colour
0, which is the reason why the second sum starts at ¢ = 1. As the d-bubbles
are by themselves d-coloured graphs, we can define their degrees. The internal
d-bubbles are closed d-coloured graphs and their degrees are given by

(d—2)! ((d—1)(d—2)
W(Bp) = 5 4 Ve,

Ha-D-1rg ) 63

and open d-bubbles are open d-coloured graphs and hence, their degrees are
given by

(Bl = U (U Dy @D -1y )
(T2, |+ COB,) ). 6.9)

Now, an internal vertex of G is by definition (d + 1)-valent such that all ad-
jacent edges have different colours. As a consequence, every internal vertex of
G appears precisely in (d'gl) = (d+ 1) of its open or closed d-bubbles. This
means that

ZZW umHZZIV i, 1= (@4 D)ol (5.10)

i=1 po =0 pint

A 1-valent boundary vertex of G appears exactly in ( a 1) = d of its d-bubbles

B: ie.

(pa)’

ZZ%BI |=dw,). (5.11)

=1 pos
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Furthermore, an internal face of G is a bicoloured path with colours ¢, j. Such
a path is part of exactly (2:}) = (d — 1) open or closed d-bubbles of G. This
means that

ZZIRP thZZIR = =Dl (5.12)

=1 pas =0 pint

Lastly, we have to discuss the number of boundary components of the -
bubbles. Every boundary component of a d-bubble corresponds to a (d — 1)-
bubble of the boundary graph. In other words, we have that

d
> > CB,,) = o841, (5.13)

=1 pos

where 9Bl%~1 denotes the number of (d — 1)-bubbles of the boundary graph
0G. Plugging all these relations into Eq. (5.7) yields the required result

_ _ [d—1]
w(G) = (d 5 2k (( 1;'2?5_“1') ] +d— Bl 85_ T C(v))
d
—I—ZZw () (5.14)

Let us now consider the case we are interested in. Let G € &3 be some
connected open (3 + 1)-coloured graph with connected boundary graph ~y :=
0G. In this case, the Gurau degree is given by

3
w(G) = §|Vg,int| +2 — | Fgint| — V51, (5.15)
which, according to Proposition 5.6, is equivalent to
1 1 1
= Wi — = o _ BBl 4L = 5.16
w(G) = 5[Vam| = 7V + + 5150+ 3_bu§es o= (510)

where g denotes the genus of the surface (possibly with boundary) represented
by the 3-bubble 5. Note that the sum in the expression above is always greater
or equal to 0 and it equals 0 if and only if G represents a manifold.

In the case of closed graphs, it is a well-known fact that the Gurau degree
is a nonnegative quantity in arbitrary dimensions and can be bounded from
below by a function depending on the degrees of its d-bubbles of some fixed
colours [66]. For the case of open graphs, let us prove the following lower bound
for the degree.

Theorem 5.7 (Lower Bound for Gurau Degree). Let G € &3 be some connected
open (3 + 1)-coloured graph with 0G = v, such that all its 3-bubbles are sim-
ple (see Definition 2.5) so that there are no pinching effects on the boundary
complex. Then

w(g) > 2g,.
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Proof. Let us start with the following general expression of the degree of G
(see Eq. (5.16)):

1 1 - 1
(@) = 3 Vol = gVl +2-BF+ JIF I+ Y gs (517)
3-bubbles B

Now, since we have assumed that all 3-bubbles are simple, we can write B =

|Fy| + Bi[i]w where Bl[i]t denotes the set of closed 3-bubbles, since to every 2-

bubble f on the boundary there is a unique corresponding open 3-bubble B in
G with 0B = f. Furthermore, let us use the fact that + represents the genus
g~-surface, which yields the relation

1
2 — 29“/ = X(A'y) = ‘-7:7| - ‘5'y| + ‘Vv| = |-7:'y| - §|V'v‘

1 1
= _§|‘7:'y|:9'y_1|vv|_1' (5.18)

Using the splitting B3l = || —1—81[3]t and plugging in the formula for |7, | from

above, we find that the degree is given by
1 3
(@) = 5 (Vo =) +1- Bl +9.+ Y g (5.19)
3-bubbles B

Now, note that |Eg int.0] = %(|Vg’int| — V1), where &g int,0 denotes the set of
internal edges of colour 0, where internal means edges connecting two 4-valent
vertices of G, as usual. Hence, we have that

3
w(0) = Egmol + 1B+ v+ D gs. (5.20)
3-bubbles B
In order to find an appropriate expression for |Eg int 0, let us use the equality

W(9) = g mol +1 - B +9,+ Y. g8
3-bubbles B

3
= SWVanal +3 = 1 Fgml = (V3 + 1), (521)

where the expression on the right-hand side is just the definition of the degree
(see (5.15)) for the three-dimensional case, which yields

3
€gantol = Vol +1 = [Fouml = Vo[ + Bl =g, = D g5 (5.22)
3-bubbles B

As a next step, note that we have the following relation between all the internal
faces of colour ij with ¢ # 0 # j and internal edges of colour # 0:

3 3
> 1 Fgintisl = Y |€g il + Vo.mel = > (2—-2g5) (5.23a)

i,7=1, i=1 internal 3-bubbles
i#£j of colour 123 B
= > (2—-298) - > (2 —2¢g) (5.23b)

internal internal 3-bubbles
3-bubbles B involving colour 0 B



Vol. 24 (2023) Transition Amplitudes in 3D Quantum Gravity 3655

= 2(B5 — Bl ) - 2( > gs- > 93)7 (5.23¢)

internal internal 3-bubbles
3-bubbles B involving colour 0 B

where &g int,; denotes the set of internal edges of colour ¢, where Fg ing,i; de-
notes the set of internal (cyclic) faces of G of colour ij and where Bi[i]t,o denotes
the set of internal 3-bubbles involving colour 0, i.e. the number of internal 012,
013 and 023-bubbles. Using the fact that 3|Vg int| = 2 Z?Zl |€g,int,i| and using
the formula above for the number of internal faces not containing colour 0, we
arrive at

3 3
[ Fg el =Y | Fgmiol + D 1Fa,muisl (5.24a)
=1 ig=1,
i

3
1
=" | Fguinsiol + 5 Voml + 20804 = BIL o)
i=1

—2( > - > gg). (5.24b)

internal internal 3-bubbles
3-bubbles B involving colour 0 B
Plugging this expression for the number of internal faces back into our formula
for |€g int,0l, i-e. Eq. (5.22), we find

3

3
1€g.mt0l = = > | Fgnsiol + Vol — Vo +1 - Bt — g+ > g5
~—————

i=1 3-bubbles B
2|€g int.o0|

+2 (Bﬂyo - > g5> —2 > g5 (5.25)

_internal 3-bubbles open 3-bubbles B
involving colour 0

and hence we finally arrive at the equality

3
|€g int,0| = Z |FG inti0| + Bl[i]t +(gy—1) — Z 9B

i=1 3-bubbles B

—2 (551,0 - > gB> +2 S g (5.26)

internal 3-bubbles open 3-bubbles B

involving colour 0 B
Plugging this relation for the number of internal edges of colour 0 back into
our expression for the degree (5.20), we arrive at the following formula for the
degree of G:

3
w<g>2gw+z|fg,im,m|+2( 3 gsBi[f;l,o)

=1 internal 3-bubbles
involving colour 0 B

>0



3656 C. Goeller et al. Ann. Henri Poincaré

+2 > g5 . (5.27)

open 3-bubbles B

>0

Let us assume without loss of generality that G is a core graph, since if it is
not, then we can apply our rooting procedure and by Lemma 5.5, we know
that the degree does not change. If G is a core graph, then all the internal
3-bubbles involving colour 0 are non-spherical and hence, we see that the
bracket is nonnegative in this case. Hence, we conclude that w(G) > 2g-, as
claimed. O

In particular, this proof shows that the Gurau degree is always non-
negative. As a straightforward application of the lower bound theorem proven
above, we can show that the number of internal vertices of graphs representing
manifolds can be bounded from below.

Corollary 5.8. Let v € &5 be a closed (2 + 1)-coloured graph representing a
genus g-surface. If G € &3 is an open (3 + 1)-coloured graph with 0G = ~
representing a manifold, then |Vg int| > 29, + [Vs|.

Proof. Let us assume without loss of generality that G is a core graph, since if
it is not a core graph, we can apply our rooting procedure in order to obtain
a core graph, which by construction represents the same manifold as G, but
with a smaller number of internal vertices. If G is a core graph representing
a manifold, then it has in total 1 4 |F,| 3-bubbles, one internal one of colour
123 representing a 2-sphere, and for each face f of v a corresponding open
3-bubbles B representing a disc with 98 = f. Furthermore, recall that the
Euler characteristic of any odd-dimensional compact and orientable manifold
M satisfies y(M) = 1x(9M). Hence, we can write

1

=gy =ox(8y) =x(Ag) =145~ |Fg| +  |&|  —[Voiiml
[Fg it +[E]  [Eg,int|+| Vo]
(5.28a)
=1+ (|7 = & + V5]) =1 Fg imt] + [Egint| — [Vg,intl, (5.28b)

=x(A~)=2-29,
which yields the following relation:
Vg,int] =2 — gy — [Fg.int| + |€gint] (5.29)
Next, we can use the definition of the degree (see Eq. (5.15)), i.e.
3
w(@) = §|Vg,int| +2— [Fgne| = V5. (5.30)

Using the lower bound theorem for the degree, Theorem 5.7, we can deduce
the following estimate

3 3
| Foanil = w(G) = S Vol = 2+ V3] 2 20, = S Vouul 2+ V4| (531)
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Applying this inequality to Formula (5.29), we get
3
Vainel 2 gy +1Eg ine| = 5Vg el + V5. (5.32)

Last but not least, we use the fact that 2|Eg int| = 4|Vg,int| — V5|, which results
into the inequality

1
Va.inel 2 g7 + 5 ([Vg.mel + V11) & [Vgiinel = 29, + V51, (5.33)

as claimed. O

Remark 5.9. A similar result has recently been proven in [107] using a com-
pletely different approach by applying techniques from crystallization theory.
More precisely, it was shown that M —1 > 3g, for every “crystalliza-
tion” G (see Appendix “Existence of Coloured Graphs and Crystallizations”)
of a three-dimensional manifold with connected boundary given by a genus
g-surface, which in our language is an open (3 + 1)-coloured core graph rep-
resenting a manifold, for which also the boundary graph ~ is a (closed) core
graph. Using the fact that every core graph « representing a genus g.-surface
has precisely 4g., + 2 vertices, we see that the above statement is equivalent to
Vg int| = 29y + [Vy|.

In the case of a spherical boundary, the lower bound theorem tells us
that the Gurau degree is always nonnegative. Using this, we are finally in the
position to prove the following result.

Proposition 5.10 (Smallest Matching Graphs and Degree). Let v € &5 be some
closed (2 + 1)-coloured graph representing a 2-sphere. If G € &3 represents a
manifold or pseudomanifold without boundary singularities and with 0G = ,
then G roots back to the core equivalence class defined by the smallest matching
graph if and only if w(G) = 0. In other words, the family of graphs rooting
back to the smallest matching graph are exactly the graphs matching the given
boundary with minimal degree.

Proof. First of all, let us observe the following: A 1-dipole move, with the
property that at least one of the two separated 3-bubbles is closed, reduces
the number of internal vertices by two and the number of 3-bubbles by one.
Hence, the quantity

\Vgéind _ gl (5.34)

is conserved under arbitrary internal 1-dipole moves. Now, let us apply as
many internal 1-dipole moves as possible. In the end, we will end up with a
graph G, having precisely 1+ |F.,| 3-bubbles, i.e. one internal one of colour 123
and for each face on the boundary a corresponding 3-bubble representing a
disc whose boundary is given by that face. The number of internal vertices has
to satisty |Vg, int| > |V5|. Of course, the topology of G. is in general different
from G, however, this is not so important at this point. What is important is
that we have that

Vg,in VG in
Woiul _ o — Dociml _ 3 117, (5.35)
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and hence, we have that (c.f. Corollary 5.8 for the trivial case g, = 0)
V in V in V
Woinl _ g - Woeinl g iz > i im). o)

Applying this to the definition of the degree (Eq.5.16), we get the following
general inequality

1 1
w@) Z I+ 1-SI1AI+ Y s (5.37)
3-bubbles B

=0

where we have used the fact that |F,| = $|V,|+ 1 as derived previously (see
Eq. (5.18)). Using this, we see that the degree of pseudomanifolds is strictly
positive, since > 5 o2 g5 > 0, and hence, they never saturate the bound
w(g) > 2gy = 0. Let us now turn our attention to manifolds. By Lemma 5.5 it
is enough to look at core graphs. Now, since G is a core graph representing a
manifold, we have that BI) = 14| Z,|. Therefore, according to Formula (5.16),
its degree is given by

1 1 1
w(G) = §|Vg7int\ - Z\Vﬂ +1-— §|.7-'7|. (5.38)
Using again the fact that £|F,| = £|V,| + 1, this can be written as

1
w(9) = 5 (Vg.mel = V4]) = [€g int 0. (5.39)

With this equality, it is clear that w(G) = 0 if and only if [Vgint| = V]
and the only possible graph G with 0G = ~ satisfying this condition is the
smallest matching graph. According to Lemma 5.7, the degree of these graphs
is minimal. g

Remark 5.11. If «y is some boundary graph representing a general genus g-
surface, then the Gurau degree of the smallest matching graph is also minimal
and hence given by w(Gsma) = 2¢4. To see this, note that the smallest match-
ing graph has by definition one internal 3-bubble B, which is equivalent to the
graph ~ and hence represents a genus g,-surface. Therefore, by Eq. (5.16), its
degree is given by

1 1 1
w(Gsma) = §|VGSMG,int\ - Z\Vﬂ +1-— §|-7:'y| +w(B). (5.40)

Using again Eq. (5.18), we hence get

1
w(Gsma) = 5 ([Vosuaiine| — V5 ) + 29, = 29, (5.41)
e ————
=l€egpc int,0|=0

for the degree of the smallest matching graph. However, in this case, it turns
out that the smallest matching graph is not the only graph with the mini-
mal degree. As an example, consider the simplest possible boundary graph
representing a 2-torus, as drawn in Fig. 23. In this case, a straightforward
calculation shows that not only the smallest matching graph (Gy in Fig. 24)
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has degree 2, but also the core graphs G; and G; (Fig. 24), which represent
the solid torus, have degree 2.

To sum up, we see that the family of graphs with the minimal possible
Gurau degree for some given spherical boundary graphs includes exactly those
graphs rooting back to the core equivalence class induced by the smallest
matching graph. In that sense, they can be viewed as generalizations of melonic
diagrams used in the discussion of the large N limit of the free energy.

5.2. Leading-Order Contribution

Let us now show that the core equivalence class defined by the smallest match-
ing forms the leading-order contribution to the Boulatov transition amplitude
with respect to some spherical boundary graph when we consider only mani-
folds. Before stating the main result, we need the following preliminary tech-
nical lemma.

Lemma 5.12. Consider an arbitrary closed (2 + 1)-coloured graph v € &5 rep-
resenting the genus g~-surface. Let G be a connected open (34 1)-coloured core
graph with boundary 0G = ~, which is dual to a manifold. Then

3

v = |€G int,0] — Z |G int. 0]

i=1
where Eg int,0 denotes the set of internal edges of colour O and where Fg int io
denotes the set of internal (cyclic) faces of G of colour 0i fori € {1,2,3}.

Proof. This is a special case of Eq. (5.26): Since G is a core graph representing
a manifold, there is only one internal 3-bubble, which is spherical and has
colour 123, and all the other 3-bubbles are open and represent 2-balls. ]

In particular, if y is a spherical graph (g, = 0), we obtain that the number
of internal edges of colour 0 is the same as the number of internal faces involving
colour 0. Using this observation, let us prove that the core equivalence class
defined by the smallest matching graph is the dominant contribution to the
transition amplitude when restricted to manifolds:

Theorem 5.13 (Leading Order and Bound for Core Graphs). Consider an ar-
bitrary closed (2 + 1)-coloured graph v € G4 representing a 2-sphere and let
G be a connected open (3 + 1)-coloured graph with boundary 0G = v, which is
dual to a manifold and which is itself a core gmph Then

A3 e feee, ]| < (AN) 5™ 6N (1)1~ 'V”{ fl_][-‘ 6N<enge ef))}

i.e. its degree of divergence is smaller or equal to 1 —|V,|/2 (recall that there
is one redundant delta function encoded in the product over boundary faces).
Furthermore, the only core graph saturating this bound is the smallest matching
graph, i.e. its amplitude s exactly given by

A Hgetees,) = ON) 7 6N (1)1 'V”'{ I (Hgs(ef)>}

ecf
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Proof. To start with, let us write down the general expression of the ampli-
tude of some open (3 + 1)-coloured core graph representing a manifold. For
this, we use the same terminology as previously: group elements assigned to
external legs are denoted by {h, },cy,, bicoloured paths leading to the bound-
ary edges by {H.}cce, and boundary edges by {ge}ece,. We also denote the
group elements assigned to all the internal edges of G by {kec}eeeg .- With
this notation, the amplitude can be written as

Atokee) = (795)  foumenn (thx I )

eegg.int

< [ 0V (gehy by Heh ) T 6N(ﬁk§(e’f)). (5.42)

eEE, fEFG int ecf

1VgG int|

As explained in Theorem 4.5, we can replace the first product of delta func-
tions, which contains all the boundary group elements, by the flatness of the
boundary up to a redundancy

[T 6™ (gehsl Heh L) — ﬁ I (ng ef)) (5.43)

e€&, feF, ecf

We are left with the product over internal faces. To start with, let us split the
product as follows:

1 & (ﬁk:@,n) _ { I (ﬁk§<e,f>) }

FEFG int ecf FeU; jz0 F,int,ij eef

{ 11 6N (ﬁkngf)) } (5.44)

eri#() Fg,int,i0 ecf

where Fg int,i; denotes the set of internal (cyclic) faces of colour ij, as before.
In other words, the first product only contains faces of colour ij with i £ 0 # j
and the second product contains all the internal faces involving colour 0. Now,
since G is a core graph representing a manifold, we know that there is only one
internal 3-bubble, which has colour 123 and which is spherical. Let us denote
this bubble by B. Hence, the first product of delta functions exactly contains
all the delta functions associated with the faces of a spherical (2 + 1)-coloured
graph, namely B. Hence, we know that, after integrating over some internal

edges of colour 123, this product can be reduced to (5N(]l)(SN(]_[eefoke(e f))
for some closed path fy, in relation to the discrete Bianchi identity. Of course,
when performing these integrations, the delta functions contained in the second
product also change. Their number, however, stays the same.

Now, if G is the smallest matching graph, the second product is empty.
Therefore, we can trivially integrate over the group element associated with
any internal edge contained in fy. In that case, the amplitude is simply given
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as claimed.

If G is not the smallest matching graph, then the second product is not
empty. Indeed, recall that the number of internal edges of colour 0 is the same
as the number of internal faces involving colour 0, i.e. the faces contained
in the second product, according to Lemma 5.12. Since for every graph with
Vg int| > |V4| there is at least one internal edge of colour 0, we conclude
that the second product is non-empty. The total number of delta functions
contained in this second product is hence

3
Z |Fg,int,iol = €, int,0l- (5.46)
i=1
Since there exists at least one internal group element of colour 0, we can freely
integrate at least over one of them. Similarly, we can also freely integrate over
the delta function corresponding to the face fy, which is the only remaining
delta function of the first product. Bounding all the remaining |Eg int.0| — 1
delta functions simply by §™V(1), we are hence left with a maximal possible
degree of divergence of

\Vg 1nt| |VQ mt| M
2 2 2’
where we used the fact that |£g int,0l = 3(|Vg,imt| — [Vy|) in the last step. O

+1+ (|(‘:g int, 0| - 1) + |5g int O| - (547)

An immediate consequence of the previous theorem is the following corol-
lary.

Corollary 5.14. Consider an arbitrary closed (2 + 1)-coloured graph v € &3
representing a 2-sphere. Then, the leading-order contribution to the transition
amplitude restricted to manifolds (Z.em| V) manifolds for some spin network ¥
defined on ~y is the 3-ball represented by the core equivalence class defined by
the smallest matching graph.

6. Conclusion and Outlook

In the present work, we analysed the transition amplitudes of 3d Riemann-
ian quantum gravity, in the context of the simplicial coloured Boulatov GFT
model. For this, techniques from crystallization theory turned out to be useful.
In particular, the concept of dipole moves allowing to relate different graphs in
a topology and boundary-preserving way, which has been central in our anal-
ysis. The boundary states of this model are spin network states and boundary
observables associated with them are SU(2)-invariant functionals of the GFT
fields. These are constructed from spin network states living on a fixed bound-
ary triangulation, and encoding quantum geometric data. The transition am-
plitudes of the Boulatov model are then defined to be the expectation values
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of these observables and can be interpreted as the corresponding probability
amplitudes for a transition between two components of the given boundary
complex, or in case of a connected boundary, for a transition from the (full,
non-perturbative) vacuum state (similar to the Hartle-Hawking state). By
construction, these amplitudes generically involve a sum over all simplicial
complexes matching our given boundary triangulation, where each complex is
weighted by a Ponzano—Regge spin foam amplitude. In other words, by the
general existence theorems of coloured graphs of crystallization theory, the
transition amplitudes include a sum over all admissible (bulk) topologies in
addition to a sum over geometries. Three-dimensional general relativity is a
particular example of a topological (BF) field theory, since it has no local
degrees of freedom, and hence, the sum over geometries is somewhat trivial
in this case. (It computes only the volume of the space of flat connections
on the given topology.) On the level of the Ponzano—Regge model, this is
reflected by the fact that the spin foam amplitudes are invariant under the
chosen bulk triangulations for some fixed topology and hence only depend
on the boundary data. However, a sum over topologies in three-dimensional
quantum gravity still includes non-trivial features: different topologies lead to
different amplitudes and there might be a non-trivial gluing between the bulk
and the boundary complex leading to non-trivial information about admissible
bulk topologies. Furthermore, in the (coloured) GFT approach, one also has
to consider more singular topologies than manifolds, namely pseudomanifolds.
This gives additional, and a priori very different, contributions, which may not
even encode flatness of the discrete connection of the boundary complex, when
they involve singularities touching the boundary.

Then, we generalized the rooting procedure developed in the series of pa-
pers [56-58] in the context of the large N limit of the free energy, to coloured
graphs with non-empty boundaries. This procedure allows us to reduce the
discussion only to core graphs, which from the geometrical point of view cor-
respond to simplicial complexes with the minimal number of vertices in the
bulk triangulation. From the graph-theoretical point of view, the rooting pro-
cedure contracts all the internal proper 1-dipoles of a coloured graphs, which
are exactly those dipoles, which leave the topology, boundary as well as the
degree of divergence unchanged. The number of contractions is independent of
the order in which they are contracted, which shows that each graph roots back
to a unique equivalence class of core graphs, each of which having the same
number of vertices, boundary and topology. In particular, graphs rooting back
to some equivalence class of core graphs have the same amplitude up to a fac-
tor of the interaction coupling and a possible symmetry factor, and hence the
rooting procedure allows us to write the transition amplitudes as topological
expansions, where each term appearing in the sum is given by an equivalence
class of core graphs representing a fixed bulk topology. Note, however, that,
in general, the same topology appears more than once in the expansion, since
there exist infinitely many core graphs for a given bulk topology.

To illustrate the formalism developed in the present work, we analysed
the case of boundary graphs representing the simplest boundary topology,
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the 2-sphere. In this case, we were able to show that every manifold and
every pseudomanifold without singularities touching the boundary complex
yields the same contribution from the boundary spin network state to the
transition amplitude, namely the spin network evaluation, which encodes flat-
ness of the discrete boundary connection. That is, the contribution to the
transition amplitude of any bulk topology is morally the same. The tran-
sition amplitude—when restricted to those topologies only admitting bulk
singularities—factorizes into a prefactor consisting of all the factors coming
from the interaction term and some remaining contributions coming from the
bulk of various topologies, times the spin network evaluation. The prefactor
can of course always be cancelled by choosing an appropriate scaling of the
path integral. This result is also particularly interesting from the point of view
of the holographic principle. It is well known that for a certain choice of bound-
ary state, namely the generating function of spin network, the Ponzano—Regge
model is dual to two copies of the Ising model living on the spherical bound-
ary [24,25]. Since the Boulatov transition amplitude for a spherical boundary
graph factorizes and is proportional to the spin network evaluation, the same
conclusion applies also to the Boulatov model.

Therefore, the results presented in this work provide a first insight into
the holographic nature of the (coloured) Boulatov model for three-dimensional
quantum gravity.

However, there remain several open questions. Within the full transition
amplitude, one has to take into account pseudomanifolds with singularities
touching the boundary and more work is needed to understand their contri-
bution. In particular, for a topology with boundary singularities, we do not
expect to recover flatness of the boundary connection and hence to get an
amplitude proportional to the spin network evaluation. In other words, these
topologies will have different contributions, which need to be studied system-
atically. In particular, it would be interesting to study their relations to local
defects and particles within the context of discrete quantum gravity models.

The result for a spherical boundary topology discussed above can be ex-
plained as follows: For manifolds without boundary singularities, the model
encodes the flatness of the boundary, disregarding the topology of the bulk.
In the case of a sphere, there does not exist any non-trivial flat connection.
That is, any spin network on the sphere respecting its flatness must collapse
to its spin network evaluation. Therefore, even if the transition amplitude
should in principle depend on the topology of the bulk, due to the simple
choice of the boundary topology, it all collapses to the spin network evaluation
whatever the bulk topology is. One might naively assume that the same is
true for more complicated boundary topologies. However, it turns out not to
be as simple. As we have illustrated, this intuition already fails in the case
of a torus boundary. The fundamental group of the 2-torus T2 is given by
7(T?) = Z? and the corresponding generators can be interpreted as the two
non-contractible cycles. When considering a manifold with torus boundary, like
the handlebody of genus 1, the solid torus, there are a priori two possible ways
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to glue the bulk to the boundary, differing by the choice of which cycle be-
comes contractible through the bulk. Following the logic of the spherical case,
one could have expected only two contributions to the Boulatov transition
amplitudes. However, as we have shown with a simple example, the situation
is more complicated, since we obtain, at the very least, as many contribution
as independent 3-coloured closed paths on the boundary (without taking into
account any possible winding). A more detailed analysis of the structure of the
transition amplitude is in progress [108], and it is necessary in order to under-
stand how the choice of boundary topology affects the transition amplitude
and the possible dual theory of the GFT model.

As a next step, we have shown that the leading-order contribution to the
transition amplitude of some spherical boundary graph, when restricted only
to manifolds, is given by certain graphs representing the closed 3-ball. More
precisely, these graphs are given by the smallest open coloured graph matching
our given spherical boundary graph. Furthermore, we have shown that the class
of graphs rooting back to this core equivalence class is precisely the collection
of graphs for which a suitable generalization of the Gurau degree to graphs
with non-empty boundary is minimal. In this sense, these graphs can be viewed
as a generalization of melonic diagrams, which are the leading-order graphs in
the expansion of the free energy in the large N limit. A question which remains
open is whether this result still holds when including pseudomanifolds to the
discussion. In the closed case, pseudomanifolds can be shown to be bounded
and suppressed [76] and hence, one could hope that a similar result can be
obtained for the case of open graphs in order to generalize the statement
about the leading order made above. Additionally, it would be interesting to
pursue a similar analysis for more complicated topologies, for example in the
case of a torus boundary.
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Appendix A: Simplicial Complexes and Pseudomanifolds

In this section, we briefly recall the definition of pseudomanifolds, in order to
fix the terminology and notation used throughout this paper. First of all, let
us fix the following terminology: Let A be an (abstract) (pseudo)simplicial
complex with vertex set V. Then:

o An element v € V is called vertez and an element o € A is called simplez.
Any non-empty subset 7 C o is called face of o.

e The dimension of a simplex o € A is the number d € N defined by
d := |o| — 1. A d-dimensional simplex is also called d-simplez and a k-
dimensional face of ¢ is also called a k-face of o. Let us denote the set of
all d-simplices by A,. Vertices are by definition 0-simplices, i.e. V = Ag.
The dimension of a simplicial compler A is the maximal number d € N
such that Ay # 0.

e The collection of all simplices with dimension smaller equal to some k €
{0,...,d} is called the k-skeleton of the complex A.

Let us now S C A be a subset of some abstract simplicial complex A. If
S is by itself an abstract simplicial complex, then it is called a subcomplex of
A. Let us further introduce the following terminology:

(1) The closure CIa(S) of S is the smallest subcomplex of A containing S,
ie.
Cla(S)={oceA|IreS:0CT1}. (A1)
If S is a subcomplex, then clearly Cla(S) = S.
(2) The star of a single simplex o € A is defined to be set of all simplices in
A having o as a face, i.e.
Sta(o):={reA|oCT} (A.2)

The star of S is then the union of the stars of all its simplices. Note
that the star is in general not a subcomplex. Therefore, one often defines
the closed star, which is the subcomplex Cla(Sta(5)). Note that some
authors define the star directly in this way.

(3) The link of S is defined to be Lk (S) := Cla(Sta(5))\Sta(Cla(S)). If
o € A is a single simplex, then its link is given by

Lka (o) = {7 € Cla(Sta(o)) | TNo =0}
={reA|7UoceAand TNo =0} (A.3)
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I EE S

Sta({v}) Cla(Sta({v}) Lka({v})

FI1GURE 29. A two-dimensional simplicial complex A and the
star Sta({v}), closed star Cla(Sta({v})) and link Lka ({v})
of a vertex v in A drawn in blue (color figure online)

The link of some subset S is again a subcomplex of A. Furthermore, if

o € Ais a k-simplex in a d-dimensional abstract simplicial complex, then

the dimension of Lka (o) is at most d — (k + 1).

Figure 29 shows a two-dimensional simplicial complex A as well as the
star, closed star and link of a vertex v of A drawn in blue.

Pseudomanifolds are topologies, which are manifolds in most of their
points, but can fail to be locally Euclidean at a finite number of isolated
“singularities”. They are defined as follows:

Definition A.1 (Pseudomanifolds [85]). Let A be a finite abstract d-dimen-
sional simplicial complex. We call its geometric realization |A| a “d-dimensional
pseudomanifold”, if and only if the following three conditions are fulfilled:

(1) Ais “pure”, i.e. every simplex o € A of dimension < d is the face of
some d-simplex.

(2) A'is “non-branching”, i.e. every (d — 1)-simplex is face of exactly one or
two d-simplices.

(3) Ais “strongly connected”, i.e. for every two d-simplices 0,7 € Ay, there
is a sequence of d-simplices o = 01,09, ...,0, = 7 such that o; N oy41 is
a (d—1)-simplex VI € {1,...,k —1}.

The boundary of a pseudomanifold A, usually denoted by OA, is the
closure of the subset consisting of all the (d — 1)-simplices, which are the face
of only one d-simplex. More generally, one can define the boundary of any pure
abstract simplicial complex in this way. Furthermore, we call a pseudomanifold
orientable, if and only if there is a choice of orientation for each d-simplex, such
that each internal (d — 1)-simplex gets the opposite induced orientation from
the two d-simplices to which it belongs. More generally, one can define the
concept of orientability for any non-branching abstract simplicial complex in
this way. To sum up, the first two conditions in the definition allow us to
talk about a boundary and about orientability. Last but not least, strongly
connectedness tells us that a pseudomanifold can be understood as being the
result of gluing d-simplices along their (d — 1)-faces. [85]

One can easily show that every compact, connected and triangulable
manifold is a pseudomanifold. However, the converse is in general not true.
As an example, pseudomanifolds may contain isolated singularities, around
which they fail to be locally Euclidean. An often cited example is the pinched
torus, which is a two-dimensional pseudomanifold obtained by identifying two



Vol. 24 (2023) Transition Amplitudes in 3D Quantum Gravity 3667

distinct points on the 2-sphere. An important class of pseudomanifolds are
“normal pseudomanifolds”, which are defined as follows:

Definition A.2 (Normal Pseudomanifolds). Let |A| be a d-dimensional pseudo-
manifold. We call it “normal” if the link of every simplex of dimension < d—2
represents a pseudomanifold.

The crucial condition in this definition is strongly connectedness: In gen-
eral, every link of a pseudomanifold is pure and non-branching, but can fail to
be strongly connected and in fact, even to be connected at all [55].

Example A.3. The pinched torus is an example of a pseudomanifold, which is
not normal, since the link of its singular point consists of two distinct circles
and is hence disconnected.

Appendix B: Further Details on Coloured Graphs and
Crystallization Theory

In this section of the appendix, we provide some more details on crystallization
theory and coloured graphs. More explicitly, we will briefly review two central
theorems of crystallization theory regarding the existence of coloured graphs
for manifolds. Furthermore, we will discuss a connected sum operation for
graphs and its topological interpretation, which we used in the main text to
show that certain types of dipole moves are proper (c.f. Theorem 2.12).

B.1 Existence of Coloured Graphs and Crystallizations

In general, every open (d + 1)-coloured graph represents a normal and ori-
entable pseudomanifold with boundary, as discussed in Sect. 1. However, it is
a priori not clear for which type of topologies there exists a coloured graph
representing them. In this section, the goal is to review some central results
from crystallization theory, which show that at least for every (PL-)manifold
there is a special type of coloured graph representing it. First of all, let us
introduce the notion of “manifold crystallizations” [73-75], the central objects
of crystallization theory, which are dual to triangulations of manifolds with
the smallest possible number of vertices:

Definition B.1 (Contracted Graphs and Crystallizations).

(1) A closed (d+1)-coloured graph G € &, is called “contracted”, if it admits
exactly one d-bubble without colour i for all i € Cy, i.e. the total number
of d-bubbles is B = d + 1.

(2) Let G € B, be an open (d+ 1)-coloured graph with C'(9G) € N boundary
components. Then G is called “0-contracted”, if there is exactly one d-
bubble without colour 0 and exactly C(9G) d-bubbles without colour 4 for
all i € C4\{0}, i.e. the total number of d-bubbles is Bl = 14 d - C(dG).

(3) Let G be a closed (resp. open) (d + 1)-coloured graph representing a
manifold M. If G is contracted (resp. 9-contracted), it is called a “crys-
tallization of M”.
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In other words, a closed contracted graph has the smallest possible num-
ber of d-bubbles and hence, the corresponding simplicial complex has the small-
est possible number of vertices. A 0-contracted graph is a graph, for which the
boundary is contracted and for which there is only a single internal d-bubble,
or in other words, its corresponding complex has only one internal vertex and
each of its boundary components has the minimal number of d vertices.

For the case of closed manifolds, M. Pezzana was able to prove the fol-
lowing general existence theorem in 1974 [110,111], which also provides the
foundation of crystallization theory:

Theorem B.2 (of Pezzana). Fvery closed and connected d-dimensional PL-
manifold admits a crystallization representing it.

The idea of the proof is basically to explicitly construct a contracted
triangulation out of a given piecewise-linear triangulation. The full proof can
be found in the original paper by Pezzana [110] and a sketch of the proof in
English, using the notion of dipole moves, can be found in [93]. A generalization
of the above theorem for manifolds with boundary was proven by Cavicchioli
and Gagliardi in 1980 [90] (for the case of manifolds with connected boundary)
and by Gagliardi in 1983 [86] (general case):

Theorem B.3 (of Cavicchioli-Gagliardi). For every crystallization ~ of the
boundary of some compact and connected d-dimensional PL-manifold M with
(possibly disconnected) boundary, there exists a crystallization G of M whose
boundary graph is (colour-isomorphic to) .

B.2 Connected Sum of Coloured Graphs

One way to build new manifolds out of some given manifolds is provided by per-
forming their “connected sum”. For two compact and connected d-dimensional
manifolds M and N with at most one boundary component, there are two dif-
ferent notions one has to distinguish:

(1) Let us choose two closed d-balls By and Bs inside M and A/, such that
they do not intersect the boundaries of M and N. The “(internal) con-
nected sum” is the manifold denoted by M#N/, which is obtained by
cutting out the interior of the balls from M and A and gluing'® The
two created boundary spheres together. As a consequence, it holds that
OMH#N) = (OM)]](ON). Furthermore, note that the d-sphere S is
the neutral element of this operation, i.e. M#S% =2 M for all M.

(2) If OM # O # ON, we can choose two closed (d — 1)-dimensional balls
B; and Bs inside OM and ON. The “boundary connected sum” is the
manifold denoted by M#sN, which is obtained by identifying the two
balls to each other. Note that it holds that O(M#sN) = (OM)#(ON).

151f both M and A are oriented, then we should assume in addition that the “gluing map”
is orientation-reversing, since the connected sum then comes equipped with a canonical
orientation. Note that the connected sum in general depends on the chosen orientations;
however, it does in general not depend on all the other choices as a consequence of the
annulus theorem [105,106].



Vol. 24 (2023) Transition Amplitudes in 3D Quantum Gravity 3669

2 2 2~3 a2
3 3 3 3 3 3
voow —>
2 2 2 2 2 2
3 3 37273
g g G#v,09

F1GURE 30. Graph-connected sum of twice the graph G

Furthermore, note that the closed d-ball B? is the neutral element of this

operation, i.e. M#B? = M for all M.

Let us now discuss how to define the connected sum on the level of
coloured graphs. To start with, let us make the following definition [73,112]:

Definition B.4 ( Graph-Connected Sum). Let G1,G2 € B4 be two open (d + 1)-
coloured graphs. Then, let us define the following graph: Lets take an internal
vertex v of G; and an internal vertex w of Gy of different types (i.e. one black
and one white). Then, we denote by Gi#¢, .,1G2 the open (d + 1)-coloured
graph obtained by deleting the two vertices and gluing the “hanging” pairs
of edges together respecting their colouring. We call this graph the “graph-
connected sum of Gy and G at v and w” (Fig. 30).

Remark B.5. Note that if both vertices v and w do admit an adjacent external
leg, then the procedure would produce a disconnected part containing a single
edge of colour 0 connecting two boundary vertices. In this case, we do not
include this additional disconnected piece in the definition of Gi#, .,G2, as a
convention (see the example in Fig. 31a).

The example below shows the graph-connected sum of two copies of some
closed (2 + 1)-coloured graph G € ®,:

The graph G represents the 2-torus 72 := S x S!. Furthermore, it is
not too hard to check that the graph G#,.,G represents the genus g = 2
surface ¥y := T?#T72, e.g. by calculating its Euler characteristic. It turns out
that the graph-connected sum represents the connected sum of manifolds in
more general cases. Before stating the theorem, let us introduce the following
terminology: We call an internal vertex of some open (d + 1)-coloured graph
“strictly internal” [112], if all the d-bubbles to which the vertex belongs, are
closed. In other words, a vertex in some open coloured graph is strictly internal
if and only if the corresponding d-simplex is not touching the boundary in the
sense that all its faces of all dimensions are not contained in the boundary
complex.

Theorem B.6. Let G1,Go € &, be two open (d+1)-coloured graphs representing
manifolds My and Ms. Furthermore, let v be an internal vertex of Gi and w
be an internal vertex of Go.

(1) If both v and w admit an adjacent external leg, then Gi# ¢, ,1Ga repre-
sents the oriented boundary connected sum M4 oMs.
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FicURE 31. Two examples of graph-connected sums of open
(2 4 1)-coloured graphs representing the disc and their geo-
metric realizations according to Theorem B.6 (color figure on-
line)

(2) If both wvertices v and w do not admit an adjacent external leg and if
at least one of them is strictly internal, then Gi# (..} G2 represents the
oriented internal connected sum My# M.

(3) If v is a strictly internal vertex and w admits an adjacent external leg,
then G1# (..} G2 represents the manifold (My#B®)#5 My, where B¢ de-
notes the closed d-ball.

Proof. The detailed proof can be found in [112]. As an example, in case (2),
we delete an internal d-simplex in one of the triangulations and another d-
simplex (possibly touching the boundary with some of its faces of dimension
< d — 1) in another complex. Now, since a d-simplex represents a d-ball, re-
moving these simplices results into removing balls inside the corresponding
manifolds. Furthermore, connecting the hanging pair of edges of the coloured
graph obtained by deleting these two vertices precisely corresponds to gluing
the created boundary d-spheres together. Taking the two vertices of different
types ensures that the gluing map is orientation-reversing. 0

The following figure shows two examples of the previous theorem. Fig-
ure (a) shows the boundary connected sum of two discs, which is again a
disc, and figure (b) shows an example of the (internal) connected sum of two
discs, which is homeomorphic to the cylinder S x [0,1], i.e. the unique (up to
homeomorphism) surface with genus zero and two boundary components.

The fact that these graphs indeed describe discs and cylinders can be
seen by explicitly calculating their Euler characteristic as well as the number
of boundary components. Let us collect two immediate consequences of the
theorem above, concerning the mixed case of the graph-connected sum of a
closed graph with an open graph:

Corollary B.7. Let G € &, be a closed (d + 1)-coloured graph representing a
manifold My and Go € B4 be an open (d + 1)-coloured graph representing a
manifold Ms. Furthermore, let v be a vertex of G1 and w be an internal vertex
of Go. Then:

(1) If w is an internal vertex, which does not admit an adjacent external leg,
then G1# 4,1} G2 represents the oriented internal connected sum My#Mo.

(2) If My = S and if w is an internal vertex, which admits an adjacent
external leg, then Gi#(, .,yG2 represents the manifold M.
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Proof. Claim (1) follows directly from Theorem B.6(2), since in a closed graph
every vertex is strictly internal. For claim (2), recall that the sphere is the
neutral element of # whereas the ball is the neutral element of #45 and hence,
by B.6(3), G1# {v,w} G2 represents the manifold (S4B #H oMy = Bl g My =
Ma. O

Appendix C: Construction of Graphs Representing the Solid
Torus

The goal of this section is to construct open (3+1)-coloured graphs representing
the solid torus D? x S*, where D? denotes the closed 2-ball (=disc). In general,
a d-dimensional simplicial complex A representing a manifold with boundary
admits a coloured graph contained in &, representing it if and only if has the
following two properties'®
(1) Tt admits a (d+ 1)-vertex-colouring, i.e. amap v : V — {0,...,d}, where
V denotes the set of vertices of A, which is injective on every d-simplex.
Equivalently, this defines a proper face-colouring of the complex by as-
signing to each (d — 1)-simplex of a d-simplex the colour of the vertex on
the opposite side.
(2) None of the vertices on the boundary complex has colour 0. Equivalently
in the face-coloured picture, this means that all the (d — 1)-simplices of
the boundary complex have the same colour 0.

If such a complex represents an orientable manifold, then it will auto-
matically be bipartite in the sense that there are two types of d-simplices and
only d-simplices of different types share a common (d — 1)-face, because bipar-
titeness and orientability are equivalent for coloured graphs [73,86] and hence
also for colourable complexes.

Let us now construct a family of open (3+1)-coloured graphs representing
the solid torus. As a starting point, we consider the family of discretizations
constructed in [27,30]. For this, consider the following general discretization
of the solid cylinder D? x [0,1] (topologically a closed 3-ball):

The cellular complex is characterized by two natural numbers: The num-
ber of vertical layers of prisms denoted by N; € N, as well as the number of
horizontal layers, i.e. the numbers of prisms in each horizontal slice, which we
denote by N, € N. In order to obtain a cellular decomposition of the solid
torus, we have to identify the top and bottom of the complex drawn above.
Note that there is some freedom in doing so, since the gluing can be done in

several ways. Hence, we introduce the “twist parameter” N, € {0,..., N, —1}
defined by the equation
Ai iBH-N»y Vi € {1,,NT}, (Cl)

16For a simplicial complex A triangulating a pseudo:manifold, we have to assume in addition
that the (disjoint) star of every vertex is strongly connected, since otherwise, it can happen
that the complex Ag(a) obtained from the coloured graph G(A) dual to A does not coincide
with the original complex A, because we loose some information regarding possible pinching
effects. As an example, take the complex representing the pinched torus drawn in Fig. 7
(with the vertices v and w identified) [113, p. 198/99].
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FIGURE 32. A cellular decomposition of the solid cylinder
consisting of prisms characterized by the number of horizontal
and vertical layers (Lh.s.). In order to obtain a triangulation,
we have to discretize every prism by tetrahedra. The triangu-
lation of a prism with the minimal number of tetrahedra is
drawn on the right-hand side

where the indices in this equation have to be understood as being cyclic,
e.g. N, +i = i, and where the “twist angle” -y, corresponding to a discrete
Dehn twist [114], is defined by

N.
=221, 2
V=2 (C.2)

To sum up, we have constructed general cellular decompositions of the solid
torus characterized by the three numbers N,, N; € Nand N, € {0,..., N, —1}.

In order to turn the cellular complex of the solid torus into a simplicial
one, we have to triangulate each prism, as shown on the right-hand side of
Fig. 32. Now, it is clear that we cannot just triangulate each prism in the
complex in precisely the same way, since if we glue two such prisms horizontally,
the resulting complex is not proper vertex colourable. A closer analysis reveals
that we need at least two vertical layers and at least two horizontal layers,
where the prisms in each layer are triangulated symmetrically to each other.
In other words, a colourable simplicial complex of the type introduced above
consists of basic building blocks with four prisms, triangulated and coloured
as shown in Fig. 33.

Using this triangulation, we finally arrive at general proper face-coloured
and bipartite triangulations of the solid torus characterized by three numbers
N, N; € 2N and N, € {0,2,4,..., N, — 2}. Note that, due to the colouring,
only even twists are possible, since we are only allowed to glue basic building
block consisting of two vertical and two horizontal layers together. Using the
figure above, it is straightforward to draw the coloured graph corresponding
to a basic building block, i.e. see Fig. 34.
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FiGURE 33. Basic building block of a coloured and bipar-
tite simplicial complex of the solid cylinder consisting of four
prisms. The gluing of prisms is indicated by the grey arrows
(color figure online)

Simplicial Complex Open (3 + 1)-coloured Graph Corresponding Boundary Graph

FIGURE 34. Basic building block as a (vertex)-coloured sim-
plicial complex and as an open (3 4 1)-coloured graph with
its corresponding boundary graph. Dotted edges are those to
which we glue further building blocks (color figure online)

The dotted lines in the figure above are those edges, to which we glue
further building blocks. Each building block has in total eight faces living
on the boundary and hence, each part of the graph dual to such a building
block has eight external legs of colour 0. To sum up, we have constructed a
family of open (3 + 1)-coloured graphs belonging to &3, which are dual to the
solid torus. Such a graph is labelled and uniquely determined by the three
parameters N, N; € 2N and N, € {0,2,4,..., N, — 2} and has the following
general form (Fig. 35):
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Connect A; = Biyn, Connect A; = By,

N, +

1 2 s Np—1 N, 12 N,—1N,

Open (3 + 1)-coloured Graph Gy, N, N, Boundary Graph 0Gn, NN,

FIGurRE 35. A family of open (3 + 1)-coloured graphs
gszNtvN'y € B3 labelled by three parameters N, IV; € 2N and
N, €{0,2,4,..., N, —2}, each representing the solid torus, as
well as their boundary graphs 9Gn, n,, N, € B, (color figure
online)

It is straightforward to count the number of k-bubbles of these graphs
for k € {0,1,2,3}, or equivalently, the number of (3 — k)-simplices of the
corresponding simplicial complex:

e The number of 0-bubbles, i.e. internal vertices of the graph Gn, n,

o

or equivalently, the number of tetrahedra of the complex Ag, Ny is
given by Bl = 3N, N,.

e The number of 1-bubbles, i.e. edges of the graph Gy, n, n., or equiv-
alently, the number of triangles of the complex Ag, . ~,+ Is given by
Bl = 7N, N, from which 2N, N, are external legs, i.e. triangles living
purely on the boundary complex 0Ag, v, v, -

e The number of 2-bubbles, i.e. faces of the graph Gy, n, n,, or equiv-
alently, the number of edges of the complex Ag,_ , v . is given by
BB = N, + 5N,N, from which 3N,N, are non-cyclic faces, i.e. edges
living purely on the boundary complex dAg, . Ny
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FIGURE 36. Solid torus graph with N, = N; =2 and N, =0
together with its boundary graph

e The number of 3-bubbles of the graph Gy, n, n,, or equivalently, the

¥
number of vertices of the complex Ag, ., . ,is given by BBl = N, +
NN, from which N;N, are open 3-bubbles, i.e. vertices living purely on

the boundary complex 0Ag,,

N¢, Ny *

As a quick consistency check, let us calculate the Euler characteristic
of the simplicial complex dual to the open graph Gy, v, n, as well as of the
boundary complex, which gives

X(AgNwaNth'y) :Nt + NtNa: — (Nt + 5Nth) + 7NtN$ — 3Nth =0 (C3)
X(aAgNmyNth’y) :X(AagNm,Nt,N,y) = NtNm - ?)Nth + 2Nth = 0 (C4)

as it should.

As an example of the family of graphs constructed above, let us consider
the simplest graph, i.e. the graph Gy, n, v, With N, = N; = 2 and N, = 0.
The graph together with its boundary graph is drawn in Fig. 36.

This graph is clearly not a core graph, since there are two 3-bubbles of
colour 023, from which one represents the 2-sphere. Hence, in order to obtain
a core graph, we have to contract one internal proper 1-dipole. There are in
total four choices of edges of colour 1, which can be contracted. The core graph
obtained by contracting the upper left one looks as follows:

The boundary graph of this core has in total eight vertices. As discussed
in the main text (Sect. 4.3), the simplest possible closed (24 1)-coloured graph
representing a 2-torus has only six vertices and looks as follows:

Note that this boundary graph can be obtained by performing an internal
1-dipole move of colour 3 within the boundary graph drawn in Fig. 36. In
order to obtain core graphs representing the solid torus with the simplest 2-
torus graph as its boundary graph, we have to perform a non-internal proper
1-dipole move of colour 3 in the core graph drawn in Fig. 37. There are in
total four possibilities to do so. Taking the edge of colour 3 on the top right,
the result looks as follows (Figs. 38, 39):
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FIGURE 37. A core graph representing the solid torus ob-
tained by an internal proper 1-dipole move from Gs 2 o

FIGURE 38. The smallest closed (2 4 1)-coloured graph rep-
resenting the 2-torus (Lh.s.) and its corresponding simplicial
complex (r.h.s.), where the gluing of edges is as indicated by
the Roman numbers (color figure online)

Boundary Graphs:

Solid Torus Graphs:

FI1GURE 39. A core graph with the simplest torus boundary
graph obtained by performing a non-internal proper 1-dipole
move in the core drawn on the r.h.s. in Fig. 37. The boundary
graphs in each step are drawn in the top line

Yet another core graph representing a solid torus with boundary given
by the smallest 2-torus graph can be obtained by performing a sequence of



Vol. 24 (2023) Transition Amplitudes in 3D Quantum Gravity 3677

FIGURE 40. A core graph obtained by firstly adding an inter-
nal proper 1-dipole of colour 0 and by cancelling an internal
proper 1-dipole of colour 0 afterwards. The boundary graph
is left untouched, since all the dipoles are internal ones

FIGURE 41. Two core graphs representing the solid torus with
boundary graph given by Fig. 38

internal proper dipole moves within the core graph drawn above. An example
is drawn in Fig. 40.

To sum up, we have found two core graphs representing the solid torus
D? x S (see Fig. 41), whose boundary graphs are given by the simplest closed
(2 + 1)-coloured graph representing a 2-torus (Fig. 38)'7:

Note also that there are no open (3 + 1)-coloured graphs contained in &3
representing the solid torus with less than eight internal vertices, because the
smallest torus boundary graph has six vertices and the smallest open graph
matching this boundary graph, which is the graph obtained by adding an ex-
ternal leg to all the vertices of the boundary graph, is clearly a pseudomanifold
(c.f. Sect. 5.1). In the simplicial picture, this means that the smallest proper-
colourable simplicial complex triangulating the solid torus with the property
that all its boundary faces have the same colour consists of at least eight tetra-
hedra and six boundary faces. In other words, the two graphs drawn above are
examples of graphs contained in &3 representing the solid torus with the min-
imal possible number of vertices. Note that this observation also matches with
Corollary 5.8.

As a last remark, let us note that we can use the connected sum operation
defined in “Connected Sum of Coloured Graphs” section as well as the solid
torus graphs drawn above in order to obtain open (3 + 1)-coloured graphs
representing a handlebody of genus g whose boundary graph is given by the

17The graph on the left-hand side can also be found as a special case in Example 11 of [107].
However, the authors of this paper give no geometric construction of the corresponding
complex, but rather argue that it has to represent the solid torus by its properties.
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smallest graph + representing the genus g-surface.

G with G = v representing the handlebody of genus g

FIGURE 42. The smallest closed (24 1)-coloured graph  rep-
resenting a genus g-surface together with an open (3 + 1)-
coloured graph G representing the handlebody of genus g
(color figure online)

smallest closed (24 1)-coloured graph representing a genus g-surface, as shown
in Fig. 42.

The boundary graph v has in total |V,| = 2 + 4¢ vertices and the corre-
sponding handlebody graph has |Vg int| = [Vy|+2g internal vertices. According
to Corollary 5.8, we conclude that the graph G is an example of a graph repre-
senting a manifold with the minimal number of internal vertices among all the
possible open (3 + 1)-coloured graphs in &3 with boundary ~. Furthermore,
this matches the result obtained in Example 11 of [107] regarding the minimal
possible number of internal vertices of graphs representing handlebodies.
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