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Abstract
Background Deep learning is a promising technique to improve radiological age assessment. However, expensive manual 
annotation by experts poses a bottleneck for creating large datasets to appropriately train deep neural networks. We propose 
an object detection approach to automatically annotate the medial clavicular epiphyseal cartilages in computed tomography 
(CT) scans.
Methods The sternoclavicular joints were selected as structure-of-interest (SOI) in chest CT scans and served as an easy-to-
identify proxy for the actual medial clavicular epiphyseal cartilages. CT slices containing the SOI were manually annotated 
with bounding boxes around the SOI. All slices in the training set were used to train the object detection network RetinaNet. 
Afterwards, the network was applied individually to all slices of the test scans for SOI detection. Bounding box and slice 
position of the detection with the highest classification score were used as the location estimate for the medial clavicular 
epiphyseal cartilages inside the CT scan.
Results From 100 CT scans of 82 patients, 29,656 slices were used for training and 30,846 slices from 110 CT scans of 110 
different patients for testing the object detection network. The location estimate from the deep learning approach for the 
SOI was in a correct slice in 97/110 (88%), misplaced by one slice in 5/110 (5%), and missing in 8/110 (7%) test scans. No 
estimate was misplaced by more than one slice.
Conclusions We demonstrated a robust automated approach for annotating the medial clavicular epiphyseal cartilages. This 
enables training and testing of deep neural networks for age assessment.

Keywords Anatomic landmark detection · Deep learning · Object detection · Medial clavicular epiphyseal cartilages · Age 
assessment

Background

Age is an essential part of a person’s identity, especially 
for children. By definition of the UN Convention on the 
Rights of the Child (CRC, Article 1) [1] and the EU acquis 
(Directive 2013/33/EU, Article 2(d)) [2], a child is any per-
son below the age of 18. When the age is known, it rules 
the relationship between a person and the state. Changes in 
age can trigger the acquisition of rights and obligations in 
different aspects such as emancipation, employment, crimi-
nal responsibility, sexual relation, and consent for marriage 
or military service [3]. Because of the importance of age, 
the CRC lists certain key obligations for states and authori-
ties regarding age that include registration of the child after 
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birth, respecting the right of the child to preserve his or her 
identity, and speedily re-establish his or her identity in case 
that some or all elements of the child’s identity have been 
deprived [3]. Following these obligations, a state may need 
to assess the age of the person to determine whether the 
person is an adult or a child when the age is unknown. In 
that case, the European Union Agency for Asylum (EUAA) 
recommends that the least intrusive method is selected fol-
lowing a gradual implementation and that the most accurate 
method is selected and margin of error is documented [3].

Radiological examinations of the carpal bones, the molars 
or the clavicles play an important role in assessing the chron-
ological age of living individuals [4]. For the clavicles, the 
ossification status of the medial clavicular epiphyseal car-
tilages is of particular interest. As the last maturing bone 
structure in the body, it allows age assessment not only for 
minors, but also for young adults [5]. However, current 
standard methods for age assessment suffer from low accu-
racy, intra- and inter-reader variability, and low diversity 
within the study populations [4, 6, 7].

A promising approach for accurate and automated age 
assessment is deep learning. Deep learning has been applied 
successfully to a wide range of computer vision tasks in 
medical imaging in the past [8–10]. A deep neural network 
trained to map an image of the medial clavicular epiphyseal 
cartilages to an individual’s age may yield more accurate age 
assessment results compared to current approaches [8, 11, 
12]. The data required to train a deep network for age assess-
ment, i.e., medical images including clavicles and sternum, 
as well as information about the age of the corresponding 
individuals, is abundant in many hospitals and also easily 
accessible. However, for efficient and successful training, it 
is advisable to first localize the medial clavicular epiphyseal 
cartilages within the medical images. The training process 
for diagnostic computer vision networks benefits from inputs 
that are cropped to the image region containing information 
relevant for solving the problem [13]. This cropping step 
usually requires manual expert annotations, which are time-
consuming and expensive [14].

Therefore, the aim of this study was to develop and to 
evaluate an automated approach to localize the medial cla-
vicular epiphyseal cartilages in CT scans, using deep learn-
ing–based object detection. This automated localization 
can be used to create large datasets, which are necessary to 
appropriately train and evaluate a deep neural network for 
age assessment [15].

Methods

We propose to use the state-of-the-art object detection net-
work RetinaNet [16] for the automated localization of the 
medial clavicular epiphyseal cartilages in CT scans. First, 

a trained instance of the two-dimensional RetinaNet was 
applied to each axial slice in a scan in order to detect a proxy 
structure for the medial clavicular epiphyseal cartilages 
(Fig. 1). In case of a detection, the RetinaNet predicted a 
bounding box, as well as a class, and provided a classifica-
tion score. Multiple detections in different slices or within 
the same slice were possible. The center of the bounding 
box associated with the highest of all classification scores 
was entitled as the location estimate of the medial clavicular 
epiphyseal cartilages in the CT scan. The entire workflow is 
illustrated in Fig. 2.

In the following, this section will describe (a) the retro-
spective collection of the data; (b) the manual data annota-
tion; (c) the splitting of the data into training, validation, 
and test set; (d) the object detection network RetinaNet; (e) 
the training and evaluation of the RetinaNet; and (f) how we 
used the RetinaNet to estimate the location of the medial 
clavicular epiphyseal cartilages in a scan.

Retrospective data collection

This study was approved by the institutional review 
board, and the requirement for written informed consent 
was waived. CT scans of the upper body were identified 
retrospectively in the picture archiving and communica-
tion system (PACS). The scans were originally acquired 
during the clinical routine for all purposes in the period 
2017–2020. The patients’ age at examination was in the 
range of 15 to 25 years; age was measured as the time 

Fig. 1  The structure-of-interest (SOI), defined as the sternoclavicular 
joints, together with their contributing portions of the sternum and 
the medial clavicles
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difference in days between documented date of birth 
and date of CT examination. On the one hand, this range 
covers a broad spectrum of developmental stages of the 
medial clavicular epiphyseal cartilages [17]; on the other 
hand, it includes ages which have high legal relevance 
in most countries, e.g., R18 and 21 [4]. Detailed inclu-
sion and exclusion criteria for CT scans are listed in the 
“Appendix.”

Three preprocessing steps were applied to the col-
lected scans. First, image voxel values were limited to 
the range of − 200 to 600 Hounsfield units (HUs). This 
value range was derived heuristically, with the intent to 
remove information from the image that we considered 
less relevant for the detection of the proxy structure for 
the medial clavicular epiphyseal cartilages. This signal 
intensity restriction was supposed to guide the network to 
focus on a balanced mix of bone and clavicles surround-
ing soft tissue. Second, axial slices have been resized to 
512 × 512 pixels to match the input size that is expected 
by the RetinaNet. Finally, pixel values in each axial slice 
were linearly scaled into the value range 0.0 to 1.0 for 
network training.

Manual data annotation

The structure-of-interest (SOI) in this study was defined as 
the sternoclavicular joints, together with their contributing 
portions of the sternum and the medial clavicles (Fig. 1). 
The SOI served as an easy-to-identify proxy for the actual 
medial clavicular epiphyseal cartilages and was to be the 
structure detected by the RetinaNet.

All axial slices from the collected CT scans were manu-
ally annotated with ground-truth target labels for the Reti-
naNet. These target labels have two components: first, a 
bounding box which located the object, represented by 4 
parameters—(a) x position, (b) y position, (c) width, and 
(d) height—and second, a class label which classified the 
object. If a slice included the SOI, a target label was created 
by manually drawing a bounding box around all visible por-
tions of the sternum and the medial clavicles contributing to 
the sternoclavicular joints and setting the class label of the 
object to “sternum” (Fig. 3). Depending on the patient and 
scanning protocol, in particular the slice thickness, multiple 
consecutive axial slices contained the SOI and were anno-
tated with bounding boxes and class labels accordingly.

Fig. 2  Schematic workflow diagram of the proposed medial clavicu-
lar epiphyseal cartilage localization. 1. Annotation: CT images are 
manually annotated with two-dimensional ground-truth bounding 
boxes in axial slices around the structure-of-interest (SOI). The SOI 
is an easy-to-identify proxy structure for the actual medial clavicular 
epiphyseal cartilage. 2. RetinaNet Training: A RetinaNet is trained to 
detect the SOI in axial slices and predict bounding boxes. 3: Localiza-

tion in CT scan: The SOI can be localized in an unknown CT scan 
of the upper body. For this purpose, the trained RetinaNet is applied 
to each slice in a CT scan and all positive detections are collected. 
Afterwards, the center of the bounding box which corresponds to the 
best detection (highest classification score) is used as the predicted 
location for the SOI

735International Journal of Legal Medicine (2023) 137:733–742



1 3

Training, validation and test set

The network was evaluated using the three-way holdout 
method. To this end, the n = 222 collected and annotated 
CT scans were split into three sets: (a) training, (b) vali-
dation, and (c) testing. First, a test set consisting of 110 
scans from 110 patients was randomly selected from the 
whole study dataset, so that it contained n = 10 patients and 
scans per age in years (ages = 15, 16, …, 25). All remain-
ing n = 112 scans that have not been selected for the test 
set were split according to a 90/10 ratio into a training set 
of n = 100 (= Floor[0.9 × 112]) scans and a validation set 
of n = 12 (= 112—100) scans. The test set was used only 
for the evaluation of the RetinaNet, once the training was 
completed. The training set was used to train the RetinaNet, 
while the validation set was used to monitor the training 
process. No resampling strategy, such as cross-validation, 
was applied.

Object detection network

The automated localization of the SOI proposed in this study 
was based on a PyTorch implementation [18, 19] of the 

object detection network RetinaNet [16]. This RetinaNet had 
a ResNet18 [20] backbone, which was provided by PyTorch 
as an off-the-shelf network and had been pre-trained on the 
public dataset ImageNet [21]. An important component 
of the RetinaNet implementation was the Focal Loss [16], 
which addressed heavy class imbalance for one-stage object 
detectors like the RetinaNet. This was useful, as the majority 
of an upper body CT scan does not cover the SOI.

As input, the network expects an image size of 512 × 512 
pixels, being a two-dimensional axial slice from a preproc-
essed CT scan. In case of a detection, the network returns 
three outputs: (a) a bounding box prediction which locates 
the detected object, (b) a class prediction which classifies 
the detected object, and (c) a classification score between 
0.0 and 1.0 quantifying the confidence of the network in the 
predicted detection. The class prediction is trivial, as “ster-
num” is the only class. Higher classification scores imply 
increased confidence in the detection.

Object detection training and evaluation

The RetinaNet was trained for 20 epochs with examples from 
the training set using the Adam optimization algorithm [22] 

Fig. 3  (A–F) Bounding boxes around the SOI in different CT scans 
after preprocessing. The SOI is defined as the sternoclavicular joints, 
together with their contributing portions of the sternum and the 

medial clavicles. In addition, (A) illustrates the 4 bounding box loca-
tion parameters x, y, width (w), and height (h)
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and a base learning rate of  10–5 to minimize the focal loss. A 
learning-rate scheduler decreased the learning rate by a fac-
tor of 10 whenever the loss did not improve for 3 consecu-
tive epochs. Data augmentation was applied: during training, 
we randomly flipped the image input and the bounding box 
along the same randomly chosen axis. Training progress was 
monitored by evaluating the loss of the validation set.

After training, the RetinaNet was applied to and evalu-
ated on the test set. The predicted bounding boxes and class 
labels were compared to the manually annotated ground-
truth targets to identify positive and negative detections—the 
term negative detection can be used interchangeably with no 
detection. A classification score ≥ 0.05 is considered a posi-
tive detection. The detection is true positive, if the intersec-
tion over union (IoU) for the areas of the predicted bounding 
box Apred and the ground-truth bounding box Atrue is > 0.5 
and the predicted class is the ground-truth class. Otherwise, 
the detection is considered false positive.

A classification score < 0.05 (value adapted from [16]) 
is a true-negative detection, if the image does not contain a 
bounding box labeled as “sternum.” Otherwise, it is a false-
negative detection.

Network performance was evaluated using average preci-
sion (AP) [23], a popular metric for object detection since it 
was applied for the PASCAL Visual Object Classes (VOC) 
Challenge in 2007 [24, 25]. AP is calculated as the area 
under the precision-recall curve from all positive and nega-
tive network detections for the test set, ranked according to 
classification score in descending order, where the precision 
p is set to the maximum precision obtained for any recall 
r
′

≥ r [25]:

Estimating the location of the SOI

The RetinaNet was trained to detect the presence of the SOI 
in axial CT slices. Because the SOI is a structure which 
typically stretches across multiple axial slices in a CT, the 
network may return positive detections for multiple slices. 
However, for data annotation purposes, we wanted the local-
ization approach to yield a unique location estimate of the 
SOI for a given CT scan.
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Estimating the location of the SOI included the following 
steps (see Fig. 2): (a) apply the RetinaNet to each slice in a 
given CT scan, (b) collect all positive detections, (c) select 
the best detection based on the classification score, and (d) 
select the center of the bounding box of the best detection 
to be the unique estimated location of the SOI. For exam-
ple, when given a CT scan consisting of 300 axial slices, 
the RetinaNet may detect the SOI in slices 240 and 241. 
The detection in slice 241 may have a classification score 
of 0.96, while slice 240 may only have a score of 0.92. In 
that case, the bounding box center of the detection in slice 
241 would be the unique estimated location of the SOI. In 
this context, a location encoded the position in three dimen-
sions (x, y, slice): the position in the axial plane (x, y) and 
the number of the slice of the respective detection counting 
in axial direction (slice).

Location estimates were evaluated per scan. Location 
estimates based on true-positive detections were also true 
positives. Location estimates based on false-positive detec-
tions were also false positives. Location estimates for scans 
with no positive detection were automatically false nega-
tives, because each scan contained the SOI. There were no 
true-negative location estimates. We also evaluated the 
Euclidean distance between the estimated location and the 
center of the (nearest) ground-truth bounding box in the 
axial plane. Additionally, we evaluated the number of slices 
between the estimated location and the center of the (near-
est) ground-truth bounding box.

Results

Data

The retrospectively collected image data (training set, vali-
dation set, and test set) in this study comprised 63,999 two-
dimensional axial slices from 222 CT scans and 202 patients 
(86 female (42.6%)) from age 15 to 25. In total, 872/63,999 
(1.4%) slices include the SOI and were annotated with the 
class label “sternum” and with a ground-truth bounding box.

The total image data was divided into three sets: train-
ing set, validation set, and test set (Table 1). The test set 
consisted of 30,846 slices from 110 scans and 110 patients 
(50 female (45.5%)); 379/30,846 (1.2%) slices included the 

Table 1  Training, validation, and test set composition with respect to 
the number of patients, CT scans, axial slices, and annotated slices

Dataset Patients Scans Slices Annotated slices

Training 82 100 29,656 434 (1.5%)
Validation 10 12 3,497 41 (1.2%)
Test 110 110 30,846 379 (1.2%)
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SOI, were labeled as class “sternum,” and had a ground-
truth bounding box. The training set consisted of 29,656 
slices from 100 scans and 82 patients (35 female (42.7%)); 
434/29,656 (1.5%) slices included the SOI, were labeled as 
class “sternum,” and had a ground-truth bounding box. The 
validation set consisted of 3497 slices from 12 scans and 10 
patients (1 female (10.0%)); 41/3,497 (1.2%) slices included 
the SOI, were labeled as class “sternum,” and had a ground-
truth bounding box.

Object detection network

The trained RetinaNet achieved an AP of 0.82 (1.0 = perfect 
score) for the detection, i.e., simultaneous localization and 
classification, of the SOI in the two-dimensional axial CT 
scan slices of the test set. The average IoU of the bound-
ing boxes predicted by the RetinaNet and the ground-truth 
bounding boxes was 0.74 (1.0 = identical boxes; 0.0 = no 
overlap between boxes).

For the 379 slices in the test set which included the 
SOI, the network yielded 338/379 (89.2%) true-positive 
detections, and 41/379 (10.8%) false-negative detections 
(Table  2). Examples of a true-positive detection and a 
false-negative detection are shown in Fig. 4. The median 
classification score for the 379 test slices that include the 
SOI was 1.00 [lower quartile (LQ) = 0.98; upper quartile 
(UQ) = 1.00] (1.0 = perfect score). The median IoU of the 
predicted bounding boxes and ground-truth bounding boxes 
in these slices was 0.83 [LQ = 0.76; UQ = 0.88].

For the 30,467 (= 30,846—379) slices in the test set that 
did not include the SOI, the network yielded 51/30,467 
(0.2%) false-positive detections and 30,416/30,467 (99.8%) 
true-negative detections (Table 2). The median classifi-
cation score for the 51 false-positive detections was 0.88 
[LQ = 0.17; UQ = 1.00]. The median classification score for 
the 30,416 true-negative detections was 0.00 [LQ = 0.00; 
UQ = 0.00].

Estimating the location of the SOI

The center of the bounding box from the RetinaNet detec-
tion with the highest classification score of all detections in 
a given CT scan was the estimated location of the SOI for 

that scan. Estimated locations were compared to ground-
truth locations.

In 97/110 (88%) scans of the test set, the estimated loca-
tion was true positive, i.e., in a slice with a ground-truth 
location. In 5/110 (5%) scans of the test set, the estimated 
location was false positive, but in slices directly next to a 
slice with a ground-truth location. In 8/110 (7%) scans of the 
test set the location estimate was false negative, because the 
RetinaNet did not return a positive detection, despite the SOI 
being present in the scan. The classification score distribu-
tion returned by the RetinaNet for a scan of the test set and 
the slice of the estimated SOI location is included in Fig. 4.

For the 97 true-positive location estimates, the mean 
(standard deviation (SD)) distance in the axial plane between 
the estimated location and the true location was 6.0 (3.8) 
pixels. For the 5 false-positive location estimates, the mean 
(SD) distance in the axial plane between the estimated loca-
tion and the closest true location was 7.6 (3.7) pixel. The 
average number of slices between a false-positive location 
estimate and the closest true location was 1 slice.

Discussion

We investigated a deep learning approach based on the 
state-of-the-art object detection network RetinaNet in order 
to locate the medial clavicular epiphyseal cartilages through 
an easy-to-identify proxy structure: the SOI. The dedicated 
RetinaNet trained in this study achieved an AP of 0.82 for 
detecting the SOI in all axial CT slices of the test set. Based 
on the RetinaNet detections, the location of the SOI was esti-
mated correctly in 88% of the CT scans in the test set, the 
false-positive localizations (5%) being close misses and the 
false negatives (7%) not being harmful. These results show 
that the presented localization approach can be used to reli-
ably generate large amounts of annotated data for training 
and evaluating a dedicated deep neural network for age-
assessment, without being limited by expensive and time-
consuming manual annotations through medical experts. 
A large dataset is necessary to train high-performing deep 
neural networks for any given task [15]. Using the locali-
zation approach as a foundation, deep learning–based age 
estimation has the potential to be more accurate than today’s 
standard approaches [8, 11, 12]. In addition, the localiza-
tion approach enables automated end-to-end age assessment 
without human interaction that only requires a CT scan which 
includes the medial clavicular epiphyseal cartilages as input.

The presented localization approach enables large anno-
tated datasets for deep learning–based age assessment for 
multiple reasons. First, in the majority of the test scans 
(97/110 (88%)), the predicted location of the SOI was in a 
correct axial slice and only 6.0 pixels away from the ground-
truth location on average. Even in the small number of test 

Table 2  Confusion matrix of RetinaNet detections in the test set. 
Detections in CT slices which include the SOI and have an IoU > 0.5 
with the ground-truth bounding box are true positives. A CT slice 
which does not include the SOI and for which the RetinaNet did not 
yield a detection is a true negative

Detection in slice No detection in slice

SOI in slice 338 / 379 (89.2%) 41 / 379 (10.8%)
SOI not in slice 51 / 30,467 (0.2%) 30,416 / 30,467 (99.8%)
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scans with false-positive detections (5/110 (5%)), the SOI 
was misplaced by only one slice. The three-dimensional field 
of view of a deep neural network for age assessment could 
most likely be chosen large enough, so that the localization in 

these five respective scans would still be sufficient. Moreover, 
in all remaining test scans (8/110 (7%)) the RetinaNet did 
not yield a detection. Although the number of false negatives 
should be reduced in the future, they are unproblematic for 

Fig. 4  The left panels show axial CT slices with ground-truth bound-
ing boxes around the SOI (yellow boxes) and detections (if predicted 
by network) (red boxes). The right panels show the central sagittal 
slice of the respective CT. The position of the axial slice in the left 
panel is indicated by the dashed blue line in the right panel. The red 
area in the right panel indicates the positions of all axial slices which 
contain the SOI and have ground-truth bounding boxes annotated. 
The heatmaps next to the right panels show the classification score 
returned by the RetinaNet for each axial slice (light orange = 1.0; 

black = 0.0). Detections made by the RetinaNet are true positive, if 
the axial slice has a ground-truth bounding box (red area) and the 
classification score is > 0.05 (e.g., light orange). A Shows an example 
of a true-positive localization of the SOI; i.e., the highest classifica-
tion score was returned for a slice which indeed contains the SOI. B 
shows an example of a false-negative localization; i.e., the RetinaNet 
returned only classification scores < 0.05 even though the SOI is pre-
sent in one or more slices
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the generation of a dataset for deep learning–based age assess-
ment. False negatives only reduce the number of annotated 
scans that can be generated from a given amount of unlabeled 
CT scans. As long as the required number of cases remains 
feasible, negative detections could also trigger the need for 
manual annotation of the medial clavicular epiphyseal carti-
lages through medical experts. This way, every available CT 
scan including the medial clavicular epiphyseal cartilages may 
be used as training data for a deep age-assessment network.

To the best of our knowledge, there exists no comparable 
anatomical landmarking approach for the purpose of locating 
the medial clavicular epiphyseal cartilages, the sternum, or the 
clavicles in CT scans. However, anatomic landmarking in medi-
cal images is an active research field, and there are a variety of 
studies which apply deep learning to locate different anatomical 
structures for distinct purposes [26, 27]. A particular applica-
tion for anatomic landmarking in medical images, which also 
shares some conceptual overlap with our study, is the detec-
tion of bone fractures. In these studies, deep object detection 
networks could successfully be trained to detect cracks in bone 
tissue and to locate fractures in hand and chest radiographs or 
chest CT scans [27]. Among other areas, one particular network 
was able to draw a bounding box around the clavicles in radio-
graphic images in case of a present fracture [26].

There are limitations within this study. First, the num-
ber of patients (n = 202) and CT scans (n = 222) was small, 
because manual ground-truth annotations (n = 872 bounding 
boxes) were time-consuming and data acquisition through 
the PACS laborious. However, the dataset was deemed large 
enough to perform this first study. Second, the training set 
included 100 CT scans from 82 patients; the validation set 
included 12 CT scans from 10 patients, which means that 
patient doublets were presented to the RetinaNet in each 
training epoch. The prevention of doublets is generally con-
sidered a quality standard regarding the reference popula-
tion. The test set used for evaluation did not contain dou-
blets. Third, the dataset is limited to CT images, and no 
statement about the performance of the automated localiza-
tion approach for MRI images can be made. CT images were 
used because CT is the state-of-the-art for forensic questions 
as it is widely available, quick, cheap, and robust. However, 
MRI is more desirable for acquiring images in healthy indi-
viduals compared to CT, because it spares the individuals 
from harmful ionizing radiation. But, we believe that the 
approach can be translated to MRI images in the future. 
Next, the approach does not differentiate between the left 
and right sternoclavicular joint and instead locates a proxy 
structure which includes both joints. As the differentiation 
of left and right clavicles is crucial in forensic age estima-
tion, expanding the capabilities of the localization in that 
regard would be an interesting future step. Additionally, the 
CT scans in this study were originally acquired during the 
clinical routine for all purposes. Because we were not able 

to analyze these purposes, there could be a bias in our data-
set. Also, the observed false-negative detections may occur 
systematically and excluding them from a dataset for deep 
learning–based age assessment could introduce a bias. Fur-
thermore, the thresholds for limiting HU values were derived 
heuristically and the potential effect of different thresholds 
on localization performance was not measured. Finally, we 
did not investigate three-dimensional object detection, even 
though it would have been natural to the problem of locat-
ing the medial clavicular epiphyseal cartilages in a CT scan. 
However, compared to 3D object detection, 2D object detec-
tion is much more common [28] and has a lot of benefits: (a) 
for the same amount of CT scans, more 2D slices than 3D 
scans that can be used as training examples, (b) 2D inputs 
are smaller and allow using smaller networks with fewer 
parameters, and (c) a wide range of high-performing pre-
trained models is available for 2D inputs.

Conclusions

In summary, we demonstrated a robust deep learning–based 
localization of an anatomical proxy structure to automate the 
localization of the medial clavicular epiphyseal cartilages. 
This enables deep learning–based age estimation based on 
the ossification of the medial clavicular epiphyseal cartilages 
which might outperform today’s standard methods. The pre-
sented localization approach addresses a specific case of a 
much wider problem concerning machine learning in medi-
cine: human annotations are costly and difficult to acquire, 
while the lack of annotations poses an enormous bottleneck 
for machine learning performance [14, 29].

Appendix

CT inclusion and exclusion criteria

The first two inclusion criteria were applied to identify 
clinical studies in the PACS. Inclusion criteria (PACS):

• Study includes chest CT
• Patient was between 15 and 25 years of age at the time 

of chest CT acquisition

The remaining 9 inclusion and exclusion criteria are listed 
below and were applied by inspecting the respective DICOM 
tags of the chest CT scans. The criteria were applied to each 
chest CT scan of the identified studies. The list of accepted 
reconstruction kernels was handcrafted based on all hard 
kernels we encountered during the retrospective data col-
lection. We did not explicitly filter CT scans based on slice 
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thickness. However, we used slice thickness to include only 
one chest CT scan per study and thereby keep the number of 
patients’ duplicates small. Specifically, we selected the chest 
CT scan with the thinnest slice thickness and discarded all 
other scans, in case the PACS query yielded multiple eligi-
ble chest CT scans for the same study. Nevertheless, patient 
duplicates exist in the dataset, because some patients were 
subject to multiple studies. Inclusion criteria (DICOM):

• Modality is “CT”
• ImageOrientationPatient is [1,0,0,0,1,0]
• ContrastBolusAgent is None or “”
• ConvolutionKernel is “LUNG,” “BL57f/3,” “BL57d/3,” 

“I70f/3,” “I70f\3,” [“I70f,” “3”], “I70f/2,” “I70f\2” or 
[“I70f”, “2”]

Exclusion criteria:

• “patient protocol” in SeriesDescription.lower()
• “topogram” in SeriesDescription.lower()
• “mpr” in SeriesDescription.lower()
• “SPO” in SeriesDescription
• “mip” in SeriesDescription.lower()

Slice thickness

The median slice thickness of the 222 CT scans in this 
study was 2.0 mm, the minimum 0.625 mm, the maximum 
3.0 mm, the lower quartile 1.0 mm, and the upper quartile 
2.5 mm. The distribution of the 222 slice thickness values 
is shown in Fig. 5.
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