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Abstract
Lures and other adaptations for prey attraction are particularly interesting from an evolutionary viewpoint because they are 
characterized by correlational selection, involve multicomponent signals, and likely reflect a compromise between maximiz-
ing conspicuousness to prey while avoiding drawing attention of enemies and predators. Therefore, investigating the evolution 
of lure and prey-attraction adaptations can help us understand a larger set of traits governing interactions among organisms. 
We review the literature focusing on spiders (Araneae), which is the most diverse animal group using prey attraction and 
show that the evolution of prey-attraction strategies must be driven by a trade-off between foraging and predator avoidance. 
This is because increasing detectability by potential prey often also results in increased detectability by predators higher in 
the food chain. Thus increasing prey attraction must come at a cost of increased risk of predation. Given this trade-off, we 
should expect lures and other prey-attraction traits to remain suboptimal despite a potential to reach an optimal level of attrac-
tiveness. We argue that the presence of this trade-off and the multivariate nature of prey-attraction traits are two important 
mechanisms that might maintain the diversity of prey-attraction strategies within and between species. Overall, we aim to 
stimulate research on this topic and progress in our general understanding of the diversity of predator and prey interactions.
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Introduction

Traits mediating interactions among species are central in 
explaining the structure of ecological communities (Wootton 
1994; Berlow 1999; Werner and Peacor 2003) and varia-
tion in major life-history events (e.g., growth, fecundity, and 
mortality) within and between species (Thompson 1999). 
This is particularly the case between predators and prey, 
because the traits mediating predator–prey interactions 
such as attack rate and predator avoidance often are key 
mechanisms structuring ecological communities (Werner 

and Peacor 2003; Schmitz et al. 2004). Theory predicts that 
natural selection should act towards stabilizing such dynam-
ics and eventually settling predator–prey interactions to sta-
ble predator and prey phenotypes (e.g., Hochberg and Holt 
1995, Loeuille 2010, but see Matsuda and Abrams 1994, 
Abrams 2000). There is, however, ample empirical evidence 
and theoretical literature showing that phenotypes with an 
important role in predator–prey interactions often show 
higher variation both between and within individuals of the 
same species (Bolnick et al. 2003, 2011; Saloniemi 1993; 
Doebeli and Koella 1994; Okuyama 2008). This presents 
an ecological puzzle. How can we explain that variation in 
traits mediating predator–prey interactions is maintained 
over the course of evolution? And, in turn, what prevents 
predator–prey dynamics from reaching a stable equilibrium 
(Hendry 2016, Chap. 8)?

One possible explanation for the maintenance of such 
variation is the existence of evolutionary trade-offs involving 
multiple traits (DeWitt and Langerhans 2003; Langerhans 
2007; Peiman and Robinson 2017). For instance, there is a 
trade-off between foraging ability and reproductive success 
if predators have limited energy and time to allocate between 
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these two functions (e.g., Yeh et al. 2015; Fan et al. 2009; 
Lima 1998a, b). The trade-off between foraging effort and 
predator avoidance should be particularly important in spe-
cies that attract their prey using lures and are relatively low 
in the food chain, such as mesopredators (hereafter non-apex 
predators; Yeh et al. 2015). This is because non-apex preda-
tors that attract prey both face greater risk of predation from 
species higher up in the food chain (that are not the target 
of lures) by drawing their attention. Although an extensive 
number of empirical studies have documented prey-attrac-
tion strategies in non-apex predators (Box 1), the evolution 
of lures has received little comprehensive treatment. Attract-
ing prey should come at a cost of increased vulnerability to 
predators that occupy the same or a higher rank in the food 
chain (see Magnhagen 1991 and Zuk and Kolluru 1998 for 
a similar concept in a mating context). Thus, animals using 
lures might need to balance foraging success with predation 
risk, both of which increase with the use of more conspicu-
ous lures. Predators using lures might produce conspicuous 
signals to attract their prey that are, in turn, exploited by 
their own predators to locate them. This, however, may not 
always be the case as research on toxicity signals in prey 
(i.e., aposematism) has claimed that the emergence of con-
spicuous signals may paradoxically be possible as a result 
of relaxed predation in early evolutionary phases (Marples 
et al. 2005; Mappes et al. 2005). The existence of a trade-
off between prey attraction and predator avoidance is, thus, 
debatable.

In this synthesis, we review the literature on prey-attrac-
tion adaptions in spiders (Araneae). This group contains 
arguably the largest number of species using prey attraction 
as their main foraging mode. Spiders represent an ideal study 
group to explore the trade-off between prey attraction and 
predator avoidance for three main reasons. First, spiders are 
predators that are low in the food chain and hence have many 
potential predators themselves (e.g., vertebrates predators, 
parasitoid wasps, other spiders; Wise 1993). Second, spiders 
are a species-rich group with over 51,000 species (World 
Spider Catalog 2023), exhibiting diverse life-histories and 
foraging strategies with numerous taxa using prey-attrac-
tion strategies. Third, silk usage and web production allow 
a diversity of structure and extends the foraging potential of 
this group: spider silk and webs can be used in addition to, or 
in place of, the spider's own body to attract prey. Using lures 
made of silk should also be important in reducing mortal-
ity due to predation: instead of targeting directly the spider, 
predators might instead target silk structures, that would, 
thus, serve as “decoys” and contribute to reduce the spider’s 
risk of death.

We first provide an overview of prey-attraction strate-
gies in animals, with a particular focus on spiders. We next 
review the evidence for a trade-off between prey attrac-
tion and predator avoidance in spiders and emphasize the 

importance of sensory mechanisms that underlie the trade-
off. We discuss the potential scenarios governing the evolu-
tion of lures and stress the importance of intraspecific vari-
ation and phenotypic plasticity in prey-attraction strategies 
in shaping predator–prey coevolution. Our objective is to 
provide a first account of the topic, highlight general pat-
terns, and provide directions for future empirical work.

Adaptations to attract prey in spiders

A diversity of spider taxa have developed highly visible phe-
notypes for attracting prey (Blackledge et al 2011; Walter 
and Elgar 2012; Chap. 8 in Stevens 2013) through a) the 
addition of a visual signal to their web, in the form of silk 
threads or other material (hereafter “web decorations”), b) 
conspicuous body coloration, or c) attractive volatile chemi-
cal compounds and vibratory signals. In this section, we 
review each of these types of traits.

Web decorations

Many species of spiders, particularly species belonging to 
the genus Argiope (Herberstein et al. 2000; Cheng et al. 
2010; Walter and Elgar 2012), decorate their web with addi-
tional threads of silk. These web decorations (also known 
as stabilimenta) are made of tightly woven silk, shaped into 
different patterns near the center of the web and the spider 
(Bruce et al. 2001). Such web decorations are highly visible 
and do not seem to reinforce the structure of the web (Simon 
1864; Eberhard 1990; Herberstein 2000; Starks 2002; Bruce 
2006; Théry and Casas 2009; Blackledge et al. 2011). Stud-
ies conducted under both natural and laboratory conditions 
show that web decoration often increase the number of prey 
drawn in and caught in the web by making the web more 
attractive (Craig and Bernard 1990; Craig 1991; Craig and 
Ebert 1994; Tso 1996; Tso 1998a,b; Watanabe 1999; Her-
berstein 2000; Bruce et al. 2001; Bruce et al. 2004; Cheng 
and Tso 2007; but see Hauber 1998). Web decorations pre-
sumably attract insect prey to the spider web either because 
they resemble light gaps in the vegetation (Elgar et al. 1996; 
Ewer 1972) or because their pattern of UV light reflectance 
mimics that of flowers (Craig and Bernard 1990; Craig 1995; 
Kiltie 1996). This white structure could in fact reflect many 
wavelengths and might, thus, be capable of reaching longer 
distances relative to monochromatic structures: as distance 
increases, the number of wavelengths that are scattered or 
absorbed increases and, thus, a more diverse spectrum (i.e., 
white light) is more likely to be visible from further away 
(Endler 1992; Manning and Dawkins 1998).

Alternatively, web decorations could help to protect the 
spider against predators and parasitoids (Marples et al. 
2005; Horton 1981; Eisner and Nowicki 1983; Schoener 
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and Spiller 1992; Kerr 1993; Cloudsley-Thompson 1995; 
Blackledge 1998b; Blackledge and Wenzel 1999; Nakata 
2009). Web decorations may conceal the spider (Hingston 
1927; Bristowe 1941; Ewer 1972; Eberhard 1973, 1990; 
Tolbert 1975; Edmunds and Edmunds 1986; Schoener 
and Spiller 1992; Tan and Li 2009; Wang et al. 2021), 
make it appear bigger (Hingston 1927; Ewer 1972; Eber-
hard 1973; Tolbert 1975; Schoener and Spiller 1992; Li 
and Lee 2004; Uhl 2008), act as a retreat (Blackledge 
and Wenzel 2001; Walter 2018), or physically shield the 
spider from attacks (Tolbert 1975; Schoener and Spiller 
1992; Blackledge and Wenzel 2001). Web decorations 
can also prevent parasitoid wasps from identifying and 
accessing the spider (Blackledge and Wenzel 2001). More 
generally, web decorations can reduce the risk of dam-
age to the web caused by flying birds by signaling the 
presence of the web and preventing accidental bird fly-
through (Horton, 1980; Eisner and Nowicki 1983; Black-
ledge and Wenzel 1999). For example, Blackledge and 
Wenzel (1999) found that webs without decorations were 
more often damaged by birds.

Nevertheless, it is clear that web decorations often 
attract prey and increase foraging success (Table  1) 
and several studies suggest that this might come with 
an increase in predation risk (Bruce et al. 2001, 2005; 
Seah and Li 2001; Li and Lee 2004). For example, Li and 
Lee (2004) found that Argiope spiders were less likely to 
build and, when they did, built smaller web decorations in 
response to the presence of olfactory cues from a preda-
tor. There is also evidence that predators are able to detect 
web decorations and memorize their form (Seah and Li 

2001). This could ultimately lead to an increase in the risk 
of predation associated with the use of web decorations.

Body coloration

Some spiders also exhibit conspicuous body coloration or 
markings that attract prey (e.g., White 2017; Hauber 2002; 
Chuang et al. 2007; Tso et al. 2007). For example, body 
coloration increases foraging success in the golden orb-
weaver spider Nephila pilipes and the spotted orb-web 
spider Neoscona punctigera (Chuang et al. 2007; Chiao 
et al. 2009; Blamires et al. 2012), the araneomorph spider 
Psechrus clavis (Lai et al. 2017), and the northern jeweled 
spider Gasteracantha fornicata (Muma 1971; Hauber 2002; 
White and Kemp 2016; White 2017). In the genus Gaste-
racantha, females exhibit bands of bright color, generally 
white or yellow, that contrast against a black outline and 
lure prey to the web (Hauber 2002; Rao et al. 2015; White 
and Kemp 2016; Messas et al. 2021). Likewise, the crab spi-
der Epicadus heterogaster uses its abdomen, which reflects 
UVs, to attract prey (Vieira et al 2017). The brown hunts-
man spider Heteropoda venatoria bears a white stripe on 
its forehead that attracts flying prey at night, such as moths 
(Zhang et al 2015).

Non‑visual lures

Spiders also attract prey using non-visual lures, such as 
chemical and vibratory signals. For example, Bolas spiders 
of the genus Mastophora attract male moths by producing 
volatiles that mimic female moth pheromones (Eberhard 
1977; Stowe et al. 1987; Haynes et al. 2002; chap. 11 in 

Table 1  Empirical studies testing for a trade-off between prey attraction and predator avoidance in spiders

References Species Lure Type of experiment Trade-off Function

Blakcledge and Wenzel (1999) Argiope aurantia Web decoration Field Yes Decreased prey capture and 
damage from birds

Bruce et al. (2001) Argiope keyserlingi Web decoration Field and laboratory Yes Increased prey capture and 
predation rate

Cheng and Tso (2007) Argiope aemula Web decoration Field Yes Increased prey capture and 
predation rate

Craig et al. (2001) Argiope argentata Web decoration Field and laboratory Likely May increase prey capture and 
predation rate

Fan et al. (2009) Nephila pilipes Body coloration Field Yes Increased prey and predator 
attraction

Heiling et al. (2005a) Thomisus spectabilis Body reflection laboratory Likely May increase prey capture and 
predation rate

Nakata (2009) Cyclosa argenteoalba Web decoration laboratory Unlikely May reduce predation rate but 
not prey capture

Tan and Li (2009) Cyclosa mulmeinensis Detritus decoration Field Likely Reduced visibility from both 
prey and predators

Yeh et al. (2015) Argiope aemula Web decoration Field Yes Increased prey and predator 
attraction
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Nentwig 2013; chap. 8 in Stevens 2013). The St Andrew's 
cross spider Argiope keyserlingi mists its webs with the 
amide putrescine, which serves as an allomone that increases 
the rate of prey capture (Henneken et al. 2017a). The social 
spider Mallos gregalis attracts flies using the odor produced 
by yeasts that grow on the carcasses of flies which the spider 
aggregates in the web (Tietjen et al. 1987). The jumping spi-
ders of the genera Brettus, Cyrba, Gelotia, and Portia prey 
on other spiders by attacking them on their webs using vibra-
tions that mimic a prey caught in the web (Jackson and Blest 
1982; Jackson and Hallas 1986; Jackson 1990a, b, 1992). 
Outside these examples, non-visual lures such as volatile 
compounds and vibratory signals are extremely understudied 
compared to visual ones (i.e., web decorations and conspicu-
ous body coloration). In spiders, only a handful of studies 
have studied olfactory and tactile lures, with most studies 
focusing on chemical lures of bolas spiders (Zhu and Haines, 
2004; Vereecken and McNeil 2010). Although non-visual 
lures might be widespread among spider taxa (Uetz and 
Roberts 2002; Hill and Wessel 2016; Virant-Doberlet et al. 
2019), we currently have limited understanding of whether 
they are common hunting tactics in spiders or if they involve 
more complex strategies using multimodal mechanisms in 
combination with chemical and/or vibratory signals.

The trade‑off: catching prey versus avoiding 
predators

There is good evidence that predator foraging behavior 
and prey anti-predator traits can coevolve (Dawkins and 
Krebs 1979; Abrams 2000), and that there is often a trade-
off between maximizing foraging success and avoiding 
predation (e.g., Lima 1998a, b; Houston et al. 1993). For 
example, foraging efficiency decreases under greater risk of 
predation in back-swimmers (Sih 1980), marmots (Holmes 
1984), and chickadees (Lima 1985). Likewise, lures are most 
likely shaped by both top-down and bottom-up selective 
pressures, and we should expect to see evidence of a trade-
off maximizing prey capture while limiting predation risk 
(Blackledge 1998a; Yeh et al. 2015; Fan et al. 2009). Past 
studies in arachnids have investigated this potential trade-
off mainly in visual signals, with web decorations being the 
most documented cases. Interestingly, web decorations can 
also increase the risk of predation by attracting more insect 
predators, such as mantids (Bruce et al. 2001) and wasps 
(Cheng and Tso 2007). This suggests that spiders using web 
decorations might face a trade-off between prey attraction 
and predator avoidance.

There is also some evidence for a trade-off between prey 
attraction and predator avoidance in other species using 
visual signals to attract their prey. For example, Fan et al. 
(2009) tested the attracting properties of the black and 

yellow pattern of the orb-web spider Nephila pilipes and 
showed that yellow coloration attracts both predators and 
prey. This suggests that the common bright-and-dark colora-
tion could be an optimal phenotype negotiating the trade-off 
between prey and predator attraction. In contrast to visual 
lures, we are not aware of any studies reporting similar 
effects of chemical or vibratory lures attracting predators. 
It is, therefore, unclear whether non-visual lures could also 
be constrained by a trade-off between prey attraction and 
predator avoidance.

Given that variation in the abundance of resources and 
predation risk are major evolutionary drivers shaping natu-
ral populations (Sih et al. 1985; Lima 1998b; Langerhans 
2007), the trade-off between foraging success and preda-
tion avoidance might play an important role in maintaining 
variation in the extent to which spiders build web decora-
tions and express body coloration (Cheng and Tso 2007; 
Fan et al. 2009). The members of the Argiope genus, for 
example, sometimes reduce or even stop decorating their 
web when facing a greater predation risk. In some cases, 
these spiders rely solely on their body coloration as lure 
(Cheng and Tso 2007). Part of this variation over time might 
come from reversible phenotypic plasticity. The expression 
of lures could be condition dependent: the investment made 
by individuals into their lures varies with diet or past forag-
ing success (Heberstein et al. 2000). Indeed, Gawryszewski 
et al. (2012) found that past foraging success was related to 
color contrast between spiders and their background in the 
crab spider Thomisus spectabilis.

Although the existence of a trade-off between prey attrac-
tion and predator avoidance is expected and supported by 
some empirical work, there currently is no clear consensus 
as to whether lures really are associated with increased costs 
of predation. Research on sexual selection and aposema-
tism (i.e., signaling mating benefits or toxicity) have debated 
similar issues and provide useful explanations on how con-
spicuous signals can evolve and become fixed in popula-
tions. In the context of signaling among sexual partners, 
deploying conspicuous signals should increase detectabil-
ity by predators (reviewed in Burk 1982; Magnhagen 1991; 
Zuk and Kolluru 1998; Haynes and Yeargan 1999; Kotiaho 
2001) and there should, therefore, be a trade-off between 
signaling and predator avoidance. Yet there is not always an 
obvious predation cost associated with sexual signals (White 
et al. 2022), potentially because more conspicuous individu-
als tend to also express stronger anti-predator behavior to 
compensate for their increased visibility to predators (Ber-
nal and Page 2023). This would be the case, for instance, if 
individuals in better condition or that have access to more 
resources can invest more in both sexual signals and anti-
predator behavior, whereby masking the potential trade-off 
between signaling and predator avoidance (Van Noordwijk 
and De Jong 1986).
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The presence of a trade-off is even more controversial 
in the context of aposematism, where toxic prey develop 
conspicuous visual signal to warn predators of their toxic-
ity. To associate an aposematic prey signal with toxicity, 
predators have to initially learn by consuming aposematic 
prey (Guilford 1988). Hence, any new prey variant display-
ing a conspicuous signal would likely be rapidly purged 
out of the population before being established (Guilford 
1990). This apparent paradox is resolved by empirical 
studies showing that predators often avoid new prey items 
as a result of neophobia or dietary conservatism (Map-
pes et al. 2005; Marples et al. 2005; Crane and Ferrari 
2017; White and Umbers 2021). Theoretical work has also 
suggested that predators might simply avoid conspicuous 
prey if it means that such prey are more likely to have 
been encountered by other predators and survived and are, 
thus, more likely to be toxic (Sherratt 2002). Regardless 
of the specific explanation, it is clear that in the case of 
aposematism increased detectability to predators does not 
necessarily imply increased predation. Nevertheless, it is 
unlikely to be the case in situations where the prey signals 
are not intended for predators, but are instead produced 
to achieve another function such as prey attraction, and 
are, incidentally, exploited by eavesdropping predators. 
Although neophobia and dietary conservatism could ena-
ble variants expressing a new prey-attraction phenotype 
to survive and initially spread in a population, it seems 
unlikely that this mechanism would allow such variants 
to become established in the long term, when generations 
of predators and prey have been sharing the same environ-
ment. The reason is because, unlike aposematism where 
the signal can be reinforced when established because prey 
are toxic, lures and prey-attraction tactics do not represent 
a problem for predators that have learned to identify them.

Another reason that could explain the absence of a trade-
off is if there is a convergence in the signals attracting prey 
and warning predators. Spiders may also have developed 
tactics to avoid predation. For example, signalers in the 
context of sexual selection often mitigate predator attrac-
tion using “private” signals detectable by conspecifics 
but not by predators (e.g., Endler 1992; Cummings et al. 
2003), or by adjusting the timing or location of signaling 
(Bernal and Page 2023). For example, fireflies use flashing 
signals instead of constant glow to reduce the risk of pre-
dation (Lloyd 1983), while males in Blue-black grassquits 
tend to display their iridescent plumage in direct sunlight 
only to maximize conspicuousness and avoid displaying a 
signal continuously (Sicsú et al. 2013). In the context of 
prey attraction, it is, thus, possible that spiders modulate 
the display of lures depending on the risk of predation. 
Some signals could also achieve two functions: attracting 
prey and signaling toxicity or unpalatability to predators. 
This may be the case for Gasteracantha spiders that display 

a conspicuous body coloration attracting prey while at the 
same time bearing striking morphological defences. In this 
species, body coloration could serve as signal to lure prey 
and as aposematic signal to warn predators (Gawryszewski 
and Motta 2012; Ximenes and Gawryszewski; 2019).

Nevertheless, the existence of a trade-off between prey 
attraction and predator avoidance has seldom been tested 
and there is a need for more studies addressing this pressing 
issue. Such studies should aim at estimating the predation 
costs associated with prey attraction by, for example, experi-
mentally manipulating the characteristics of lures (Bruce 
et al. 2001). This approach would be valuable to reveal the 
presence of a trade-off, which should become apparent if 
manipulations that increase prey attraction also increase the 
rate of predation. It would also help identify characteristics 
of lures that play a key role in attraction and that might be 
under strong selective pressure imposed by predators and 
prey. Moreover, there is a bias in studies towards visual 
lures used in prey attraction (Table 1) and more research is 
needed on non-visual lures in species that use chemical or 
vibratory lures. We suggest that the next logical step will 
be to improve our understanding of this trade-off by analyz-
ing the effect of lures on predation itself and dissecting the 
mechanisms underlying the evolution of lures to pinpoint the 
exact mechanical or physiological constraints underlying the 
possible trade-off and determining how individual spiders 
negotiate it. In the next section, we present the most relevant 
mechanisms in our opinion.

Sensory adaptations to multiple selective 
pressures

The sensory mechanisms underlying lures remain poorly 
understood. Lures must be under selection to respond to 
constraints at multiple levels, such as environmental condi-
tions (e.g., ambient light, prey abundance, predator pres-
ence), the physical properties of lures (e.g., color bright-
ness, reflectance), and the sensory capabilities of prey (e.g., 
photoreceptors and neural processing of signals; White and 
Kemp 2015). Studies investigating the properties of visual 
signals used in prey attraction (body coloration and web 
decorations) show that lures often rely on contrasts (from 
colors to shades of black and white) and light reflection 
(UV reflection; White and Kemp 2016; Chiao et al. 2009). 
Therefore, the evolution of lures involves the coevolution of 
multiple aspects of a trait to form a multivariate phenotype. 
This aspect is rarely considered by studies focusing on one 
or two aspects at a time. The combination of UV reflectance, 
chromatic and achromatic properties has been studied the 
most (White and Kemp 2016; Heiling and Herberstein 2004; 
Bruce and Heberstein 2005; Chiao et al. 2009), but these 
might not be the only ones.
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Lures are complex signals under diverse selection pres-
sure that might often involve a composite of multiple traits. 
Such multicomponent signals are characterized by the use 
of additional features to reinforce a main signal (Partan 
and Marler 2005; Higham and Hebets 2013) and have been 
mainly studied in spiders in the context of sexual communi-
cation (e.g., Rypstra et al. 2009). The use of lures to attract 
prey should also involve multicomponent signals given that 
prey generally use a combination of cues to identify potential 
food sources while avoiding predation (Llandres et al. 2011). 
As such, spiders that use lures combining multiple types 
of attractive signals, such as symmetry (White and Kemp 
2020) or body position (Cheng, Heiling, and Heberstein 
2006), should achieve a greater attractiveness. Other visual 
aspects are likely to play a role as well, such as form-related 
aspects, including shape, angle of vision, and size (Cheng 
et al. 2010). In addition to shape, brightness and geometric 
patterns can contribute to attract prey, such as in the northern 
jeweled spider G. fornicata (White 2017; White and Kemp 
2016).

To successfully attract prey, spiders have to produce lures 
that are adjusted to the sensory system of their prey. Lur-
ing spiders achieve this by taking advantage of pre-existing 
biases in their prey’s sensory system and preference for par-
ticular stimuli (e.g., foraging preferences, White and Kemp 
2020; mating behavior, De Serrano et al. 2012). For visual 
lures to effectively deceive prey, spiders must manipulate 
multiple visual aspects such as color contrasts, achromatic 
contrasts, and light reflection (White and Kemp 2016; Chiao 
et al. 2009). Spiders that mimic flowers to attract pollina-
tors provide an enlightening demonstration of the multiple 
constraints that prey sensory preferences impose (White 
and Kemp 2016). In these spiders, the lure mimics the color 
patterns, shapes, contrasts, luminance, and symmetry of a 
flower (White and Kemp 2020, 2017; Vieira et al. 2017; 
Chiao et al. 2009; Cheng et al. 2010). Such an elaborate 
mimicry enables the crab spider Epicadus heterogaster to 
successfully attract prey by using its flower-shaped, UV-
reflecting abdomen that seems equally attractive to pollina-
tors as real flowers (Vieira et al. 2017).

In turn, the sensory system of local prey and their 
response to lures evolve as a result of selection exerted by 
spiders. For example, the Australian native bee Austrople-
bia australis avoids flowers occupied by local crab spiders, 
whereas the introduced bee Apis mellifera is unable to 
discriminate between safe and risky flowers (Heiling and 
Heberstein 2004). This is likely due to a change in the sen-
sory perceptions and preferences of native bees that have a 
shared evolutionary history with local crab spiders and, as 
a result, have been selected to identify and avoid their lures 
(Heiling and Heberstein 2004). Such coevolutionary dynam-
ics linking prey preference and spider lures have also been 
documented among Argiope spiders using web decorations, 

for which the shape presumably evolved from linear to cross-
like to meet the symmetry preferences of potential insect 
prey (Cheng et al. 2010).

The trade-off between prey attraction and predator avoid-
ance should also be important in shaping the evolution of 
sensory adaptations. Indirect empirical evidence suggests 
that conspicuous signals are vulnerable to eavesdropping 
from predators because sensory capabilities and preferences 
of prey and predators often overlaps. For example, in many 
species of the genus Argiope, such as A. aemula, A. versi-
color and A. keyserlingi, web decorations that attract more 
prey also attract more predators such as wasps, mantises, or 
other spider predators (Cheng and Tso 2007; Seah and Li 
2001; Bruce, Heberstein, and Helgar 2005). In N. pilipes, 
individuals with brighter coloration are more attractive both 
to prey insects and to predatory wasps (Fan et al. 2009). We 
stress here the necessity of considering sensory worlds of 
both prey and predators, as well as accounting for the fact 
that lures are multimodal and multicomponent. The review 
provided by White and Kemp (2015) on the sensory basis of 
color lures is, to our knowledge, the only attempt to date to 
incorporate a general sensory framework into the study of 
lures. This highlights a need for more mechanisms-oriented 
studies focused on explaining the sensory basis underlying 
the ability of spiders to produce efficient lures.

Given a plausible trade-off between prey attraction and 
predator avoidance, we should expect lures and other traits 
important to prey attraction to remain suboptimal despite 
a potential to reach greater attractiveness. Species using 
prey-attraction strategies might then seek to use lures that 
cannot be detected by their own predators. We suggest that 
this may be the case for highly specialized lures, such as 
the chemical components used by bolas spiders (Eberhard 
1977; Stowe et al. 1987; Haynes et al. 2002). These lures, 
because they are specific to one (or a few) species of prey, 
are less likely to be detected or at least to attract predators. 
More generally, we urge future work to jointly address the 
sensory perceptions of both prey and predators when con-
sidering the costs and benefits of lures. In so doing, stud-
ies will help determining how attraction of both prey and 
predators operates and whether mechanisms that are central 
in signaling, such as learning (Guilford and Dawkins 1991, 
1993) or key perceptual and cognitive abilities (Osorio and 
Vorobyev 2008), underlie sensory perception of spider lures. 
Meanwhile, prey-attracting spiders provide a useful system 
for comparative studies testing the possible role of coevolu-
tion in the diversification of sensory organs and receptors in 
signalers and receivers (Endler 1992).
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Potential evolutionary outcomes

One possible evolutionary outcome to which predator–prey 
interactions with lure-using predators may lead is to highly 
specialized lures. This scenario is generally expected when 
prey impose selection for morphological or physiological 
specialization in predators, constraining the predator to 
an extremely limited range of prey (Pekár and Toft 2015; 
West-Eberhard 2003; Begon and Townsend 2020). Any 
new adaptation that increases the predator’s efficiency to 
catch and consume prey then leads to new adaptations to 
avoid or escape the predator (Janzen 1980; Thompson 1989). 
The increased specialization of predators can also favor the 
coexistence of competing predator species as specialization 
allows resource partitioning and reduces the magnitude of 
competition among species (Miller et al. 2005). A particu-
larly illustrative example of specialization in prey-attracting 
predators are bolas spiders, which attract only a limited num-
ber of prey species (Haynes et al. 2002). In theory, predators 
should often be selected to either become more specialist or 
more generalist depending on the extent to which capturing 
one prey species reduces the chance of capturing a different 
prey species (e.g., Abrams 2006).

In addition to the trade-off between prey attraction and 
predator avoidance, traits used for prey-attraction strategies 
can play a role in other functions and, as such, might be 
linked to life-history traits. Although this issue has rarely 
been investigated, there is some evidence that body colora-
tion can affect both prey attraction and sexual selection. For 
example, white stripes of males of the spider Dolomedes 
raptor plays a role in both prey attraction and mate choice 
(Lin et al. 2015). The presence and size of white stripes in 
males, which depend on body size and presumably reflect 
resource acquisition during juvenile growth, have a positive 
effect on both prey attraction and female mating acceptance 
(Lin et al. 2015). The presence and intensity of the visual 
signal, such as the white stripes in D. raptor, might reliably 
indicate quality of potential sexual partners. Alternatively, 
this signal may have been initially selected for its role in 
signaling male quality to females and, once evolved, fortui-
tously contributed to prey attraction. To date, the specific 
mechanism underlying the origin of dual functions between 
prey attraction and sexual selection is unknown. Neverthe-
less, resolving the links between lures and life-history traits, 
and the subsequent overlaps between prey attraction and 
other functions, will certainly provide important insights 
into the evolution of prey-attraction strategies.

The trade-off between prey attraction and predator avoid-
ance places a limit on the detectability of lures by prey. This 
is established for signals that are used in different contexts, 
such as in mate attraction and courtship. For example, in the 
mantis Pseudomantis albofimbriata, the only conspicuous 

part of this otherwise cryptic species is the achromatic 
(i.e., shades of gray) brightness of the abdomen of females, 
which is used as a signal of quality to conspecific males 
(Barry et al. 2015). This signal is associated with little risk 
of perception by eavesdropping predators, and may even 
improve camouflage through disruptive coloration (Barry 
et al. 2015). Although spiders can be expected to display the 
same strategy, spider lures differ from intraspecific reproduc-
tive signals in that they do not target conspecific receivers 
but a wide array of potential prey with different sensory 
abilities (Ximenes and Gawryszewski 2019). For instance, 
yellow lures are widespread presumably because this color 
is a highly efficient stimulus for many insect species (Craig 
1996). Thus, lures function by covering a large range of sen-
sory preferences. This implies that restricting this range to a 
more limited one, like mantises do, would almost certainly 
impede its efficiency in capturing prey. However, this is pos-
sible if one type of prey is predominant around the spider’s 
location as specialization would allow, and even favor, more 
restricted sensory ranges, and offer the opportunity to reduce 
detectability by predators. In the spinybacked orb-web spi-
der Gasteracantha cancriformis, yellow morphs, which are 
attractive to every prey and predator taxa, coexist with red 
morphs, which mainly attract butterfly prey and bird preda-
tors but are inconspicuous for fly prey and wasp predators 
(Ximenes and Gawryszewski 2019). Polymorphism here 
would be both a product of the sensory landscape of prey 
and an adaptation to the sensory landscape of predators.

Although lures can in principle evolve to become highly 
attractive to prey while remaining cryptic to predators, spi-
ders often forage on diverse prey and face diverse preda-
tors whose sensory capabilities are likely to overlap to some 
extent. This is suggested by studies which simultaneously 
compare the visual abilities of prey and predators, and 
show that contrasts and reflections attractive to prey also 
are detectable by a variety of predators, including inverte-
brate and vertebrate species (e.g., Heiling et al. 2005; Bruce 
and Heberstein 2005). These findings provide a mechanis-
tic explanation to the widespread attractiveness of lures for 
both prey and predators. The decreased detectability of the 
G. cancriformis red morph for predatory wasps and dip-
teran prey can also be explained by the limited capacity of 
these insects to see in red wavelengths (while bird predators 
likely perceive them), whereas the brightness of the yellow 
morph matches best their visual abilities (Ximenes and Gaw-
ryszewski 2019). The overlap between predator and prey 
sensory abilities might be widespread as suggested in other 
contexts, such as in mimicry: species that are cryptic to their 
prey often are cryptic to predators too (Oxford and Gillespie 
1998; Théry and Casas 2002; Théry et al. 2005; Defrize 
et al. 2010). For example, ambush crab spiders are known to 
be simultaneously cryptic in the color-vision systems of both 
bird predators and hymenopteran prey (Théry and Casas 
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2002). In the context of prey attraction, the presumably com-
mon overlap in predator–prey sensory abilities suggests that 
a trade-off generated by simultaneous prey attraction and 
predation risk must be widespread. Technics to model visual 
systems and contrast, such as those developed to study the 
sensory abilities of predators and prey in mimicking spiders 
(Théry and Casas 2002; Théry et al. 2005), warrants future 
progress in understanding how lures are perceived by both 
predators and prey.

An evolutionary solution to overcome the risk of being 
perceived by predators is to also exploit the sensory prefer-
ences of predators. For example, bright colors in G. cancri-
formis are detectable but unattractive for its predators, espe-
cially since birds associate bright colors such as red with 
unpalatability (Ximenes and Gawryszewski 2019; Brandley 
and Johnsen 2016). Similarly, the Australasian coin spider 
Herrenia multipuncta exhibits black and orange patterns that 
attract prey approaching from the dorsal side of the spider 
and deter predators approaching from the ventral side (Liao 
et al. 2019). Spiders of this species also adjust the visibility 
of a given side depending on the context, in response to the 
presence of prey and/or predators (Liao et al. 2019).

In general, the perception and preferences of prey might 
be important determinants of the evolution and mainte-
nance of polymorphism in spider lures. This is evidenced 
by some species displaying lures that have multiple morphs 
(e.g., Kemp et al. 2013; Rao et al. 2015; White and Kemp 
2016). This polymorphism in lures may be shaped by evo-
lutionary constraints acting on sensory traits and driven by 
the preference of local prey communities (Craig and Ebert 
1994; Kemp et al. 2013). Hence, polymorphism may be the 
result of the wide diversity in the visual perceptions of the 
various potential receivers, as well as environmental visual 
aspects impacting the visibility and attractiveness of lures, 
such as the color of the flowers in the local habitat and local 
light conditions (Craig et al. 1996; Kemp et al. 2013; White 
and Kemp 2015, 2016). Sensory traits in prey are potent 
agents of selection on lures, and might contribute to the 
maintenance of variation in prey-attraction traits within- and 
between species. Likewise, predators can contribute to the 
maintenance of polymorphisms in prey (Allen 1988; Mer-
ilaita 2006; Franks and Oxford 2017). And vice versa, varia-
tion in prey abundance can contribute to the maintenance of 
phenotypic variation in predators (Abrams 2006). Therefore, 
while this hypothesis has yet to be tested, variable predation 
pressure and prey abundance might contribute to the main-
tenance of variation in prey-attraction traits.

Phenotypic variation in prey attraction

Phenotypic plasticity

There is good evidence that phenotypic plasticity plays an 
important role in explaining variation, particularly in web 
decorations (e.g., Craig et  al. 2001; Seah and Li 2002; 
Gawryszewski and Motta 2012; Llandres et al. 2011). Web 
decorations often vary over the lifetime of individual spi-
ders that plastically adjust their strategy or simply respond 
to changes in their environment (e.g., Blackledge 1998b; 
Herberstein et al. 2000; Craig et al. 2001; Tso 2004). Spiders 
often adjust web decorations depending on changes in envi-
ronmental conditions such as prey availability (Blackledge 
1998b), predator presence (Bruce et al. 2001), and light and 
temperature conditions (Elgar et al. 1996; Herberstein and 
Fleisch 2003). For example, Herberstein and Fleisch (2003) 
showed that the orb-web spider Argiope keyserlingi tends 
to reduce the number of decorations when building a web at 
higher temperatures and increase the size of the decorations 
under lower levels of light. This increase in the visual signal 
might allow spiders to maintain foraging success when prey 
are less abundant at lower temperatures, or when prey are 
less likely to perceive visual signals in dimmer light.

Phenotypic plasticity, in addition to color polymorphism 
due to genetic differences, likely plays a role in the varia-
tion of body color used by prey-attraction species. This is 
because body coloration in spiders commonly varies with 
diet and environmental conditions during development 
(Oxford and Gillespie 1998). Nevertheless, it is still unclear 
to what extent phenotypic plasticity contributes to variation 
in body coloration of prey-attracting spiders. One possible 
reason for the lack of knowledge on this topic is that body 
coloration, unlike web decoration which is a labile trait, is 
likely determined during development and remains fixed 
during the adult lifetime of a spider. However, body color 
can change rapidly even in adult spiders in response to vari-
ation in environmental conditions. For example, body col-
oration changes through time, while color contrast changes 
with food intake in crab spiders (Gawryszewski et al. 2012). 
There is, thus, a need for more work to test for plasticity of 
body color by, for example, rearing spiders from different 
populations of a polymorphic species under identical labora-
tory conditions in a common garden experiment.

Individual variation

Although intraspecific variation in web decorations is often 
the result of phenotypic plasticity in response to changes 
in environmental conditions (Craig et al. 2001; Gawrysze-
wski and Motta 2012; Llandres et al. 2011), such variation 
can also reflect variation across populations and individuals 
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of the same population (e.g., Kerr 1993) as the result of 
genetic differences (e.g., Craig et al. 2001; Nakata 2009). 
For example, a laboratory-based study showed that genetic 
variation explains part of the variation in web decorations in 
A. argentata. Nevertheless, little is known about individual 
variation in web decorations and whether such variation is 
comparable to variation resulting from phenotypic plasticity 
in response to changes in environmental conditions. More 
work is therefore needed to test for differences in the number 
and size of web decorations at both the species and popula-
tion levels. Future studies addressing geographic variation in 
web decoration or individual variation within a single popu-
lation would certainly provide important insights into local 
adaption and potential genetic differences in prey-attraction 
traits.

Body coloration of prey-attracting spiders, such as orb-
web spiders of the genus Gasteracantha, provides a par-
ticularly well-known example of geographic polymorphism 
of traits associated with prey attraction. Populations of the 
Australian species G. fornicata tend to have stable morph 
frequencies along the gradient of distribution of the species, 
with the white morph prevailing in the north, and the yellow 
morph in the south (Kemp et al. 2013). The American spe-
cies G. cancriformis also displays striking geographic varia-
tion in the number of spines and color, with at least 8 distinct 
morphs (Gawryszewski and Motta 2012; Salgado-Roa et al. 
2018, 2022; Chamberland et al. 2020). Other taxa showing 
color polymorphism provide promising systems to study 
individual differences in prey attraction. This is the case, 
for example, in the giant wood spider Nephila maculata (Tso 
et al. 2002), the silver garden orb-web spider Argiope argen-
tata (Craig and Bernard 1990; Craig and Ebert 1994; Craig 
et al. 2001), or the neotropical orb-web spider Verrucosa 
arenata (Rao et al. 2015). The mechanisms that generate and 
maintain color polymorphism are still debated, but likely 
involve adaptation to local environmental conditions or 
frequency dependence (Oxford and Gillespie 1998). There 
is in fact contrasting evidence showing that color morphs 
sometimes achieve greater capture rates in distinct habitats 
(e.g., Tso et al. 2002; Nakata and Shigemiya 2015; Rao et al. 
2015), while in other species variation in body color has no 
effect on foraging success (e.g., Gawryszewski and Motta 
2012; Llandres et al. 2011).

There is also some evidence showing that chemical sig-
nals used in prey attraction can vary among individual spi-
ders. For example, the composition and the amount of web-
bound putrescines used by orb-web spiders to attract prey to 
the web (Henneken et al. 2017a) vary among individual spi-
ders and in response to changes in environmental conditions 
such as diet (Townley et al. 2006; Henneken et al. 2017b).

The origin and maintenance of variation in prey 
attraction

The trade-off between attracting prey and avoiding preda-
tors may play an important role in maintaining variation in 
prey-attraction tactics. This is because, by imposing diver-
gent selective pressures, the trade-off can also contribute 
to maintaining polymorphism within species and popula-
tions (Gray and McKinnon 2007; McKinnon et al. 2010). 
Meanwhile, the ability to produce alternative phenotype 
through polyphenism or behavioral responses can provide 
mechanisms to mediate opposing demands associated with 
attracting prey and avoiding predators (e.g., Van Buskirk 
et al. 1997; DeWitt et al. 2000; Eklöv and Svanbäck 2006). 
Thus, opposing pressures of attracting prey and predators 
may explain the maintenance of variation in lures. Pheno-
typic plasticity can allow spiders to cope with changes in the 
environment by readjusting their strategy to best match new 
environmental conditions. This is the case in species that 
adjust their web decoration according to the risk of preda-
tion by, for example, spinning fewer decorations on webs 
located in dense vegetation where predators have greater 
access (Bruce et al. 2001). Given costs of attracting prey, 
such strategies must be condition dependent, whereby only 
individuals that have access to enough resources and/or are 
in better condition can afford the costs. In general, heritable 
variation is crucial as it “fuels evolution,” and understanding 
the source of variation in prey-attraction strategies warrants 
insights into past and current evolution of these strategies.

Our knowledge about within- and between-individual 
variation in prey-attraction strategies depends heavily on 
the type of trait. As detailed above, phenotypic plasticity in 
web decorations has been well documented, whereas little 
is known about the developmental plasticity of body color 
in spiders using prey-attraction strategies. In contrast, there 
is good knowledge about color polymorphism and how 
body color varies among populations or among individuals 
within the same population, whereas little is known about 
geographical and among-individual variation in web deco-
rations. Thus, to reduce this bias in the literature on pheno-
typic variation in prey-attraction strategies, we need more 
studies testing for (1) geographic variation in the frequency 
and use of web decorations, (2) repeatability in web decora-
tion produced by individuals of the same population, and (3) 
plasticity of body color using common garden experiments.

Conclusion

In this review, we have shown that the evolution of prey-
attraction strategies must be driven by the interplay of mul-
tiple environmental and intrinsic aspects of the organisms 
(Fig. 1). We have highlighted the key role that a trade-off 
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between prey attraction and predator avoidance might play in 
driving predator–prey interactions in species that use prey-
attraction strategies to forage. This trade-off is expected 
given that predators should seek to maximize prey cap-
ture while reducing predation risk. We have highlighted 
the importance of the manner that both predators and prey 
perceive their world in shaping the potential trade-off. We 
have also suggested that the opposing demands imposed by 
the trade-off can favor variation within populations and the 
maintenance of polymorphism, polyphenism, or behavioral 
plasticity. Yet, the trade-off has been the focus of relatively 
few studies, and we stress the need for more work address-
ing the occurrence and importance of the trade-off. Prey 
attraction is a special type of adaptation involving multi-
component signals, trade-offs, and correlational selection, 
and studying such complex traits would contribute to our 
understanding of the evolution of multivariate phenotypes 
in general.

There are multiple outstanding questions about prey-
attraction strategies that are largely unsolved. First, we know 
little about the overlap of lures with other life-history traits, 

such as traits playing a role in reproduction. For example, 
in species where body coloration plays a role in both sexual 
selection and prey attraction, there may be opposing selec-
tion forces shaping body coloration. Alternatively, body 
coloration could fulfill the two functions, which seems to 
be the case with the white coloration in the nocturnal spider 
Dolomedes raptor (Lin et al. 2015). Second, although previ-
ous studies have documented the ecological cost in terms of 
increased predation, little is known about the physiological 
and/or energetic cost of producing lures or attracting prey in 
general. Overall, we should expect metabolic expenditures 
associated with the production of efficient signals for both 
prey and predators (e.g., Liao et al. 2019). There is, thus, a 
need for more studies addressing the cost of prey attraction. 
We hope to stimulate research on this topic and progress in 
our understanding of predator–prey interactions and, more 
generally, interactions among organisms Fig. 2.

Fig. 1  Summary of the main mechanisms constraining the evolution of prey-attraction strategies in spiders
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Box 1 Evidence for prey attraction 
by predators

Prey attraction in vertebrates is rare but is known in 
a diversity of species. For example, sidewinder rat-
tlesnakes (Reiserer and Schuett 2008), vipers (Heat-
wole and Davison 1976), rat snakes (Mullin 1999), and 
saltmarsh snakes (Hansknecht 2008) use conspicuous 
body parts or coloration to attract prey. This is also the 
case in alligator snapping turtles (Spindel et al. 1987; 
Fig. 2), leaf frogs (Bertoluci 2002), toads (Hagman 
and Shine 2008) and anglerfish (Pietsch and Grobecker 
1978; Fig. 2). In mammals, prey-attracting strategies 
have been suggested in the Arctic fox, where individu-
als modify the habitat near their dens in a way that 
attracts more prey (Gharajehdaghipour and Roth 2018). 
In these species, the visual signals may mimic food or 
potential mating partners, thus luring prey deceptively 
(Reiserer and Schuett 2008).

Apart from spiders where prey attraction is well 
known, prey attraction in invertebrates has been 
reported mainly in insects. At least two species of 
orchid mantises use their body coloration and shape to 
attract insect prey (O’Hanlon et al. 2014; Mizuno et al. 
2014; Fig. 2), and larvae of a ground beetle lure frogs 
that mistake them for potential prey (Wizen and Gasith 
2011). Females of a Photuris firefly prey on males of 
other firefly species by mimicking the flashing signals 
normally produced by conspecific females (Lloyd 1975, 
1984). Some species of assassin bugs attract spider prey 
by generating vibrations on the web that attract the resi-
dent spider (Wignall and Taylor 2009, 2011).
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Fig. 2  Prey attraction strategies in animals. A The deepsea anglerfish 
Bufoceratias wedli displays a large lure on its back and a smaller one 
located towards the front (image by Masaki Miya et al. 2010, CC BY 
2.0). B The orchid mantis Hymenopus coronatus attracts and captures 
wild pollinators thanks to its body shape and color (image by Luc 
Viatour, CC BY 3.0). C The alligator snapping turtle Macrochelys 
temminckii uses its lingual appendage to imitate a small worm or an 
insect larva to attract its prey (image by LA Dawson, CC BY 2.5). 

D The northern jeweled spider Gasteracantha fornicate lures its prey 
using its conspicuous body coloration (image by Stephanie Levy, 
CC BY 2.0). E The bolas spider Mastophora phrynosoma lures male 
moths by producing a chemical mimicking female moth sex phero-
mone (image by Julie Metz Wetlands, CC BY 2.0). F The orb-web 
spider Argiope aemula decorates it web with stabilimenta to lure prey 
(image by Yagnesh Desai, CC BY 4.0)
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