
Statistics and Computing (2024) 34:31
https://doi.org/10.1007/s11222-023-10323-2

ORIG INAL PAPER

Privacy-preserving and lossless distributed estimation of
high-dimensional generalized additive mixedmodels

Schalk Daniel1,2 · Bischl Bernd1,2 · Rügamer David1,2

Received: 7 March 2023 / Accepted: 2 October 2023 / Published online: 7 November 2023
© The Author(s) 2023

Abstract
Various privacy-preserving frameworks that respect the individual’s privacy in the analysis of data have been developed in
recent years.However, availablemodel classes such as simple statistics or generalized linearmodels lack the flexibility required
for a good approximation of the underlying data-generating process in practice. In this paper, we propose an algorithm for
a distributed, privacy-preserving, and lossless estimation of generalized additive mixed models (GAMM) using component-
wise gradient boosting (CWB). Making use of CWB allows us to reframe the GAMM estimation as a distributed fitting
of base learners using the L2-loss. In order to account for the heterogeneity of different data location sites, we propose a
distributed version of a row-wise tensor product that allows the computation of site-specific (smooth) effects. Our adaption of
CWB preserves all the important properties of the original algorithm, such as an unbiased feature selection and the feasibility
to fit models in high-dimensional feature spaces, and yields equivalent model estimates as CWB on pooled data. Next to a
derivation of the equivalence of both algorithms, we also showcase the efficacy of our algorithm on a distributed heart disease
data set and compare it with state-of-the-art methods.

Keywords Distributed computing · Functional gradient descent · Generalized linear mixed model · Machine learning ·
Privacy-preserving modelling

1 Introduction

More than ever, data is collected to record the ubiquitous
information in our everyday life. However, on many occa-
sions, the physical location of data points is not confined to
one place (one global site) but distributed over different loca-
tions (sites). This is the case for, e.g., patient records that are
gathered at different hospitals but usually not shared between
hospitals or other facilities due to the sensitive information
they contain. This makes data analysis challenging, particu-
larly if methods require or notably benefit from incorporating
all available (but distributed) information. For example, per-
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sonal patient information is typically distributed over several
hospitals, while sharing or merging different data sets in a
central location is prohibited. To overcome this limitation,
different approaches have been developed to directly oper-
ate at different sites and unite information without having to
share sensitive parts of the data to allow privacy-preserving
data analysis.
Distributed data Distributed data can be partitioned ver-
tically or horizontally across different sites. Horizontally
partitioned data means that observations are spread across
different sites with access to all existing features of the avail-
able data point, while for vertically partitioned data, different
sites have access to all observations but different features
(covariates) for each of these observations. In this work, we
focus on horizontally partitioned data. Existing approaches
for horizontally partitioned data vary from fitting regression
models such as generalized linear models (GLMs; Wu et al.
2012; Lu et al. 2015; Jones et al. 2013; Chen et al. 2018), to
conducting distributed evaluations (Boyd et al. 2015; Ünal
et al. 2021; Schalk et al. 2022), to fitting artificial neural net-
works (McMahan et al. 2017). Furthermore, various software
frameworks are available to run a comprehensive analysis of
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distributed data. One example is the collection of R (R Core
Team 2021) packages DataSHIELD (Gaye et al. 2014),
which enables data management and descriptive data analy-
sis as well as securely fitting of simple statistical models in a
distributed setup without leaking information from one site
to the others.
Interpretability and data heterogeneity In many research
areas that involve critical decision-making, especially in
medicine, methods should not only excel in predictive per-
formance but also be interpretable. Models should provide
information about the decision-making process, the feature
effects, and the feature importance as well as intrinsi-
cally select important features. Generalized additive models
(GAMs; see, e.g., Wood 2017) are one of the most flexible
approaches in this respect, providing interpretable yet com-
plex models that also allow for non-linearity in the data.

As longitudinal studies are often the most practical way
to gather information in many research fields, methods
should also be able to account for subject-specific effects
and account for the correlation of repeated measurements.
Furthermore, when analyzing data originating from differ-
ent sites, the assumption of having identically distributed
observations across all sites often does not hold. In this case,
a reasonable assumption for the data-generating process is
a site-specific deviation from the general population mean.
Adjusting models to this situation is called interoperabil-
ity (Litwin et al. 1990), while ignoring it may lead to biased
or wrong predictions.

1.1 Related literature

Various approaches for distributed and privacy-preserving
analysis have been proposed in recent years. In the con-
text of statistical models, Karr et al. (2005) describe how
to calculate a linear model (LM) in a distributed and privacy-
preserving fashion by sharing data summaries. Jones et al.
(2013) propose a similar approach for GLMs by communi-
cating the Fisher information and score vector to conduct a
distributed Fisher scoring algorithm. The site information is
then globally aggregated to estimate the model parameters.
Other privacy-preserving techniques include ridge regres-
sion (Chen et al. 2018), logistic regression, and neural
networks (Mohassel and Zhang 2017).

Inmachine learning,methods such as the naiveBayes clas-
sifier, trees, support vector machines, and random forests (Li
et al. 2020a) exist with specific encryption techniques (e.g.,
the Paillier cryptosystem; Paillier 1999) to conduct model
updates. In these setups, a trusted third party is usually
required. However, this is often unrealistic and difficult
to implement, especially in a medical or clinical setup.
Furthermore, as encryption is an expensive operation, its
application is infeasible for complex algorithms that require
many encryption calls (Naehrig et al. 2011). Existing privacy-

preserving boosting techniques often focus on the AdaBoost
algorithm by using aggregation techniques of the base clas-
sifier (Lazarevic and Obradovic 2001; Gambs et al. 2007). A
different approach to boosting decision trees in a federated
learning setup was introduced by Li et al. (2020b) using a
locality-sensitive hashing to obtain similarities between data
sets without sharing private information. These algorithms
focus on aggregating tree-based base components, making
them difficult to interpret, and come with no inferential guar-
antees.

In order to account for repeated measurements, Luo et al
(2022) propose a privacy-preserving and lossless way to fit
linear mixed models (LMMs) to correct for heterogeneous
site-specific random effects. Their concept of only sharing
aggregated values is similar to our approach, but is limited
in the complexity of the model and only allows normally
distributed outcomes. Other methods to estimate LMMs in a
secure and distributed fashion are Zhu et al. (2020), Anjum
et al. (2022), or Yan et al. (2022).

Besides privacy-preserving and distributed approaches,
integrative analysis is another technique based on pooling the
data sets into one and analyzing this pooled data set while
considering challenges such as heterogeneity or the curse of
dimensionality (Curran and Hussong 2009; Bazeley 2012;
Mirza et al. 2019). While advanced from a technical per-
spective by, e.g., outsourcing computational demanding tasks
such as the analysis of multi-omics data to cloud services
(Augustyn et al. 2021), the existing statistical cloud-based
methods only deal with basic statistics. The challenges of
integrative analysis are similar to the ones tackled in this
work, our approach, however, does not allow merging the
data sets in order to preserve privacy.

1.2 Our contribution

Thiswork presents amethod to fit generalized additivemixed
models (GAMMs) in a privacy-preserving and lossless man-
ner1 to horizontally distributed data. This not only allows the
incorporation of site-specific random effects and accounts
for repeated measurements in LMMs, but also facilitates
the estimation of mixed models with responses following
any distribution from the exponential family and provides
the possibility to estimate complex non-linear relationships
between covariates and the response. To the best of our
knowledge, we are the first to provide an algorithm to fit
the class of GAMMs in a privacy-preserving and lossless
fashion on distributed data.

Our approach is based on component-wise gradient boost-
ing (CWB; Bühlmann and Yu 2003). CWB can be used

1 In this article,we define a distributed fitting procedure as lossless if the
model parameters of the algorithm are the same as the ones computed
on the pooled data.
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Fig. 1 Method overview of the proposed distributed CWB approach
with onemainCWBmodelmaintained by a host (center) and distributed
computations on different sites (three as an example in this case) that
incorporate and provide site-specific information while preserving pri-
vacy

to estimate additive models, account for repeated measure-
ments, compute feature importance, and conduct feature
selection. Furthermore, CWB is suited for high-dimensional
data situations (n � p). CWB is therefore often used in
practice for, e.g., predicting the development of oral can-
cer (Saintigny et al 2011), classifying individuals with and
without patellofemoral pain syndrome (Liew et al. 2020), or
detecting synchronization in bioelectrical signals (Rügamer
et al. 2018). However, there have so far not been any attempts
to allow for a distributed, privacy-preserving, and lossless
computation of the CWB algorithm. In this paper, we pro-
pose a distributed version of CWB that yields the identical
model produced by the original algorithm on pooled data
and that accounts for site heterogeneity by including interac-
tions between features and a site variable. This is achieved
by adjusting the fitting process using (1) a distributed estima-
tion procedure, (2) a distributed version of row-wise tensor
product base learners, and (3) an adaption of the algorithm
to conduct feature selection in the distributed setup. Figure1
sketches the proposed distributed estimation procedure.

We implement our method in R using the DataSHIELD
framework and demonstrate its application in an exemplary
medical data analysis. Our distributed version of the original
CWB algorithm does not have any additional hyperparam-
eters (HPs) and uses optimization strategies from previous
research results to definemeaningful values for allHPs, effec-
tively yielding a tuning-free method.

The remainder of this paper is structured as follows: First,
we introduce the basic notation, terminology, and setup of
GAMMs in Sect. 2.We then describe the original CWB algo-

rithm in Sect. 2.3 and its link to GAMMs. In Sect. 3, we
present the distributed setup and our novel extension of the
CWB algorithm. Finally, Sect. 4 demonstrates both how our
distributed CWB algorithm can be used in practice and how
to interpret the obtained results.
ImplementationWe implement our approach as an R package
using the DataSHIELD framework and make it available on
GitHub.2 The code for the analysis can also be found in the
repository.3

2 Background

2.1 Notation and terminology

Our proposed approach uses the CWB algorithm as fitting
engine. Since this methodwas initially developed inmachine
learning, we introduce here both the statistical notation used
for GAMMs as well as the respective machine learning ter-
minology and explain how to relate the two concepts.

We assume a p-dimensional covariate or feature space
X = (X1×· · ·×Xp) ⊆ R

p and response or outcome values
from a target space Y . The goal of boosting is to find the
unknown relationship f betweenX and Y . In turn, GAMMs
(as presented in Sect. 2.2) model the conditional distribu-
tion of an outcome variable Y with realizations y ∈ Y ,
given features x = (x1, . . . , xp) ∈ X . Given a data set
D = {(

x(1), y(1)
)
, . . . ,

(
x(n), y(n)

)}
with n observations

drawn (conditionally) independently from an unknown prob-
ability distribution Pxy on the joint space X × Y , we aim to
estimate this functional relationship in CWB with f̂ . The
goodness-of-fit of a given model f̂ is assessed by calculat-
ing the empirical riskRemp( f̂ ) = n−1 ∑

(x,y)∈D L(y, f̂ (x))

based on a loss function L : Y × R → R and the
data set D. Minimizing Remp using this loss function is
equivalent to estimating f using maximum likelihood by
defining L(y, f (x)) = −�(y, h( f (x))) with log-likelihood
�, response function h and minimizing the sum of log-
likelihood contributions.

In the following, we also require the vector x j =
(x (1)

j , . . . , x (n)
j )T ∈ X j , which refers to the j th feature.

Furthermore, let x = (x1, . . . , xp) and y denote arbitrary
members of X and Y , respectively. A special role is further
given to a subset u = (u1, . . . , uq)�, q ≤ p, of features x,
which will be used to model the heterogeneity in the data.

2 github.com/schalkdaniel/dsCWB.
3 github.com/schalkdaniel/dsCWB/blob/main/usecase/analyse.R.
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2.2 Generalized additive mixedmodels

A very flexible class of regression models to model the rela-
tionship between covariates and the response are GAMMs
(see, e.g., Wood 2017). In GAMMs, the response Y (i) for
observation i = 1, . . . , ns of measurement unit (or site) s is
assumed to follow some exponential family distribution such
as the Poisson, binomial, or normal distributions (see, e.g.,
McCullagh and Nelder 1989), conditional on features x(i)

and the realization of some random effects. The expectation
μ := E(Y (i)|x(i), u(i)) of the response Y (i) for observations
i = 1, . . . , ns of measurement unit (or site) s in GAMMs is
given by

h−1(μ(i)) = f (i)

=
∑

j∈J1

x (i)
j β j +

∑

j∈J2

u(i)
j γ j,s +

∑

j∈J3

φ j

(
x (i)
j

)
. (1)

In (1), h is a smooth monotonic response function, f cor-
responds to the additive predictor, γ j,s ∼ N (0, ψ) are
random effects accounting for heterogeneity in the data,
and φ j are non-linear effects of pre-specified covariates.
The different index sets J1,J2,J3 ⊆ {1, . . . , p} ∪ ∅ indi-
cate which features are modeled as fixed effects, random
effects, or non-linear (smooth) effects, respectively. The
modeler usually defines these sets. However, as we will also
explain later, the use of CWB as a fitting engine allows for
automatic feature selection and therefore does not require
explicitly defining these sets. In GAMMs, smooth effects
are usually represented by (spline) basis functions, i.e.,
φ j (x j ) ≈ (Bj,1(x j ), . . . , Bj,d j (x j ))

�θ j , where θ j ∈ R
d j

are the basis coefficients corresponding to each basis func-
tion Bj,d j . The coefficients are typically constrained in their
flexibility by adding a quadratic (difference) penalty for
(neighboring) coefficients to the objective function to enforce
smoothness. GAMMs, as in (1), are not limited to uni-
variate smooth effects φ j , but allow for higher-dimensional
non-linear effects φ(x j1, x j2 , . . . , x jk ). The most common
higher-dimensional smooth interaction effects are bivariate
effects (k = 2) and can be represented using a bivariate or a
tensor product spline basis (see Sect. 2.3.1 for more details).
Although higher-order splines with k > 2 are possible, mod-
els are often restricted to bivariate interactions for the sake of
interpretability and computational feasibility. In Sect. 3, we
will further introduce varying coefficient terms φ j,s(x j ) in
the model (1), i.e., smooth effects f varying with a second
variable s. Analogous to random slopes, s can also be the
index set defining observation units of random effects J2.
Using an appropriate distribution assumption for the basis
coefficients θ j , these varying coefficients can then be con-
sidered as random smooth effects.

2.3 Component-wise boosting

Component-wise (gradient) boosting (CWB; Bühlmann
and Yu 2003; Bühlmann et al. 2007) is an iterative algorithm
that performs block-coordinate descent steps with blocks (or
base learners) corresponding to the additive terms in (1).
With a suitable choice of base learners and objective function,
CWBallows efficient optimization ofGAMMs, even in high-
dimensional settings with p � n. We will first introduce the
concept of base learners that embed additive terms of the
GAMM into boosting and subsequently describe the actual
fitting routine of CWB. Lastly, we will describe the prop-
erties of the algorithm and explain its connection to model
(1).

2.3.1 Base learners

In CWB, the lth base learner bl : X → R is used to model
the contribution of one or multiple features in the model. In
thiswork,we investigate parametrized base learners bl(x, θ l)

with parameters θ l ∈ Rdl . For simplicity, we will use θ as a
wildcard for the coefficients of either fixed effects, random
effects, or spline bases in the following.We assume that each
base learner can be represented by a generic basis represen-
tation gl : X → Rdl , x → gl(x) = (gl,1(x), . . . , gl,dl (x))T

and is linear in the parameters, i.e., bl(x, θ l) = gl(x)Tθ l .
Note that the basis transformation gl of the lth base learner
does not necessarily select the j th feature x j . This is required
to, e.g., let two base learners l and k depend on the same fea-
ture x j . For n observations, we define the design matrix of a
base learner bl as Zl := (gl(x(1)), . . . , gl(x(n)))T ∈ Rn×dl .
Note that base learners are typically not defined on the whole
feature space but on a subset Xl ⊆ X . For example, a com-
mon choice for CWB is to define one base learner for every
feature xl ∈ Xl to model the univariate contributions of that
feature.

A base learner bl(x, θ l) can depend on HPs αl that are
set prior to the fitting process. For example, choosing a base
learner using a P-spline (Eilers and Marx 1996) representa-
tion requires setting the degree of the basis functions, the
order of the difference penalty term, and a parameter λl
determining the smoothness of the spline. Regularized base
learners, in addition, will have pre-defined penalty matri-
ces K l . For convenience, we further denote the penalty
matrix already augmented with the corresponding smooth-
ing parameter with P l , e.g., P l = λlK l . In order to represent
GAMMs in CWB, the following four base learner types are
used.

(Regularized) linear base learners A linear base learner is
used to include linear effects of a features x j1 , . . . , x jdl into
the model. The basis transformation is given by gl(x) =
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(gl,1(x), . . . , gl,dl+1(x))T = (1, x j1 , . . . , x jdl )
T. Linear base

learners can be regularized by incorporating a ridge penal-
ization (Hoerl and Kennard 1970) with tunable penalty
parameter λl as an HP αl . Fitting a ridge penalized linear
base learner to a response vector y ∈ R

n results in the penal-
ized least squares estimator θ̂ l = (ZTl Zl + P l)

−1ZTl y with
penalty matrix P l = λlK l , K l = Idl+1, where Id denotes
the d-dimensional identity matrix. Often, an unregularized
linear base learner is also included to model the contribution
of one feature x j as a linear base learnerwithout penalization.
The basis transformation is then given by gl(x) = (1, x j )T

and λl = 0.

Spline base learners These base learners model smooth
effects using univariate splines. A common choice is penal-
ized B-splines (P-Splines; Eilers and Marx 1996), where
the feature x j is transformed using a B-spline basis trans-
formation gl(x) = (Bl,1(x j ), . . . , Bl,dl (x j ))

T with dl basis
functions gl,m = Bl,m, m = 1, . . . , dl . In this case, the
choice of the spline order B, the number of basis functions
dl , the penalization term λl , and the order v of the difference
penalty (represented by a matrix Dl ∈ Rdl−v×dl ) are consid-
ered HPs αl of the base learner. The base learner’s parameter
estimator in general is given by the penalized least squares
solution θ̂ l = (ZTl Zl + P l)

−1ZTl y, with penalization matrix
P l = λlK l and K l = D�

l Dl in the case of P-splines.

Categorical and randomeffect base learnersCategorical fea-
tures x j ∈ {1, . . . ,G} with G ∈ N,G ≥ 2 classes are han-
dledby abinary encoding gl(x) = (1{1}(x j ), . . . ,1{G}(x j ))T
with the indicator function 1A(x) = 1 if x ∈ A and 1A(x) =
0 if x /∈ A. A possible alternative encoding is the dummy
encoding with ğl(x) = (1,1{1}(x j ), . . . ,1{G−1}(x j ))T with
reference group G. Similar to linear and spline base learn-
ers, it is possible to incorporate a ridge penalization with
HP αl = λl . This results in the base learner’s penalized least
squared estimator θ̂ l = (ZTl Zl+P l)

−1ZTl ywith penalization
matrix P l = λlK l , K l = IG .Due to themathematical equiv-
alence of ridge penalized linear effects and random effects
with normal prior (see, e.g., Brumback et al. 1999), this base
learner can further be used to estimate random effect pre-
dictions γ̂ j when using categorical features u j and thereby
account for heterogeneity in the data. Hence, this base learner
can also be used to model site-specific effects in a distributed
system, as outlined later. While such random effects do not
directly provide a variance estimate of the different measure-
ment units and are primarily used to account for intra-class
correlation, an approximation of the variance components
can be retrieved post-model fitting by, e.g., computing the
empirical variance of (γ̂ j ) j∈J3 .

Row-wise tensor product base learners This type of base
learner is used to model a pairwise interaction between two
features x j and xk . Given two base learners b j and bk with
basis representations g j (x) = (g j,1(x j ), . . . , g j,d j (x j ))

T

and gk(x) = (gk,1(xk), . . . , gk,dk (xk))
T, the basis represen-

tation of the row-wise tensor product base learner bl =
b j × bk is defined as gl(x) = (g j (x)T ⊗ gk(x)T)T =
(g j,1(x j )gk(x)T, . . . , g j,d j (x j )gk(x)T)T ∈ Rdl with dl =
d jdk . The HPs αl = {α j ,αk} of a row-wise tensor prod-
uct base learner are induced by the HPs α j and αk of the
respective individual base learners. Analogously to other
base learners, the penalized least squared estimator in this
case is θ̂ l = (ZTl Zl + P l)

−1ZTl y with penalization matrix
P l = τ j K j ⊗ Idk + Id j ⊗ τkK k ∈ Rdl×dl . This Kronecker
sum penalty, in particular, allows for anisotropic smoothing
with penalties τ j and τk when using two spline bases for
g j and gk , and varying coefficients or random splines when
combining a (penalized) categorical base learner and a spline
base learner.

2.3.2 Fitting algorithm

CWB first initializes an estimate f̂ of the additive predictor
with a loss-optimal constant value f̂ [0]= argminc∈RRemp(c).
It then proceeds and estimates Eq. (1) using an iterative
steepest descent minimization in function space by fitting
the previously defined base learners to the model’s func-
tional gradient ∇ f L(y, f ) evaluated at the current model
estimate f̂ . Let f̂ [m] denote the model estimation after
m ∈ N iterations. In each step in CWB, the pseudo residuals
r̃ [m](i) = −∇ f L(y(i), f (x(i)))| f = f̂ [m−1] for i ∈ {1, . . . , n}
are first computed. CWB then selects the best-fitting base
learner from a pre-defined pool of base-learners denoted by
B = {bl}l∈{1,...,|B|} and adds the base learner’s contribution
to the previous model f̂ [m]. The selected base learner is cho-
sen based on its sum of squared errors (SSE) when regressing
the pseudo residuals r̃ [m] = (r [m](1), . . . , r [m](n))T onto the
base learner’s features using the L2-loss. Further details of
CWB are given in Algorithm 1 (see, e.g., Schalk et al. 2023).
Controling HPs of CWB

Good estimation performance can be achieved by select-
ing a sufficiently small learning rate, e.g., 0.01, as suggested
in Bühlmann et al. (2007), and adaptively selecting the num-
ber of boosting iterations via early stopping on a validation
set. To enforce a fair selection of model terms and thus
unbiased effect estimation, regularization parameters are set
such that all base learners have the same degrees-of-freedom
(Hofner et al. 2011). As noted by Bühlmann et al. (2007),
choosing smaller degrees-of-freedom induces more penal-
ization (and thus, e.g., smoother estimated function for spline
base learners), which yields a model with lower variance at
the cost of a larger bias. This bias induces a shrinkage in the
estimated coefficients towards zero but can be reduced by
running the optimization process for additional iterations.
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Algorithm 1 Vanilla CWB algorithm

Input Train data D, learning rate ν, number of
boosting iterations M , loss function L ,
set of base learner B

Output Model f̂ [M] defined by fitted parameters

θ̂
[1]

, . . . , θ̂
[M]

1: procedure CWB(D, ν, L,B)
2: Initialize: f̂ [0](x) = argminc∈R Remp(c)
3: for m ∈ {1, . . . , M} do
4: r̃ [m](i) = −∇ f L(y(i), f (x(i)))| f = f̂ [m−1] , ∀i ∈ {1, . . . , n}
5: for l ∈ {1, . . . , |B|} do
6: θ̂

[m]
l = (

ZTl Zl + P l
)−1

ZTl r̃
[m]

7: SSEl = ∑n
i=1(r̃

[m](i) − bl (x(i), θ̂
[m]
l ))2

8: end for
9: l[m] = argminl∈{1,...,|B|} SSEl
10: f̂ [m](x) = f̂ [m−1](x) + νbl[m] (x, θ̂

[m]
l[m] )

11: end for
12: return f̂ = f̂ [M]
13: end procedure

2.3.3 Properties and link to generalized additive mixed
models

The estimated coefficients θ̂ resulting from running theCWB
algorithm are known to converge to the maximum likelihood
solution (see, e.g., Schmid and Hothorn 2008) for M → ∞
under certain conditions. This is due to the fact that CWB
performs a coordinate gradient descent update of a model
defined by its additive base learners that exactly represent
the structure of an additive mixed model (when defining the
base learners according to Sect. 2.3.1) and by the objective
function that corresponds to the negative (penalized) log-
likelihood. Two important properties of this algorithm are
(1) its coordinate-wise update routine, and (2) the nature of
model updates using the L2-loss. Due to the first property,
CWB can be used in settings with p � n, as only a single
additive term is fitted onto the pseudo-residuals in every iter-
ation. This not only reduces the computational complexity
of the algorithm for an increasing number of additive pre-
dictors (linear instead of quadratic) but also allows variable
selection when stopping the routine early (e.g., based on a
validation data set), as not all the additive components might
have been selected into the model. In particular, this allows
users to specify the full GAMMmodel without manual spec-
ification of the type of feature effect (fixed or random, linear
or non-linear) and then automatically sparsify this model by
an objective and data-driven feature selection. The second
property, allows fittingmodels of the class of generalized lin-
ear/additive (mixed) models using only the L2-loss instead
of having to work with some iterative weighted least squares
routine. In particular, this allows performing the proposed
lossless distributed computations described in this paper, as
we will discuss in Sect. 3.

2.4 Distributed computing setup and privacy
protection

Before presenting ourmain results, we now introduce the dis-
tributed data setup we will work with throughout the remain-
der of this paper. The data set D is horizontally partitioned

into S data sets Ds =
{(

x(1)
s , y(1)

s

)
, . . . ,

(
x(ns )
s , y(ns )

s

)}
,

s = 1, . . . , S with ns observations. Each data set Ds is
located at a different site s and potentially follows a different
data distributions Pxy,s . The union of all data sets yields the
whole data set D = ∪S

s=1Ds with mutually exclusive data
sets Ds ∩ Dl = ∅ ∀l, s ∈ {1, . . . , S}, l �= s. The vector of
realizations per site is denoted by ys ∈ Yns .

In this distributed setup, multiple ways exist to commu-
nicate information without revealing individual information.
More complex methods such as differential privacy (Dwork
2006), homomorphic encryption (e.g., the Paillier cryp-
tosystem; Paillier 1999), or k-anonymity (Samarati and
Sweeney 1998; Sweeney 2002) allow sharing information
without violating an individual’s privacy. An alternative
option is to only communicate aggregated statistics. This is
one of the most common approaches and is also used by
DataSHIELD (Gaye et al. 2014) for GLMs or by Luo et al
(2022) for LMMs. DataSHIELD, for example, uses a pri-
vacy level that indicates howmany individual values must be
aggregated to allow the communication of aggregated val-
ues. For example, setting the privacy level to a value of 5
enables sharing of summary statistics such as sums, means,
variances, etc. if these are computed on at least 5 elements
(observations).
Host and site setup Throughout this article, we assume the
1, . . . , S sites or servers to have access to their respective data
set Ds . Each server is allowed to communicate with a host
server that is also the analyst’s machine. In this setting, the
analyst can potentially see intermediate data used when run-
ning the algorithms, and hence each message communicated
from the servers to the hostmust not allow any reconstruction
of the original data. The host server is responsible for aggre-
gating intermediate results and communicating these results
back to the servers.

3 Distributed component-wise boosting

We now present our distributed version of the CWB algo-
rithm to fit privacy-preserving and lossless GAMMs. In the
following,we first describe further specifications of our setup
in Sect. 3.1, elaborate on the changes made to the set of base
learners in Sect. 3.2, and then show how to adapt CWB’s
fitting routine in Sect. 3.3.
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3.1 Setup

In the following, we distinguish between site-specific and
shared effects. As effects estimated across sites typically cor-
respond to fixed effects and effects modeled for each site
separately are usually represented using random effects, we
use the terms as synonyms in the following, i.e., shared
effects and fixed effects are treated interchangeably and
the same holds for site-specific effects and random effects.
We note that this is only for ease of presentation and our
approach also allows for site-specific fixed effects and ran-
dom shared effects. As the data is not only located at different
sites but also potentially follows different data distributions
Pxy,s at each site s, we extend Eq. (1) to not only include
random effects per site, but also site-specific smooth (ran-
dom) effects φ j,s(x j ), s = 1, . . . , S for all features x j
with j ∈ J3. For every of these smooth effects φ j,s we
assume an existing shared effect f j,shared that is equal for
all sites. These assumptions—particularly the choice of site-
specific effects—are made for demonstration purposes. In a
real-world application, the model structure can be defined
individually to match the given data situation. However, note
again that CWB intrinsically performs variable selection, and
there is thus no need to manually define the model structure
in practice. In order to incorporate the site information into
the model, we add a variable x (i)

0 ∈ {1, . . . , S} for the site to
the data by setting x̃(i) = (x (i)

0 , x(i)). The site variable is a
categorical feature with S classes.

3.2 Base learners

For shared effects, we keep the original structure of CWB
with base learners chosen from a set of possible learners
B. Section3.3.1 explains how these shared effects are esti-
mated in the distributed setup. We further define a random
effect base learner b0 with basis transformation g0(x0) =
(1{1}(x0), . . . ,1{S}(x0))T and design matrix Z0 ∈ Rn×S .
We use b0 to extend B with a second set of base learners
B× = {b0×b | b ∈ B} to model site-specific random effects.
All base learners in B× are row-wise tensor product base
learners bl× = b0 × bl of the regularized categorical base
learner b0 dummy-encoding every site and all other exist-
ing base learners bl ∈ B. This allows for potential inclusion
of random effects for every fixed effect in the model. More
specifically, the lth site-specific effect given by the row-wise
tensor product base learner bl× uses the basis transformation
gl× = g0 ⊗ gl

gl×(x̃) = g0(x0)
T ⊗ gl(x)T

= (1{1}(x0)gl(x)T
︸ ︷︷ ︸

=gl×,1

, . . . ,1{S}(x0)gl(x)T
︸ ︷︷ ︸

=gl×,S

)T, (2)

where the basis transformation gl is equal for all S sites.
After distributed computation (see Eq. (4) in the next sec-

tion), the estimated coefficients are θ̂ l× = (θ̂
T
l×,1, . . . , θ̂

T
l×,S)

T

with θ̂ l×,s ∈ Rdl . The regularization of the row-wise Kro-
necker base learners not only controls their flexibility but
also assures identifiablewhen additionally including a shared
(fixed) effect for the same covariate. The penalty matrix
P l× = λ0K 0⊗ Idl + I S⊗λl× K l ∈ R

Sdl×Sdl is given as Kro-
necker sumof the penaltymatrices K 0 and K l with respective
regularization strengths λ0, λl× . As K 0 = I S is a diagonal
matrix, P l× is a block matrix with entries λ0 Idl + λl× K l on
the diagonal blocks. Moreover, as g0 is a binary vector, we
can also express the design matrix Zl× ∈ R

n×Sdl as a block
matrix, yielding

Zl× = diag(Zl,1, . . . , Zl,S),

P l× = diag(λ0 Idl + λl× K l , . . . , λ0 Idl + λl× K l), (3)

where Zl,k are the distributed design matrices of bl on sites
s = 1, . . . , S. This Kronecker sum penalty induces a center-
ing of the site-specific effects around zero and, hence, allows
the interpretation as deviation from themain effect. Note that
possible heredity constraints, such as the one described inWu
and Hamada (2011), are not necessarily met when decom-
posing effects in this way. However, introducing a restriction
that forces the inclusion of the shared effect whenever the
respective site-specific effect is selected is a straightforward
extension without impairing our proposed framework and
without increasing computational costs.

3.3 Fitting algorithm

We now describe the adaptions required to allow for
distributed computations of the CWB fitting routine. In
Sects. 3.3.1 and 3.3.2, we show the equality between our
distributed fitting approach and CWB fitted on pooled data.
Section3.3.3 describes the remaining details such as dis-
tributed SSE calculations, distributed model updates, and
pseudo residual updates in the distributed setup. Section3.4
summarizes the distributed CWB algorithm and Sect. 3.5
elaborates on the communication costs of our algorithm.

3.3.1 Distributed shared effects computation

Fitting CWB in a distributed fashion requires adapting the
fitting process of the base learner bl in Algorithm 1 to
distributed data. To allow for shared effects computations
across different sites without jeopardizing privacy, we take
advantage of CWB’s update scheme, which boils down to a
(penalized) least squares estimation per iteration for every
base learner. This allows us to build upon existing work such
as Karr et al. (2005) to fit linear models in a distributed fash-
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ion by just communicating aggregated statistics between sites
and the host.

In a first step, the aggregated matrices Fl,s = ZTl,sZl,s

and vectors ul,s = ZTl,s ys are computed on each site. In
our privacy setup (Sect. 2.4), communicating Fl,s and ul,s
is allowed as long as the privacy-aggregation level per site
is met. In a second step, the site information is aggre-
gated to a global information Fl = ∑S

s=1 Fl,s + P l and
ul = ∑S

s=1 ul,s and then used to estimate the model param-

eters θ̂ l = F−1
l ul . This approach, referred to as distFit,

is explained again in detail in Algorithm 2 and used for
the shared effect computations of the model by substitut-

ing θ̂
[m]
l = (

ZTl Zl + P l
)−1

ZTl r̃
[m] (Algorithm 1 line 6) with

θ̂
[m]
l = distFit(Zl,1, . . . , Zl,S, r̃

[m]
1 , . . . , r̃ [m]

S , P l).

Note that the pseudo residuals r̃ [m]
k are also securely

located at each site and are updated after each iteration.
Details about the distributed pseudo residuals updates are
explained in Sect. 3.3.3. We also note that the computational
complexity of fitting CWB can be drastically reduced by
pre-calculating and storing (ZTl Zl + P l)

−1 in a first initial-
ization step, as the matrix is independent of iteration m, and
reusing these pre-calculated matrices in all subsequent itera-
tions (cf. Schalk et al. 2023). Using pre-calculated matrices
also reduces the amount of required communication between
sites and host.

Algorithm 2 Distributed Effect Estimation.
The line prefixes [S] and [H] indicate whether the opera-
tion is conducted at the sites ([S]) or at the host ([H]).

Input Sites design matrices Zl,1, . . . , Zl,S ,
response vectors y1, . . . , yS and
an optional penalty matrix P l .

Output Estimated parameter vector θ̂ l .

1: procedure distFit(Zl,1, . . . , Zl,S, y1, . . . , yS, P l )
2: for s ∈ {1, . . . , S} do
3: [S] Fl,s = ZTl,sZl,s

4: [S] ul,s = ZTl,s ys
5: [S] Communicate Fl,s and ul,s to the host
6: end for
7: [H] Fl = ∑S

s=1 Fl,s + P l

8: [H] ul = ∑S
s=1 ul,s

9: [H] return θ̂ l = F−1
l ul

10: end procedure

3.3.2 Distributed site-specific effects computation

If we pretend that the fitting of the base learner bl× is per-
formed on the pooled data, we obtain

θ̂ l× =
(
ZTl× Zl× + P l×

)−1
ZTl× y

=
⎛

⎜
⎝

(ZTl,1Zl,1 + λ0 Idl + P l)
−1ZTl,1 y1

...

(ZTl,SZl,S + λ0 Idl + P l)
−1ZTl,S yS

⎞

⎟
⎠ , (4)

where (4) is due to the block structure, as described in (3) of
Sect. 3.2. This shows that the fitting of the site-specific effects
θ̂ l× can be split up into the fitting of individual parameters

θ̂ l×,s = (ZTl,sZl,s + λ0 Idl + P l)
−1ZTl,s ys . (5)

It is thus possible to compute site-specific effects at the
respective site without the need to share any information
with the host. The host, in turn, only requires the SSE of the
respective base learner (see next Sect. 3.3.3) to perform the
next iteration of CWB. Hence, during the fitting process, the
parameter estimates remain at their sites and are just updated
if the site-specific base learner is selected. This again mini-
mizes the amount of data communication between sites and
host and speeds up the fitting process. After the fitting phase,
the aggregated site-specific parameters are communicated
once in a last communication step to obtain the final model.
A possible alternative implementation that circumvents the
need to handle site-specific heterogeneity separately is to
apply the estimation scheme of main effects (Algorithm 2).
While this simplifies computation, this would increase com-
munication costs and, hence, runtime.

3.3.3 Pseudo residual updates, SSE calculation, and base
learner selection

The remaining challenges to run the distributed CWB algo-
rithm are (1) the pseudo residual calculation (Algorithm 1
line 4), (2) the SSE calculation (Algorithm 1 line 7), and (3)
base learner selection (Algorithm 1 line 9).

Distributedpseudo residual updatesThe site-specific response
vector ys containing the values y(i), i ∈ {1, . . . , ns} is the
basis of the pseudo residual calculation. We assume that
every site s has access to all shared effects as well as the
site-specific information of all site-specific base learners bl×
only containing the respective parameters θ̂ l×,s . Based on
these base learners, it is thus possible to compute a site model
f̂ [m]
s as a representative of f̂ [m] on every site s. The pseudo

residual updates r̃ [m]
s per site are then based on f̂ [m]

s via

r̃ [m](i)
s = −∇ f L(y(i), f (x(i)))| f= f̂ [m−1]

s
, i ∈ {1, . . . , ns}

using Ds . Most importantly, all remaining steps of the dis-
tributed CWB fitting procedure do not share the pseudo
residuals r̃ [m]

s in order to avoid information leakage about
ys .

Distributed SSE calculation and base learner selectionAfter
fitting all base learners bl ∈ B and bl× ∈ B× to r̃ [m]

s , we

obtain θ̂
[m]
l , l = 1, . . . , |B|, and θ̂

[m]
l× , l× = 1×, . . . , |B×|.
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Calculating the SSE distributively for the lth and l×th base
learner bl and bl× , respectively, requires calculating 2S site-
specific SSE values:

SSEl,s =
ns∑

i=1

(
r̃ [m](i)
s − bl

(
x(i)
s , θ̂

[m]
l

))2

=
ns∑

i=1

(
r̃ [m](i) − gl(x(i))T θ̂

[m]
l

)2
,

SSEl×,s =
ns∑

i=1

(
r̃ [m](i)
s − bl×

(
x(i)
s , θ̂

[m]
l×

))2

=
ns∑

i=1

(
r̃ [m](i)
s − gl(x(i))T θ̂

[m]
l×,s

)2
.

The site-specific SSE values are then sent to the host and
aggregated to SSEl = ∑S

s=1 SSEl,s . If privacy constraints
have been met in all previous calculations, sharing the indi-
vidual SSE values is not critical and does not violate any
privacy constraints as the value is an aggregation of all ns
observations for all sites s.

Having gathered all SSE values at the host location, select-
ing the best base learner in the current iteration is done in the
exact same manner as for the non-distributed CWB algo-
rithm by selecting l[m] = argminl∈{1,...,|B|,1×,...,|B|×} SSEl .
After the selection, the index l[m] is shared with all sites to
enable the update of the site-specific models f̂ [m]

s . If a shared

effect is selected, the parameter vector θ̂
[m]
l[m] is shared with all

sites. Caution must be taken when the number of parameters
of one base learner is equal to the number of observations, as
this allows reverse-engineering private data. In the case of a
site-specific effect selection, no parameter needs to be com-
municated, as the respective estimates are already located at
each site.

3.4 Distributed CWB algorithmwith site-specific
effects

Assembling all pieces, our distributed CWB algorithm is
summarized in Algorithm 3.

3.5 Communication costs

While the CWB iterations themselves can be performed in
parallel on every site and do not slow down the process
compared to a pooled calculation, it is worth discussing the
communication costs of distrCWB. During the initialization,
data is shared just once, while the fitting phase requires the
communication of data in each iteration. Let d = maxl dl
be the maximum number of basis functions (or, alternatively,
assume d basis functions for all base learners). The twomain
drivers of the communication costs are the number of boost-

Algorithm 3 Distributed CWB Algorithm.
The line prefixes [S] and [H] indicate whether the opera-
tion is conducted at the sites ([S]) or at the host ([H]).

Input Sites with site data Dk , learning rate ν, number of boosting
iterations M , loss

function L , set of shared effectsB and respective site-specific
effects B×

Output Prediction model f̂

1: procedure distrCWB(ν, L,B,B×)
2: Initialization:
3: [H] Initialize shared model f̂ [0]

shared(x) = argminc∈R Remp(c)
4: [S] Calculate Zl,s and Fl,s = ZTl,sZl,s , ∀l ∈ {1, . . . , |B|}, s ∈

{1, . . . , S}
5: [S] Set f̂ [0]

s = f̂ [0]
shared

6: for m ∈ {1, . . . , M} or while an early stopping criterion is not
met do

7: [S] Update pseudo residuals:
8: [S] r̃ [m](i)

s = −∇ f L(y(i), f (x(i)))| f = f̂ [m−1]
s

, ∀i ∈
{1, . . . , ns}

9: for l ∈ {1, . . . , |B|} do
10: [H] Calculate shared effect: θ̂

[m]
l =

distFit(Zl,1, . . . , Zl,S, y1, . . . , yS, P l )

11: [H] Communicate θ̂
[m]
l to the sites

12: for k ∈ {1, . . . , S} do
13: [S] Fit lþ site-specific effect: θ̂

[m]
l×,s = (Fl,s +λ0 Idl +

P l )
−1Zl,s r̃

[m]
s

14: [S] Calculate the SSE for the lþ shared and site-
specific effect:

15: [S] SSEl,s = ∑ns
i=1(r̃

[m](i) − gl (x(i))T θ̂
[m]
l )2

16: [S] SSEl×,s = ∑ns
i=1(r̃

[m](i)
s − gl (x(i))T θ̂

[m]
l×,s)

2

17: [S] Send SSEl,s and SSEl×,s to the host
18: end for
19: [H] Aggregate SSE values: SSEl = ∑S

s=1 SSEl,s and
SSEl× = ∑S

s=1 SSEl×,s
20: end for
21: [H] Select best base learner: l[m] =

argminl∈{1,...,|B|,1×,...,|B|×} SSEl
22: if bl[m] is a shared effect then
23: [H] Update model: f̂ [m]

shared(x) = f̂ [m−1]
shared (x) +

νbl[m] (x, θ̂
[m]
l[m] )

24: [H] Upload model update θ̂
[m]
l[m] to the sites.

25: end if
26: [S] Update site model f̂ [m]

s via parameter updates θ̂ l[m] =
θ̂ l[m] + νθ̂

[m]
l[m]

27: end for
28: [S] Communicate site-specific effects θ̂1× , . . . , θ̂ |B|× to the

host
29: [H] Add site-specific effects to the model of shared effects

f̂ [M]
shared to obtain the full model f̂ [M]

30: [H] return f̂ = f̂ [M]
31: end procedure

ing iterationsM and the number of base learners |B|. Because
of the iterative nature of CWB with a single loop over the
boosting iterations, the communication costs (both for the
host and each site) scale linearly with the number of boosting
iterations M , i.e.,O(M). For the analysis of communication
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costs in terms of the number of base learners, we distinguish
between the initialization phase and the fitting phase.

Initialization As only the sites share Fl,s ∈ Rd×d , ∀l ∈
{1, . . . , |B|}, the transmitted amount of values is d2|B| for
each site and therefore scales linearly with |B|, i.e., O(|B|).
The host does not communicate any values during the ini-
tialization.

Fitting In each iteration, every site shares its vector ZTl,s r̃
[m]
s ∈

Rd , ∀l ∈ {1, . . . , |B|}. Over the course of M boosting iter-
ations, each site therefore shares dM |B| values. Every site
also communicates the SSE values, i.e., 2 values (index and
SSE value) for every base learner and thus 2M |B| values for
all iterations and base learners. In total, each site communi-
cates M |B|(d + 2) values. The communication costs for all
sites are therefore O(|B|). The host, in turn, communicates

the estimated parameters θ̂
[m] ∈ Rd of the |B| shared effects.

Hence, dM |B| values as well as the index of the best base
learner in each iteration are transmitted. In total, the host
therefore communicates dM |B| + M values to the sites, and
costs are therefore also O(|B|).

4 Application

We now showcase our algorithm on a heart disease data set
that consists of patient data gathered all over the world. The
data were collected at four different sites by the (1) Hungar-
ian Institute of Cardiology, Budapest (Andras Janosi, M.D.),
(2) University Hospital, Zurich, Switzerland (William Stein-
brunn, M.D.), (3) University Hospital, Basel, Switzerland
(Matthias Pfisterer, M.D.), and (4) V.A. Medical Center,
Long Beach, and Cleveland Clinic Foundation (Robert
Detrano, M.D., Ph.D.), and is thus suited for a multi-site dis-
tributed analysis. The individual data sets are freely available
at https://archive.ics.uci.edu/ml/datasets/heart+disease (Dua
and Graff 2017). For our analysis, we set the privacy level
(cf. Sect. 2.4) to 5 which is a common default.

4.1 Data description

The raw data set contains 14 covariates, such as the chest
pain type (cp), resting blood pressure (trestbps), maxi-
mum heart rate (thalach), sex, exercise-induced angina
(exang), or ST depression (i.e., abnormal difference of
the ST segment from the baseline on an electrocardiogram)
induced by exercise relative to rest (oldpeak). A full list
of covariates and their abbreviations is given on the data
set’s website. After removing non-informative (constant)
covariates and columns with too many missing values at
each site, we obtain ncleveland = 303, nhungarian = 292,
nswitzerland = 116, and nva = 140 observations and 8 covari-
ates. A table containing the description of the abbreviations

of these covariates is given in Table 1 in the Supplementary
Material B.1. For our application, we assume that missing
values are completely at random and all data sets are exclu-
sively located at each sites. The task is to determine important
risk factors for heart diseases. The target variable is therefore
a binary outcome indicating the presence of heart disease or
not.

4.2 Analysis and results

We follow the practices to setup CWB as mentioned in
Sect. 2.3.2 and run the distributed CWB algorithm with a
learning rate of 0.1 and a maximum number of 100,000
iterations. To determine an optimal stopping iteration for
CWB, we use 20 % of the data as validation data and set the
patience to 5 iterations. In other words, the algorithm stops if
no risk improvement on the validation data is observed in 5
consecutive iterations. For the numerical covariates, we use
a P-spline with 10 cubic basis functions and second-order
difference penalties. All base learners are penalized accord-
ingly to a global degree of freedom that we set to 2.2 (to
obtain unbiased feature selection) while the random inter-
cept is penalized according to 3 degrees of freedom (see the
Supplementary Material B.2 for more details). Since we are
modelling a binary response variable, h−1 is the inverse logit
function logit−1( f ) = (1+ exp(− f ))−1. The model for an
observation of site s, conditional on its random effects γ , is
given in the Supplementary Material B.3.

Results The algorithm stops after mstop = 5578 iterations as
the risk on the validation data set starts to increase (cf. Fig-
ure 1 in the Supplementary Material B.4) and selects covari-
ates oldpeak, cp, trestbps, age, sex, restecg,
exang, and thalach. Out of these 5578 iterations, the
distributed CWB algorithm selects a shared effect in 782
iterations and site-specific effects in 4796 iterations. This
indicates that the data is rather heterogeneous and requires
site-specific (random) effects. We want to emphasize that
the given data is from an observational study and that the
sole purpose of our analysis is to better understand the het-
erogeneity in the data. Hence, the estimated effects have
a non-causal relationship. To alleviate problems that come
from such data, and allow for the estimation of causal effects,
one could use, e.g., propensity score matching (Rosenbaum
and Rubin 1983) before applying our algorithm. From our
application, we can, e.g., see that the data from Hungary
could potentially be problematic in this respect. However,
note that applying such measures would also have to be done
in a privacy-preserving manner. Figure2 (Left) shows traces
of how and when the different additive terms (base learners)
entered the model during the fitting process and illustrates
the selection process of CWB.
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Fig. 2 Left: Model trace showing how and when the four most selected
additive terms entered the model. Right: Variable importance (cf. Au
et al. 2019) of selected features in decreasing order

Fig. 3 Decomposition of the effect of oldpeak into the shared (left)
and the site-specific effects (middle). The plot on the right-hand side
shows the sum of shared and site-specific effects

The estimated effect of the most important feature
oldpeak (cf. Fig. 2, Right) found is further visualized in
Fig. 3. Looking at the shared effect, we find a negative
influence on the risk of heart disease when increasing ST
depression (oldpeak). When accounting for site-specific
deviations, the effect becomes more diverse, particularly for
Hungary.

In theSupplementaryMaterialB.5 andB.6,weprovide the
partial effects for all features and showcase the conditional
predictions of the fitted GAMM model for a given site.

Comparison of estimation approaches The previous example
shows partial feature effects that exhibit shrinkage due to the
early stopping of CWB’s fitting routine. While this prevents
overfitting and induces a sparse model, we can also run CWB
for a very large amount of iterations without early stopping
to approximate the unregularized and hence unbiased maxi-
mum likelihood solution. We illustrate this in the following
by training CWB and our distributed version for 100,000
iterations and compare its partial effects to the ones of a clas-
sical mixed model-based estimation routine implemented in
the R package mgcv (Wood 2017). Our R prototype took
≈ 3.5 h for 100,000 iterations and ≈ 700 s with early stop-
ping after 5578 iterations. The corresponding computation
on a local machine with compboost took ≈ 25min and
≈ 85s, respectively. We want to emphasize that the runtime
of our algorithm strongly depends on the distributed system
that controls the communication as well as the bandwidth.

Results of the estimated partial effects of our distributed
CWB algorithm and the original CWBon pooled data show a
perfect overlap (cf. Fig. 4). This again underpins the lossless
property of the proposed algorithm. The site-specific effects
on the pooled data are fitted by defining a row-wise Kro-
necker base learner for all features and the site as a categorical
variable. The same approach is used to estimate a GAMM
using mgcv fitted on the pooled data with tensor products

Fig. 4 Comparison of the site-specific effects for oldpeak between
the distributed (dsCWB) and pooled CWB approach (compboost) as
well as estimates of from mgcv

between the main feature and the categorical site variable. A
comparison of all partial feature effects is given in theSupple-
mentary Material B.7 showing good alignment between the
different methods. For the oldpeak effect shown in Fig. 4,
we also see that the partial effects of the two CWB methods
are very close to the mixed model-based estimation, with
only smaller differences caused by a slightly different penal-
ization strength of both approaches. The empirical risk is
0.4245 for our distributed CWB algorithm, 0.4245 for CWB
on the pooled data, and 0.4441 for the GAMM on the pooled
data.

5 Discussion

We proposed a novel algorithm for distributed, lossless, and
privacy-preserving GAMM estimation to analyze horizon-
tally partitioned data. To account for data heterogeneity of
different sites we introduced site-specific (smooth) random
effects. Using CWB as the fitting engine allows estimation
in high-dimensional settings and fosters variable as well as
effect selection. This also includes a data-driven selection of
shared and site-specific features, providing additional data
insights. Owing to the flexibility of boosting and its base
learners, our algorithm is easy to extend and can also account
for interactions, functional regression settings (Brockhaus
et al. 2020), or modeling survival tasks (Bender et al. 2020).

An open challenge for the practical use of our approach
is its high communication costs. For larger iterations (in the
10 or 100 thousands), computing a distributed model can
take several hours. One option to reduce the total runtime
is to incorporate accelerated optimization recently proposed
in Schalk et al. (2023). Another driver that influences the
runtime is the latency of the technical setup. Future improve-
ments could reduce the number of communications, e.g., via
multiple fitting rounds at the different sites before commu-
nicating the intermediate results.

A possible future extension of our approach is to account
for both horizontally and vertically distributed data. Since the
algorithm is performing component-wise (coordinate-wise)
updates, the extension to vertically distributed data naturally
falls into the scope of its fitting procedure. This would, how-
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ever, require a further advanced technical setup and the need
to ensure consistency across sites.

As an alternative toCWB, a penalized likelihood approach
like mgcv could be considered for distributed computing.
Unlike CWB, which benefits from parallelized base learn-
ers, decomposing the entire design matrix for distributed
computing with this approach is more intricate. The paral-
lelization strategy of Wood et al. (2017) could be adapted
by viewing cores as sites and the main process as the host.
However, ensuring privacy for this approach would require
additional attention.Anotable obstacle for smoothingparam-
eter estimation is the requirement of theHessianmatrixWood
et al. (2016). Since the Hessian matrix cannot be directly
computed from distributed data, methods like subsampling
(Umlauf et al. 2023) or more advanced techniques would
be necessary to achieve unbiased estimates and convergence
of the whole process. In general, unlike CWB which fits
pseudo-residuals using the L2-loss and estimates smoothness
implicitly through iterative gradient updates, penalized like-
lihood approaches such as the one implemented in mgcv are
less straightforward to distribute, and a privacy-preserving
lossless computation would involve specialized procedures.
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