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Abstract
Regression trees and forests are widely used due to their flexibility and predictive accu-
racy. Whereas typical tree induction assumes independently identically distributed (i.i.d.) 
data, in many applications the training sample follows a complex sampling structure. This 
includes unequal probability sampling, which is often found in survey data. Then, a ‘naive 
estimation’ that simply ignores the sampling weights may be substantially biased. This arti-
cle analyzes the bias arising from a naive estimation of regression trees or forests under 
complex sample designs and proposes ways of de-biasing. This is achieved by bridging tree 
learning to survey statistics, due to the correspondence of the mean-squared-error criterion 
in regression trees and variance estimation. Transferring population variance estimation 
approaches from survey statistics to tree induction, indeed considerably reduces the bias 
in the resulting trees, both in predictions and the tree structure. The latter is particularly 
crucial if the trees are to be interpreted. Our methodology is extended to random forests, 
where we show on simulated data and a housing dataset that correcting for complex sample 
designs leads to overall much better predictive accuracy and more trustworthy interpreta-
tion. Interestingly, corrected forests can surpass forests learned on i.i.d. samples in terms of 
accuracy, which also has important implications for adaptive data collection approaches.
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1 Introduction

In recent years machine learning (ML) methods have become ubiquitous in nearly all areas 
of science and society. They often achieve impressive accuracy gains compared to classical 
statistical learning methods, such as regression models, while also being flexible to many 
data situations. Whereas the advantages of applying ML are obvious, its often prevalent 
black-box nature raises problems regarding explainability and reproducibility. This hinders 
the immediate and general applicability of ML in critical domains; see, for instance, the 
intensive debate in official statistics on complementing the fundamental quality frame-
works (Yung et al., 2022).

Regression trees and ensembles thereof are one of the most widely used supervised 
learning methods. Their popularity stems from their good ‘out of the box’ performance 
for most standard tabular data type prediction problems (Fernandez-Delgado et al., 2014). 
Trees1 are often used due to their symbolic representability, making them easy to inter-
pret. Decision forests, such as random forests (Breiman, 2001), on the other hand, are by 
themselves black-box models. However, in the last decades, methods for interpreting such 
forest methods, at least on a global level, became available, partly mitigating the black-
box problem. They comprise techniques to interpret feature effects—e.g., individual con-
ditional expectations (ICEs) plots (Goldstein et  al., 2015) and partial dependence plots 
(PDPs) (Friedman, 2001)—as well as methods to interpret the contribution of features on 
the predictions (Shapley, 1953; Lundberg et al., 2018) and permutation feature importance 
(Fisher et al., 2019; Breiman, 2001). Interpretability is of particular importance in critical 
domains, as it allows judging if the implied relationships are reasonable and sound, or per-
haps based on data artefacts.

One assumption that most ML models either explicitly or implicitly rely on is that the 
training data is independently and identically distributed (i.i.d). While for classical statisti-
cal methods, it is often well understood what happens when parts of this assumption are 
violated and how to counteract (e.g., mixed effect models to model correlated data in the 
context of regression models), the same is not true for ML methods. Here one often only 
can hope that the effect of violating the underlying assumptions will be mitigated by an 
increase in training data.

This article argues that such hope is unjustified in the case of complex sample designs2, 
where observations are drawn with unequal probabilities. Depending on the concrete sam-
ple design, the bias of estimators does not necessarily disappear with an increase in sam-
ple size. This is highly relevant when ML is applied to survey data, as such data typically 
stems from complex sample designs with unequal selection probabilities. In order to enable 
the safe application of ML in areas that rely on survey data, such as social sciences or 
official statistics, the bias induced by complex sample designs needs to be understood and 
corrected.

Unequal probability sampling and the induced bias of estimators under complex sample 
designs have been studied extensively in the area of survey statistics, see e.g. Särndal et al. 
(2003); Valliant et al. (2018) for overviews. Many different correction methods exist for the 
estimation of totals, means, variances and regression estimators. However, little connection 
currently exists between ML and survey statistics, with Toth and Eltinge (2011); Breidt 

1 In the following the terms tree and regression tree are used interchangeably.
2 See, e.g., Skinner and Wakefield (2017) for an introductory survey.
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and Opsomer (2017); Dagdoug et al. (2021); McConville and Toth (2019); MacNell et al. 
(2023) being notable exceptions.3

We argue that bridging the theory of handling complex samples and ML is indispensa-
ble for a comprehensive analysis of survey data. In particular, this connection

• allows for a deeper understanding of when and why regression trees and forests might 
fail under complex sampling schemes, and how then their interpretations are biased;

• enables a direct extension of the correction methods found in the rich literature of sur-
vey statistics, leading to an unbiased analysis of trees and forests under complex sample 
designs;

• may moreover offer exciting opportunities in the domain of adaptive data collection in 
ML (e.g., Bayesian optimization).

The first two topics rely on the correspondence of the mean-squared-error (MSE) split-
ting criterion used in regression trees to population variance estimation, a problem already 
successfully studied in survey sampling literature (Swain & Mishra, 1994; Chaudhuri, 
1978; Liu & Thompson, 1983). The third topic adopts from survey statistics the interest-
ing perspective that unequal sampling weights do not only have to be seen as a distur-
bance. Instead, incorporating design-based sampling and estimation into machine learning 
algorithms in domains of adaptive data collection may increase their accuracy and stabil-
ity, analogous to the increased accuracy of the Horvitz-Thompson estimator (Horvitz & 
Thompson, 1952) in sampling theory.

This article is structured as follows: Sect. 2 describes the setting of complex samples 
and introduces notations. Section 3 recalls some aspects from the methodology of regres-
sion trees relevant for deriving the bias introduced in trees when built on complex samples. 
There, we also propose several estimators for reducing bias in the splitting criterion. Sec-
tion 4 extends the methodology to random forests. In Sect. 5 we show on multiple simula-
tions that the correction approaches are an efficient way to reduce or remove bias. A real-
world dataset is analyzed in Sect. 6. Section 7 undertakes an outlook on spill-over effects 
of our results on the topic of adaptive data collection (e.g., Bayesian optimization), while 
Sect. 8 generally concludes.

2  Complex samples

In this article, we are interested in supervised learning when given a complex sample. 
Hence we are interested in learning or approximating the unknown function f that maps 
elements x of a p-dimensional input space X  to elements y of the outcome space Y . In the 
following only the regression setting with Y = ℝ is considered. To learn f one is typically 
given a training sample D = {(x, y)1,⋯ , (x, y)n} consisting of n labeled observations.

Special attention has to be paid to situations when the sampled units can not be assumed 
to be drawn independently and identically distributed (i.i.d.) from an infinite population 
domain. Typical violations of the standard i.i.d. assumption are unequal inclusion probabil-
ities and sampling from a finite population domain, also implicitly inducing dependencies 

3 How to evaluate classifiers that were trained on samples with unequal inclusion probabilities was studied 
in [?].
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between the units drawn. More formally4, to specify a sample design, let U = {1,… ,N} 
denote the collection of indices of all units, S ⊂ U a random element describing the sample 
taken from U and ℙ the distribution underlying S . A sample design is said to be a Simple 
Random Sampling (SRS) when the underlying sampling process is such that, for all subsets 
of U with a fixed cardinality k, the probability to be sampled only depends on k; then the 
term SRS is also applied to the sample itself. Of particular interest are the so-called inclu-
sion probabilities, giving for sets of indices the probability to be part of the drawn sample 
S . In particular, denote, for every unit i ∈ U , by �i = ℙ(i ∈ S) the (first order) inclusion 
probability of observation i, and by �ij = ℙ(i ∈ S ∧ j ∈ S) the joint inclusion probability of 
observations i and j, i ≠ j . For SRS, one has, by definition,

and

If the first-order inclusion probabilities are different, i.e., if ∃i, j ∶ �i ≠ �j , one speaks of a 
complex sample (design).

The reasons for the emergence of complex samples are manifold. On the one hand, in 
some sampling situations, an involuntary sampling bias is introduced through effects such 
as selection bias. In this situation typically the � are unknown.5

On the other hand, unequal sampling probabilities are commonly used in survey statis-
tics or ecology research for practical reasons (Haziza & Beaumont, 2017) or to increase the 
accuracy and efficiency of resulting estimators (Schreuder et al., 2001; Horvitz & Thomp-
son, 1952). In this situation, the � are carefully constructed by the survey statistician and 
are typically known prior to the sampling step (Skinner & Wakefield, 2017). Common 
sampling schemes include cluster sampling, multi-stage sampling and probability-propor-
tional-to-size sampling (Horvitz & Thompson, 1952; Valliant et al., 2018). Throughout this 
article, it is assumed that �i and ideally �ij are known for all i ≠ j ∈ U.

Example: PPS sampling 

For illustrative purposes, PPS (probability-proportional-to-size) sampling is used as a run-
ning example throughout this article, but the derived methodology also extends to other 
complex sampling schemes. In PPS sampling one relies on an auxiliary variable A that 
often is roughly proportional to the variable of interest y and known prior to the sampling 
step for all population units. Inclusion probabilities are constructed via

giving observations with high values of a a higher probability of being included in the sam-
ple.6 For Eq. (3) to yield positive probabilities a ≥ 0 is required. Given � , in finite sample 

(1)�i = �j ∀i, j ∈ U ,

(2)�ij = �kl ∀i ≠ j, k ≠ l ∈ U .

(3)�i = n
ai

∑N

j=1
aj

,

5 The general � refers to both inclusion and joint-inclusion probabilities.
6 The terms inclusion probabilities and sampling weights are used interchangeably in this article. Note, 
however, that typically sampling weights are constructed to sum up to 1, while the sum of inclusion prob-
abilities is n.

4 See, for instance, Lohr (2021), for a standard textbook.
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domains, methods such as the pivotal method (Deville & Tille, 1998) can be used to draw 
PPS samples. Estimators that account for � , such as the Horvitz-Thompson mean estimator 
(Horvitz & Thompson, 1952),

can reduce the variance greatly compared to estimators based on SRS (Valliant et  al., 
2018). Intuitively, as the extreme observations are more often included in the sample (but 
down-weighted), the samples are more similar and hence variance is reduced. However, if 
not corrected for, the estimates will be biased towards over-estimation.

One example of PPS sampling, to be continued in Sect. 6, is in the estimation of hous-
ing prices, where larger apartments should be included with higher probability, as other-
wise, the estimates will vary a lot, depending on the inclusion of the larger and likely more 
expensive apartments. Therefore, PPS sampling can lead to more stable and accurate esti-
mators. As an auxiliary variable A the number of square feet could be used if this informa-
tion is available beforehand for all population units.

3  Regression trees

3.1  Regression tree induction

For deriving the bias of naive estimation and to correct for it, it is helpful to recall that 
tree induction relies on successively splitting such that the impurity is maximally reduced. 
Relying on the mean squared error (MSE), one obtains the reduction in MSE

where s is the considered split point, p(l), p(r) denote the probability of falling into the left 
child-node ( xj ≤ s ) and right child-node ( xj > s ), while �(l), �(r) and �(c) denote the MSE 
in the left and right child-nodes and the current node, respectively.

When using constant mean predictions in the leaf nodes, the MSE corresponds to the 
variance. Thus Eq. (5) can be written as

where �2(l) and �2(r) are the sample variances in the left and right child-node resulting 
from the split.

After the optimal split is found, all observations with x ≤ s are moved to the left child-
node and to the right child-node otherwise. Then the child-nodes are split again. This 
recursive process is repeated until either no split improves the MSE-criterion or some stop-
ping criteria is reached. Typical stopping criteria include a pre-specified minimum number 
of observations in either the current node or the resulting nodes after splitting or a mini-
mum reduction in MSE. In practice, pruning techniques are typically used before using the 
tree for prediction, which can reduce overfitting (Rokach & Maimon, 2005).

After splitting is stopped, the current node becomes a leaf node and the mean ŷ of all 
observations of the training sample falling into this leaf node is attached as the prediction 
value.

(4)ȳHT =
1

N

n
∑

i=1

yi𝜋
−1
i

,

(5)Δ(s) = �(c) − p(l)�(l) − p(r)�(r) ,

(6)Δ(s) = �2(c) − p(l)�2(l) − p(r)�2(r) ,
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At prediction time, the test cases are propagated down the tree, until they reach a leaf 
node. Then the attached prediction value is used as a final prediction.

A nice property of regression trees is that the tree structure is easy to interpret, given 
that the trees are not too large. For test cases, one can simply follow the decisions at each 
node, and, with that path, one gets an explanation for the prediction that is being made.

A second advantage is that interaction effects do not need to be specified beforehand. 
Also, non-linear effects can be captured naturally, making regression trees very flexible 
models.

3.2  Regression trees built on complex samples

When given a complex sample, regression tree induction is affected in three ways, namely 
via 

#1 the MSE criterion (cf. Eq. 6), leading to a biased split point selection,
#2 the estimated number of observations present in the current node, leading to incorrect 

stopping behavior,
#3 and the prediction values attached to each leaf node.

In Toth and Eltinge (2011) the authors correct for #2 and #3, but show that the tree struc-
ture does not need to be adjusted for consistent models.7 While this is asymptotically true, 
we argue that if one is to interpret the regression tree on a given sample, which is one of 
the main selling points of regression trees in the first place, one must ensure that the struc-
ture is unbiased as well. Also, it is unclear how the asymptotic argument translates to a bias 
on smaller sample sizes.

In order to study and reduce the bias introduced by complex samples on all three levels 
#1, #2 and #3 listed above, we make use of survey statistics literature on variance estima-
tion. Following Courbois and Urquhart (2004), the bias of the ‘naive’ population variance 
estimator �̂2

Naive with unequal probability sampling can be written as

This bias will, ceteris paribus, be low if the (first and second order) inclusion probabilities 
are close to SRS and thus the variance of � is low. At the same time, the bias also depends 
on the correlation between Y and � . If inclusion probabilities vary randomly and are not 
correlated with the outcome, the bias is expected to be low, although still the variance of 
the estimator may be increased.

Hence, if the variance of � is high, and, in addition, � is correlated with the outcome, 
we expect the bias to be quite large. Also interestingly, the bias will not necessarily disap-
pear with larger sample sizes but depends on the ratio n/N. For example, in the trivial case 
of n = N , the complex sample design has no effect, as all observations are drawn. On the 
other hand, if n << N , finite sample effects disappear and the bias can become large.

(7)�(�2 − �̂2
Naive) =

1

n

N
∑

i=1

y2
i

(

�i −
n

N

)

−
1

n(n − 1)

N
∑

j=1

∑

j≠i

yiyj

(

�ij −
n(n − 1)

N(N − 1)

)

.

7 In this context consistency means that with N, n ⟶ ∞ also the predicted values of the sample tree con-
verge towards the predicted values of the population tree for all observations.
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3.3  De‑biasing the MSE‑criterion

Unbiased estimation of the population variance was studied in survey statistics literature.8 
One such estimator is given by Chaudhuri (1978)

Hence, if N and �ij are known, �̂2
∗
 is an unbiased estimator for the population variance. This 

fact can be directly transferred to estimate the population variance in a given child-node, 
as used in the splitting criterion (cf. Eq. (6)). However, in contrast to population variance 
estimation in surveys with known population size, in the case of regression trees, N is typi-
cally not known for each possible node and needs to be estimated. Again relying on survey 
statistics literature, this can be achieved via N̂ =

∑n

i=1
𝜋−1
i

 (Toth & Eltinge, 2011).
While for larger datasets the bias introduced by estimating N will be small, for small 

nodes this bias is still expected to be an issue.
An alternative to �̂2

∗
 is to rely on an Hájek-type approach, which is commonly used in 

mean estimation if the population size is unknown. The Hájek mean estimator

where wi = �−1
i

 , is known to be biased, but typically gives very accurate results (Särndal 
et al., 2003). Adapted to variance estimation the Hájek variance estimator becomes (Lum-
ley, 2004)

In �̂2
HJ both ŷHJ and N̂ =

∑n

i=1
wi are estimated. Hence, �̂2

HJ will not be unbiased, but is 
expected to greatly reduce bias compared to the naive estimator.

We, therefore, propose to replace the MSE-criterion with its Hájek-corrected version,

where p̂HJ(l) =
∑n

i∈L
wi∕(

∑n

i∈L
wi +

∑n

j∈R
wj) and p̂HJ(r) =

∑n

i∈R
wi∕(

∑n

i∈L
wi +

∑n

j∈R
wj) 

are the estimates for population fractions falling into the left and right child-node, 
with L and R being the sets of indices of observations in the left and right node, and 
�̂2

HJ(l), �̂
2
HJ(r) are the Hájek-variance estimates in the left and right child-nodes 

respectively.
Unbiased estimators may be obtained when N is known for all possible child-nodes, by 

replacing �̂2
HJ with �̂2

∗
 . However, this is seldom the case. Therefore, ΔHJ(s) is a good alter-

native for most practical applications.
We note that �̂2

HJ is already often implicitly used in machine learning software to han-
dle observation weights. This is interesting two-fold: Firstly, it gives a theoretical justi-
fication to the standard, commonly used, inverse weighting approach. Secondly, as �̂2

HJ 

(8)�̂2
∗
=

1

2N2

∑

n
∑

i≠j

(yi − yj)
2

�ij
.

(9)ŷHJ =

∑n

i=1
yiwi

∑n

i=1
wi

,

(10)�̂2
HJ =

∑n

i=1
wi(yi − ŷHJ)

2

∑n

i=1
wi

.

(11)ΔHJ(s) = �̂2
HJ − p̂HJ(l) �̂

2
HJ(l) − p̂HJ(r) �̂

2
HJ(r) ,

8 The larger part of survey statistics literature is concerned with the variance of estimators, such as totals or 
means. Note that this is different from our case, where the estimand is the population variance.



3386 Machine Learning (2024) 113:3379–3398

1 3

is already implemented in many libraries, using the correction approaches is relatively 
straightforward. For example, the rpart R-library (Therneau & Atkinson, 2022) treats 
observation weights in this fashion and can be used to fit de-biased trees.

Figure 1 shows the de-biasing effect of different correction approaches on the split selec-
tion for simulated data, using a PPS design. As expected, for the naive estimation increas-
ing the sample size does not lead to unbiased estimates and will often lead to a biased split 
point selection. The correction approaches will typically lead to correct selection. With an 
increase in n, the curves approach the population Δ(s) function. We especially note that 
ΔHJ(s) greatly improves on the naive estimation in all settings and efficiently recovers the 
correct split selection. This result implies that, without correcting the split points, one can-
not hope to get an unbiased tree structure. As the differences in trees are propagated down-
ward due to their recursiveness, the structure will diverge even more in the following lay-
ers. If one is to interpret regression trees, we argue that the structure needs to be corrected 
as well. Section 6 will showcase this property on a real-world housing dataset.

4  Random forests

Instead of using a single tree, random forests build an ensemble of trees, each generated on 
a bootstrap sample from the training data. Additional randomness is induced by limiting 
the candidate covariates for splitting at each node. This leads to de-correlation between 

n: 50 n: 100 n: 250

4 5 6 7 8 4 5 6 7 8 4 5 6 7 8

2.8

3.2

3.6

4.0

s

D
el

ta

Fig. 1  Comparison of different debiasing methods on simulated data: Δ(s) on the population (purple dot-
ted), naive estimation on the sample (blue dashed), Δ

HJ
(s) (green), using �̂2

∗
 with N known (red solid) and 

�̂2
∗
 with N estimated (yellow dashed). All correction methods greatly improve (i.e. are closer to the popula-

tion curve) on naive estimation and converge towards the population Δ(s) with increasing n. The same is not 
true for the naive estimation, which remains biased with increasing n (Color figure online)



3387Machine Learning (2024) 113:3379–3398 

1 3

trees, which can be shown to improve the generalization performance of the resulting 
ensemble (Breiman, 2001; Hastie et al., 2009). The random forest model with K trees can 
be written as

where f1, .., fK are trees and the bootstrap samples together with the drawn feature subsets 
are denoted as Θ1, ...,ΘK.

When given a complex sample, random forests are expected to be biased in their predic-
tions. The complex sample influences each tree, and therefore also the ensemble will be 
biased. However, the degree of the bias is unclear and difficult to obtain analytically. Addi-
tionally, the bootstrap samples differ from the ones obtained under SRS. This suggests that 
random forests may be de-biased either on the individual tree level or through the bootstrap 
step, leading to the following two proposed de-biasing techniques.

4.1  Hájek‑forests

One straightforward correction approach can be achieved by replacing the base learner 
in Eq. (12) with Hájek corrected trees. Bootstrapping and feature sub-setting then is per-
formed as usual. As the bias in each tree is reduced, also the bias of the whole ensemble 
is expected to be reduced. In this approach, extreme observations will be present in most 
trees, but down-weighted, therefore advantages of the design-based approach are expected 
to carry over. As the individual trees are less biased, the random forest is expected to 
greatly reduce bias when compared to the naive random forest estimator.

However, one detail requires further consideration. Typically, the trees in random forests 
are grown until purity. While this may be a good idea generally, as it increases model vari-
ance further, for our correction approach this may lead to problems: if only one observation 
(or more generally a very small number of observations) is present in the leaf nodes, then 
the Hájek correction in the leaf nodes is virtually voided and extreme predictions occur. 
We therefore recommend setting the minimum node size higher than usual, e.g. to 2% 
of observations to avoid extreme behaviour, if extremely high target values are expected. 
Alternatively, our approach could be combined with the correction proposed in Dagdoug 
et  al. (2021), which exploits the nearest-neighbor representation of random forests and 
allows direct down-weighting of over-sampled observations for the final prediction.

4.2  Bootstrap‑corrected forests

A second approach is to incorporate the weights in the bootstrapping step. The rationale is 
straightforward: We draw observations (x, y)i with probability proportional to 1

�i
 in each 

bootstrap step. That is, observations with high inclusion probability are down-weighted in 
the bootstrap samples and vice versa. Note that the R library ranger (Wright & Ziegler, 
2017) allows for such weighted bootstrap samples by passing 1

�i
 as case.weights. The 

resulting forest is expected to be unbiased, however, extreme observations will not be pre-
sent in most trees, as they are heavily down-weighted.

This approach of inverse-probability weighting has also been used to deal with missing 
data, see Seaman and White (2013) for an overview. It has been applied to linear regres-
sion, quantile regression, and boosting in Nahorniak et al. (2015). Moreover, bootstrapping 

(12)FRF(x) =
1

K
(f1(x,Θ1) + ... + fK(x,ΘK)) ,



3388 Machine Learning (2024) 113:3379–3398

1 3

with inverse-probability weighting is reminiscent of PPS bootstrapping (Mecatti, 2000). 
Note, however, that Mecatti (2000) uses direct PPS weighting instead of inverse weighting, 
but the same rationale applies.

4.3  Interpreting random forests via partial dependence plots and permutation 
importance scores

One way to interpret random forests is via partial dependence plots (PDP) (Friedman, 
2001). Partial dependence plots show the average marginal influence of a feature j, given 
by

where FRF(x, x
(−j)

i
) is the random forest prediction using value x in covariate j and all other 

values as given in the dataset; N is the population size as above. PDPs allow for interpret-
ing the effect of individual covariates on the outcome, without imposing any assumptions 
on the shape of the relationship (i.e., no need for linearity). Notably, the partial dependence 
function in Eq.  (13) can also be defined for two features to assess interaction effects. To 
this end, one considers FRF(xj, xk, x

(−j,k)

i
) , that is, using value xj in covariate j, xk in covari-

ate k, and all other values as given in the dataset.
As we reduce bias in FRF , also the bias in P̂D is expected to be reduced, and the interpre-

tation of feature effects to be closer to the interpretation obtained by using an i.i.d. sample.
A popular measure for feature importance is the permutation feature importance (Brei-

man, 2001). The importance of a feature is measured as the relative increase in MSE after 
the given covariate is randomly shuffled. If the relationship between covariate and target is 
strong, the predictive performance will be more affected by shuffling.

We note that the effect of complex samples on importance measures is not trivial, and 
a comprehensive analysis of the bias must be left for future work. The next section there-
fore analyses the behaviour of random forests and their derived interpretation methods 
empirically.

5  Simulation study

In this section, we test the ability of the correction methods to produce valid predictions 
when learned on a complex sample. To this end, we differentiate between two settings. In 
scenario 1, we consider the setting where large values are mostly outliers and can not be 
predicted given the covariates. In scenario 2, we study a setting where large values are pre-
dictable. In both settings, we generate a population U of size N = 1000n . In this N >> n 
setting, drawing without replacement is similar to drawing with replacement, and thus no 
finite data correction is necessary. In each setting a separate test set of size 1000 is drawn 
from the same distribution.

On each of the 100 repetitions in each scenario, the MSE on the test set of each method 
is compared to the MSE of a random forest learned from a SRS drawn from the same 
population, and the relative MSE is reported.

(13)P̂D(x)j =
1

N

N
∑

i=1

FRF(x, x
(−j)

i
) ,
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5.1  Scenario 1: noise

Data is generated under the model

The LogNormal distribution is chosen to produce skewed data, similar to income-type 
data. This also leads to a high variance of � as the ratio of the individual A-value and the 
sum of all A-values in Eq. (3)9. Skewness is varied via � ∈ {0.01, 0.5, 1, 2} , and the sample 
size via n ∈ {100, 500, 1000} . Large y-values have to be considered noise, as they can not 
be explained by the covariates, and we expect overfitting to occur.

The results are reported in Table 1. Depending on the skewness, the naive random forest 
shows much higher MSE values, due to the bias from oversampled large observations that 
must be seen as noise. For � = 2 , the naive random forest virtually falls apart, and the MSE 
is over 1000 times higher on the same test set.

Using weighted bootstrapping (WB) drastically reduces the relative error and is only 
slightly worse than the random forest learned from a simple random sample on all settings, 
especially for moderate skewness and larger sample sizes.

The Hájek correction (HJ) also helps to reduce the relative error. If the minimum num-
ber of observations in the leaf nodes is set to 0.02n performance (HJreg) is similar to WB 
and better for the higher skewness settings if n is high enough. On the other hand, the 
Hájek correction without minimum node size (HJ) struggles in the settings with higher 
skewness and performs worse than WB overall, but is still much better compared to the 
naive estimator.

5.2  Scenario 2: high correlation

As a second scenario of skewed data, we generate data under the model

with all other settings as above. The difference between the two models may seem subtle 
but is quite substantial. Under scenario 1, extreme values of y may be seen as noise and 
therefore not predictable. On the other hand, under scenario 2, the large values in y are 
based on the underlying relationship and hence carry valuable information for the model. 
Higher skewness in this case also increases correlation. Oversampling high values may, in 
this scenario, actually improve the model, compared to an estimator obtained under SRS, 
as it increases the probability that larger areas of the input space are covered.

The results are shown in Table 2. In this setting the naive estimator performs reasonably 
for low and moderate skewness and only falls apart for � = 2 . This makes sense, as it is less 
important which area of the input space is over-sampled, as long as this area is modeled 
correctly.

X1,… ,X10 ∼ N(0, 1)

Y ∼ LogNormal(X1 +⋯ + X5, �)

A ∼ N(Y , 0.1).

X1,… ,X10 ∼ LogNormal(0, 1)

Y ∼ N(X1 +⋯ + X5, �)

A ∼ N(Y , 0.1).

9 The rare cases of a < 0 are set to 0.0001 for computational reasons. The influence of this choice on the 
results was tested and found neglectable.
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All correction approaches do a good job and show performance similar to the SRS 
forest. In this scenario, increasing the minimum number of observations overall worsens 
performance for the Hájek correction. This is due to the fact that the input space can be 
modeled less granular. While this was a good idea for the previous setting, as it reduces 
overfitting, now it leads to underfitting.

An interesting result is that for high skewness, where PPS sampling in conjunction with 
WB or Hájek correction leads to a higher accuracy than learning on a SRS. The important 
implications of this result will be discussed in Sect. 7.

6  Seoul housing data

In this section, we showcase our correction approaches on a real-world housing dataset. 
The goal is to demonstrate differences in interpretation that one might obtain when using 
correction methods compared to the ‘naive’ estimators.

The dataset contains 2.65Mio houses/apartments that were sold between the years 2005 
and 2023 in Seoul.10 The target variable is the price (SalePrice) and in total 29 covariates 
are present in the dataset. To make the analysis more tangible, we limit the used covariates 
to the size of the apartment in square meter (sqm), the size of the lot (lsqm), the year in 
which the house was built (YearBuilt) and the year in which the house was sold (YrSold), 
which we expect to be the most influential ones.

As no sampling weights are given in the dataset, we construct a complex sample struc-
ture by drawing a sample of size n from the dataset, with the following setup:

• generate an auxiliary variable A ∼ N(SalePrice, 10000),
• sample n units with PPS sampling using the auxiliary variable A,
• separately sample n units using SRS sampling as a baseline.

We expect the dataset situation to be somewhat in between the two simulation scenarios: 
Very high prices are mostly based on their covariate values, but not all the variance can be 
explained, especially as important covariates to explain housing prices, such as the region 
of the apartment, are missing.

6.1  Regression tree interpretation

Figure  2 shows the Hájek corrected and the population trees for a PPS sample of size 
n = 1000 . The Hájek corrected tree recovers the population tree very closely: the first split 
is identical, while the splits on the second level are similar, differentiating houses with a 
small lot and a bigger lot. While the splits lsqm < 231 and sqm < 476 are different, both 
separate very expensive houses from the other houses, as can be seen when looking at the 
leaf values. Overall, while the Hájek corrected tree is not identical, due to randomness in 
the sampling process, the interpretation is quite similar, nevertheless.

Figure 3 shows the naive tree learned on the same sample. It is clear that already the first 
split is very different, separating houses with large lots. In general, the whole tree focuses 

10 Source: https:// www. data. go. kr/ en/ data/ 15052 419/ fileD ata. do, last download May 13th, 2023, and after 
cleaning duplicates and removing incomplete rows.

https://www.data.go.kr/en/data/15052419/fileData.do
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mostly on the more expensive houses, as also can be seen at the leaf node values, where no 
predictions smaller than 46 can be found. So, overall, the interpretation of the naive tree is 
very different from the population tree, as it focuses on the oversampled expensive houses.

When analyzing trees built on complex samples, correction methods are therefore cru-
cial, which is in line with our expectation (cf. Sect. 3).

6.2  Random forest interpretation

Next, we compare the differences in the interpretation one obtains using different correc-
tion procedures for random forests. We interpret the random forest methods using partial 
dependence plots and permutation importance scores (cf. Subsect. 4.3). Using the complex 
sampling scheme specified above, we build naive, Hájek and weighted bootstrap corrected 
forests. As a baseline comparison, we also take a separate SRS and learn a plain random 
forest. Each setting is repeated 100 times and all scores are averaged over all runs.

Table 3 shows the average relative MSE for different choices of n. Interestingly, with 
increasing n both HJ and WB perform better than the SRS forest. This is analogous to 
simulation scenario 2 in Subsect. 5.2 and shows that a design-based sampling approach can 
improve the predictive accuracy of machine learning models when corrected for.

6.2.1  Partial dependence plots

Figure 4 shows the PDP for the different methods. While there still is a difference between 
the SRS version, HJ, and WB, the correction leads to a more similar interpretation, whereas 

sqm < 94

lsqm < 2 lsqm < 231

27 58 93 273

yes no

no yes yes no

sqm < 94

lsqm < 4 sqm < 476

28 56 100 471

yes no

no yes yes no

Fig. 2  Left: population tree on the South Korea housing data. Right: Hájek corrected tree. The values in the 
leaf nodes are given in ten million Wons

Fig. 3  Naive Tree on the housing 
dataset

lsqm < 232

sqm < 120 lsqm < 531

62 170 46 107

yes no

no yes yes no
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the naive forest is on some variables quite far off. This is especially the case for areas in the 
input space with fewer observations, for example, YearBuilt < 1950 where the naive for-
est heavily overestimates the prices, probably due to some very expensive houses that are 
over-sampled. PDP plots for interaction effects among two variables (not shown here) give 
a similar impression: the correction methods capture the interaction effects for SRS better 
than the naive forest.

6.2.2  Permutation importance scores

The permutation importance is shown in Fig.  5. It can be seen that the correction 
approaches are closer to the SRS forest overall. Smaller differences persist, for example 
in the covariate YrSold, where the Hájek correction is slightly further off compared to the 
naive forest. The WB approach appears to be the closest to SRS and can be a good choice 
when interpretation is of importance.

7  Outlook on adaptively collected data

As discussed above, complex sampling schemes can occur due to a great variety of reasons. 
One particular reason is when data is collected adaptively within a learning or optimization 
algorithm. The resulting samples typically are not i.i.d.. Such adaptively collected data is 
subtly ubiquitous in various subfields of data science and machine learning. We discuss 
three examples in brevity: Bayesian optimization (BO), self-training in semi-supervised 
learning (SSL), and bandit algorithms. All methods rely on refitting learners to artificially 
enhanced training data. These enhancements are based on pre-defined criteria to select data 
points rendering some data more likely to be added than others. Rodemann et al. (2022) 
empirically analyze the distance from the so-produced complex samples to i.i.d. samples 
by maximum mean discrepancy (Gretton et  al., 2012). In order to deploy inverse prob-
ability weighting, inclusion probabilities have to be estimated. However, this is not a major 
issue, since explicit information on the inclusion mechanism is available; after all, the data 
is generated by the algorithm itself by means of selection criteria.

To make things more tangible, consider the case of BO first. It optimizes an unknown 
function by iteratively approximating it through a surrogate model, whose mean and stand-
ard error estimates are scalarized to a selection criterion (Snoek et al., 2012). The argu-
ments of this criterion’s optima are evaluated and added to the training data. Rodemann 
(2021); Rodemann et al. (2022) propose to weight them by means of the surrogate mod-
el’s standard errors at the time of selection. For the case of deploying random forests as 
surrogate models, one can refit them by weighted drawing in the bootstrap sampling step. 

Table 3  Relative MSE of the 
different random forest methods 
on the housing dataset

n = 100 n = 500 n = 1000

Naive 1.69 1.77 1.59
HJ 1.11 0.98 0.96
HJreg 1.10 1.12 1.20
WB 0.93 0.88 0.90
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Refitting may be done iteratively aiming at speeding up the optimization or after conver-
gence aiming at providing applicants with a (global) interpretable surrogate model.

Similarly, self-training in SSL selects instances from a set of unlabeled data, predicts 
its labels, and adds these pseudo-labeled data to the training data. Instances are selected 
according to a confidence measure, e.g. the predictive variance. Regions in the feature 
space where the model is very confident are thus over-represented in the selected sam-
ple. Rodemann et al. (2022) explicitly exploit the selection criteria to define weights used 
for resampling-based refitting of the model. The more confident the model is in the self-
assigned labels, the lower their weights should be to counteract the selection bias.

Bandit algorithms also select data adaptively, resulting in a complex sampling scheme. 
Classical statistical approaches thus fail to provide valid confidence intervals. Zhang et al. 
(2021) propose adaptive weights for M-estimators (such as maximum-likelihood estima-
tors) that allow for the construction of asymptotically valid confidence regions for a variety 
of inferential targets.

YearBuilt YrSold

lotsqm sqm

1900 1925 1950 1975 2000 2025 2010 2015 2020

0 100 200 300 400 0 100 200 300 400 500

50000

100000

150000

200000

40000

60000

80000

50000

100000

150000

200000

250000

40000

60000

80000

PD

Fig. 4  Partial dependence curves for the different covariates (averaged over 100 runs). Shown are the 
‘naive’ random forest (red solid), Hájek Forest (blue dashed), weighted bootstrap (purple dashed), and a 
random forest built upon a random sample (green dotted). While all show a similar pattern the correction 
approaches are much closer to the simple random sample version (Color figure online)
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8  Conclusion

This article analyzes the bias introduced by complex samples in regression trees and for-
ests, when not corrected for, both analytically and through simulation studies. We propose 
a Hájek type estimator to reduce bias in trees and two methods to reduce bias and improve 
predictive performance in random forests, which are easy to implement in current machine 
learning software. Our proposed correction approaches were found to improve predictive 
performance, as shown in simulation data and real-world data. Similarly, correction meth-
ods are equally crucial if one is to interpret trees and forests, as a naive estimator leads to 
flawed interpretation.

In this work, we studied the effect of complex samples on random forests and interpreta-
tion methods empirically, but an analytic study would be very interesting for future work. 
Similar to the analytic study of bias in trees, this could indicate the severity of the bias that 
is to be expected on a given dataset.

As an outlook, we sketched the connection between survey statistics and the ML area 
of adaptively collected data. As seen in this article, the design-based approach to survey 
statistics can lead to substantial improvements in machine learning models. Therefore, we 
believe this area to be very fruitful for future work.

Author contribution MN and TA—developed the regression tree de-biasing methodology. JR—contributed 
the weighted-bootstrapping approach. Implementing the methods, simulations and application was done by 
MN and JR. All authors contributed in writing and revising the article.

lotsqm

sqm

YearBuilt

YrSold

0 1 2 3 4
Permutation Importance

Fig. 5  Permutation feature importance scores of ‘naive’ random forest (red), Hájek Forest (blue), weighted 
bootstrap (purple), a random forest built upon a random sample (green) over 100 repetitions. The bars show 
the standard deviation over the repetitions (Color figure online)
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