
Brain, Behavior, and Immunity 117 (2024) 320–329

Available online 1 February 2024
0889-1591/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Prospective associations of technostress at work, burnout symptoms, hair 
cortisol, and chronic low-grade inflammation 

Helena C. Kaltenegger a,*, Mathew D. Marques b, Linda Becker c,d, Nicolas Rohleder c, 
Dennis Nowak a, Bradley J. Wright b,1, Matthias Weigl a,e,1 

a Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany 
b School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia 
c Institute of Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany 
d Humanwissenschaftliche Fakultät, Vinzenz Pallotti University gGmbH, Vallendar, Germany 
e Institute for Patient Safety, University Hospital Bonn, Bonn, Germany   

A R T I C L E  I N F O   

Keywords: 
Work stress 
Technostress 
Digital stress 
Burnout 
Hair cortisol 
Chronic low-grade inflammation 
C-reactive protein 

A B S T R A C T   

Background: Working conditions in the age of digitalization harbor risks for chronic stress and burnout. However, 
real-world investigations into biological effects of technostress, that is stress in the context of digital technology 
use, are sparse. This study prospectively assessed associations between technostress, general work stress, burnout 
symptoms, hair cortisol, and chronic low-grade inflammation. 
Methods: Hospital employees (N = 238, 182 females, Mage = 28.5 years) participated in a prospective cohort 
study with two follow-ups six months apart (T2, T3). Participants answered standardized questionnaires on 
general job strain (job demand-control ratio), technostressors (work interruptions, multitasking, information 
overload), burnout symptoms (exhaustion, mental distance), and relevant confounders. Moreover, they provided 
capillary blood samples for C-reactive protein (CRP) and hair strands for hair cortisol concentration (HCC) 
analysis. Structural equation modelling was performed. 
Results: The factorial structure of survey measures was confirmed. Burnout symptoms (MT2 = 2.17, MT3 = 2.33) 
and HCC (MT2 = 4.79, MT3 = 9.56; pg/mg) increased over time, CRP did not (MT2 = 1.15, MT3 = 1.21; mg/L). 
Adjusted path models showed that technostress was negatively associated with HCC (β = − 0.16, p =.003), but 
not with burnout and CRP. General work stress in contrast, was not significantly associated with burnout, HCC or 
CRP. Furthermore, there were reciprocal effects of CRP on HCC (β = 0.28, p =.001) and of HCC on CRP (β =
− 0.10, p ≤.001). Associations were robust in additional analyses including further confounders. 
Conclusion: This is the first study on prospective effects of technostress on employees’ endocrine and inflam-
matory systems. Results suggest differential effects of technostress on the hypothalamic-pituitary-adrenocortical 
axis activity. Given its key role for long-term health, the findings have important implications for occupational 
health and safety in digitalized work environments.   

1. Introduction 

Stress is a major risk factor for the development of non- 
communicable diseases, like cardiovascular diseases, cancer or dia-
betes, which are the leading cause of death worldwide (WHO, 2022). 
The workplace can be stressful and substantially influence employees’ 
health. There is ample evidence of the link of work stress with physical 
and mental morbidity as well as mortality (e.g., Kivimäki et al., 2012; 

Madsen et al., 2017; Taouk et al., 2020). In the light of the profound 
transformation of the world of work in the age of digitalization, new 
forms of work-related stress emerge, that is technostress (Brod, 1982) or 
digital stress (Hefner and Vorderer, 2016; Reinecke et al., 2017; Wein-
stein and Selman, 2016). The more commonly used term technostress 
can be defined as “stress experienced by end users of Information and 
Communication Technologies (ICTs)” (Ragu-Nathan et al., 2008). In 
modern work environments relevant and common technostressors are 
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work interruptions, multitasking, and information overload due to ICTs 
(Eppler and Mengis, 2004; Galluch et al., 2015; Hefner and Vorderer, 
2016; Reinecke et al., 2017). Technostress has been associated with 
different negative consequences regarding well-being, (mental) health, 
and work-related outcomes in employees (Dragano and Lunau, 2020; La 
Torre et al., 2019). However, technostress has mostly been assessed with 
self-report, while objectively measurable physiological effects of tech-
nostress are under-researched. The few existing studies on physiological 
stress responses focus on acute stress assessed in laboratory experiments 
rather than chronic stress related to ICT use in real-world settings 
(Becker et al., 2022a; Dragano and Lunau, 2020). 

One important biological mechanism that explains how chronic 
stress, like work stress, “gets under the skin” is the hypothalamic 
pituitary-adrenocortical (HPA) axis with its main effector hormone 
cortisol. Chronic stress has been associated both with an increase in 
cortisol secretion (i.e. hypercortisolism), but also with a deficiency of 
cortisol (i.e. hypocortisolism) depending on a range of factors, such as 
stressor and person characteristics (Heim et al., 2000; Miller et al., 
2007). Analysis of hair cortisol concentration (HCC) is increasingly used 
to measure long-term integrated cortisol levels retrospectively and as an 
indicator for chronic stress confers substantial advantages over the use 
of traditional fluid-based biomarkers such as salivary cortisol, as it is less 
influenced by biological rhythms or acute influences (Stalder et al., 
2017). 

Besides the HPA-axis, stress also has complex effects on the immune 
system with up-regulation of some parts, primarily inflammatory path-
ways, and down-regulation of others, primarily cellular immunity 
(Chrousos, 2009; Segerstrom and Miller, 2004). While inflammation is 
an adaptive reaction in the short-term, sustained low-grade inflamma-
tion is involved in the development of severe chronic diseases encom-
passing cardiovascular, metabolic, and neurodegenerative diseases, 
cancer as well as depression (Couzin-Frankel, 2010; Morey et al., 2015; 
Slavich and Irwin, 2014). Chronic systemic low-grade inflammation can 
be triggered by psychological stress alone without any apparent medical 
source (e.g., infection or injury) and can be measured with a range of 
biomarkers, such as the acute-phase-protein C-reactive protein (CRP) or 
cytokines (Black, 2002; Rohleder, 2019). Inflammation and abnormal-
ities in cortisol secretion have been found to co-occur in clinical samples 
(i.e., depression), presumably due to glucocorticoid resistance, that is, a 
dysfunction of the glucocorticoid receptor leading to an impaired 
negative feedback loop of the HPA-axis (Pariante, 2017). 

Available research on work-related stress and HCC is limited with 
inconsistent results, and there is a lack of prospective studies (Schaafsma 
et al., 2021). Furthermore, work stress has been associated with low- 
grade inflammation, but high-level evidence is weak due to a paucity 
of prospective research (Kaltenegger et al., 2021; Wright et al., 2020). 
Regarding technostress in particular, chronic effects on the two key 
biological mechanisms – the HPA-axis and chronic low-grade inflam-
mation – have largely been overlooked. To our knowledge, two recent 
cross-sectional studies from our work group assessed for the first time, 
inflammatory responses to different technostressors without finding 
stress-induced increases (Becker et al., 2023; Kaltenegger et al., 2023). 

One key mental health outcome in occupational health research is 
burnout. Burnout is suggested to develop as a consequence of chronic 
exposure to work stress and is expected to be associated with depletion 
of the HPA-axis, that is hypocortisolism (Miller et al., 2007; Rohleder, 
2018). However, this notion has not been consistently supported 
empirically with recent studies reporting increased HCC in burned-out 
individuals (Penz et al., 2018; Wendsche et al., 2020). Besides alter-
ations in the HPA-axis, increased systemic inflammation has been shown 
in burnout – yet the current evidence is inconclusive (Hänsel et al., 2010; 
Rohleder, 2019). Initial findings suggest associations of technostress 
with burnout, which are, however, mainly based on cross-sectional de-
signs (Dragano and Lunau, 2020). In a prior study, specific forms of 
technostress (e.g., technology and information overload) were related to 
employees’ burnout symptoms, even after controlling for general work 

overload (Kaltenegger et al., 2023). In sum, prospective research on 
technostress and burnout, as well as on the biological underpinnings of 
technostress and work stress in general, is limited. This highlights the 
need for advanced methods to gain a deeper understanding of potential 
health risks in modern working environments. Longitudinal designs, in 
which the same variables are assessed repeatedly over time in the same 
participants (i.e., full panel designs), provide an avenue to test the 
temporal order and direction of effects and best determine (reciprocal or 
reverse) causality (Ployhart and Vandenberg, 2010; Taris and Kompier, 
2014). 

Technostress may be especially relevant in healthcare settings, 
where health information technology is increasingly implemented, such 
as electronic health records or clinical decision support systems. 
Healthcare professionals are suggested to be an at-risk population for 
stress-related biological perturbations and development of burnout 
(Dawe et al., 2016; Maslach, 2003). Firstly defined by the psychologist 
Craig Brod (1982), the concept of technostress and its measurement was 
primarily developed in the discipline of information systems (e.g., 
Ayyagari et al., 2011; Ragu-Nathan et al., 2008; Tarafdar et al., 2007), 
but in recent years, it has also been applied to the healthcare context: For 
instance, Califf and Sarker (2020) found that negatively perceived 
technostress was associated with psychological distress in nurses, which 
in turn was related to low job satisfaction and high attrition, both 
impacting turnover intentions – a highly relevant issue in nursing. This 
was supported by a further study among health professionals in psy-
chiatric hospitals, which also showed that technostress was associated 
with negative health consequences including burnout symptoms (Golz 
et al., 2021). Furthermore, in a recent cross-sectional study, university 
medical staff members and students reported moderate-to-high levels of 
technostress, which was positively associated with burnout and serum 
cortisol (Kasemy et al., 2022). Taken together, the emerging evidence 
suggests that technostress is an important phenomenon for different 
medical personnel, but in-depth research utilizing prospective designs is 
necessary. 

To shed light into the possible associations of work stress, including 
technostress, burnout, HCC, and chronic low-grade inflammation, we 
conducted – to our knowledge for the first time – a prospective study 
with a full panel design among employees of a university hospital. As a 
conceptual framework, we drew upon the well-established job demand- 
control (JDC) model, which postulates that job strain results from a 
combination of high job demands and low job control (Karasek, 1979). 
The objective was to investigate general work stress (based on the JDC 
model) and technostress (work interruptions, multitasking, information 
overload) as predictors and burnout symptoms, HCC, and inflammation 
(CRP) as outcomes. In particular, we examined prospective associations 
of the predictors with the outcomes (research question 1) and prospec-
tive associations between the outcomes in order to identify their tem-
poral order (research question 2). 

2. Materials and methods 

2.1. Design 

A prospective cohort study at a large university hospital in South 
Germany with a full cross-lagged panel design including three mea-
surement time points with a time lag of 6 months was conducted. Data 
collection took place from 06/2021 until 11/2022 with baseline 
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measurement (T1) from 06–11/2021,2 first follow-up (T2) from 11/ 
2021–05/2022, and second follow-up (T3) from 06–11/2022. The study 
was approved by the faculty’s ethics committee (20–0914) and was 
carried out in accordance with the ethical standards of the Declaration of 
Helsinki. The study protocol was registered (https://osf.io/94p6n/). All 
participants gave their written informed consent. 

2.2. Participants and procedure 

New hospital employees were recruited for study participation after 
their obligatory pre-employment medical examination. As an incentive, 
participants were compensated monetarily (€ 50) for study participation 
(i.e., for completing at least two measurement time points) and were 
provided with a personal report on their results (i.e., biomarker levels 
and scores in psychological constructs) after study completion. Prior to 
data collection, we performed an a-priori power analysis for bivariate 
linear regression based on an alpha of 0.05, a power of 0.80, and a small 
to medium effect size (β = 0.18), revealing a required sample size of N =
187 (Faul et al., 2007). A total of N = 301 participants were included in 
the study at baseline (T1), of whom n = 241 participated at follow-up I, 
6 months later (T2), and n = 200 at follow-up II, 12 months later (T3). 
For follow-up measurements, participants were contacted by the study 
team following a standardized and iterative procedure, and an individ-
ual appointment for each participant at the clinic was arranged. The 
sample consisted of healthcare personnel with various professions, such 
as physicians and nurses, but also research staff and other. 

Before inclusion in the study and each follow-up, we checked par-
ticipants’ eligibility with a screening on the following exclusion criteria: 
temporary contract of <six months (only T1), current acute disease 
symptoms (like acute cold or influenza-like infection, fever, cystitis, 
influenza, acute injuries, etc.), pregnancy, permanent intake of anti- 
inflammatory medication (e.g., cortisone, hydrocortisone), intake of 
anti-coagulant drugs in the last 12hr, and insufficient German language 
skills. A posteriori, we excluded participants, who dropped out after T1 
(n = 55), who had extreme HCC levels (i.e., > 3 standard deviations [SD] 
from the mean across waves, n = 2), CRP levels >10 mg/L (Pearson 
et al., 2003) at any measurement time point (n = 5), as well as non- 
binary sex (n = 1). 

2.3. Measures 

A combination of standardized questionnaires for self-report and 
biomarker measurements was used. All variables were measured at each 
time point, except for sociodemographic information, profession, and 
body-mass index [BMI] (only at T1). The reliability of self-report mea-
sures was assessed by computing the Spearman-Brown statistic (ρ) for 
two-item scales and Cronbach’s alpha (α) as well as McDonald’s omega 
(ω) for scales with more than two items (Eisinga et al., 2013; Hayes and 
Coutts, 2020). 

2.3.1. Self-report measures 

2.3.1.1. General work stress. Based on the JDC model (Karasek, 1979), 
general work stress was measured with two scales derived from a well- 
established screening for psychological stressors at work (Glaser et al., 
2020). Job demands was assessed with two items. A sample item is “I 
often have to hurry and still cannot complete my work”. Reliability was 

acceptable, with ρ = 0.80 (T2) and ρ = 0.78 (T3). Job control was 
measured with three items (e.g., “I can determine for myself how to do 
my work”; α/ ω = 0.82 [T2], α = 0.82/ ω = 0.83 [T3]). Response options 
ranged from 1 = not at all to 5 = to a very great extent. A score was 
calculated by summing the item scores for each scale. Because of the 
difference in the number of items per measure, job demands (multiplied 
by 10) and control (multiplied by 20/3) were weighted to obtain values 
between 0 and 100 (Piantella et al., 2021). We then calculated the job 
demand/control (JDC) ratio, a continuous measure for job strain, where 
higher scores indicate higher job strain (e.g., Theorell et al., 1990). 
Moreover, means for job demands and control, respectively, were 
computed. 

2.3.1.2. Technostress. For the assessment of work stressors specifically 
related to the use of digital technologies, three scales were used. Work 
interruptions were measured with three items (adapted from Büssing and 
Glaser, 2002; Glaser et al., 2020). A sample item is “I often have to 
interrupt my work due to electronic messages (e.g., e-mail, device 
message)”. Multitasking was captured with two items (adapted from 
Semmer et al., 1999), such as “Due to digital technologies I have to work 
on several tasks at the same time”. Information overload was also assessed 
with two items (Piecha and Hacker, 2020), such as “I feel that the in-
formation I receive via on-duty digital media is too much”. Items were 
answered on a five-point scale (1 = not at all to 5 = to a very great extent). 
Individual scale means and an overall mean based on the three scales 
were calculated. The scale reliability for the overall mean was α = 0.84/ 
ω = 0.83 (T2) and α/ ω = 0.86 (T3). 

2.3.1.3. Burnout symptoms. Burnout symptoms were measured with the 
Burnout Assessment Tool (BAT; Schaufeli et al., 2019; German trans-
lation: Glaser and Seubert, 2020). We used the two subscales exhaustion 
and mental distance with two items each. A sample item for exhaustion is 
“After a day at work, I find it hard to recover my energy” and for mental 
distance “I struggle to find any enthusiasm for my work”. Possible re-
sponses ranged from 1 = never to 5 = always on a five-point scale. In-
dividual subscale and a total mean for burnout symptoms were 
computed. Reliability for the total mean was α/ ω = 0.77 (T2) and α/ ω 
= 0.81 (T3). 

2.3.1.4. Control variables. The following variables were assessed as 
potential confounders as suggested by previous research (de Hert, 2020; 
Magnusson Hanson et al., 2019; Meredith et al., 2022; Segerstrom and 
Miller, 2004; Stalder et al., 2017): 

Sociodemographic characteristics: sex (f/m/d), age (in years); 
Health-related characteristics: BMI (kg/m2), physical activity (“Over-

all, how much do you care about getting enough physical activity?”; 1 =
not at all to 5 = very much), smoking (1 = never smoked to 5 = yes, every 
day), hormone medication (for contraception and for other reasons); 

Employment-related characteristics: profession (nurse, physician, 
medical [-technical] personnel, research staff, administration, other), 
shift work (yes/no), full-time job (yes/no); 

Hair-related information: hair dyeing (including coloring, bleaching, 
henna, highlighting; all: yes/no), hair treatment (perm, straightening; 
both: yes/no), weekly hair washing frequency; 

Procedural information: To account for potential seasonal variations 
of biomarker levels, the date of sampling was used to calculate variables 
reflecting the respective season. For HCC analyses, consistent with a 
previous study (Abell et al., 2016), a variable with eight categories was 
created including the four seasons (meteorological, northern hemi-
sphere) and four overlapping seasons reflecting HCC levels in the four 
weeks prior to sampling (1 = spring/summer [June], 2 = summer [July, 
August], 3 = summer/autumn [September], 4 = autumn [October, 
November], 5 = autumn/winter [December], 6 = winter [January, 
February], 7 = winter/spring [March], 8 = spring [April, May]). For 
CRP analyses, a four-category variable was generated representing the 

2 Based on the data from T1 one previous study has been published (Kalte-
negger et al., 2023). This was a cross-sectional analysis among a subsample of 
employees on associations between an extended set of technostressors (and 
general psychosocial work factors) with burnout symptoms and C-reactive 
protein. In contrast, this prospective study uses data from the whole cohort and 
two follow-up measurements and includes an additionally relevant physiolog-
ical outcome (i.e., hair cortisol). 

H.C. Kaltenegger et al.                                                                                                                                                                                                                         

https://osf.io/94p6n/


Brain Behavior and Immunity 117 (2024) 320–329

323

four seasons (1 = summer [June, July, August], 2 = autumn [September, 
October, November], 3 = winter [December, January, February], 4 =
spring [March, April, May]). 

2.3.2. Biomarkers 

2.3.2.1. Hair cortisol concentration (HCC). Hair sample collection was 
optional for participants and was conducted only after additional 
informed consent was obtained. In each wave, >80 % of participants 
provided a hair sample with n = 251 at T1, n = 201 at T2, and n = 161 at 
T3. Hair strands were taken from the posterior vertex region of the head, 
tied off with a thin rubber band, and cut as close as possible to the scalp 
with specific scissors by a trained member of the study team. Subse-
quently, samples were enveloped in aluminum foil and stored in a box at 
room temperature. HCC was analyzed in the 1 cm segment of the hair 
strand most proximal to the scalp. Assuming an average hair growth of 1 
cm/month (Wennig, 2000), this represents hair grown over a one-month 
period prior to sampling. 

Samples were analyzed after each study wave in the laboratory of 
Prof Kirschbaum at the Technical University Dresden using a column- 
switching liquid chromatography atmospheric-pressure-chemical- 
ionization tandem mass spectrometry assay (LC–APCI–MS/MS). The 
protocol of this efficient, highly sensitive and reliable method for the 
quantification of steroid hormones in human hair is described elsewhere 
(Gao et al., 2013; Stalder et al., 2012). For cortisol, the intra- and inter- 
assay coefficients of variation (CVs) were found to range between 3.7 % 
and 8.8 % (Gao et al., 2013). All samples were analyzed (n = 613, mean 
hair mass = 6.6 mg). 

2.3.2.2. C-reactive protein (CRP). All participants provided capillary 
blood samples for analysis of high-sensitivity C-reactive protein (hs- 
CRP). We used the well-established minimally invasive dried blood spot 
method in which drops of whole blood from a finger prick are collected 
on filter papers (McDade et al., 2007). A trained member of the study 
team pricked the participant’s fingertip with a disposable lancet under 
sterile conditions, and after wiping away the first drop with gauze, 
applied at least two blood spots of sufficient size on a filter paper. The 
paper was then dried at room temperature for at least 8hr before being 
stored with a desiccant in a sealable multi-barrier pouch at − 26 ◦C. Hs- 
CRP was analyzed using a “Human C-Reactive Protein/CRP Quantikine 
ELISA Kit” (IBL International) in the laboratory of the Chair of Health 
Psychology, Friedrich-Alexander University Erlangen-Nürnberg (Becker 
et al., 2022b for more details). The intra-assay CVs were 4.18 % (T1), 
4.28 % (T2), and 4.06 % (T3). According to established cut-offs, hs-CRP 
values below 1.0 mg/L indicate a low, from 1.0 to 3.0 mg/L an average 
and above 3.0 mg/L a high risk for the development of cardiovascular 
diseases (e.g., Pearson et al., 2003). 

2.4. Statistical analyses 

The investigation of our research questions was based on the follow- 
up data, that is, T2 and T3, only. At baseline (T1), the majority of par-
ticipants (66.1 %) had not started their job and almost half (45.8 %) 
were off duty (≥3 weeks) in the previous four weeks (for more infor-
mation see Kaltenegger et al., 2023). Therefore, a valid assessment of 
participants’ work situation as well as stress-related biomarkers at T1 
was limited. In light of the panel attrition between T2 and T3 (~20 %), 
missing value analysis was performed with IBM SPSS Statistics (Version 
29). 9.68 % of the values were missing and Little’s MCAR test showed 
that missing data were not missing completely at random (χ2 = 1176.16, 
df = 1056, p =.006). Therefore, we imputed data using two consecutive 
methods: For control variables, missing T3 values were replaced by the 
within person mean of the respective T1 and T2 values. For key study 
variables, multiple imputation was conducted by creating five imputa-
tion datasets and pooling them to replace missing values. After 

imputation of missing data, the final sample size was n = 238 for each 
wave. 

First, descriptive analyses as well as Pearson correlations and 
ANCOVAs for associations between study variables were conducted in 
SPSS. Next, we performed structural equation modelling in Mplus 
(Version 8.9, Muthén and Muthén, 2017) consisting of two steps: First, a 
confirmatory factor analysis (CFA) was conducted to corroborate the 
factorial structure of the questionnaire measures (general work stress, 
technostress, burnout symptoms) at T2 and T3. To test for multi-
collinearity, we performed linear regressions and checked tolerance 
statistics (Field, 2009). Second, in order to test our research questions, 
we performed path analysis models based on the full panel design using 
maximum likelihood estimation with robust standard errors (MLR) to 
account for any skewness in the data (Yuan and Bentler, 2000). 

Full panel designs, in which both predictor and outcome variables 
are assessed at all waves, allow for the testing of both normal or stressor- 
to-strain, that is, prospective effects of job characteristics on health, and 
reversed or strain-to-stressor effects, that is, prospective effects of health 
on the evaluation of job characteristics (Taris and Kompier, 2014). For 
research question 1, we performed a path analysis model (model I) on 
cross-lagged effects between the predictors (general work stress, tech-
nostress) and outcomes (burnout, HCC, CRP) including normal effects (i. 
e., predictors at T2 on outcomes at T3) as well as reversed effects (i.e., 
outcomes at T2 on predictors at T3). For research question 2 (model II), 
we ran the same model with additional cross-lagged associations among 
all outcome variables (i.e., outcomes at T2 on outcomes at T3). Both 
models also included cross-sectional (i.e., synchronous associations at 
T2/T3) and autoregressive (i.e., stability paths T2–T3) effects of all 
study variables as well as a predefined set of confounders. The self- 
report variables (general work stress, technostress, burnout symptoms) 
were adjusted for sex (T1), age (T1), profession (T1), shift work (T3), 
and full-time job (T3). The biomarkers (HCC, CRP) were additionally 
controlled for BMI (T1), physical activity (T3), smoking (T3), and con-
traceptive use (T3). Model fit was evaluated using comparative fit index 
(CFI), root mean squared error of approximation (RMSEA), and stan-
dardized root mean square residual (SRMR). The following cut-offs 
indicated adequate fit: CFI > 0.90, RMSEA ≤ 0.06, SRMR ≤ 0.08 (Hu 
and Bentler, 1999). 

3. Results 

3.1. Descriptives 

In the final sample (n = 238), the majority of participants was female 
(n = 182, 76.5 %). Participants were mainly nurses (n = 67, 28.2 %), 
followed by physicians (n = 53, 22.3 %), research personnel (n = 35, 
14.7 %), medical-technical personnel (n = 34, 14.3 %), administrative 
staff (n = 14, 5.9 %), and other (n = 32, 13.4 %, such as midwives, 
therapists etc.). The mean age was (M ± SD) 28.5 ± 8.4 and the mean 
BMI was 23.47 ± 4.52. 

Main variable means at T2 and T3 are shown in Table 1. Regarding 
general work stress, job demands significantly increased over time. For 
technostress, work interruptions and information overload were signif-
icantly higher at follow-up. As for the outcome variables, burnout 
symptoms and HCC increased significantly, whereas CRP did not change 
significantly. Pearson correlations between work stressors, burnout 
symptoms, HCC, and CRP at T2 and T3 are depicted in Table 1A 
(Appendix). 

3.2. Factorial structure of questionnaire measures 

The CFA for both T2 (Fig. 1A, Appendix) and T3 (Fig. 2A, Appendix) 
showed that the scales work interruptions (T2: λ = 0.77, T3: λ = 0.82), 
multitasking (T2: λ = 0.76, T3: λ = 0.79), and information overload (T2: 
λ = 0.59, T3: λ = 0.70) loaded significantly and positively on a single 
latent factor “technostress”. Furthermore, job demands (T2: λ = 0.76, 
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T3: λ = 0.64) loaded significantly positively and job control (T2: λ =
− 0.18, T3: λ = − 0.17) negatively on the factor “general work stress”. 
The BAT subscales exhaustion (T2: λ = 0.88, T3: λ = 0.89) and mental 
distance (T2: λ = 0.56, T3: λ = 0.63) were significant indicators of the 
factor “burnout”. Model fit was excellent at both time points, CFI = 0.97 
(T2)/0.98 (T3), RMSEA = 0.06 (T2&T3), SRMR = 0.04 (T2&T3). 
Therefore, composite scores (i.e., means for technostress and burnout; 
JDC ratio) at T2 and T3, respectively, were used. Tolerance statistics in 
four linear regressions with technostress, general work stress (i.e., JDC 
ratio), and burnout as predictors and HCC and CRP as outcomes at T2 
and T3, respectively, were all > 0.2, indicating the variables satisfied the 
assumption of non-multicollinearity. 

3.3. Prospective associations of technostress, general work stress, burnout 
symptoms, hair cortisol, and inflammation 

We first tested the path analysis model for research question 1 
(model I), that is, cross-lagged associations between predictors (tech-
nostress, general work stress) and outcomes (burnout, HCC, CRP) 
controlled for covariates (sex, age, profession, shift work, full-time job, 
BMI, physical activity, smoking, and contraceptive use). Results showed 
that technostress at T2 was significantly negatively associated with HCC 
at T3 (standardized coefficient β = − 0.15, p =.003). In contrast, tech-
nostress at T2 was not significantly associated with burnout (β = 0.08, p 
=.133) and CRP at T3 (β = 0.04, p =.584). General work stress at T2 was 
not significantly associated with any of the outcomes at T3, that is, 
burnout (β = 0.01, p =.788), HCC (β = 0.06, p =.328), and CRP (β =
− 0.02, p =.824). Concerning reversed effects, there were no significant 
lagged associations with technostress or general work stress at T3: 
burnout (β = 0.07, p =.133; β = 0.02, p =.721), HCC (β = 0.02, p =.676; 
β = 0.03, p =.370) and/or CRP (β = 0.03, p =.373; β = 0.01, p =.853). 

We then tested the adjusted path analysis model for research ques-
tion 2 (model II), which additionally included cross-lagged associations 
between outcome variables (burnout, HCC, and CRP). The results of 
model II are presented in Fig. 1. Consistent with the results of model I, 

there was a significant negative effect of technostress at T2 on HCC at T3 
(β = − 0.16, p =.003), but no significant associations with the other 
outcomes. Again, general work stress at T2 was not significantly asso-
ciated with any of the outcomes at T3, and there were no significant 
reversed effects. Concerning associations between outcomes, there was a 
positive cross-lagged effect of CRP at T2 on HCC at T3 (β = 0.28, p 
=.001). At the same time, there was a small negative effect of HCC at T2 
on CRP at T3 (β = − 0.10, p ≤.001). For burnout, there were no signif-
icant associations with HCC or CRP. 

3.4. Additional analyses 

To check for the robustness of the results, we ran the same two 
models including further relevant confounders for the biomarkers. First, 
HCC was additionally controlled for hair-related characteristics, that is, 
hair dyeing, hair treatment, washing frequency. The results were 
similar: For research question 1, there was still a significant negative 
effect of technostress at T2 on HCC at T3 (β = − 0.17, p =.002). In model 
II, this effect remained significant as well (β = − 0.17, p =.003), and 
there was still a positive effect of CRP at T2 on HCC at T3 (β = 0.24, p 
=.019) and a negative effect of HCC at T2 on CRP at T3 (β = − 0.09, p 
=.002). Next, both HCC and CRP were additionally adjusted for season 
and hormone medication use not for contraception (n = 13, e.g., use of 
asthma inhalers containing corticosteroids). Again, the results were 
similar with a negative effect of technostress at T2 on HCC at T3 (Model 
I: β = − 0.16, p =.003; Model II: β = − 0.16, p =.005), a positive effect of 
CRP at T2 on HCC at T3 (β = 0.27, p =.005), and a negative effect of HCC 
at T2 on CRP at T3 (β = − 0.08, p =.011). No other cross-lagged asso-
ciations between main variables were significant. Fit indices for the final 
full model were CFI = 0.82, RMSEA = 0.07, SRMR = 0.08. 

In addition, to further contextualize the associations between the key 
variables and the covariates, we conducted partial correlations and 
ANCOVAs using the adjustments applied in the path analysis models 
(Table 2). For age, there were significant negative correlations with 
general work stress and HCC. Shift workers reported higher general 
work stress. Profession had significant effects on technostress and gen-
eral work stress with physicians reporting higher strain. BMI was posi-
tively correlated with HCC as well as CRP, and physical activity only 
with HCC. Smoking was negatively correlated with HCC. Contraceptive 
use was positively correlated with both biomarkers. Regarding season, 
there were significant effects for HCC with higher levels in sum-
mer–autumn and for CRP with higher levels in autumn than in winter 
(see Table 2). 

4. Discussion 

4.1. Findings and contributions to the literature 

To the best of our knowledge, for the first time, the biological effects 
of work-related technostress in terms of HPA-axis function (i.e., HCC) 
and chronic low-grade inflammation (i.e., CRP) were investigated in a 
prospective study within a naturalistic occupational setting. Results 
showed that technostress was consistently negatively associated with 
HCC (research question 1) and that CRP was positively associated with 
HCC, while HCC was negatively associated with CRP (research question 
2) over a time lag of 6 months. Given the lack of research – especially 
prospective – on work stress including technostress, HCC, and low-grade 
inflammation, our study contributes to the current evidence base in 
several ways. 

First, in contrast to previous studies that often rely on subjective 
evaluations, we investigated physiological effects of technostress by 
measuring two key biological systems through which chronic stressors 
“get under the skin” and lead to disease, that is, the HPA-axis and the 
inflammatory system. The small literature that has assessed the associ-
ation between technostress and biological stress responses have pre-
dominantly focused on acute stress responses (Becker et al., 2022a; 

Table 1 
Means, standard deviations (SDs), and paired t-tests of main variables at T2 and 
T3.   

T2 Mean 
(SD) 

T3 Mean 
(SD) 

Cohen’s 
d 

p 

Job demands 1 2.91 
(0.99) 

3.03 
(0.97)  

0.16  0.013 

Job control 1 3.03 
(0.95) 

3.00 
(0.88)  

0.04  0.580 

General work stress (demand- 
control ratio) 2 

1.10 
(0.62) 

1.14 
(0.63)  

0.08  0.237 

Technostress: subscale work 
interruptions 1 

2.71 
(0.93) 

2.84 
(0.81)  

0.22  <0.001 

Technostress: subscale 
multitasking 1 

3.22 
(1.17) 

3.21 
(1.12)  

0.01  0.896 

Technostress: subscale 
information overload 1 

2.30 
(0.89) 

2.43 
(1.03)  

0.16  0.016 

Technostress: composite score 2.74 
(0.81) 

2.83 
(0.82)  

0.17  0.008 

Burnout symptoms: exhaustion 
3 

2.54 
(0.84) 

2.69 
(0.90)  

0.24  <0.001 

Burnout symptoms: mental 
distance 3 

1.80 
(0.77) 

1.97 
(0.81)  

0.24  <0.001 

Burnout symptoms: total 2.17 
(0.69) 

2.33 
(0.76)  

0.29  <0.001 

Hair cortisol concentration 
(HCC, pg/mg) 

4.79 
(4.58) 

9.56 
(7.98) +

0.67  <0.001 

C-reactive Protein (CRP, mg/L) 1.15 
(1.51) 

1.21 
(1.37)  

0.05  0.483 

Note. N = 238; + n = 237. 
1 Scale range: 1 = not at all – 5 = to a very great extent. 
2 Range: 0.2 – 5.0. 
3 Scale range: 1 = never – 5 = always. 
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Riedl, 2012). In the present study, technostress (as measured by work 
interruptions, multitasking requirements and information overload due 
to digital technologies) was associated with reduced HCC, indicating a 
specific effect of technostress in terms of a longer-term alteration of 
HPA-axis activity beyond the influences of general work stress (i.e., JDC 
ratio). Consistent with our previous studies (Becker et al., 2023; Kalte-
negger et al., 2023), we did not identify effects of technostress on the 
inflammatory system. However, these two studies were not prospective. 
Furthermore, general work stress was not significantly related to either 
HCC, or CRP, which adds to the limited and mixed evidence base on 
prospective associations of work stressors with HCC and low-grade 
inflammation (Kaltenegger et al., 2021; Schaafsma et al., 2021). 
Notably however, in model II, there was a weak positive, yet non- 
significant, association of general work stress with HCC. This aligns 
with a recent study in medical students showing a positive association of 
demands with HCC (Heming et al., 2023). 

Second, given the paucity of longitudinal studies on technostress and 
mental health (Berg-Beckhoff et al., 2017; Dragano and Lunau, 2020), 
we contribute empirical insights into prospective associations with 
burnout as a key psychological outcome in chronic stress experience. 
Apart from a weak, non-significant association, we did not find 

prospective associations between technostress and burnout symptoms. 
This is not in line with findings from cross-sectional studies, which 
identified positive associations between constructs (e.g., Kaltenegger 
et al., 2023; Kasemy et al., 2022). Moreover, to provide a more 
comprehensive understanding of the pathways from burnout to health 
problems, we analyzed associations of burnout with the two biomarkers, 
revealing no significant prospective associations. Research on burnout 
and HCC is scarce with initial findings suggesting a non-linear rela-
tionship between accumulated burnout symptomatology and elevated 
HCC (Penz et al., 2018; Wendsche et al., 2020). Given that the burnout 
symptom levels in our sample were average and below clinical cut-offs 
(Schaufeli et al., 2023; Schaufeli et al., 2019), the null result seems 
plausible. 

Third, our cohort study in a real work context complements and 
extends previous laboratory experiments providing external validity. 
The study was carried out in a high-risk environment for work-related 
stress in general, such as high work load or emotional stressors related 
to patient care, and technostress in particular due to health information 
technology use (Dawe et al., 2016; Melnick et al., 2020). Our results 
showed that technostress was rated as moderate across the sample with 
highest ratings in physicians, indicating that the assessed 

Fig. 1. Path model showing cross-lagged associations between technostress, general work stress (job demand-control ratio), burnout symptoms, hair cortisol con-
centration, and C-reactive protein at T2 and T3. Note. Standardized estimates. Adjusted for age, sex, profession, shift work, full-time job, and hair cortisol and C- 
reactive protein additionally for BMI, physical activity, smoking, use of contraceptives; cross-sectional and autoregressive associations are not shown; bold arrows 
indicate significant associations; ** p ≤ 0.01, *** p ≤ 0.001. 
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technostressors – especially multitasking with the highest means – 
played a relevant role at participants’ workplaces. The identification of 
at-risk persons and specific adverse working conditions is a crucial 
starting point for the prevention of stress-related diseases in healthcare 
professionals. 

4.2. Post-hoc explanations for observed findings 

As our main finding of an inverse association of technostress with 

HCC contradicts the traditional view of HPA-axis activity increases with 
stress, we suggest the following possible post-hoc explanations. On the 
one hand, this finding could be explained by hypocortisolism as a 
consequence to chronic stress. In their large-scale meta-analysis Miller 
et al. (2007) found that timing plays a critical role with elevated HPA- 
axis activity at stressor onset but a reduction over time, hence 
providing an explanation for the formerly conflicting findings of both 
hyper- and hypocortisolism in response to stress. Concerning work stress 
in particular, this two-stage notion of HPA-axis activation was also 
supported by a previous study, which found that increased effort- 
reward-imbalance was prospectively associated with decreased HCC 
indicating a blunted cortisol response (Penz et al., 2019). Regarding our 
results, one could hypothesize that although HCC increased over time, 
participants who experienced higher amounts of technostress had a 
lower HCC response at the next time point, which suggests dampened 
HPA-axis activity due to long-term work stress. Between baseline (T1) 
and T2 during the phase of organizational socialization in the new job, 
participants might have perceived high stress levels due to intensive 
learning and adaptation requirements. In addition, we can only specu-
late that before commencing their new employment, some participants 
might have been exposed to chronic stressors, such as high job demands 
in former jobs, demanding medical education, unemployment, or also 
other chronic stressors in their private lives. However, burnout levels in 
our sample, although increasing over time, were rather low, which 
might be due to the early phase of employment in most of the partici-
pants. In contrast to burnout and HCC, CRP did not change significantly 
over time, and this could possibly be explained by high starting values 
facilitating a ceiling effect. Yet, baseline CRP levels in our sample were 
comparable to levels in other samples including healthy (and young) 
adults and analyzed with the same method (Becker et al., 2023; Becker 
et al., 2022b). 

On the other hand, another plausible explanation could be that 
participants who reported high levels of technostress in fact showed less 
physiological stress as indicated by decreased HCC. According to the 
integrated specificity model, the physiological stress response is not 
uniform, but shaped by the nature of the stressor and the individual 
cognitive appraisal of it (Kemeny, 2003). Drawing upon the Trans-
actional Model of Stress (Lazarus and Folkman, 1984) physiological 
responses are substantially influenced by the appraisal of the stressor, 
that is, whether it poses a challenge or a threat, its perceived control-
lability and whether it threatens social status or self-esteem (Kemeny, 
2003). In our study, participants might have evaluated the tech-
nostressors as a challenge with high chances of mastery and sufficient 
coping capabilities to meet the work demands. Technostressors that are 
appraised as challenge stressors, that is, as beneficial for accomplishing 
work tasks, were shown to be associated with positive emotions, which 
in turn was related to high job satisfaction in nurses (Califf and Sarker, 
2020). Furthermore, even though technostressors, such as work in-
terruptions, may be perceived as uncontrollable, they might also be 
regarded as a legitimate, integral part of the job in healthcare (Semmer 
et al., 2019) and therefore, as predictable or even “self-chosen”. Finally, 
our operationalization of technostressors did not directly include a 
social-evaluative component, what together with uncontrollability is 
suggested to elicit a strong HPA-axis activation (Dickerson and Kemeny, 
2004). Taken together, the specific nature of technostress and its 
cognitive appraisal by the employees might have led to a more favorable 
physiological response. 

Eventually, we identified reciprocal associations between CRP and 
HCC. The finding of a positive effect of CRP on HCC supports the notion 
of glucocorticoid resistance, meaning that inflammation leads to an 
impairment of the negative feedback loop of the HPA-axis, which in turn 
leads to hypercortisolism (Pariante, 2017). At the same time, the finding 
of a negative effect of HCC on CRP confirms the established under-
standing of an anti-inflammatory effect of cortisol (see Sorrells and 
Sapolsky, 2007). 

Table 2 
Associations of technostress, general work stress (job demand-control ratio), 
burnout symptoms, hair cortisol concentration (HCC), and C-reactive protein 
(CRP) with control variables (partial correlations and ANCOVAs).  

Partial 
correlations (r; 
p)       

Technostress 
T3 

General 
work 
stress T3 

Burnout 
T3 

HCC T3 CRP T3 

Sex T1 (male, 
female) 

− 0.01; 0.848 0.05; 
0.421 

0.11; 
0.104 

0.12; 
0.102 

0.09; 
0.178 

Age T1 − 0.01; 0.912 − 0.18; 
0.007 

− 0.11; 
0.095 

− 0.17; 
0.020 

− 0.07; 
0.308 

Shift work T3 
(no, yes) 

0.06; 0.358 0.19; 
0.004 

0.04; 
0.511 

− 0.09; 
0.225 

0.00; 
0.962 

Full-time T3 
(no, yes) 

0.12; 0.075 0.06; 
0.336 

0.10; 
0.117 

− 0.06; 
0.444 

0.09; 
0.190 

BMI T1 – – – 0.29; 
<0.001 

0.36; 
<0.001 

Physical 
activity T3 1 

– – – 0.21; 
0.004 

− 0.03; 
0.701 

Smoking T3 2 – – – − 0.18; 
0.011 

− 0.07; 
0.289 

Contraceptive 
use T3 (no, 
yes) 

– – – 0.15; 
0.038 

0.27; 
<0.001 

Hormone 
medication 
T3 (no, yes) 

– – – − 0.13; 
0.077 

− 0.03; 
0.665 

Hair dyeing T3 
(no, yes) 

– – – 0.10; 
0.159 

– 

Hair treatment 
T3 (no, yes) 

– – – − 0.01; 
0.916 

– 

Hair washing 
frequency 
per week T3 

– – – − 0.05; 
0.487 

–  

ANCOVAs (F 
(df); p)      

Profession F(5) = 6.23; 
<0.001 3 

F(5) =
3.05; 
0.011 4 

F(5) =
0.30; 
0.911 

F(5) =
0.26; 
0.934 

F(5) =
0.23; 
0.951 

Season, for 
HCC (T2 & 
T3) 

– – – F(7) =
17.49; 
<0.0015 

– 

Season, for 
CRP (T2 & 
T3) 

– – – – F(3) =
4.95; 
0.002 6 

Note. Text in bold if significant at p < 0.05. 
1 Scale range: 1 = not at all – 5 = very much. 
2 Scale range: 1 = never smoked – 5 = yes, every day. 
3 Post-hoc tests with Bonferroni correction: Technostress at T3 was signifi-

cantly higher in physicians than in nurses, medical-technical personnel, research 
staff, and other professions. 

4 Quade non-parametric ANCOVA with Bonferroni correction: general work 
stress at T3 was significantly higher in physicians than in nurses. 

5 Quade non-parametric ANCOVA with Bonferroni correction: HCC in sum-
mer, summer/autumn, and autumn was significantly higher than in autumn/ 
winter, winter, winter/spring and spring, and HCC in spring/summer was 
significantly higher than in winter/spring. 

6 Quade non-parametric ANCOVA with Bonferroni correction: CRP in autumn 
was significantly higher than in winter. 
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4.3. Limitations 

Our findings need to be reflected in the light of several important 
limitations. First, regarding internal validity, it remains an open ques-
tion whether the technostress scales measured stress induced by ICTs or 
rather work stress per se simply mediated by ICTs, that is, ICTs as a 
primary stressor versus medium transmitting common work stressors 
(Benlian, 2020). However, scale reliability was good, and factorial val-
idity was confirmed. Moreover, we assessed burnout symptoms with a 
well-established, yet for the sake of practicability and efficiency, an 
abbreviated measure. We acknowledge that hence, the full burnout 
symptomatology was not captured. We used a parsimonious measure 
consisting of the two core dimensions of burnout, inability (i.e., 
exhaustion) and unwillingness (i.e., mental distance) to spend work- 
related effort, as suggested in previous literature (Schaufeli and Taris, 
2005). Only two items per subscale were used, yet even single-item 
measures for burnout in healthcare providers have proven useful 
(Rohland et al., 2004; West et al., 2009). Although we controlled for a 
broad set of covariates, we cannot preclude confounding influences on 
stress perceptions and physiology by external factors, e.g., due to the 
Covid-19 pandemic or geopolitical events. Furthermore, because of 
threats to validity at T1, we had to constrain our design to two waves 
with a time lag of 6 months. It remains thus unclear, if the length of this 
interval was appropriate to capture the “true” effect, and the inclusion of 
a third (or even more) measurement time point(s) would have provided 
deeper insights into trajectories or potential mediating effects (Ployhart 
and Vandenberg, 2010; Taris and Kompier, 2014). Nonetheless, the 
application of the full panel design allowed us to test for normal, 
reversed, and reciprocal causality at the same time to unveil potential 
interactions of work characteristics, psychological states, and stress 
physiology (Taris and Kompier, 2014). 

Concerning external validity, our data stemmed from young hospital 
employees, and that limits the generalizability of our findings to other 
age groups and professions. Moreover, although representative for 
healthcare, our sample was predominately female. Hence, our findings 
ought to be replicated among more experienced workers in different 
professional fields with a higher proportion of males. 

4.4. Implications for research and practice 

Given the infancy of research on health-related effects of techno-
stress, our exploratory study provides important implications for future 
research. First, it advocates the viability of biomarker measurements in 
the quest for physiological correlates of technostress. For the rather 
novel approach of HCC analysis, our study provides further evidence for 
associations with covariates, which should be considered in future 
research. Compared to the meta-analysis by Stalder et al. (2017), we also 
identified significant associations with relevant covariates like BMI, age, 
and contraceptive use (the latter two however in different directions), 
but not with others (such as sex, hair washing frequency, and hair 
treatment), although comparability with our sample and method was 
limited. Moreover, our results suggested seasonal variation of HCC with 
higher concentrations in the summer and autumn than winter and spring 
months. This is in line with some of the few existing studies (Braig et al., 
2015; Staufenbiel et al., 2015), but not with others (Abell et al., 2016). 
Regarding low-grade inflammation, CRP is an important indicator for 
the risk of cardiovascular diseases, which was in the average range in 
our sample. Yet, future studies should also consider further biomarkers, 
such as cytokines or cytokine imbalance for a more comprehensive un-
derstanding of inflammation and interactions with cortisol (Kaltenegger 
et al., 2020 for a list of inflammatory markers, Sorrells and Sapolsky, 
2007). Building on our preliminary findings, more prospective studies 
with advanced, that is, full panel, designs and longer follow-ups are 
needed to investigate chronic psychophysiological effects of techno-
stress and long-term health consequences. 

If supported by future research, our findings have important 

implications for occupational health and safety in digitalized work en-
vironments. Chronic alterations of the HPA-axis activity are involved in 
a broad range of medical conditions, such as diabetes or obesity, and 
psychiatric conditions, such as depression or psychosomatic disorders 
(Chrousos, 2009; Miller et al., 2007). Technostress at work might 
therefore pose a health risk, which warrants the development of targeted 
prevention and intervention measures. At the same time, technology can 
be a useful tool for stress management at work, as was shown for a 
smartphone-based mindfulness meditation training intervention which 
reduced pro-inflammatory gene expression in customer service workers 
(Dutcher et al., 2022). 

4.5. Conclusions 

In conclusion, for the first time, this cohort study explored associa-
tions of technostress, general work stress, burnout symptoms, HCC, and 
chronic low-grade inflammation in a prospective repeated measurement 
design. The results provide preliminary indications for HCC alterations 
in hospital employees due to technostress. Moreover, the study yields 
insights into the complex interplay of the HPA-axis and inflammation. 
More prospective studies on the biological mechanisms linking chronic 
stress with disease are essential to improve our understanding of the 
potential health risks for workers in digitalized work settings. 
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Golz, C., Peter, K.A., Müller, T.J., Mutschler, J., Zwakhalen, S.M.G., Hahn, S., 2021. 
Technostress and digital competence among health professionals in swiss psychiatric 
hospitals: cross-sectional study. JMIR Mental Health 8, e31408. https://doi.org/ 
10.2196/31408. 
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