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A B S T R A C T   

Promising evidence suggests a link between environmental factors, particularly air pollution, and diabetes and 
obesity. However, it is still unclear whether men and women are equally susceptible to environmental exposures. 
Therefore, we aimed to assess sex-specific long-term effects of environmental exposures on metabolic diseases. 

We analyzed cross-sectional data from 3,034 participants (53.7% female, aged 53-74 years) from the KORA Fit 
study (2018/19), a German population-based cohort. Environmental exposures, including annual averages of air 
pollutants [nitrogen oxides (NO2, NOx), ozone, particulate matter of different diameters (PM10, PMcoarse, PM2.5), 
PM2.5abs, particle number concentration], air temperature and surrounding greenness, were assessed at par-
ticipants’ residences. We evaluated sex-specific associations of environmental exposures with prevalent diabetes, 
obesity, body-mass-index (BMI) and waist circumference using logistic or linear regression models with an 
interaction term for sex, adjusted for age, lifestyle factors and education. Further effect modification, in 
particular by urbanization, was assessed in sex-stratified analyses. 

Higher annual averages of air pollution, air temperature and greenness at residence were associated with 
diabetes prevalence in men (NO2: Odds Ratio (OR) per interquartile range increase in exposure: 1.49 [95% 
confidence interval (CI): 1.13, 1.95], air temperature: OR: 1.48 [95%-CI: 1.15, 1.90]; greenness: OR: 0.78 [95%- 
CI: 0.59, 1.01]) but not in women. 

Conversely, higher levels of air pollution, temperature and lack of greenness were associated with lower 
obesity prevalence and BMI in women. After including an interaction term for urbanization, only higher 
greenness was associated with higher BMI in rural women, whereas higher air pollution was associated with 
higher BMI in urban men. 

To conclude, we observed sex-specific associations of environmental exposures with metabolic diseases. An 
additional interaction between environmental exposures and urbanization on obesity suggests a higher suscep-
tibility to air pollution among urban men, and higher susceptibility to greenness among rural women, which 
needs corroboration in future studies.   

1. Introduction 

In the last decade, the number of people suffering from metabolic 
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diseases such as diabetes mellitus or obesity has increased worldwide 
(IDF (International Diabetes Federation), 2021; WHO, 2022). To reverse 
this trend, prevention is urgently needed, not only because metabolic 

diseases represent a major global health burden on their own, they are 
also linked to secondary diseases and constitute risk factors for other 
diseases (Kivimaki et al., 2022). The risk of metabolic diseases accu-
mulates over a lifetime, resulting in prevalence of metabolic diseases 
being highest in middle-aged and older adults (WHO, 2022; Diseases 
and Injuries, 2020). Although it is known that metabolic diseases 
develop through a complex interplay of biological, social, behavioral 
and environmental factors (Bluher, 2019), current prevention strategies 
mainly focus on changing individual behaviors, such as dietary and 
physical activity habits, without addressing the context in which these 
changes are supposed to occur (WHO, 2022). However, single in-
terventions alone may not provide effective prevention of these complex 
diseases on their own (WHO, 2022). To understand the extent to which 
the environment acts as an obesogenic factor, the positive and negative 
effects of environmental factors on metabolic diseases need to be further 
elucidated. 

There is increasing evidence that air pollutants play a role in the 
development of metabolic diseases (He et al., 2017; An et al., 2018). 
With regard to diabetes, a recent meta-analysis revealed a 25 % higher 
risk with a 10 μg/m3 increase in particulate matter less than 2.5 μm in 
diameter (PM2.5) (He et al., 2017). However, to date, only few studies 
have addressed the effects of air pollution on obesity (An et al., 2018; De 
la Fuente et al., 2020). A study in mice suggested that short-term 
exposure adversely affects adipose tissue through inflammatory pro-
cesses, whereas long-term exposure induced leptin resistance, leading to 
higher risk of adiposity (Campolim et al., 2020). A systematic review of 
human studies by An et al. (2018) observed that 29 (44 %) of the 
long-term associations between air pollution and obesity were positive, 
but an equal number of associations showed no association and even 8 
(12%) associations were negative. In conclusion, previous studies have 
focused on assessing the effects of air pollution, mainly particulate 
matter, on diabetes and obesity, while other air pollutants have so far 
rarely been studied. In addition, associations regarding obesity were 
often conflicting, which requires further investigation. 

Moreover, only a limited number of studies have focused on the ef-
fects of ambient air temperature (Valdes et al., 2014, 2019; Yang et al., 
2015). These studies found that increased annual averages of air tem-
perature were associated with higher prevalence of obesity and diabetes 
and higher levels of glucose metabolism markers (Valdes et al., 2014, 
2019). Conversely, higher levels of surrounding greenness can lead to 
increased physical activity levels (De la Fuente et al., 2020; Fong et al., 
2018) and therefore directly mitigate an important risk factor for 
metabolic diseases. Other potential pathways include improved mental 
health and well-being due to surrounding greenness (Fong et al., 2018), 

which may simultaneously have a positive impact on metabolic health. 
Indeed, a systematic review of greenness confirmed a protective effect of 
living near green spaces on diabetes, but the association between 
greenness and obesity was inconclusive (De la Fuente et al., 2020). 

Along with the lack of evidence mentioned above, potential sex- 
specific associations with metabolic diseases are missing or have been 
inconsistent (Wang et al., 2014; Weinmayr et al., 2015). Nevertheless, 
research on respiratory outcomes has often shown sex-specific suscep-
tibility to environmental exposures (Clougherty, 2010). Moreover, there 
are notable sex differences in metabolic health, such as women’s 
reduced tendency to accumulate abdominal fat or a delayed onset of 
metabolic diseases compared with men (Chang et al., 2018; Kautzky--
Willer et al., 2023). In addition to potential sex-specific effects, previous 
studies have shown that health behaviors and obesity prevalence may 
differ according to urbanization (NCD Risk Factor Collaboration, 2019; 
Cohen et al., 2018). However, most of the previous studies were con-
ducted in urban areas and therefore, could not account for different 
urbanization levels in their study region. Consequently, evidence of 
associations at different levels of urbanization is lacking. 

The present study aimed to evaluate the long-term effects of multiple 
environmental exposures, including several air pollutants, ambient air 
temperature and surrounding greenness on prevalent diabetes and 
obesity in cross-sectional data from a population-based cohort in 
Augsburg, Germany. We specifically examined sex-specific associations 
in these middle-aged to older adults, who have often been underrepre-
sented in studies but are at highest risk for metabolic diseases (Schien-
kiewitz et al., 2022). We further explored these effects by investigating 
potential differences between urban and rural areas. 

2. Methods 

2.1. Study population 

We used cross-sectional data from the KORA (“Cooperative Health 
Research in the Region Augsburg”) FIT study, a population-based cohort 
from the city of Augsburg, Southern Germany, and its two adjacent 
mainly rural counties (Holle et al., 2005). Briefly, the KORA Fit study is a 
follow-up examination of participants from the four original cohorts S1 
(baseline assessment: 1984–1985), S2 (1989–1990), S3 (1994–1995) 
and S4 (1999–2001) (Rooney et al., 2022). In 2018 and 2019, 3047 
participants aged 53–74 years underwent comprehensive standardized 
physical examination and in-person interviews with a specific focus on 
cardiometabolic health. All KORA studies adhered to the Declaration of 
Helsinki. Each participant gave written informed consent and ethical 
approval was granted by the Ethics Committee of the Bavarian Medical 
Association and the Bavarian commissioner for data protection and 
privacy. 

2.2. Outcome assessment 

Outcomes were prevalent diabetes mellitus and obesity status, as 
well as continuous body mass index (BMI) and waist circumference 
(WC) as assessed by standardized anthropometric measurements. Seca’s 
measuring systems (Seca GmbH & Co, KG, Hamburg) were used to 
measure height and weight, whereupon BMI was calculated as weight in 
kg divided by squared height in meters (kg/m2). WC was determined by 
using an inelastic tape at the level midway between the lower rib margin 
and the iliac crest (Rospleszcz et al., 2019). Participants were classified 
as having diabetes mellitus if they reported a physician-based diagnosis 
of diabetes mellitus diagnosis or intake of glucose-lowering medication 
during the interview. The latter was verified by checking the medication 
brought along on the day of the examination. Prevalent obesity was 
defined by BMI ≥30 kg/m2 and by sex-specific WC cut-offs (men: ≥94 
cm; women: ≥80 cm) (WHO, 2008). In the following paragraphs, unless 
otherwise noted, the term obesity refers to obesity defined by BMI. 

Abbreviations 

BMI Body-Mass-Index 
CI Confidence Interval 
DAG Directed acyclic graph 
IQR Interquartile range 
KORA Cooperative Health Research of Augsburg 
NDVI Normalized difference vegetation index 
NO Nitrogen (di)oxide 
OR Odds ratio 
PM Particulate matter 
PNC Particle number concentration 
WC Waist circumference  
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2.3. Exposure assessment 

We analyzed the long-term exposure to several environmental fac-
tors, including air pollution, air temperature and surrounding greenness, 
which were linked to participants’ geocoded residential addresses. 

Air pollution was modeled based on measurements from 20 moni-
toring stations located within the KORA study area in 2014 and 2015. 
Land-use regression models were separately developed for each air 
pollutant and applied to a 50 m × 50 m grid to estimate individual 
residential annual mean concentrations. Air pollutants included nitro-
gen oxides (NO2 and NOx), ozone (O3), particulate matter diameter <10 
μm in diameter (PM10), 10–2.5 μm (PMcoarse), <2.5 μm (PM2.5), soot 
(PM2.5abs) and particle number concentration (PNC). PM2.5abs can be 
used as proxy for black carbon, also known as soot, and can be simply 
measured by the reflectance in the PM2.5 filters (Cyrys et al., 2003). 
More information on the air pollution measurements and predictors 
used in the modeling has been described elsewhere (Wolf et al., 2017). 

Daily mean air temperature was available on a 1 km × 1 km gridded 
dataset across Germany, derived from a multi-stage regression-based 
approach. A more detailed description on the air temperature modeling 
is published elsewhere (Nikolaou et al., 2023). Briefly, several data from 
multiple sources, including weather station observations and a variety of 
remote sensing spatiotemporal predictors were incorporated in a 
modeling procedure which consisted of two linear mixed models and a 
thin plate spline interpolation technique. The models achieved high 
accuracy (R2 ≥ 0.95) and low errors (Root Mean Square Error (RMSE) ≤
1.54oC) while validation with a dense and independent monitoring 
network in Augsburg -the region of the KORA study-confirmed the good 
performance (R2 = 0.99, RMSE = 1.07oC) (Nikolaou et al., 2023). For 
the present analysis, we used the annual mean air temperature data from 
2018 to match the examination year of most of the participants (69% 
examined in year 2018). In order to compare exposure effects reflecting 
more extreme air temperature levels, we additionally analyzed mean air 
temperature levels of winter and summer by calculating the mean of 
daily air temperature levels from December to February and from June 
to August, respectively. 

For surrounding greenness, the median normalized difference vege-
tation index (NDVI) in a Euclidean distance of 300 m, 500 m and 1000 m 
buffer around participants’ residences was available. Briefly, NDVI was 
extracted and calculated from cloud-free satellite images taken between 
April and October (Dandolo et al., 2022). Mean values of two different 
satellites (Landsat 8 and Sentinel-2) were used, which provided images 
with a resolution of 30 m and 10 m, respectively. Pixels with negative 
values were excluded prior to assignment (Markevych et al., 2014). 
Detailed description of the NDVI calculation is given elsewhere (Dan-
dolo et al., 2022; Kabisch et al., 2019). For the present analysis, we used 
NDVI data from the year 2018, which reflected the main examination 
year of the KORA Fit sample, and selected the 500 m buffer, which 
represents a reachable distance within 5–10 min on foot (Smith et al., 
2017). 

2.4. Study area and degree of urbanization 

We used publicly available data on the degree of urbanization in 
2020 provided by the EUROSTAT, the statistical office of the European 
Union (https://ec.europa.eu/eurostat). A basic description of the cate-
gorization of municipalities is given elsewhere (European Union, 2018). 
Briefly, grid cells were defined as high-, moderate- and low-density 
clusters based on the population density per km (WHO, 2022) and the 
total number of inhabitants. Municipalities (local administrative units) 
were then classified as urban, suburban/towns or rural areas based on 
the proportion of grid cell categories. The KORA study area consists of 
77 local administrative units, of which 22 % were classified as urban, 20 
% as suburban and 58 % as rural (Supplementary Figure S1). 

2.5. Covariate assessment 

Participants were asked about sociodemographic characteristics and 
lifestyle factors in standardized face-to-face interviews. Alcohol con-
sumption was assessed as grams per day derived from participants self- 
reported consumption of beer, wine and spirits on weekday and week-
end. Subjects were classified as never-smokers, ex-smokers or smokers 
based on their self-reported smoking behavior. Participants’ physical 
activity level was determined by the reported duration of leisure time 
spent on sport activities. They were classified as active if they spent at 
least 1 h per week in sports activities during summer and winter, 
otherwise they were classified as inactive (Conzade et al., 2019). 
Educational level served as proxy for the individual socioeconomic 
status. Participants reported their highest level of education attainment, 
which was categorized based on the International Standard Classifica-
tion of Education (ISCED) (OECD, 2015). Finally, education was 
grouped into three categories: low (ISCED levels 0–2), medium (ISCED 
levels 3–4), and high (ISCED levels 5–8). As an indicator of neighbor-
hood socioeconomic status, the percentage of low-income households 
(<1250 euro) within a 5 km * 5 km area provided by a private company 
(WiGeoGIS) for the year 2018 was used. 

2.6. Statistical analysis 

We performed all analyses with the statistical software R 4.1.2 (R 
Core Team, 2021). Statistical significance was indicated by two-sided 
p-values <0.05. Our approach is described in detail in the following 
sections. 

2.6.1. Descriptive 
Continuous variables of baseline characteristics and exposure levels 

are presented as mean and standard deviation (SD), categorical vari-
ables are presented as absolute numbers and percentages. For strata 
differences, we applied two-sample t-tests (or Wilcoxon rank-sum test in 
case of non-normal distribution) for continuous variables, and Chi 
(WHO, 2022) test of independence for categorical variables. We per-
formed Spearman’s rank correlation to assess correlations between 
environmental exposures. 

2.6.2. Analysis of associations 
To estimate sex-specific effects of each environmental exposure on 

prevalent diabetes and obesity, we applied multivariable logistic 
regression models with a multiplicative interaction term between 
exposure and sex. For the continuous obesity measures BMI and WC, we 
applied multivariable linear regression models including an interaction 
between exposure and sex. Odds ratios and absolute changes derived 
from regression models are given for an interquartile range (IQR) in-
crease in environmental exposure with 95% confidence intervals (95% 
CI). For all linear models, the residuals were normally distributed (data 
not shown). All models were adjusted for confounders, which we 
selected a priori using a combined approach of previous studies and 
knowledge and drawing directed acyclic graphs (DAGs). DAGs help to 
visualize the interdependence of outcome, exposure, and covariates and 
help to identify potential bias introduced by confounders and colliders. 
We used the web-version of the program “DAGitty” (http://www.dag 
itty.net/), which proposed three minimally sufficient adjustment sets 
that included only necessary variables to block all backdoor paths (open 
confounding paths from outcome to exposure), thereby reducing the risk 
of overadjustment (Pearce and Lawlor, 2016). Our main confounder set 
consisted of age, lifestyle factors (physical activity, alcohol consump-
tion, smoking), and individual socioeconomic status reflected by 
educational level (Fig. 1). The other two proposed confounder sets were 
used in sensitivity analyses. 

2.6.3. Effect modification 
We split our data by sex to further test for multiple, secondary effect 
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modifications found in previous studies by including a multiplicative 
interaction term with the exposure variable in sex-stratified analyses. 
We used the following binary effect modifiers: urbanization (urban vs. 
towns and rural areas), age (≥65 years vs.< 65 years), smoking (never 
vs. ex- and current smokers), physical activity (yes vs. no), education 
(low-medium vs. high), and obesity (yes vs. no, only for the outcome 
diabetes). We only tested for binary effect modifiers in our sex-stratified 
sample to in order to have enough power in the subgroups. Therefore, 
for urbanization, we subsumed suburban and rural areas, and for 
smoking, we subsumed ex-smokers and current smokers together. 

2.6.4. Exploratory analysis 
We determined the exposure-response function between each 

outcome and environmental exposure visually by plotting the results of 
generalized additive models with thin plate splines of exposures fitted to 
our main model. Based on the results of the single-exposure analysis for 
obesity, we further evaluated potential confounding and interaction of 
air pollution and greenness on obesity. Therefore, we applied a two- 
exposure linear and generalized additive model. Because this explor-
atory analysis was a consequence of the single-exposure models, we 
describe the methods in more detail in the Results section for a better 
understanding of the reasoning. 

2.6.5. Sensitivity analysis 
We conducted several sensitivity analyses to check the robustness of 

our findings: (1) we applied linear and logistic regression models with 
the other two proposed confounder sets and a third set combining all 
variables of the different sets (see Supplementary Figure S2). 
Confounder set 2 included marital status instead of physical activity, 
which can alternatively be used to block one present backdoor path; 
confounder set 3 included only neighborhood and socioeconomic status 
blocking all present backdoor paths. (2) We excluded participants who 
had moved in the last 10 years to reduce potential misclassification of 
exposure levels. (3) We adjusted for dietary factors instead of education 
using the “alternative healthy eating index” (described in detail else-
where (Wawro et al., 2020)) which was only available in a subsample of 
702 participants. (4) We excluded physical activity from the adjustment 
model of our primary analysis to exclude the possibility that physical 
activity may act as potential intermediate factor in the association of 
environmental exposures with metabolic disease. 

3. Results 

3.1. Study population 

Our final analytic sample comprised 3034 participants after 
excluding 13 individuals with missing information on either exposures, 
outcomes, or covariates (Supplementary Figure S3). Of these, 53.7 % 
were female (Table 1). The mean age at examination was 63 years and 
49.5 % lived in urban and 50.5 % in rural areas at the time of exami-
nation. BMI, WC, lifestyle factors, and education level, were signifi-
cantly different between men and women. Men had on average a higher 
BMI, WC, and education level, were less physically active and were more 
often ex-smokers compared to women (Table 1). Men had a higher 
prevalence of diabetes and obesity based on BMI, whereas women had a 
higher obesity prevalence defined by WC (diabetes: 9.1 % vs. 7.1 %, 
obesity (BMI): 31.0 % vs. 29.1 %, obesity (WC): 69.2 % vs. 71.7 %, non- 
significant). 

When we additionally stratified participant characteristics by ur-
banization, we observed sex and urbanization differences in outcome 
variables (Supplementary Table S1). For example, the proportion of 
diabetes was highest in urban men (11.2%) but lowest in urban women 
(6.9%). BMI-based obesity prevalence was highest in rural women 
(31.4%) and lowest in urban women (26.8%), whereas it was similar in 
urban and rural men. In contrast, the distribution of BMI values for men 
and women did not show a clear urban-rural difference (Supplementary 
Figure S4). 

3.2. Environmental exposures 

The annual mean concentrations of NO2 (13.6 μg/m3), PM2.5 (11.6 
μg/m3), and PM10 (16.3 μg/m3) did not exceed the EU limit values 
(Table 2). Air pollutants were strongly correlated with each other 
(range: r = 0.55–0.92), except for ozone. Air temperature variables were 
moderately to strongly correlated with air pollutants (range: r =
0.39–0.76), except for ozone. Greenness was negatively correlated with 
air pollutants (range: r = − 0.84 to − 0.73) and temperature (range: r =
− 0.64 to − 0.53) and weakly positively correlated with ozone (r = 0.09). 
Exposure concentrations differed significantly between urban and rural 
areas, with higher levels of air pollutants and temperature and lower 
levels of greenness in urban areas (Supplementary Figure S5 and 
Table S2). No sex differences in exposure were found except for PM2.5abs 
(Supplementary Table S2). 

Fig. 1. Directed acyclic graphs presenting hypothesized relationship between exposures, main confounders and the outcomes diabetes and obesity.  
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3.3. Association of environmental exposures with diabetes – interaction 
sex 

In single-exposure models, the associations of NO2, PM10, PM2.5abs 
and air temperature with diabetes prevalence showed significant in-
teractions with sex (Table 3). In men, we found positive associations 
between prevalent diabetes and an IQR increase in air pollutants and air 
temperature (e.g., NO2: OR: 1.49 [95% CI: 1.13, 1.95], mean tempera-
ture: OR: 1.48 [95% CI: 1.15, 1.90], Table 3), and a borderline signifi-
cant negative association between diabetes and greenness (OR: 0.78, 
[95% CI: 0.59, 1.01]). Only ozone was not associated with diabetes 
prevalence in men. In women, we did not observe any association be-
tween environmental exposures and prevalent diabetes (Table 3). 

The exposure-response functions did not show any clear deviations 
from linearity (Supplementary Figure S6 and S7). There were no further 
interactions with urbanization, age, physical activity, BMI, smoking, 
education (Supplementary Figure S8). 

3.4. Association of environmental exposures with obesity – interaction sex 

Apart from ozone and winter temperature, all associations of envi-
ronmental exposures with BMI showed an interaction with sex (Table 4). 
The effects of environmental exposures on obesity were opposite for men 
and women. In men, we found no consistent association of any envi-
ronmental exposure with obesity (Table 4 for the BMI-based and Sup-
plementary Table S3 for the WC-based definition). However, trends 
showed higher BMI, WC and increased ORs of obesity with higher air 
pollution and air temperature. In contrast, higher levels of greenness 
indicated an inverse association with obesity in men (obesity: OR: 0.87 
[95% CI: 0.74, 1.03]; BMI: − 0.20 kg/m2 [95% CI: − 0.58, 0.18]). In 
women, IQR increases in NO2, NOx, PM10, PM2.5abs, and PNC were 
significantly associated with lower BMI and lower BMI obesity preva-
lence (BMI: NO2: − 0.60 kg/m2 [95% CI: − 0.96, − 0.23], PM2.5abs: 
− 0.57 kg/m2 [95% CI: − 0.95, − 0.19]; obesity: NO2: OR: 0.81 [0.68, 
0.95]; PM2.5 abs: OR: 0.80 [95% CI: 0.68, 0.95], Table 4). Additionally, 
we found significant negative associations between annual PM2.5, air 
temperature, and summer temperature and BMI (Table 4). An increase 
in greenness resulted in significantly higher BMI (0.63 kg/m2 [95% CI: 
0.29, 0.98]) and was associated with higher obesity prevalence (OR: 
1.27 [95% CI: 1.09, 1.48]). The results were similar for WC, but we did 
not observe any associations with obesity defined by WC (Supplemen-
tary Table S3). 

We observed deviations from linearity for NO2, PM10, PMcoarse, 
PM2.5abs and greenness with almost u-shaped functions in males and 
females and NOx and temperature in females only (Supplementary 
Figures S9 and S10). The exposure-response functions were similar for 
prevalent obesity and WC (data not shown). In addition, our results 
pointed to an effect modification by age, indicating partly stronger as-
sociations for participants younger than 65 years. However, there was 
no interaction between environmental exposures and physical activity, 
smoking or education (Supplementary Figure S11). 

3.5. Association of environmental exposures with obesity – interaction 
urbanization 

In line with the non-linear exposure-response functions, we found 
significant interactions between urbanization and NO2, PM10, PMcoarse, 
PM2.5abs, winter temperature, and greenness in men. For women, the 
effects were similar but did not reach statistical significance (Fig. 2). 
Except for ozone, we observed significant positive associations between 
higher levels of air pollutants, lack of greenness and BMI in urban men. 
None of these associations were significant for urban women. In rural 
men and rural women, higher levels of NO2, PM10, PM2.5abs, and tem-
perature were suggestive of lower BMI but did not reach significance. 
Additionally, higher greenness was associated with higher BMI in rural 
residents and reached significance in rural women (men: 0.24 kg/m2 

[95% CI: − 0.31, 0.79]; women: 0.68 kg/m2 [95% CI: 0.03, 1.34]). 

3.6. Exploratory analysis: two-exposure model for BMI 

Based on the contradictive associations, particularly of air pollution 
and greenness with obesity, we explored potential confounding and 
interaction effects between these exposures on BMI in rural and urban 
areas. Firstly, to assess confounding effects, we applied a two-exposure 
model, adding the air pollution and greenness with an interaction 
term each for urbanization (PM2.5abs by urbanization + greenness by 
urbanization) in our sex-stratified sample. As a representative for air 
pollution, we chose PM2.5abs, for which the interaction effect with ur-
banization was strongest in men and women. The effect estimates from 
single- and two-exposure linear regression models can be compared in 
Fig. 3. In urban males, the adverse effect of PM2.5abs did not change 
after adjusting for greenness (single: 0.99 kg/m2 [95% CI: 0.41, 1.57], 
two-exposure: 0.94 kg/m2 [95% CI: 0.03, 1.85]), whereas the protective 
effect of greenness disappeared after adjusting for PM2.5abs (Fig. 3). 

Table 1 
Characteristics of the study participants.   

Total (n =
3034) 

Men (n =
1404) 

Women (n =
1630) 

p-value 

Age [years] 63.2 ± 5.5 63.0 ± 5.6 63.4 ± 5.5 0.046 
Degree of urbanization    

Urban 1502 
(49.5%) 

677 
(48.2%) 

825 (50.6%) 0.201 

Rural 1532 
(50.5%) 

727 
(51.8%) 

805 (49.4%) 

Lifestyle factors   

Alcohol [g/day] 14.8 ± 19.5 22.1 ± 23.3 8.5 ± 12.3 <0.001 
Smoking status    <0.001 

Never 1343 
(44.3%) 

538 
(38.3%) 

805 (49.4%) 

Ex-smoker 1258 
(41.5%) 

670 
(47.7%) 

588 (36.1%) 

Current Smoker 433 
(14.3%) 

196 
(14.0%) 

237 (14.5%) 

Physically active 2182 
(71.9%) 

977 
(69.6%) 

1205 
(73.9%) 

0.009 

Individual socioeconomic status 

Education    <0.001 
low 93 (3.1%) 19 (1.3%) 74 (4.5%) 
medium 2200 

(72.5%) 
964 
(68.7%) 

1236 
(75.8%) 

high 742 
(24.4%) 

421 
(30.0%) 

320 (19.6%) 

Neighborhood socioeconomic status 

Household with low 
income [%] 

25.0 ± 20.1 24.4 ± 19.8 25.5 ± 20.3 0.236 

Marital status    

Married 2369 
(78.1%) 

1194 
(85.0%) 

1175 
(72.1%) 

<0.001 

Outcome    

Diabetes mellitus 244 (8.0%) 128 (9.1%) 116 (7.1%) 0.051 
Obesity     

defined by BMI 909 
(30.0%) 

435 
(31.0%) 

474 (29.1%) 0.271 

defined by waist 
circumference 

2141 
(71.0%) 

972 
(69.2%) 

1169 
(71.7%) 

0.145 

BMI [kg/m2] 28.2 ± 5.3 28.6 ± 4.6 27.8 ± 5.9 <0.001 
Waist circumference 
[cm] 

94.6 ± 14.3 100.7 ± 8.2 89.3 ± 13.8 <0.001 

Legend: Continuous variables are given as arithmetic mean and standard devi-
ation. Categorical variables are given as counts and percentages. Differences 
between sex were quantified by two-sample t-test (if not normally distributed: 
Wilcoxon test) and Chi2 test, respectively. BMI-based obesity was defined by BMI 
≥30 kg/m2; WC-based obesity was defined by WC ≥ 94 cm for men and ≥80 cm 
for women. 
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However, this pattern was not found in urban women or in rural men 
and women. Second, we further explored a possible interaction between 
PM2.5 abs and greenness considering non-linear effects. We aimed to 
evaluate the hypothesis that the association of air pollution or greenness 
with BMI is stronger with high or low levels of the other exposure, e.g., if 
the PM2.5 abs-BMI association is stronger with low levels of greenness 
and vice versa and if this interaction differs in urban and rural areas. 
Therefore, we applied a generalized additive model in our sex-stratified 
sample, where we specified a two-way multiplicative interaction 
(PM2.5abs*greenness by urbanization) considering non-linear effects by 
modeling a thin plate spline. The sex- and urbanization-specific inter-
action effect between PM2.5abs and greenness was visualized by a 3D 
surface plot (Fig. 4). While the 3D plot shows a complex surface in a 3D 
space for urban and rural men and rural women, we observed only a 2D 
surface standing diagonally in space for urban women, suggesting no 
interaction between exposures. This suggests a complex interaction be-
tween traffic-related air pollution and greenness, which appeared to 
differ between rural and urban areas and between sex. 

3.7. Sensitivity analyses 

Our results were robust in the different sensitivity analyses. First, 
adjusting for marital status instead of alcohol consumption, adjusting for 
education and neighborhood SES only, or adjusting for all proposed 
confounders did not change our results (Supplementary Table S4). We 
observed minor effect changes in models including neighborhood SES 
for obesity, but not for diabetes. Second, excluding participants who had 
moved in the last 10 years did not change the results (Supplementary 
Figure S12). Third, in a subsample adjusting for dietary factors instead 
of education, effect estimates were similar compared to our main model 
which we used in the final sample (Supplementary Figure S13). Lastly, 
our results were robust after excluding physical activity from the 
adjustment set (Supplementary Table S5). 

Table 2 
Summary statistics of environmental exposures and Spearman’s correlation coefficients.   

Mean 
± SD 

Median 
(IQR) 

Min; 
Max 

NO2 NOx O3 PM10 PMcoarse PM2.5 PM2.5abs PNC Annual 
temp. 

Winter 
temp. 

Summer 
temp. 

NO2 [μg/m3] 13.6 ±
4.2 

13.0 
(6.3) 

6.9; 
28.3 

– – – – – – – – – – – 

NOx [μg/m3] 21.3 ±
7.0 

22.0 
(8.7) 

3.9; 
44.0 

0.82 – – – – – – – – – – 

O3 [μg/m3] 39.1 ±
2.3 

39.2 
(3.5) 

31.7; 
45.7 

− 0.21 − 0.17 – – – – – – – – – 

PM10 [μg/m3] 16.3 ±
1.4 

16.0 
(2.0) 

12.9; 
22.0 

0.72 0.74 0.00 – – – – – – – – 

PMcoarse [μg/ 
m3] 

4.8 ±
1.1 

4.8 (1.4) 2.5; 8.2 0.81 0.69 0.17 0.80 – – – – – – – 

PM2.5 [μg/m3] 11.6 ±
1.03 

11.7 
(1.4) 

7.8; 
14.2 

0.74 0.81 − 0.24 0.58 0.55 – – – – – – 

PM2.5abs 
[10− 5m− 1] 

1.2 ±
0.2 

1.2 (0.3) 0.7; 1.7 0.86 0.73 − 0.10 0.77 0.78 0.69 – – – – – 

PNC [n/cm3] 6960 
± 1692 

6088 
(1924) 

2962; 
13,656 

0.75 0.92 − 0.10 0.81 0.74 0.70 0.74 – – – – 

Annual 
temperature 
[◦C] 

10.2 ±
0.4 

10.1 
(0.6) 

9.2; 
11.2 

0.74 0.47 − 0.30 0.50 0.60 0.54 0.66 0.46 – – – 

Winter 
temperature 
[◦C] 

1.5 ±
0.3 

1.4 (0.4) 0.5; 2.2 0.65 0.40 − 0.20 0.45 0.57 0.46 0.56 0.39 0.94 – – 

Summer 
temperature 
[◦C] 

19.0 ±
0.6 

18.9 
(0.8) 

17.9; 
20.4 

0.76 0.50 − 0.32 0.52 0.61 0.57 0.68 0.47 0.99 0.87 – 

Greenness 
(NDVI) 

0.4 ±
0.1 

0.4 (0.1) 0.2; 0.7 − 0.84 − 0.79 0.09 − 0.73 − 0.75 − 0.75 − 0.81 − 0.77 − 0.62 − 0.53 − 0.64 

Legend: Exposure levels are described as arithmetic mean and standard deviation (SD). Correlation coefficients were calculated using Spearman’s rank correlation. 
Abbreviations: SD = Standard deviation; PNC = Particle number concentration; NDVI = Normalized difference vegetation index. 

Table 3 
Associations of air pollution, air temperature and greenness with prevalent 
diabetes derived from logistic regression models with an interaction term for 
sex.   

IQR Men Women pinteraction 

OR (95% CI) OR (95% CI) 

NO2 [μg/m3] 6.3 1.49 (1.13, 
1.95) 

0.93 (0.70, 
1.24) 

0.020 

NOx [μg/m3] 8.7 1.33 (1.05, 
1.69) 

0.98 (0.77, 
1.25) 

0.077 

O3 [μg/m3] 3.5 0.89 (0.66, 
1.18) 

1.10 (0.82, 
1.46) 

0.305 

PM10 [μg/m3] 2.0 1.42 (1.11, 
1.83) 

0.96 (0.73, 
1.26) 

0.037 

PMcoarse [μg/m3] 1.5 1.38 (1.06, 
1.79) 

0.97 (0.74, 
1.25) 

0.056 

PM2.5 [μg/m3] 1.4 1.41 (1.08, 
1.84) 

1.01 (0.77, 
1.33) 

0.091 

PM2.5abs [10− 5m− 1] 0.3 1.43 (1.08, 
1.89) 

0.92 (0.69, 
1.23) 

0.033 

PNC [n/cm3] 1924 1.30 (1.06, 
1.61) 

0.99 (0.80, 
1.23) 

0.075 

Annual temperature 
[◦C] 

0.6 1.48 (1.15, 
1.90) 

0.96 (0.74, 
1.25) 

0.019 

Winter temperature 
[◦C] 

0.4 1.39 (1.10, 
1.75) 

0.96 (0.75, 
1.22) 

0.027 

Summer temperature 
[◦C] 

0.8 1.50 (1.17, 
1.92) 

0.97 (0.74, 
1.26) 

0.018 

Greenness (NDVI) 0.1 0.78 (0.59, 
1.01) 

1.05 (0.80, 
1.37) 

0.118 

Legend: Odds Ratios (OR) were calculated by single-exposure logistic regression 
models with an interaction term for sex. 
Models were additionally adjusted for age, physical activity, alcohol, smoking, 
and education. ORs are given per interquartile range increase in exposure. 
Pinteraction is the p-value derived from the interaction term between the respec-
tive exposure and sex. 
Abbreviations: OR = Odds Ratio, 95% CI = 95% confidence interval, PNC =
Particle number concentration, NDVI = Normalized difference vegetation index. 
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4. Discussion 

4.1. Summary 

The present study analyzed effects of multiple environmental expo-
sures on prevalent diabetes and obesity using cross-sectional data from 
3034 middle-aged to older participants from a large population-based 
cohort. First, we identified higher air pollution and air temperature, 
and a lack of greenness to be associated with diabetes prevalence in men, 
but not in women. Second, the associations between environmental 
exposures and obesity showed a complex interplay with sex and ur-
banization, suggesting that direction and strength of associations 
depend on sex and degree of urbanization. Our exploratory analysis 
suggested a positive association of unfavorable levels of air pollutants 
and lack of greenness with BMI in urban men, whereas lack of greenness 
was suggestive of lower BMI in rural women. In addition, we observed a 
complex interaction between traffic-related pollution and greenness on 
BMI using a two-exposure model, suggesting that the association of air 

pollution with obesity may differ with the presence or absence of 
greenness and vice versa. 

4.2. Sex- and urbanization-specific associations of environmental 
exposures with obesity 

We did not expect to see protective effects of higher air pollution, air 
temperature and lack of greenness on obesity in women, nor did we 
hypothesize opposite associations of environmental exposures in rural 
and urban areas. These findings require discussion and further expla-
nation. One explanation for the sex-specific associations could be re-
sidual confounding that occurs only in women, such as menopause, for 
which we could not adjust. Menopause is known to increase visceral fat 
and central obesity (Chang et al., 2018; Sowers et al., 2007). The age 
range of our population (53–74 years) reflects predominantly post-
menopausal women, supporting the hypothesis that the higher BMI 
resulted from the transition of pre-to post-menopause. 

In addition, we observed differences in obesity prevalence between 

Table 4 
Associations of air pollution, air temperature and greenness body mass index (BMI) and BMI-based obesity derived from logistic or linear regression models with an 
interaction term for sex.   

IQR BMI Obesity (BMI) 

Men Women pinteraction Men Women pinteraction 

estimate (95% CI) estimate (95% CI) OR (95% CI) OR (95% CI) 

NO2 [μg/m3] 6.3 0.21 (− 0.20, 0.61) − 0.60 (− 0.96, − 0.23) 0.004 1.13 (0.95, 1.34) 0.81 (0.68, 0.95) 0.006 
NOx [μg/m3] 8.7 0.17 (− 0.16, 0.51) − 0.39 (− 0.7, − 0.07) 0.016 1.11 (0.96, 1.28) 0.86 (0.75, 0.99) 0.013 
O3 [μg/m3] 3.5 0.00 (− 0.42, 0.41) − 0.07 (− 0.44, 0.31) 0.822 1.03 (0.86, 1.24) 1.01 (0.85, 1.19) 0.823 
PM10 [μg/m3] 2.0 0.32 (− 0.07, 0.71) − 0.41 (− 0.77, − 0.06) 0.006 1.21 (1.02, 1.43) 0.82 (0.70, 0.97) 0.001 
PMcoarse [μg/m3] 1.5 0.16 (− 0.22, 0.54) − 0.42 (− 0.76, − 0.08) 0.024 1.16 (0.98, 1.36) 0.87 (0.75, 1.01) 0.012 
PM2.5 [μg/m3] 1.4 0.19 (− 0.18, 0.56) − 0.34 (− 0.69, 0.01) 0.039 1.08 (0.92, 1.27) 0.87 (0.75, 1.02) 0.059 
PM2.5abs [10− 5m− 1] 0.3 0.30 (− 0.11, 0.71) − 0.57 (− 0.95, − 0.19) 0.002 1.15 (0.96, 1.37) 0.80 (0.68, 0.95) 0.004 
PNC [n/cm3] 1924 0.23 (− 0.08, 0.54) − 0.29 (− 0.57, 0.00) 0.015 1.15 (1.00, 1.31) 0.86 (0.76, 0.98) 0.003 
Annual temperature [◦C] 0.6 0.19 (− 0.19, 0.56) − 0.43 (− 0.78, − 0.09) 0.017 1.13 (0.96, 1.33) 0.91 (0.78, 1.06) 0.055 
Winter temperature [◦C] 0.4 0.11 (− 0.24, 0.45) − 0.26 (− 0.57, 0.06) 0.123 1.10 (0.94, 1.27) 0.96 (0.84, 1.11) 0.216 
Summer temperature [◦C] 0.8 0.21 (− 0.17, 0.59) − 0.52 (− 0.86, − 0.17) 0.005 1.13 (0.96, 1.34) 0.88 (0.75, 1.02) 0.025 
Greenness (NDVI) 0.1 − 0.20 (− 0.58, 0.18) 0.63 (0.29, 0.98) 0.001 0.87 (0.74, 1.03) 1.27 (1.09, 1.48) 0.001 

Legend: Effect estimates and ORs were calculated by single-exposure linear (BMI) and logistic (obesity) regression models with an interaction term for sex. Models were 
additionally adjusted for age, physical activity, alcohol, smoking, and education. Estimates and ORs are given per interquartile range increase in exposure. Pinteraction is 
the p-value derived from the interaction term between the respective exposure and sex. 
Abbreviations: OR = Odds Ratio, 95% CI = 95% confidence interval, PNC = Particle number concentration, NDVI = Normalized difference vegetation index. 

Fig. 2. Associations between BMI and environmental exposures considering effect modification by urbanization in sex-stratified samples. Urbanization-specific effect 
estimates are given as interquartile range increase in exposure adjusted for age, physical activity, alcohol, smoking, and education. Stars indicate significant 
interaction with a p < 0.05; error bars present 95 % confidence intervals. 
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urbanized regions. In our study, rural women were more likely to be 
obese than urban women, whereas obesity prevalence was similar in 
urban and rural men. This is consistent with global trends in obesity 
prevalence, which showed that in high-income countries, obesity prev-
alence is higher in rural areas than in urban areas; especially among 
women (NCD Risk Factor Collaboration, 2019). In contrast, environ-
mental exposure concentrations were higher in urban than in rural 
areas, leading to the suggestive protective effects we observed in rural 
men and women. Rural areas may have additional factors contributing 
to obesity risk that we were not able to adjust for in our analyses, thus 
masking the effect of environmental exposures. For example, rural areas 
often lack public transportation within walking distance of the residents. 
This increases the reliance on motorized transport options, such as cars, 
which are often parked directly in front of homes, reducing walkways 
and physical activity levels (Wang et al., 2013). Therefore, monitoring 
the degree of active transportation in future studies could add important 
evidence on this potential pathway. Moreover, rural populations may 
have different eating habits including higher meat consumption and 
more hearty foods (Trivedi et al., 2015). Our results suggest that these 
obesogenic factors in rural areas may affect men and women unequally, 
as the suggested protective effects were more pronounced in rural 
women. This again indicates a complex interdependence of the effects of 
urbanization and sex on the association between environment and 
obesity. This is where the concept of sex/gender may come into play, 
taking into account the different life circumstances and roles of women 
and men in society, which may differ between urban and rural areas. As 
the concept of sex/gender is rarely explored in environmental epide-
miology (Clougherty, 2010; Bolte et al., 2018, 2019), our findings call 
for more research in this area to disentangle our conflicting sex-specific 
associations between environment and obesity. 

This complex interaction of both, sex and urbanization were most 
evident in the association between greenness and BMI. This may be 
explained by two different reasons. First, green spaces in urban areas are 
often parks used for recreational purposes. In contrast, high NDVI values 
occur mainly in rural areas, which are often forests or areas used for 

pasture or agriculture (Dempsey et al., 2018). Whether this type of 
greenness has the same positive effects on mental health or physical 
activity as parks in urban areas needs to be investigated. However, by 
accounting for urbanization, we may have automatically distinguished 
between these different vegetation types. This clearly indicates the need 
for improved measures of greenness to better characterize vegetation 
types and to be able to disentangle their different health effects. Second, 
sex-specific effects could also be due to differences in green space usage 
between men and women. While urban men in our study benefited from 
higher levels of greenness, this effect was not found for urban women. 
Recent studies have highlighted sex differences in the use of urban 
parks, showing that women are less likely to visit parks and to exercise in 
parks (Derose et al., 2018; Evenson et al., 2019; Lapham et al., 2016). 
Safety concerns and fear of crime are important factors in park use, and 
also contribute to sex differences, as women are more likely to have 
safety concerns (Sowers et al., 2007). Moreover, a study by Astell-Burt 
et al. (2014) showed that beneficial mental health effects of urban 
greenness vary over time, indicating an age and sex dependent effect of 
greenness. While women older than 40 years with moderate degree of 
greenness benefitted the most, men experienced protective effects in 
young adulthood (Astell-Burt et al., 2014). 

Moreover, we note that the confounding and interaction between 
traffic-related air pollution and greenness differed by sex and urbani-
zation, further complicating the association between environmental 
exposures and obesity. The beneficial effect of greenness in urban men 
seemed to be explained by PM2.5abs, while we did not observe any 
confounding effect in urban women or in rural residents. Based on the 
interaction analysis in the two-exposure model, we hypothesize that the 
presence of greenness and air pollution result in different interactions 
that contribute differently to health risks in urban and rural areas. A 
possible explanation for these different interactions could be air pollu-
tion mitigation by greenness, which depends on vegetation type, tree 
species, diversity, age and size of the green space (van den Bosch et al., 
2024; Nemitz et al., 2020), but to discuss this in detail is beyond the 
scope of this study. Further studies should explore this interplay of 

Fig. 3. Associations between BMI and selected environmental exposures from the single-exposure linear model and the two-exposure linear model, including an 
interaction term between exposures and urbanization. Effects estimates are given as interquartile range increase in exposure for BMI; error bars present 95 % 
confidence intervals. Abbreviations: adj. = adjusted. 
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co-occurring environmental factors to corroborate our findings. 

4.3. Comparison to previous literature 

4.3.1. Air pollution 
As summarized in the review by Rajagopalan and Brook (2012), 

there is strong evidence from animal studies demonstrating effects of air 
pollution on metabolism. Inhalation of PM2.5 over several weeks resul-
ted in increased insulin resistance, accretion of lipids and fatty degen-
eration of adipose tissue in mice (Rajagopalan and Brook, 2012). In our 
study, higher air pollution was associated with a higher diabetes prev-
alence in human males, which is in line with a previous meta-analysis 
and a systematic review (He et al., 2017; Yang et al., 2020). He et al. 
(2017) found a clear effect of PM2.5 associated with a 1.25-fold higher 
risk of diabetes after pooling eleven studies. Furthermore, a 
meta-analysis in 2020 confirmed this association and additionally re-
ported an increased risk of diabetes with increasing NO2 and PM10 levels 
(Yang et al., 2020). We add evidence that even more air pollutants, such 
as NOx, PMcoarse, and PNC appear to be associated with diabetes prev-
alence in men. An analysis of another German cohort study revealed a 
10% higher risk for incident diabetes with increasing PM10, which was 
more pronounced in men than in women and therefore, consistent with 
our results (Weinmayr et al., 2015). However, the study was also able to 
show effect modifications with age, education, and BMI, which we did 
not find. In addition, another meta-analysis reported potentially stron-
ger effects in women, which contradicts to our results (Wang et al., 
2014). Further studies are needed to examine sex-specific associations 
between environmental exposures and diabetes and to investigate 

possible biological differences in sex-specific susceptibility. 
We found mixed results regarding the association of air pollution 

with obesity, but previous studies of this association have also been 
inconclusive. For example, Bowe et al. (2021) reported that PM2.5 was 
associated with a higher weight gain and risk for obesity in a cohort of 
predominantly male participants, whereas we initially failed to show 
any association between environmental exposure and obesity in men. 
Only after controlling for urbanization, we observed similar effects in 
urban male residents. Furthermore, Bowe et al. (2021) found these as-
sociations to be non-linear, their exposure-response functions were 
positive and indicated a steeper slope for lower PM2.5 levels, which is 
quite different from our findings. Hwang et al. (2019) did not observe 
any association between NO2 or PM10 and obesity and these results were 
not modified by sex. In contrast, Li et al. (2015) reported significant 
associations of NO2, PM10 and O3 with obesity prevalence in Chinese 
adults, which remained only significant for women after stratification by 
sex. Results from the UK Biobank are partially consistent with our mixed 
findings (Furlong and Klimentidis, 2020). While exposure to PM was 
generally positively associated with BMI, they observed a negative as-
sociation for NO2. In fact, none of these studies tested for an effect 
modification by urbanization. Only Liu et al. (2021) demonstrated 
urbanization-specific associations of air pollution with obesity in China, 
with stronger adverse effects of air pollutants in rural areas compared to 
urban areas. The authors argued that the air pollutant composition may 
be more toxic in rural areas. However, these results are in contrast to our 
findings, where the effects appeared to be protective against obesity in 
rural areas. 

Fig. 4. 3D surface plots of the sex- and urbanization-specific associations between BMI and selected environmental exposures derived from two-exposure model with 
a thin plate spline and a multiplicative interaction term between PM2.5abs and NDVI. 
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4.3.2. Air temperature 
We showed a positive association between air temperature exposure 

and prevalent diabetes in men. This is in line with previous studies that 
found a positive association of air temperature with glucose metabolism 
markers and prevalent diabetes (Valdes et al., 2019; Speakman and 
Heidari-Bakavoli, 2016). It is possible that lower temperature increases 
brown adipose tissue which is associated with improved glucose ho-
meostasis and higher energy expenditure (Marlatt and Ravussin, 2017). 

In contrast, we found a negative association of higher mean summer 
temperature with obesity in women and no association with obesity in 
men. This contradicts the findings of Yang et al. (2015) and Valdes et al. 
(2014), who observed higher odds for higher mean temperatures in a 
Korean and a Spanish cohort study. However, Speakman and 
Heidari-Bakavoli (2016) also could not show an association between 
temperature and obesity prevalence. In addition, a review claimed that 
the effect of low temperature on energy metabolism via brown adipose 
tissue stimulation is rather small (Marlatt and Ravussin, 2017). More-
over, these studies often focused on short-term exposure to low air 
temperature, therefore it is unclear whether long-term air temperature 
affects brown adipose tissue and if this leads to improved metabolic 
health (Marlatt and Ravussin, 2017). It is also possible that the tem-
perature range in our study was too small. Compared to the other studies 
(Valdes et al., 2014, 2019; Yang et al., 2015; Speakman and 
Heidari-Bakavoli, 2016), the mean air temperature ranged only from a 
minimum of 9.2 ◦C to a maximum of 11.2 ◦C in our comparable small 
study area. 

4.3.3. Greenness 
In good agreement with our findings, a systematic review of seven 

studies on green spaces and diabetes observed that higher levels of green 
spaces and shorter distances to green spaces had protective effects on 
diabetes (De la Fuente et al., 2020). However, these studies did not 
analyze the effects separately for men and women, therefore, our results 
add sex-specific evidence on the beneficial effects of greenness on dia-
betes risk. Our results suggest that men benefitted more from higher 
greenness around their homes. Explanations such as sex-specific park 
use were already discussed above. 

Comparable to our findings on greenness and obesity, Dempsey et al. 
(2018) found U-shaped exposure-response functions when investigating 
NDVI with obesity prevalence in an Irish cohort (Dempsey et al., 2018). 
As the lowest and highest NDVI quintiles were associated with higher 
odds of obesity, the authors argued that a lack of detailed character-
ization of greenness might be the reason, as we have discussed earlier. 
We provided evidence for this hypothesis by examining the effect 
modification by urbanization, which may have served as a proxy for 
differences in greenness. On the other hand, a study from Sweden re-
ported lower odds of central obesity and reduced increase in WC with 
increasing NDVI levels only in women (Persson et al., 2018), which 
contradicts our results. However, compared to our sample, women were 
generally younger (aged 35–56) and exclusively from urban areas, so it 
could be hypothesized that greenness is less important for middle-aged 
to older adults. 

4.4. Strengths and limitations 

Our study has several strengths. First, the KORA-Fit study provides 
several environmental exposures in the year or prior to the year of the 
participants’ examination. Second, the rich data set allowed us to adjust 
for multiple confounders and to investigate potential effect modifica-
tions. Furthermore, the KORA study region covered urban as well as 
rural areas, which enabled us to examine urbanization-specific effects. 
Finally, we were able to perform several sensitivity analyses to 
demonstrate the robustness of our results. 

Nevertheless, several limitations must be acknowledged when 
interpreting the results of our study. First, we were unable to adjust for 
dietary factors, which are important independent risk factors for obesity 

and diabetes (Bellou et al., 2018; Schlesinger et al., 2019). However, our 
sensitivity analyses within a subpopulation that included dietary factors 
instead of education did not reveal major differences between models. 
Second, we could not distinguish between different types of diabetes, e. 
g., gestational diabetes or type 1 diabetes, because we did not have this 
information. However, only two participants reported an age at diag-
nosis of less than 20 years. If these were cases of type 1 diabetes, the 
effect on the associations would be negligible. Third, we must be 
cautious in interpreting the results of our exploratory analyses, such as 
secondary effect modifications and the two-exposure model. Regarding 
the secondary effect modification by urbanization, our sample size may 
have been underpowered; therefore, our subgroup analysis should be 
interpreted as an explanatory analysis and was not designed to formally 
test for significance. Moreover, because of the high correlation between 
exposures, the effect estimates resulting from the two-exposure models 
may be biased due to multicollinearity. Moreover, our study region was 
too small to show variability in air temperature levels and therefore, 
may not be able to detect associations with metabolic disease which also 
kept us from including air temperature in the two-exposure model. 
Larger studies with more exposure contrast are needed to confirm our 
findings. In addition, not all environmental factors were available in the 
year of examination and no longer exposure periods than one-year av-
erages were considered. This may increase the risk of misclassification. 
However, we did not expect changes in spatial contrasts over the years 
and sensitivity analysis excluding movers within the last 10 years 
showed robust results. Lastly, due to a large number of missing data, we 
could not assess the effect of noise on metabolic disease, which is a 
relevant environmental risk factor, and few studies have been able to 
demonstrate an association with metabolic health (Gui et al., 2022; 
Sorensen et al., 2022; Eze et al., 2017). 

5. Conclusion 

We investigated the effects of air pollutants, air temperature, and 
surrounding greenness on metabolic outcomes in a population-based 
cohort of middle-aged to older adults. We showed that adverse envi-
ronmental exposures were associated with higher diabetes prevalence in 
men. In addition, our results indicated a complex interaction of sex and 
urbanization on the association of environmental exposures with 
obesity. Finally, air pollution and greenness jointly influenced obesity in 
a complex manner. Therefore, our findings suggest that possible in-
teractions among environmental exposures should be further investi-
gated by taking into account differences between sex and urbanization, 
especially for study regions comprising urban and rural areas. 
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