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Einleitung

Die Statistik hat sich in den letzten Jahren zunehmend zu einem unentbehr-

lichen Begleiter der medizinischen Wissenschaft entwickelt.

Der Einsatz von Computern lässt hochkomplexe Analysen zu, deren Aussa-

gewerte die Effizienz der medizinischen Forschung erheblich steigern können.

Frühzeitige Diagnosen und die Prognose des Therapieerfolges sind Teile da-

von.

Die dadurch umfangreichen Datensätze führen jedoch zu einer immer größe-

ren Anzahl von Variablen. Um die Durchführbarkeit der Analysen zu gewähr-

leisten, gilt es, die Anzahl der Variablen auf die aussagekräftigsten zu be-

schränken.

Ein klassisches Beispiel hierfür sind Microarray Daten.

Gerade in den letzten Jahren ist es in diesem Bereich der medizinischen

Statistik zu Veränderungen gekommen. Hochdimensionale Daten erlangen

eine immer größere Bedeutung, da man mit ihrer Hilfe weitaus komplexere

und medizinisch tiefgründigere Fragestellungen beantworten kann. Microar-

rays ermöglichen es, gleichzeitig mehrere tausend Gene zu messen, und sind

daher weit verbreitet in der medizinischen Forschung. Sie unterstützen die

Identifikation von Krankheits-Biomarkern, die u.a. wichtig sein können zur

Erkennung verschiedener Krankheiten[21] bzw. zur Prognose von Krankheits-

verläufen und der Prädiktion eines Therapieerfolges.

Das Problem bei hochdimensionalen Daten liegt darin, dass es deutlich mehr

Variablen als Beobachtungen gibt. In der Literatur wird dies häufig als

p >> n Problem bezeichnet, wobei p für die Anzahl an Variablen steht und

n für die Beobachtungen.



In Bezug auf die Genetik besteht ein solcher Datensatz aus mehreren tausend

oder sogar zehntausenden Genexpressionsvariablen, die angeben, wie ”aktiv”

ein bestimmtes Gen ist bzw. wie oft es transkribiert wurde. Da die Herstel-

lung solcher Microarray Daten sehr aufwändig und teuer ist, stehen häufig

nur wenige Beobachtungen zur Verfügung (ca. 20-300)[2].

Ziel einer statistischen Analyse ist es, anhand der vorliegenden Variablen-

ausprägungen eine möglichst sichere Entscheidung bezüglich des Vorliegens

einer Krankheit zu treffen.

Das ”Vorliegen einer Krankheit” kann als binäre oder nominale/ordinale Ziel-

größe dargestellt werden. Bei einer binären Zielgröße gilt die Fragestellung

dem Auftreten bzw. Nicht-Auftreten des Zielmerkmals, während bei nomi-

nalen oder ordinalen Responsevariablen in mehrere Klassen (≥ 3) eingeteilt

wird.

Wegen der hohen Anzahl an Variablen kann die Anwendung von Standard-

prädiktionsverfahren, wie Logistische Regression oder Diskriminanzanalyse

problematisch sein, da die Modelle überbestimmt sind und letztendlich nicht

eindeutige Lösungen der Schätzgleichungen resultieren.

Es gilt herauszufinden, welche der Variablen im Zusammenhang mit der

Krankheit stehen bzw. welche Variablen den größten Erklärungswert haben.

So werden schließlich nur die ausgewählten Variablen in die Klassifikation

mit einbezogen und die effiziente Anwendung standardmäßiger Verfahren

ermöglicht.

Für die Analyse von Microarray Daten wurden in den letzten Jahren ver-

schiedene innovative Methoden entwickelt. Daraus konnten sich Standard-

verfahren etablieren, welche sich der ”Dimensionsproblematik” annehmen.

Ziel dieser Arbeit ist es, einige dieser Verfahren aufzugreifen, zu beschrei-

ben und einen Überblick über die Eigenschaften der jeweiligen Methoden zu

geben. Dies geschieht anhand eines realen Datensatzes von Mammographie-

Screeningdaten, die aus einer öffentlich zugänglichen Datenbank erhoben

wurden.
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Im folgenden Kapitel wird zuerst grundlegend erklärt, wie mit hochdimen-

sionalen Daten umgegangen werden kann. Anschließend wird auf die hier

verwendeten Variablenselektionsverfahren eingegangen. Kapitel 2 beschreibt

die Idee des Überwachten Lernens, geht auf die Lineare Diskriminanzanaly-

se (LDA), die Logistische Regression (LogReg), die Support Vector Machine

(SVM), sowie die Least Absolute Shrinkage and Selection Operators

(LASSO) ein.

Anhand der Klassifikationsgenauigkeit wird schließlich die Güte der Varia-

blenselektionsverfahren gemessen.

Kapitel 3 gibt eine Einführung über den medizinischen Hintergrund, einen

kurzen Überblick über die Daten und erläutert schließlich die Anwendung der

Methoden. Die Ergebnisse von Variablenselektion und Klassifikation sind in

Kapitel 4 dargestellt. Abschließend folgt eine Zusammenfassung mit Diskus-

sion, Fazit und Ausblick im letzten Kapitel.
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Kapitel 1

Dimensionsproblematik

Wie bereits in der Einleitung erwähnt, führt eine zu hohe Anzahl an Variablen

bei den Standardprädiktionsverfahren zu Problemen und ungenauen Vorher-

sagen. Die Aufgabe dieses Kapitels besteht darin, die Variablenmenge so zu

reduzieren, dass einerseits eine einwandfreie Anwendung der nachfolgenden

Klassifikation ermöglicht wird und andererseits die Prädiktionsgenauigkeit

nicht negativ beeinflusst wird.

1.1 Umgang mit hochdimensionalen Daten

Die Auswahl von aussagekräftigen Variablen hat in Verbindung zu hochdi-

mensionale Daten verschiedene Ziele. Zum einen kann diese als vorangehender

Schritt zur Klassifikation gesehen werden, da die gewählte Klassifikationsme-

thode nur mit einer geringen Anzahl an Variablen umgehen kann. Zum ande-

ren kann die Variablenselektion dazu dienen, die Variablen zu identifizieren,

die mit der Krankheit assoziiert sind.

Die Klassifikation bei hochdimensionalen Daten kann man grob in drei Grup-

pen einteilen[2]:

• Ansätze, die auf vorheriger Variablenselektion beruhen

• Ansätze, die auf Dimensionsreduktion beruhen und

• Ansätze mit integrierter Variablenselektion



1.2 Vorangehende Variablenselektion

In dieser Arbeit werden verschiedene Ansätze zur Variablenselektion mit an-

schließender Klassifikation miteinander verglichen. Auch LASSO, welches ein

Verfahren mit integrierter Variablenselektion darstellt, wird in den Vergleich

mit einbezogen.

1.2 Vorangehende Variablenselektion

Bei der Variablenselektion gilt es aus einer großen Anzahl an Informationen

die wichtigsten auszuwählen, d.h. diejenigen Variablen zu selektieren, die mit

dem Auftreten der Krankheit assoziiert werden können.

Die Literatur unterscheidet hier univariate und multivariate Ansätze, die im

Folgenden kurz vorgestellt werden sollen.

Univariate Ansätze

Beim univariaten Ansatz wird jede Variable für sich betrachtet. Daher ist er

im Allgemeinen schnell und einfach durchzuführen.

Die Variablen werden nach einem bestimmten (univariaten) Kriterium sor-

tiert, z.B. nach den Werten einer Teststatistik, um schließlich die besten

dieses Rankings auszwählen. Übliche Statistiken für ein solches Ranking sind

der t-Test, der nicht parametrische Wilcoxon Rang Summen Test oder der

AUC-Wert.

Der Nachteil liegt darin, dass bei diesem univariaten Ansatz weder Korrela-

tionen noch Interaktionen zwischen den Variablen beachtet werden. So ist es

möglich, dass die ersten ausgewählten Variablen so stark miteinander kor-

relieren, dass nur einige davon brauchbare Information enthalten. In einem

solchen Fall wäre es also vorteilhafter, Variablen auszuwählen, die zwar eine

schlechtere Wertung im Ranking haben, dafür aber nicht redundante Infor-

mationen liefern.
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1.2 Vorangehende Variablenselektion

”Semi-multivariater” Ansatz

Als ”Semi-multivariat” wird der von Jaeger et al.[20] vorgestellte Korrela-

tionsansatz gesehen. Dieser basiert zum einen auf dem univariaten Ranking

nach einer bestimmten Statistik, zum anderen wird jedoch auch die paar-

weise Korrelation zwischen den Variablen betrachtet, die jeweils unter einem

bestimmten Wert liegen soll. (s. 2.3.2)

Multivariate Ansätze

In multivariaten Ansätzen werden die Variablen nun nicht mehr für sich

betrachtet, sondern Variablenkombinationen miteinander verglichen. Man

spricht hier von ”Wrapper” und ”Filter Criteria”. Das erste Kriterium ba-

siert auf der Prädiktionsgenauigkeit und somit auf der Prädiktionsregel. Das

zweite misst die Stärke der Abgrenzung (z.B. mittels der Mahalanobis Di-

stanz) verschiedener Variablenkombinationen und ist damit unabhängig von

einer Prädiktionsregel[1].

Dies führt zu rechentechnisch teils sehr aufwändigen Verfahren.

Es sei noch darauf verwiesen, dass multivariate Ansätze lediglich Korrelatio-

nen zwischen den einzelnen Variablen betrachten, jedoch keine Interaktionen.

Diaz-Uriarte und de Andrés[6] stellen eine der wenigen Methoden vor, die

dies, basierend auf Random Forests, beachten.

Variablenranking: Vorbereitung für die Selektion

Beim Variablenranking, einer Vorstufe zur Variablenselektion, werden die Va-

riablen zuerst nach einem bestimmten Kriterium sortiert.

Verwendet wird hier der AUC-Wert (Area Under the ROC Curve). Eine

ROC (Receiver Operating Characteristic) Analyse beschreibt das Verhält-

nis zwischen Sensitivität und 1-Spezifität, also zwischen der richtig positiven

und falsch positiven Rate. Trägt man beide Werte in ein Koordinatensy-

stem(Sensitivität/1-Spezifität) ein, so ergibt sich die ROC Kurve, bei der

die Fläche zwischen der Winkelhalbierenden des ersten Quadranten und der

Kurve berechnet wird[21]. Die ROC Methode zeigt, wie gut ein System zwei

Verteilungen, mindestens ordinalskalierter Merkmale, unterscheiden kann.

Dimensionsproblematik 3



1.3 Variablenselektionsmethoden

Anschaulich gesprochen ergibt sich dann ein hoher AUC-Wert, wenn sich die

Werte in den beiden Gruppen (gesund oder krank) besonders stark vonein-

ander unterscheiden, d.h. wenn die Beobachtungen ohne Krankheit andere

Variablenausprägungen haben, als die Beobachtungen mit Krankheit.

Hat man für jede Variable den AUC-Wert berechnet, werden diese sortiert.

An erster Stelle des Rankings steht die Variable mit dem höchsten AUC-

Wert, an zweiter Stelle die mit dem zweithöchsten AUC-Wert, usw..

Vorgestellt werden nun zwei Methoden, die auf diesem AUC Ranking beru-

hen, zuerst ohne Beachtung der Korrelationen zwischen den Variablen und

schließlich mit deren Berücksichtigung.

1.3 Variablenselektionsmethoden

1.3.1 Top Ranking Variablen

Eine Möglichkeit der Variablenselektion besteht darin, die ersten Variablen

dieses Rankings zu betrachten.

Es gibt keine Richtlinie bei der Bestimmung einer genauen Anzahl an Varia-

blen für die Klassifikation[23]. Daher werden hier einige Möglichkeiten aus-

probiert, um eine eventuelle Tendenz bzgl. der Anzahl an Variablen zu be-

obachten. Um ein breites Spektrum abzudecken, werden zehn verschiedene

Werte von 1% bis 100% der Ranking Liste betrachtet: 1%(entspricht den

ersten fünf Variablen), 2%(9), 5%(23), 8%(36), 10%(45), 15%(68), 22%(99),

55%(249), 70%(316) und 100%(452).

Ein Problem dieses univariaten Ansatzes ist, wie schon oben beschrieben,

dass die obersten Variablen stark korrelieren und somit redundante Informa-

tion geben könnten.

1.3.2 Korrelationen

Um dieses Problem zu vermeiden wird folgender Ansatz vorgestellt, in den die

Korrelationen mit einbezogen werden[20]. Diese sollen bei allen ausgewähl-

ten Variablen unter einer bestimmten Grenze liegen um gänzlich redundante

Dimensionsproblematik 4



1.3 Variablenselektionsmethoden

Variablen auszuschließen. Als Grenzwert werden auch hier zehn verschiedene

Werte zwischen 0 und 1 betrachtet: 0.02, 0.05, 0.2, 0.35, 0.45, 0.6, 0.75, 0.95,

0.98 und 1.

Hierfür wird eine Korrelationsmatrix berechnet, welche auf dem AUC-Ranking

beruht. D.h. die Variable mit dem größten AUC-Wert steht an erster Stel-

le, die mit dem kleinsten an letzter. Es wird die Korrelation nach Pearson

berechnet. Begonnen wird, die Korrelation mit der stärksten Variable des

Rankings zu betrachten, also die Korrelation zwischen erster und zweiter

Variable. Liegt die Korrelation unter dem vorgegebenen Grenzwert, so wird

die Variable aufgenommen, ansonsten aus der Variablenmenge entfernt. Spal-

tenweise werden die Korrelationen mit der ersten Variablen betrachtet und

bei Überschreiten des Grenzwerts aussortiert. Anschließend wiederholt sich

der Vorgang für die übrig gebliebenen Variablen, so dass schrittweise die

Korrelation aller Variablen untereinander mit dem Grenzwert abgeglichen

werden. Es resultiert schließlich eine Variablenmenge, deren Korrelationen

jeweils den Grenzwert nicht überschreiten.

Der Ansatz kann leicht verändert werden, indem die stärkste Variable weg-

gelassen und eine Korrelationsmatrix, die mit der zweitstärksten Variablen

beginnt, für die Selektion genutzt wird.

Interessant hierbei ist, inwiefern sich das Wegnehmen der stärksten Variablen

des Rankings auf die resultierende Variablenmenge und die Klassifikations-

genauigkeit auswirkt.

Ein weiterer Vergleich kommt zustande mit der drittstärksten Variablen an

erster Stelle der Korrelationsmatrix und dem Weglassen der beiden AUC

stärksten Variablen.

Auch für die Ansätze mit der zweit- und drittstärksten Variablen des Ran-

kings gelten dieselben Korrelationsgrenzen wie oben aufgelistet.

Um das Ranking und die Korrelationsansätze untereinander vergleichbar zu

machen, wurde darauf geachtet, dass bei beiden jeweils etwa gleiche Var-

iablenanzahlen resultieren. Gleichzeitig wurde das Gitter für

Dimensionsproblematik 5



1.3 Variablenselektionsmethoden

Variablenanzahlen, die kleiner als 100 sind, feiner gestaltet, weil es von In-

teresse ist, zu sehen, wie die Variablenselektionsmethoden bei kleinen Varia-

blenmengen abschneiden. Ziel ist es, mit möglichst wenigen Variablen eine

möglichst gute Prognose zu erreichen.

1.3.3 Einfache Vorwärtsselektion

Zum Vergleich dient auch die einfache Vorwärtsselektion, beruhend auf dem

BIC Kriterium (Bayes Informationskriterium).

Hier wird ein logistisches Modell an die Daten angepasst, in das schritt-

weise weitere Variablen aufgenommen werden, nämlich immer die, mit der

das neue Modell den geringsten BIC-Wert aufweist. Ergeben sich bei Hin-

zunahme einer weiteren Variablen keine Verbesserungen mehr, so wird die

Vorwärtsselektion an dieser Stelle abgebrochen und die Variablenmenge als

die optimalste gesehen[10].

Dimensionsproblematik 6



Kapitel 2

Supervised Learning

Überwachtes Lernen (Supervised Learning) spielt eine wichtige Rolle in der

Statistik und wird in der Literatur ausführlich behandelt. Nachfolgend wird

ein kurzer Einblick gegeben über die Definition des Supervised Learnings im

Allgemeinen und über einzelne Methoden im Speziellen.

Eine Beobachtungseinheit ω ∈ Ω, von der nicht bekannt ist, welcher Klasse

sie angehört, soll mit Hilfe des an ihr beobachteten Merkmalsvektors xω in

eindeutiger Weise genau einer der Klassen y = 1, ..., g zugeordnet werden.

Typische Fragestellungen in der Medizin diesbezüglich lauten z.B. ”Hat der

Patient mit diesen Merkmalen Krebs oder nicht?” oder ”Welchen Schwere-

grad hat der Tumor des Patienten bei diesen Laborwerten?”.

Um solche Problemstellungen behandeln zu können werden in diesem Zusam-

menhang der so genannte Lerndatensatz und der Testdatensatz eingeführt.

Diese dienen dazu, zuerst aus den Daten zu ”lernen” um schließlich das Ge-

lernte an neuen Daten zu ”testen”.

Der Lerndatensatz, für den die Zielvariable bereits bekannt ist, entspricht

einer Zufallsauswahl an Beobachtungseinheiten aus der Grundgesamtheit,

anhand derer eine Regel aufgestellt wird. Mithilfe dieser konstruierten Regel

wird künftig, allein durch Übergabe der verschiedenen Merkmalsausprägun-

gen (z.B. klinische Messwerte, Alter, Geschlecht, etc.), eine Entscheidung



bzgl. Krankheit oder nicht Krankheit getroffen(→ Klassifikation). Auf den

Testdatensatz wird die gelernte Regel anschließend angewendet.

Bewertet wird die Güte einer Entscheidungsregel schließlich anhand der Ge-

nauigkeit ihrer Zuordnung, d.h. der Übereinstimmung vorhergesagter und

tatsächlich beobachteter Werte[16].

Mit dem gegebenen Prädiktorraum X ∈ Rp und der abhängigen Variablen

Y ∈ {1, ..., g} liegt eine Stichprobe von Paaren aus Prädiktor- und Klassen-

variablen vor: S = {(x1, y1), ..., (xn, yn)}
Es soll nun eine Entscheidungsregel aufgestellt werden, die jeder Beobach-

tung x aus dem Stichprobenraum S einen geschätzten Klassifikationsindex

ŷ ∈ {1, ..., g} zuordnet und dabei nur möglichst geringe Fehlentscheidungen

zulässt.

Prinzipiell kann zwischen der Maximum-Likelihood- und der Bayes-

Entscheidungsregel unterschieden werden, wobei die Bayes-Entscheidungsregel

(siehe Kapitel 3.1) für alle x die kleinste bedingte Fehlerrate

ε(x) = P (δ(x) 6= y|x)) und damit auch die kleinste Gesamtfehlerrate

ε =
∫
ε(x)f(x)dx =

∫
P (δ(x) 6= y|x))f(x)dx besitzt.

Solche Entscheidungsfunktionen

δ̂ : X → Y

x→ δ̂(x)

werden gebildet, indem durch Merkmalsausprägungen und deren bereits be-

kannter Klassenzugehörigkeit eine Zuordnungsregel aufgestellt wird[28].

Ein mögliches Vorgehen ist den Datensatz in einen so genannten Lern- und

Testdatensatz aufzuspalten, wobei sowohl Lern- als auch Testdatensatz be-

kannte Responses haben.

Anhand des Lerndatensatzes L = {(x1L, y1L), ..., (xnL, ynL)} wird die Ent-

scheidungsregel aufgestellt und diese mit Hilfe des Testdatensatzes

T = {x1T , ...,xnT } evaluiert. Dies geschieht indem die resultierenden Klas-

sen mit der wahren Ausprägung verglichen werden.

Supervised Learning 8



2.1 Lineare Diskriminanzanalyse

Wichtig ist, dass L und T disjunkte Teilmengen sind. Jede der Beobachtun-

gen aus der Grundgesamtheit L ∪ T darf demnach entweder nur in L oder

nur in T vorkommen.

Die im Folgenden beschriebenen Klassifikationsverfahren sind, mit Ausnahme

von LASSO, Techniken, bei denen die Klassengrenzen linear in den Prädiktor-

variablen x sind. Der Variablenraum wird in seine Klassen zerlegt, getrennt

durch Hyperebenen1 als Klassengrenzen.

2.1 Lineare Diskriminanzanalyse

Mit der Diskriminanzanalyse wird eine Methodenklasse vorgestellt, die Dis-

kriminanzfunktionen δy(x) für jede Klasse modellieren und den Variablen-

vektor x schließlich in die Klasse einordnet, die den größten Wert für seine

a posteriori Wahrscheinlichkeit bzw. Diskriminanzfunktion besitzt[16]. Die

Bayes Entscheidungsregel lautet δ(x) = y ⇐⇒ P (y|x) = max
i=1,...,g

P (i|x).

Für eine optimale Klassifikation werden die a posteriori Wahrscheinlichkei-

ten P (Y = y|X = x) oder deren monotone Transformationen benötigt, die

die Wahrscheinlichkeit angeben, dass eine Beobachtungseinheit mit Merk-

malsvektor x der Klasse y angehört. Diese kann man über das Theorem von

Bayes bestimmen:

P (y|x) =
f(x|y)f(y)

f(x)
=

fy(x)πy∑y
l=1 fl(x)πl

mit der bedingten Dichte fy(x) von x in Klasse y und der a priori Wahr-

scheinlichkeit πy für Klasse y mit
∑
πy = 1.

Mögliche Diskriminanzfunktionen sind [24]:

δy(x) = P (y|x) oder δy(x) = f(x|y)π(y)

Nimmt man nun multivariat normalverteilte Klassendichten, x ∼ Np(µ,Σy),

an, so ergibt sich für die Verteilung der Merkmale, gegeben der Klasse:

1Hyperebenen sind: in R2 Geraden, in R3 Ebenen, in R4 dreidimensionale Ebenen, etc.
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2.1 Lineare Diskriminanzanalyse

f(x|y) =
1

(2π)
p
2 det(Σy)

1
2

exp{−1

2
(x− µy)TΣ−1

y (x− µy)} (2.1)

mit

Σy als Kovarianzmatrix in Klasse y = 1, ..., g

x als Merkmalsvektor und

µy als Mittelwert der Klasse y

Gleichung (2.1) eingesetzt in die logarithmierte Form der Bayes Regel führt

zu den Diskriminanzfunktionen

δy(x) = −1

2
(x− µy)TΣ−1

y (x− µy)−
1

2
ln(det Σy) + ln π(y)

Sowohl der Term (2π)
p
2 als auch f(x) fallen raus und kommen nicht mehr

in δy(x) vor, da beide konstant sind. Gut erkennbar ist, dass die a posteriori

Wahrscheinlichkeit nicht mit der Diskriminanzfunktion übereinstimmt.

Die Lineare Diskriminanzanalyse ergibt sich für den Spezialfall von klassen-

weise identischen Kovarianzmatrizen Σy = Σ mit y = 1, ...g.

Bei der Linearen Diskriminanzanalyse handelt es sich um einen entschei-

dungstheoretischen Ansatz (im Gegensatz zur historisch älteren Fischerschen

Diskriminanzanalyse[11]). Ein Vorteil der LDA besteht in ihrer Invarianz ge-

genüber nichtsingulären Transformationen (x → Ax + b). Das Klassifikati-

onsergebnis bleibt also selbst bei Merkmalstransformationen gleich[9].

Mit Hilfe der Bayes Regel P (y|x)αf(x|y)π(y) in logarithmierter Form ergibt

sich für die Diskriminanzfunktion bei Normalverteilung mit gleichen Kovari-

anzen Σy = Σ:

δy(x) = −1

2

quadr.MahalanobisDistanz︷ ︸︸ ︷
(x− µy)TΣ−1(x− µy) + ln π(y)

α µTy Σ−1x− 1

2
µTy Σ−1µy + ln π(y)
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2.1 Lineare Diskriminanzanalyse

Bei gleichen a priori Wahrscheinlichkeiten(π1 = ... = πg) wird x der Klasse

zugeordnet, deren quadratische Mahalanobis Distanz minimal ist.

Da in der Praxis die Parameter der Normalverteilung meist nicht bekannt

sind, müssen diese aus der Lernstichprobe geschätzt werden:

• π̂(y) = ny

n
die geschätze a priori Wahrscheinlichkeit für Klasse y

• µ̂y = xy =
∑g

y=1
xy

ny
der geschätzte Klassenmittelpunkt

• Σ̂ = 1
N−g

∑g
y=1

∑ny

i=1(yiy − xy)(xiy − xy)T

mit ny: Anzahl der Beobachtungen in Klasse y

N : Anzahl der Beobachtungen insgesamt und

g: Anzahl der Klassen

Diese Schätzer ergeben den Schätzer für die Diskriminanzfunktionen:

δ̂y(x) = µ̂Ty Σ̂−1x− 1
2
µ̂Ty Σ̂−1µ̂y + ln π̂(y)

Speziell für den Zwei-Klassen-Fall ergibt sich folgende Zuordnungsregel:

δ(x) = δ0(x)− δ1(x) = [x− 1

2
(µ0 − µ1)]

TΣ−1(µ0 − µ1)− ln
π(1)

π(0)

x wird Klasse 1 zugeordnet, wenn δ(x) > 0.

Die Klassengrenzen bestehen abschnittsweise aus Hyperebenen, die sich aus

δ0(x) = δ1(x) für zwei benachbarte Gebiete ergeben.

Betrachtet man die log-odds der a posteriori Wahrscheinlichkeiten bei iden-

tischen Kovarianzmatrizen,

log
P (k|x)

P (l|x)
= log

fk(x)

fl(x)
+ log

πk
πl

= log
πk
πl
− 1

2
(µk + µl)

TΣ−1(µk + µl) + xTΣ−1(µk + µl)

so erkennt man, dass die Grenze zwischen den Klassen k und l linear in x ist,

wie für jedes andere Klassenpaar auch.
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2.2 Logistische Regression

Wird der gesamte Stichprobenraum X ∈ Rp, p ≥ 3 in seine Klassen aufge-

teilt, so sind diese durch Hyperebenen getrennt.

2.2 Logistische Regression

Die Logistische Regression kann als Methode für Regression oder für Klas-

sifikation angewendet werden. In Bezug auf Regression geht es darum, den

Einfluss von bestimmten Variablen auf das Zielmerkmal zu bestimmen. In

der Klassifikation geht es, wie bereits oben beschrieben, darum Objekte

mit bestimmten Merkmalsausprägungen einer Klasse zuzuordnen. Der Zwei-

Klassen-Fall des Logit Modells ist weit verbreitet in der medizinischen Stati-

stik, da hier häufig binäre Fragestellungen behandelt werden, wie z.B. Patient

überlebt/stirbt[16].

Die Logistische Regression ist im Vergleich zur LDA allgemeiner, indem weni-

ger Annahmen getroffen werden. Im Vergleich zur LDA wird im logistischen

Modell keine Annahme über die Verteilung von x|y getroffen, genauso wie

auch die a priori Wahrscheinlichkeit zur Zugehörigkeit zu einer Klasse nicht

spezifiziert wird[24].

Das Logit-Modell gibt die Wahrscheinlichkeit an, dass das Objekt mit Merk-

malsausprägung x in Klasse y = 1 kommt[9]:

P (y = 1|x) = F (x′β) =
exp(x′β)

1 + exp(x′β)

Auch hier sind die Parameter von P (y = 1|x) i.d.R. unbekannt und werden

geschätzt, indem die bedingte Likelihood maximiert wird. Im Fall der LDA

geschieht dies durch Maximierung der vollen log Likelihood.

Da mit der Berechnung des Modells lediglich eine Wahrscheinlichkeit resul-

tiert, aber noch keine Zuordnung zu einer Klasse, wird ein Schwellenwert

bestimmt, ab dem ein Objekt in Klasse 1 angenommen wird. Üblich ist, die-

sen Grenzwert auf 0.5 zu setzen (aber auch jeder andere Wert ist möglich),
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so dass die Entscheidungsregel

δ(x) = 1 ⇐⇒ P (y = 1|x) ≥ 1

2

lautet und x Klasse 1 zugeordnet wird, falls δ(x) = β0 + βTx ≥ 0, ansonsten

Klasse 0.

Resultiert dem Modell nach eine Wahrscheinlichkeit, die größer als 0.5 ist, so

wird die Beobachtung zu Klasse 1 zugeordnet. Liegt die Wahrscheinlichkeit

unter 0.5, so erfolgt die Zuordnung zu Klasse 0.

Auch die Logistische Regression liefert lineare Klassengrenzen, anschaulich

gezeigt durch die log-posterior odds zwischen Klasse 0 und 1:

log
P (y = 1|x)

P (y = 0|x)
= log

exp(η)/1 + exp(η)

1/1 + exp(η)
= log exp(η) = β0+β1xi1+...+βpxip

2.3 Support Vector Machines

Die Grundidee der Support Vector Machines (SVM) liegt in der Klassifikati-

on durch trennende Hyperebenen. Hierbei soll eine Hyperebene so durch die

Daten gelegt werden, dass die Punkte ihrer Klasse nach getrennt werden. Da

es für diesen Fall möglicherweise unendlich viele trennende Hyperebenen gibt,

stellt sich die Frage nach einer eindeutig und optimal trennenden Hyperbene,

also eine Hyperebene, die den Rand zwischen beiden Klassen maximiert[13].

Die Idee hierbei ist, dass je größer der Rand bei den Trainingsdaten ist, de-

sto besser die beiden Klassen voneinander getrennt werden können. Umso

genauer ist dann auch die Klassifikation bei den Testdaten[16]. Als Rand

bezeichnet man die beiden Hyperebenen, parallel und beidseitig der trennen-

den, zwischen denen keine Datenpunkte liegen. Die Punkte direkt auf dem

Rand, also die Punkte, die der trennenden Hyperebene am nächsten liegen,

heißen Support Vectors. In die Identifikation der Support Vectors gehen also

alle Punkte mit ein. Für die optimale Hyperebene sind schließlich nur die

Support Vectors von Bedeutung[29].
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2.3 Support Vector Machines

In der Praxis treten zwei verschiedene Datenstrukturen auf: Klassen, die

linear trennbar sind (Abb.2.1) und Klassen, die nicht linear trennbar sind.

Betrachtet wird ein binäres Klassifikationsproblem mit n Beobachtungspaa-

ren {(x1, y1), (x2, y2), ..., (xn, yn)} mit xi ∈ Rp und yi ∈ {−1, 1}. Im Fol-

genden werden Möglichkeiten beschrieben, linear und nicht linear trennbare

Klassen zu klassifizieren[16].

2.3.1 Optimal trennende Hyperebenen

Optimal trennbare Hyperebenen können nur bei linear trennbaren Problemen

bestimmt werden. Da sie die Voraussetzung für die Support Vector Machines

bilden, werden sie hier genauer beschrieben:

Die Hyperebene ist defniert als xTi β + β0 = 0

Nun soll der Rand M um diese Hyperebene maximiert werden, also

maxβ,β0M (2.2)

unter den Bedingungen

||β|| = const. und yi(x
T
i β + β0) ≥M ∀i = 1, ..., n (2.3)

Für ||β|| = 1/M sind (2.2) und (2.3) äquivalent zu

minβ,β0

1

2
||β||2 mit

yi(x
T
i β + β0) ≥ 1 ∀i = 1, ..., n

wobei die Bedingungen besagen, dass der Rand um die Hyperebene leer sein

soll und eine Breite von 1/||β|| besitzt.

Hierbei handelt es sich um ein quadratisches Optimierungsproblem mit li-

nearen Ungleichungsbedingungen.

Die Lösung dieses quadratischen Optimierungproblems erfolgt mit Hilfe der

Lagrange Funktion.
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{Margin

Support Vectors

Separating
Hyperplane

Abbildung 2.1: Optimal trennende Hyperebene[26]

Primal Lagrange Funktion:

LP =
1

2
||β||2 −

n∑
i=1

αi[yi(x
T
i β + β0)− 1] (2.4)

mit den Lagrange Multiplikatoren αi[24].

Die partiellen Ableitungen von (2.4) nach β und β0 liefern:

∂LP
∂β

: β̂ =
n∑
i=1

αiyixi

∂LP
∂β0

=
n∑
i=1

αiyi = 0

Die so genannte Wolfe dual Funktion ergibt sich durch das Einsetzen von β̂

in (2.4):

LD =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj

Die Multiplikatoren αi erfüllen zugleich die Kuhn-Tucker Bedingungen[16]:

- β =
∑n

i=1 αiyixi

- 0 =
∑n

i=1 αiyi
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2.3 Support Vector Machines

- αi ≥ 0

- αi[yi(x
T
i β + β0)− 1] = 0 ∀i

Ist αi > 0 (und somit yi(x
T
i β+β0) = 1), so liegt xi genau auf dem Rand und

wird als Support Vector bezeichnet.

Die Funktion der optimal trennenden Hyperebene lautet schließlich:

f̂(x) = xTi β̂ + β̂0

Um eine neue Beobachtung zu klassifizieren wird

Ĝ(x) = sgn f̂(x)

verwendet.

2.3.2 Support Vector Classifier

Bei dem Support Vector Classifier handelt es sich um eine Möglichkeit, auch

bei sich überlappenden Klassen eine linear trennende Hyperebene zu defi-

nieren. Bei diesem Vorgehen wird wieder eine Hyperebene mit maximalem

Rand gesucht und die Überlappungen durch so genannte ”slack” Variablen

bestraft. ”Slack” Variablen ε = (ε1, ε2, ..., εl) werden definiert zur Bestrafung

der Punkte, die auf der falschen Seite der trennenden Hyperebene liegen.

Die Bedingungen für das Optimierungsproblem min||β|| lauten hier[16]:

yi(x
T
i β + β0) ≥ 1− εi ∀i

εi ≥ 0,
l∑

i=1

ε ≤ const.

2.3.3 Support Vector Machine

Support Vector Machine ist eine zweite Möglichkeit, nicht linear trennba-

re Daten zu klassifizieren. Mit Hilfe von Kernfunktionen (→ Kernel Trick)

werden die Daten aus ihrer originalen Dimension(”Input Space”) in eine
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2.3 Support Vector Machines

höhere Dimension (”Feature Space”) projiziert, wo das ursprünglich nicht

linear trennbare Problem als ein lineares Problem aufgefasst und gelöst wer-

den kann. Anschließend werden die Daten wieder in die Ausgangsdimension

zurück transformiert.

Um die Daten in eine höhere Dimension zu projizieren werden diese mit

Hilfe einer Funktion h transformiert. Die duale Lagrange Funktion ist dann

folgendermaßen definiert:

LD =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj < h(xi), h(xj) > (2.5)

Die transformierten Daten gehen hier lediglich über das innere Produkt in

(2.5) ein[33].

Der so genannte ”Kernel Trick” verwendet Projektionen, bei denen das innere

Produkt einer bereits bekannten Kernfunktion entspricht und die Projektion

h nie explizit angegeben werden muss.

< h(xi), h(xj) >= K(xi, xj)

Die Entscheidungsfunktion lautet also:

f(x) =
n∑
i=1

αiyiK(xi, x) + β0

Mit der Klassifikationsregel bzgl. sgn(f(x)) wird in die Klassen +1 und -1

sortiert.

Bei der Kernfunktion sollte es sich um eine symmetrisch, (semi) positiv de-

finite Funktion handeln. In der Literatur übliche Kernfunktionen sind[16]:

• Polynom d-ten Grades: K(xi, xj) = (1+ < xi, xj >)d

• Radial Basis Funktion: K(xi, xj) = exp(−||xi − xj||2/c)

• Neural Network: K(xi, xj) = tanh(κ1 < xi, xj > +κ2)
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2.4 LASSO

2.4 LASSO

Mit den Least Absolute Shrinkage and Selection Operators (LASSO) gibt es

eine Methode, die die Eigenschaften von Ridge Regression und Variablense-

lektion vereint. Die Ridge Regression dient zur Modellregularisierung, speziell

zur Schrumpfung von Parametern, während eine Variablenselektion durch-

geführt wird, um zum einen die Anzahl an Prädiktoren zu verringern und

zum anderen nur die wichtigen einzuschließen.

Der LASSO Schätzer ist so konstruiert, dass er die Koeffizienten soweit

schrumpft, dass einige von ihnen exakt 0 ergeben können und die zugehörige

Variable somit aus dem Modell fällt[27]. Er kann als eine Art Kompromiss

von Shrinkage-Methode und Variablenselektion angesehen werden.

2.4.1 LASSO im Linearen Modell

Die Idee des LASSO Schätzers von Tibshirani[32] basiert auf den Annahmen

des Linearen Modells.

Betrachtet wird die hierfür übliche Datensituation (xi, yi),i = 1, 2, ..., n mit

den Einflussgrößen xi = (xi1, ..., xip)
T und der Response Variablen yi.

Es wird davon ausgegangen, dass die Kovariablen standardisiert sind, also

dass gilt:
1
n

∑n
i=1 xij = 0 , 1

n

∑n
i=1 x

2
ij = 1

und dass die Responsevariable um 0 zentriert ist: 1
n

∑n
i=1 yi = y = 0

Diese Standardisierung ist notwendig auf Grund der Abhängigkeit der

LASSO Koeffizienten von der Skalierung der Kovariablen und der Wahl des

Ursprungs für die Response Variable.

Der LASSO Schätzer minimiert die Residuenquadratsumme unter der Be-

dingung, dass der Absolutbetrag der aufsummierten Koeffizienten eine vor-

gegebene Grenze t (mehr dazu unten) nicht überschreitet.

min
β1,...,βp

1

2

n∑
i=1

(yi −
p∑
j=1

xijβj)
2 (2.6)
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2.4 LASSO

unter der Nebenbedingung

p∑
j=1

|βj| ≤ t, t ≥ 0 (2.7)

Ohne (2.7) handelt es sich um den gewöhnlichen KQ-Schätzer. Wenn also

der KQ-Schätzer die Bedingung (2.7) erfüllt, entspricht dieser genau dem

LASSO Schätzer.

Äquivalent zu (2.6) ist das damit eng zusammenhängende Optimierungspro-

blem, nämlich die penalisierte Formulierung des LASSO Schätzers[27]

min
β1,...,βp

1

2

n∑
i=1

(yi −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

|βj| (2.8)

bei dem λ
∑p

j=1 |βj| den Strafterm darstellt.

Der Zusammenhang zwischen (2.6) und (2.8) besteht darin, dass für gegebe-

nes λ (0 ≤ λ < ∞) ein t ≥ 0 existiert, so dass beide Optimierungsprobleme

zur selben Lösung führen.

Die Stärke der Schrumpfung der Koeffizienten β hängt von der Wahl des

so genannten Tuning- bzw. Lassoparameters t ab. Je kleiner t, desto stärker

werden die Koeffizienten geschrumpft. In Bezug auf (2.8) und den Penalisie-

rungsparameter λ ergibt sich ein umgekehrter Zusammenhang: Je größer λ,

desto stärker die Schrumpfung der LASSO Schätzungen.

Auf Grund der oben beschriebenen Abhängigkeit zwischen der Anzahl der

selektierten Kovariablen und dem Tuningparameter t gilt es, eine optimale

Schätzung für t zu finden. Tibshirani[32] stellt hier drei Möglichkeiten zur

Schätzung vor: Das Kreuzvalidierungsverfahren, die generalisierte Kreuzva-

lidierung(GCV) und eine analytische, unverzerrte Risikoschätzung.

Wir halten t ≥ 0 fest. Bei dem Optimierungsproblem (2.6) handelt es sich um

ein quadratisches Optimierungsproblem mit 2p Ungleichungsbedingungen[15].

Dieses numerisch zu lösen, stellt keine triviale Aufgabe dar und den Algo-

rithmus zu lösen, wie er in [32] vorgestellt wird, zeichnet sich als ein com-

puterintensives Vorgehen ab.

Supervised Learning 19



2.4 LASSO

2.4.2 Modifizierte Algorithmen

Neben der geringen Rechengeschwindigkeit treten im ursprünglichen LASSO-

Algorithmus auch Probleme auf, sobald die Anzahl p der Variablen der An-

zahl n der Beobachtungen nahe kommt bzw. diese übersteigt. Tritt die, ty-

pisch für Microarray Daten, p >> n Situation auf, so können mit LASSO

maximal n Variablen ausgewählt werden[35]. Ein weiterer Nachteil bei der

ursprünglichen LASSO Schätzung liegt zudem darin, dass bei einer Gruppe

von stark korrelierten Prädiktoren dazu tendiert wird, lediglich eine Einfluss-

größe dieser Gruppe auszuwählen statt mehrere[18].

Den oben genannten Problemen wird mit zwei neuen Algorithmen begegnet:

Osborne et al.[27] stellen eine neue Möglichkeit vor, die auch für die Daten-

situation p >> n geeignet ist.

Efron et al.[8] haben mit LARS(Least Angle Regression, wobei das ”S” für

”Lasso” und ”Stagewise” steht) eine Methode entwickelt, die einerseits deut-

lich weniger Iterationen benötigt und andererseits für hochdimensionale Da-

ten problemlos verwendet werden kann. Eine einfache Veränderung dieses

Algorithmus führt zu LASSO Schätzungen, die aber deutlich weniger Re-

chenzeit benötigen als der originale Algorithmus[8].

Die Least Angle Regression beginnt mit der Wahl des Startwerts

µ̂ = Xβ̂ = 0, d.h. alle Koeffizienten werden zu Beginn gleich 0 angenom-

men. Gesucht ist die Kovariable, die am stärksten mit dem Response kor-

reliert. Nun geht man soweit in Richtung dieses Prädiktors, bis ein weiterer

Prädiktor dieselbe Korrelation mit dem aktuellen Residuenvektor hat. An-

schließend geht LARS in die Richtung weiter, die den Winkel zwischen den

beiden ausgewählten Prädiktoren halbiert, bis eine dritte Variable mit der

höchsten Korrelation hinzukommt. Die Menge aller ausgewählten Variablen

nennt man ”Active Set”.

Die Veränderung, die beim oben beschriebenen LARS Algorithmus durch-

geführt wird, um exakte LASSO Schätzer zu erhalten, führt dazu, dass hin-

zugefügte Variablen wieder aus dem Active Set entfernt werden können[8].

Somit durchläuft der LARS Algorithmus weniger Iterationen als die LASSO

Modifikation, welche im Gegensatz zum orignalen Algorithmus[32] trotzdem
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wesentlich weniger rechenintensiv verläuft.

2.4.3 LASSO in GLMs

Im Fall der in Kapitel 4 vorgestellten Daten handelt es sich um einen binären

Response. Das Lineare Modell, welches die Voraussetzung für die vorangehen-

den Definitionen war, kann also nicht mehr als Grundlage angesehen werden.

Benötigt wird ein Generalisiertes Lineares Modell.

Analog zu LASSO (2.8) wird nun die penalisierte log Likelihood

(log Likelihood an Stelle der Residuenquadratsumme) maximiert:

max
β0,β

[
1

N

N∑
i=1

{I(gi = 1) log p(xi) + I(gi = 2) log(1− p(xi))− λPα(β)}] (2.9)

Der Bestrafungsterm aus (2.9) hat die Form:

Pα(β) = (1− α)
1

2
||β||2l2 + α||β||l1

=

p∑
j=1

[
1

2
(1− α)β2

j + α|βj|] (2.10)

mit α als ”Elastic Net mixing Parameter”, 0 < α ≤ 1.

Wählt man α = 1 so ergibt sich λ|βj| als Strafterm und man erhält LASSO

Schätzungen.

Friedman, Hastie und Tibshirani gehen weiter so vor, dass eine quadratische

Approximation bzgl. der log Likelihood gebildet wird[12]:

lQ(β0, β) = − 1

2N

N∑
i=1

wi(zi − β0 − xTi β)2 + C(β̃0, β̃)2 (2.11)

mit

zi = β̃0 + xTi β̃ + yi−p̃(xi)
p̃(xi)(1−p̃(xi))

als ”working response” und

wi = p̃(xi)(1− p̃(xi)) als Gewichte

p̃(xi) wird jeweils bei den aktuellen Schätzern der Parameter (β̃0, β̃) berech-

net.
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2.4 LASSO

Neue Parameterschätzungen (β0, β) erhält man durch Minimieren von (2.11).

Um schließlich das penalisierte, gewichtete KQ Problem

min{−lQ(β0, β) + λP1(β)}

zu lösen, wendet man ”coordinate descent” an.
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Kapitel 3

Anwendung an

Mammmographie -

Screeningdaten

3.1 Das Mammakarzinom

Krebs gehört weltweit zu den 10 häufigsten Todesursachen. Unter Frauen ist

das Mammakarzinom (Brustkrebs) mit einem Anteil von 16% die am häufig-

sten tödlich verlaufende Krebsart[34].

Derzeit anerkannte Risikofaktoren für das Auftreten von Brustkrebs sind u.a.

das Alter, familiäre Belastung/genetische Disposition, ionisierende Strahlung

(z.B. Röntgenstrahlung), aber auch die Art der Lebensführung, wie Alkohol-

konsum oder postmenopausales Übergewicht1[30].

Man unterscheidet zwischen benignen und malignen Brusterkrankungen. Be-

nigne bedeutet gutartig, d.h. der Tumor verdrängt durch sein Wachstum

Gewebe, dringt aber nicht in dieses ein und streut nicht im Körper. Ist der

Tumor maligne, so infiltriert dieser das Gewebe, kann es zerstören und über

Blut- bzw. Lymphwege zu Lymphknoten oder Organen gelangen (Metasta-

senbildung).

1Zeit nach der Menopause



3.1 Das Mammakarzinom

Bösartige Tumore werden, basierend auf ihrer TNM-Klassifikation in ein Sta-

dium eingeteilt was die Grundlage für die Therapie der Wahl und die Beurtei-

lung des Therapieerfolges bildet. T(Tumor) beschreibt die Ausdehnung des

Primärtumors, N(Nodulus), das Fehlen oder Vorhandensein und in diesem

Fall die Ausdehnung von Lymphknotenmetastasen und M(Metastase) das

Fehlen oder Vorhandensein von Fernmetastasen.

Bezüglich der Ausdehnung des Primärtumors unterscheidet man grob

in situ2 und invasive3 Karzinome.

Die Größe eines Karzinoms und das Ausmaß der Lymphknotenmetastasie-

rung gehören zu den wichtigsten prognostischen Kriterien des Mamma-

karzinoms[30]. Sowohl die Tumorgröße, als auch der Lymphknotenstatus ha-

ben unabhängig voneinander einen negativen Einfluss auf die Überlebensrate.

Auch die Anzahl der befallenen Lymphknoten korreliert direkt mit der Größe

des Primärtumors, der Rezidiv(Rückfall)- und der Überlebensrate. Leider ist

die klinische Einschätzung des Befalls extrem unzuverlässig und sowohl falsch

positive als auch falsch negative Befunde treten in hohem Maße auf[5].

Die Metastasierung4 des Mammakarzinoms tritt in der Regel schon frühzeitig

auf. Fernmetastasen korrelieren mit der Tumorgröße, dem Malignitätsgrad

und der lymphogenen Ausbreitung. Der Großteil der an Brustkrebs sterben-

den Frauen hat weit gestreute Metastasen. Am häufigsten werden diese in

Knochen, Lunge oder Leber lokalisiert.

Auch der Nachweis von Östrogen- oder Progesteronrezeptoren im Tumorge-

webe hat Auswirkungen auf die Prognose[30].

Wie bei jedem Tumor des menschlichen Körpers, ist die Früherkennung eines

Mammakarzinoms ein entscheidender Faktor hinsichtlich des Behandlungs-

erfolges.

2Carcinoma in situ: lokal begrenzter Krebsherd=frühestes Krebsstadium
3Man spricht von einem invasiven Tumor, wenn dieser in das umliegende Gewebe hin-

einwächst
4Absiedlungen eines Tumors in entferntem Gewebe
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3.2 Mammographie

3.2 Mammographie

Eine Mammographie ist eine Röntgenuntersuchung der Brust, die die Mam-

ma in zwei Ebenen darstellt(kraniokaudaler5 und lateraler6 Strahlengang).

Wegen der weichen Strahlung erhält man eine ausgeprägte Feinstrukturen-

zeichnung. Die Mammographie ist besonders von Vorteil in der Erkennung

kleiner, nicht tastbarer Karzinome und ist Goldstandard im Bereich der bild-

gebenden Verfahren zur Früherkennung [30].

Mit Hilfe dieser Röntgenaufnahmen können Verkalkungen im Gewebe er-

kannt werden, welche Hinweise auf einen gut- oder bösartigen Befund geben

können. Fettgewebe zeigt sich als relativ dunkler Bereich, während Zysten,

Verkalkungen oder Karzinome röntgendichte Strukturen darstellen und auf

der Aufnahme zu einer Verschattung7 führen. Im Hinblick auf Größe, Form

und Muster des so genannten Mikrokalks kann ein Urteil über Malignität

oder Benignität erfolgen. Maligne Tumoren sind meist unscharf begrenzt

und zeigen häufig sternförmige Ausläufer, während benigne Tumoren (z.B.

Zysten/Firbome) homogen dicht und glatt begrenzt sind.

Abbildung 3.1: Mammographie der linken und rechten Brust

5kraniokaudal: Vom Kopf ausgehend in Richtung Füße
6seitlich (im 45◦ Winkel zum kraniokaudalen Strahlengang)
7Im Röntgenbild bezeichnet man schwarz als Aufhellung und weiß als Verschattung
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3.3 Die Daten

Die Erstellung einer Mammographie ist Teil des Screenings, welches eine rou-

tinemäßige Reihenuntersuchung an Frauen ohne Symptome bezeichnet. Es

dient zusammen mit weiteren Untersuchungen zur frühzeitigen Erkennung

von Brustkrebs.

Die übliche Vorgehensweise zur Beurteilung eines Mammograms ist eine Dop-

pelbefundung durch zwei Ärzte, die unabhängig voneinander die Röntgenauf-

nahme begutachten. Die Betrachtung durch zwei Ärzte (”double reading”)

führt zu einer höheren Krebserkennungsrate als die Begutachtung durch le-

diglich einen Arzt (”single reading”)[14].

Eine neue Möglichkeit bieten CAD-Systeme (Computer-Aided Detection),

die den Radiologen bei den Auswertungen unterstützen. Hierbei werden die

digitalisierten Mammographien mit Hilfe einer Computersoftware analysiert,

verdächtige Stellen identifiziert und markiert[25].

3.3 Die Daten

Bei den dieser Arbeit zugrundeliegenden Daten handelt es sich um

Mammographie-Screeningdaten, die auf Basis der DDSM (Digital Databa-

se for Screening Mammography) erhoben wurden. Bei der DDSM8 han-

delt es sich um eine öffentlich zugängliche Datenbank der Mammographie-

Bildanalyse-Forschungsgemeinschaft der Universität Süd Florida. Ziel dieser

Homepage ist die Vereinfachung der Forschung in Bezug auf CAD-Systeme

anhand einer einheitlichen und frei zugänglichen Quelle an digitalisierten

Mammographien.

Aus vier verschiedenen Krankenhäusern in den USA wurden die Röntgen-

aufnahmen bereits in den frühen 90er Jahren bezogen und bis 1999 ver-

vollständigt. Dieser Datenbestand setzt sich zusammen aus insgesamt 2620

Beobachtungen unterteilt in ”normal”, ”Krebs”, ”gutartig” und ”gutartig

ohne Rückruf”. ”Normal” bezeichnet Mammographien, die als normal befun-

den wurden und vier Jahre später ebenfalls wieder in die Kategorie normal

eingestuft werden konnten. ”Krebs” bezeichnet Fälle, bei denen ein Tumor

8http://marathon.csee.usf.edu/Mammography/Database.html
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3.3 Die Daten

histologisch nachgewiesen wurde. ”Gutartig” beinhaltet Aufnahmen, in de-

nen Auffälligkeiten entdeckt wurden, die nach einer erneuten Untersuchung

bestätigt werden konnten. ”Gutartig ohne Rückruf” sind Beobachtungen mit

einer nennenswerten Abnormalität, die jedoch keine erneute Untersuchung

erforderten.

Jede Beobachtung besteht aus vier Aufnahmen, je zwei von jeder Brust aus

kraniokaudaler und lateraler Perspektive. Zusätzliche Informationen zu jeder

Mammographie sind: Datum der Studie, Alter der Patientin zu diesem Zeit-

punkt, die Brustdichte nach ACR9 Richtlinie, Datum an dem die Mammogra-

phie digitalisiert wurde und Informationen über die Auflösung des Bildes[17].

Zusätzlich wird zu jedem nicht normalen Fall noch die Klassifikation gemäß

der BI-RADS Kodierung (Tab. 3.1) angegeben. Sowohl die Brustdichte als

auch die BI-RADS Kodierung werden von einem Radiologie-Experten be-

stimmt.

BI-RADS Befund Karzinomrisiko
1 ”nothing to comment on” 0%
2 gutartig 0%
3 wahrscheinlich gutartig, < 2%

kontrollbedürftig
4 suspekt, 2-90%

abklärungsbedürftig
5 karzinomverdächtig > 90%

Tabelle 3.1: BI-RADS (Breast Imaging Reporting and Data System)[30]

In den im Folgenden verwendeten Daten werden lediglich Fälle mit malignen

oder benignen Verkalkungen einbezogen. Der daraus resultierende Datensatz

umfasst insgesamt 1347 Beobachtungen mit jeweils 453 Variablen. Als Re-

sponse dient die binäre Variable ”Severity”, die angibt, ob es sich um eine

maligne oder benigne Verkalkung handelt. Insgesamt enthält der Datensatz

610 Beobachtungen mit malignen und 737 mit benignen Verkalkungen. Die

weiteren 452 Variablen sind metrisch und definieren z.B. einfache Gruppie-

rungsvariablen wie die Anzahl der Partikel, die Form wie Größe oder

9American College of Radiology
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3.4 Anwendung der Methoden

Kreisform, die Erscheinung wie ihre Dichte oder auch die Verteilung der Teil-

chen anhand ihrer Entfernung vom Mittelpunkt des Herdes.

3.4 Anwendung der Methoden

Die in Kapitel 1 und 2 beschriebenen Methoden werden nun auf die beschrie-

benen Mammographie-Screeningdaten angewendet.

Alle Berechnungen wurden mit der frei zugänglichen Software R ausgeführt10,

wobei u.a. die Pakete WilcoxCV [3], ROC, e1071 und glmnet verwendet wur-

den.

Bei der in Kapitel 3 erwähnten Trennung des Datensatzes in einen Lern- und

Testdatensatz kann es zu einer Verzerrung der Ergebnisse kommen (Selek-

tionsbias). Diese Verfälschung der Ergebnisse kann entstehen, da die Klas-

sifikationsregel auf dem Lerndatensatz aufgestellt wird, also lediglich einem

kleinen Teil des Gesamtdatensatzes, der nicht alle Informationen enthält[22].

Entgegenwirken kann man dem durch Kreuzvalidierung, d.h. der gesamte Da-

tensatz wird in verschiedene Kombinationen getrennt und die Anwendung auf

jeder dieser Kombinationen ausgeführt[31]. Hier wird wegen seiner geringen

Varianz der Fehlerrate die Monte-Carlo Kreuzvalidierung (MCCV) verwen-

det. Bei Anwendung der MCCV entsteht der Lerndatensatz L aus zufällig

aus der Gesamtstichprobe ohne Zurücklegen gezogenen Beobachtungen. Der

Testdatensatz T besteht aus den übrigen Beobachtungen. Insgesamt werden

500 Iterationen durchgeführt, d.h. 500 verschiedene Lern- und Testdatensätze

generiert.

Hinsichtlich der Größe von Lern- und Testdatensatz gibt es keine Richtlini-

en. Gängige Varianten sind eine Trennung im Verhältnis 2 : 1, 4 : 1 oder

9 : 1 [2]. Wichtig ist, dass der Testdatensatz letztendlich groß genug ist, um

eine adäquate Trennung zwischen den Klassen zu ermöglichen[7]. Demnach

eignet sich eine Trennung im Verhältnis 9 : 1 lediglich für entsprechend große

Datensätze, während ein 2 : 1 Schema auch für relativ wenige Beobach-

tungen noch zu sinnvollen Ergebnissen führt. Vor allem hängt das gewählte

10http://www.r-project.org
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3.4 Anwendung der Methoden

Verhältnis nL : nT aber vom jeweiligen Ziel der Studie ab. Handelt es sich

lediglich um einen Methodenvergleich, so würde schon eine Trennung von

2 : 1 genügen, während ein größeres Verhältnis gewählt werden sollte, sobald

es um die Vorhersagegenauigkeit an sich geht[2]. Da hier ein Vergleich von

Feature Selektionsmethoden behandelt wird, wird der Datensatz in einem

Verhältnis von 2 : 1 getrennt.

Für die Aufstellung der Klassifikationsregel darf ausschließlich der Lernda-

tensatz verwendet werden. Die Prädiktion beruht schließlich auf dem Test-

datensatz.

Im Folgenden werden die vier in Kapitel 2 beschriebenen Variablenselektions-

verfahren miteinander verglichen. Die Effizienz der verschiedenen Methoden

wird anhand der Klassifiaktionsgenauigkeit beurteilt, gemessen an der AUC

(Area Under the ROC Curve).

Zur besseren Übersicht wird die Selektion nach dem Ranking der Variablen

lediglich mit ”Ranking” bezeichnet, der Korrelationsansatz, in dem die Kor-

relation mit der stärksten Variablen betrachtet wird mit ”Korrelation I”,

der mit der zweitstärksten ”Korrelation II” und der mit der drittstärksten

”Korrelation III”.

Lineare Diskriminanzanalyse und Support Vector Machine arbeiten mit den

resultierenden Variablen aus den Selektionsverfahren, wobei für die SVM der

Radial Basis Funktions Kern ohne Tuning der Hyperparameter verwendet

wird. Die Logistische Regression wird nach einer Vorwärtsselektion durch-

geführt. Als ein Ansatz mit integrierter Variablenselektion wird bei LASSO

der ganze Lerndatensatz übergeben. Die Variablen werden standardisiert und

eine 10-fache Kreuzvalidierung zur optimalen λ Bestimmung durchgeführt.
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Kapitel 4

Ergebnisse

In den folgenden Abschnitten werden die Ergebnisse der Selektions- und Klas-

sifikationsmethoden zusammenfassend dargestellt. Als Maß zur Bestimmung

der Güte des Selektionsverfahrens wird die Area under the ROC curve (AUC)

angegeben. Der Mean Squared Error (MSE) wurde ebenfalls berechnet und

ist im Anhang B aufgeführt, ebenso die Tabellen der ungerundeten Ergebnis-

se und die Darstellung der Verteilung von AUC - und MSE - Werten durch

Boxplots.

Zuerst werden die Resultate der Variablenselektionsverfahren aufgeführt. An-

schließend erfolgt die Betrachtung der Klassifikationsergebnisse ohne vorhe-

rige Variablenselektion. Die darauffolgenden Abschnitte erläutern die Klas-

sifikationsergebnisse der einzelnen Methoden sowie einen Vergleich der Me-

thoden.



4.1 Variablenselektion

4.1 Variablenselektion

Aus den vier Variablenselektionsverfahren Ranking, Korrelation I, Korrela-

tion II und Korrelation III resultieren je 10 verschiedene Variablenkombina-

tionen.

Beim Ranking ergeben sich 5 bis 452 Variablen, welche den Anteilen von

1%, 2%, 5%, 8%, 10%, 15%, 22%, 55%, 70% und 100% der nach der AUC

sortierten Variablenmenge entsprechen.

Bei den Korrelationsansätzen sind es durchschnittlich 4.5 bis 451.7 Variablen,

was den Korrelationsstärken von 0.02, 0.05, 0.20, 0.35, 0.45, 0.60, 0.75, 0.95,

0.98 und 1 entspricht.

Der Zusammenhang von Korrelationsstärke und resultierender Variablenan-

zahl wird in Abb. 4.1 verdeutlicht. Die Abbildung gibt an, wieviele Variablen

jeweils aus der vorgegebenen Korrelationsgrenze resultieren, basierend auf

den nach AUC-Wert geordneten Variablen.
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Abbildung 4.1: Variablenanzahl in Abhängigkeit der Korrelation
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4.2 Klassifiaktion ohne vorherige Selektion

Erkennbar ist, dass sich die resultierenden Variablenmengen der drei Kor-

relationsansätze kaum unterscheiden. Unabhängig von der Betrachtung der

Korrelation mit der ersten, zweiten oder dritten Variablen des Rankings, lässt

sich also keine Auswirkung auf die Variablenanzahl feststellen. Die vermu-

tete hohe Korrelation der Variablen untereinander wird bestätigt durch den

exponentiellen Verlauf der Variablenanzahl, der in der Abbildung erkennbar

ist.

Etwa ein Viertel der Variablen weist untereinander eine Korrelation auf, die

zwischen 0.98 und 1 liegt. Zwischen 0.95 und 1 sind es knapp die Hälfte und

für eine Korrelation über 0.75 drei Viertel aller Variablen.

4.2 Klassifiaktion ohne vorherige Selektion

Um einen möglichen Effekt der Variablenselektion sichtbar zu machen, dient

Abb. 4.2. Hier wird die Verteilung der AUC-Werte für die gesamte Varia-

blenanzahl dargestellt.
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Abbildung 4.2: AUC bei voller Variablenanzahl
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4.3 Betrachtung der Klassifikationsergebnisse

Bei Übergabe der kompletten Variablenmenge erreicht die SVM mit einer

durchschnittlichen AUC von 0.760 das beste Resultat, die LDA mit 0.651 das

zweitbeste und die LogReg mit 0.573 das schlechteste. Wie anhand der fol-

genden Ergebnisse zu sehen ist, verbessert die Variablenselektion die durch-

schnittliche AUC im Vergleich zum vollen Modell. Eine Ausnahme stellt die

SVM dar.

4.3 Betrachtung der Klassifikationsergebnis-

se

4.3.1 Lineare Diskriminanzanalyse

In jedem der vier Variablenselektionsansätze liefern die Modelle der Linea-

ren Diskriminanzanalyse mit den jeweils meisten Variablen die niedrigsten

AUC-Werte. Beim Ranking ist dies das Modell mit voller Variablenanzahl,

also 100% der Rankingvariablen. Bei den Korrelationsansätzen I, II und III

handelt es sich jeweils um jene Variablenmengen, die untereinander eine Kor-

relation von bis zu 1 aufweisen.

Lineare Diskriminanz Analyse
Prozent 1 2 5 8 10 15 22 55 70 100
Anzahl 5 9 23 36 45 68 99 249 316 452

Korrelation 0.02 0.05 0.20 0.35 0.45 0.60 0.75 0.95 0.98 1
Anzahl (φ) 5.4 8.9 21.3 34.7 47.4 62.6 98.0 250.1 310.7 450.7

Ranking 0.754 0.750 0.756 0.760 0.760 0.750 0.741 0.704 0.687 0.651
K I 0.695 0.666 0.715 0.762 0.765 0.761 0.747 0.688 0.679 0.651
K II 0.754 0.752 0.751 0.762 0.764 0.762 0.746 0.688 0.678 0.648
K III 0.672 0.652 0.718 0.742 0.750 0.753 0.740 0.684 0.677 0.648

Tabelle 4.1: Gerundete AUC Mittelwerte der LDA Messergebnisse für die ver-
schiedenen Korrelationen und prozentualen Anteile. Die jeweils maximalen AUC-
Werte sind fettgedruckt
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4.3 Betrachtung der Klassifikationsergebnisse

Die AUC erreicht ihr Maximum in allen vier Ansätzen bei 36 bis 63 Variablen

und sinkt anschließend kontinuierlich ab. Innerhalb des Rankings liegt es bei

einem Anteil von 8%. Für Korrelation I und II liegt es bei einer Korrelati-

onsstärke von 0.45 und bei Korrelation III bei 0.60.

Eine ”Parallelität” des Verlaufes der AUC Kurven ist beim Vergleich der

Korrelationsansätze erkennbar (Abb.4.3). Während allerdings Korrelation I

und III nur sehr geringe AUC-Werte für die ersten drei Variablenkombinatio-

nen liefern, startet Korrelation II mit einer guten Anpassung an die Daten

auch schon bei geringer Variablenanzahl. Gemeinsam haben die drei Kor-

relationsansätze, dass sie jeweils für eine Korrelation von 0.02 eine bessere

Vorhersagegenauigkeit besitzen, als für eine Korrelation von 0.05. Auch der

Ranking Ansatz zeigt für einen Anteil von 1% noch einen leicht besseren

AUC-Wert als für 2%. Anschließend, bei einem Anteil von 5% bzw. einer

Korrelation von 0.20 kommt es bei allen vier Methoden zu einer höheren

bzw. bei Korrelation II zu einer gleichbleibenden AUC.

Nachdem jeder der vier Ansätze sein Maximum bei einer Variablenanzahl

unter 70 erreicht, fallen die AUC-Werte anschließend linear im Ranking und

näherungsweise linear in den Korrelationsansätzen ab. Dies muss nicht an

den Selektionsverfahren an sich liegen. Wahrscheinlicher ist ein Zusammen-

hang mit der LDA, welche für den Umgang mit größeren Variablenmengen

nicht geeignet ist.

Ein Urteil über den ”besten” Selektionsansatz in Bezug auf die LDA zu fällen

ist nicht möglich. Deutlich ist allerdings, dass der Korrelation III-Ansatz,

in welchem die beiden AUC-stärksten Variablen fehlen, am schlechtesten

ausfällt.

Wenn Korrelation I auch teilweise bessere AUC-Werte erreicht, so bestimmt

Korrelation II innerhalb der Korrelationsansätze die zur Klassifiaktion op-

timaleren Variablenkombinationen, was sich dadurch zeigt, dass aus Korre-

lation II für geringere Variablenanzahlen deutlich höhere AUCs resultieren.

Korrelation I schneidet trotz des Vorhandenseins der AUC-stärksten Varia-

blen für geringe Korrelationen deutlich schlechter ab als Korrelation II, zeigt

aber dann ab einer Korrelation von 0.35 einen fast identischen Verlauf.
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4.3 Betrachtung der Klassifikationsergebnisse

Die AUC-Werte des Rankings werden bis zu einer Korrelation von 0.75

größtenteils von AUCs aus Korrelation I und II überboten, liegen danach

aber über diesen. Die über das Ranking resultierende Variablenmenge führt

bei größerer Variablenanzahl zu besseren Klassifikationsresultaten, als die

Korrelationsansätze.
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Abbildung 4.3: Selektionsmethoden anhand von LDA
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4.3 Betrachtung der Klassifikationsergebnisse

Hastie, Tibshirani und Friedman[16] sprechen im Kontext der Klassifikati-

onsgenauigkeit, die man an der Fehlerrate misst, von dem so genannten ”Ba-

dewanneneffekt”, wenn die Fehlerrate für eine geringe Variablenanzahl hoch

ist, für steigende Variablenanzahl abfällt und schließlich bei immer größer

werdender Anzahl wieder ansteigt. Mit der AUC als Kriterium, kommt es

hier zu einem ähnlichen Effekt: Für geringe Anzahlen zeigt sich keine gute

Anpassung bzw. eine niedrige AUC. Diese steigt mit Hinzunahme weiterer

Variablen und fällt wieder wenn zu viele Variablen aufgenommen werden.

Der typische ”Badewanneneffekt” ist gut erkennbar bei Betrachtung der

MSE-Werte anstelle der AUC. Siehe hierzu Anhang B, Abb.B.3.

4.3.2 Support Vector Machine

Bei einer Klassifikation mittels Support Vector Machine zeigen die vier Variablen-

Selektionsverfahren bei geringen Variablenanzahlen ihre jeweils schlechteste

Anpassung, d.h. den niedrigsten AUC-Wert .

Support Vector Machine
Prozent 1 2 5 8 10 15 22 55 70 100
Anzahl 5 9 23 36 45 68 99 249 316 452

Korrelation 0.02 0.05 0.20 0.35 0.45 0.60 0.75 0.95 0.98 1
Anzahl (φ) 5.4 8.9 21.3 34.7 47.4 62.6 98.0 250.1 310.7 450.7

Ranking 0.743 0.751 0.757 0.760 0.761 0.760 0.760 0.773 0.771 0.760
K I 0.758 0.745 0.733 0.764 0.771 0.777 0.772 0.766 0.764 0.760
K II 0.757 0.756 0.752 0.764 0.770 0.777 0.772 0.765 0.764 0.759
K III 0.727 0.716 0.720 0.747 0.760 0.766 0.763 0.757 0.756 0.752

Tabelle 4.2: Gerundete AUC Mittelwerte der SVM Messergebnisse für die ver-
schiedenen Korrelationen und prozentualen Anteile. Die jeweils maximalen AUC-
Werte sind fettgedruckt

Die minimale AUC liegt beim Ranking bereits bei 1% der Variablen. Korre-

lation I und Korrelation II erreichen ihre geringste AUC bei einer Korrelati-

onsstärke von 0.20, während Korrelation III den niedrigsten AUC-Wert der

vier Selektionsverfahren bereits bei einer Korrelationsstärke von 0.05 zeigt.
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4.3 Betrachtung der Klassifikationsergebnisse

Basierend auf dem Ranking erreicht die SVM ihre maximale AUC bei Ver-

wendung von 55% der Variablen. Alle Korrelationsansätze besitzen ihr Maxi-

mum einheitlich bei einer Korrelationsstärke von 0.60. Keine der AUC Kur-

ven fällt nach Erreichen des Maximums rapide ab, insbesondere die drei Kor-

relationsansätze haben einen sehr ähnlichen Verlauf und sinken nur langsam.
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Abbildung 4.4: Selektionsmethoden anhand von SVM

Auch vor Erreichen ihres jeweiligen Maximums verlaufen die Korrelations-

ansätze I, II und III ähnlich, ganz im Gegensatz zur Rankingkurve.
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4.3 Betrachtung der Klassifikationsergebnisse

Die AUC-Werte sinken bereits bei der Korrelationsgrenze von 0.05. Während

Korrelation III unmittelbar danach wieder ansteigt, erhöhen sich die AUC-

Werte im Korrelation I- und Korrelation II-Ansatz erst ab einer Korrelation

von 0.35.

Die Korrelationskurven verlaufen annähernd parallel. Ab einer Korrelation

von 0.35 verlaufen Korrelation I und II sogar nahezu identisch, Korrelation

I weist dabei minimal höhere AUC-Werte auf. Korrelation III zeigt bei al-

len Korrelationsgrenzen schwächere AUC-Werte auf, als Korrelation I und II.

Die AUC-Werte des Ranking-Ansatzes verlaufen bis zu einem Anteil von 22%

der gesamten Variablenmenge unterhalb der Korrelationskurven, dies ändert

sich ab einem Anteil von 55%. Ab dieser Variablenmenge liegt das Ranking

über den Korrelationsansätzen und sinkt erst bei voller Variablenanzahl wie-

der auf dieselbe AUC wie Korrelation I.

Auch in Bezug zur SVM kristallisiert sich kein global bester Selektionsansatz

heraus. Für Korrelationsstärken bis 0.35 dominiert Korrelation II die Korrela-

tionsansätze und wird anschließend, wenn auch nur minimal, von Korrelation

I übertroffen. Ab einer Variablenanzahl von etwa 250 liegen die AUC-Werte

des Rankings über denen der Korrelationsansätze.

4.3.3 Logistische Regression und LASSO

Sowohl bei Anwendung der Logistischen Regression, als auch bei LASSO,

wird keine der vorherigen Variablenselektionsmethoden Ranking, Korrelati-

on I, II oder III durchgeführt.

Die Logistische Regression beruht auf vorheriger Vorwärtsselektion. Die 500

resultierenden Variablenkombinationen besitzen 3 bis 19 Variablen mit einem

Mittelwert von 6.8.

Ergebnisse 38



4.3 Betrachtung der Klassifikationsergebnisse

*

*

*
*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

* *

*

*

*
*

*

*

*

**
*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

* *

*
*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*
* *

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

**

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

**

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
* *

* *

*

**

*

**

*

*

*

*

*

*
*

*
*

*
* *

*

*

*

*

* **

*

*

*

*

*

*

*

* *

*

*

*

*
*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*
*

*

*

*

*

*

*
*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*
*

*

*

*

*
**

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

* *

*

*

* *

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

**

*

*

*

*

*
*

*

* *

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

**
*

*
**

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*
*

*

** *
**

*

*

*

*

*

*

*

*

*

* * *

0 5 10 15 20

0.
72

0.
74

0.
76

0.
78

0.
80

0.
82

Anzahl Variablen

A
U

C

*

*

*
*

*

**

*

*

*

*
*

*

*
*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

* *

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

* *
* *

*
*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

**

**
*

*

*
*

**

*

*

*

**

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

* *

*

*

*

* *

*

*

*

*

*
*

*

*

*

*

*

*

*

** *

*

*

*

*
*

*

*
*

*

*

*

*

**
*

*

*

*

* *

*
*

*
*

*

*

*

**
*

*

*

*

*
*

*
*
*

* *

*

*

*

*

*

*

*

*

*

**

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

**

*

*

*

*

*

*

*
*

*

*
**

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

**

*

*

*
*

*

*

*

* * *

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*
*

*
*

*

*

*
*
*
*

*

*

* *
*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*
*

*
*

*

*

*
*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

***

* **

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

**

*

*

*

*

*

*
*

* *

*

*

*
*

*
*

*
*

*

*

* **

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
* *

*

*

*

*

*

*
*

* *

*

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

* *

**

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

**

*

*

*

*

*

* *

*

*

*

*

*
*

**

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

** *

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

**

*
*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*
*

*

*

*

*

*

*

* *
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*
*

*

* *

*
*

*

*

*

*

*

*

*
*

*
*
*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*
*

*

*

**

*

*

*

*

*
*

Log Reg
LASSO

Abbildung 4.5: Variablenmenge LogReg und LASSO

Ein leichter negativer Zusammenhang zwischen der Anzahl der Variablen und

der AUC ist hier erkennbar (Abb.4.5).

Die AUC-Werte erstrecken sich von 0.731 bis 0.832 und erreichen einen Mit-

telwert von 0.773.

Die integrierte Variablenselektion des LASSO-Verfahrens führt zu 2 bis 18

Variablen bei einem Mittelwert von 11.2. Hier zeigt sich ein leichter positiver

Zusammenhang zwischen Variablenanzahl und AUC.

Die Spanne der AUC-Werte reicht von 0.712 bis 0.833 bei einem Mittelwert

von 0.780.
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Abbildung 4.6: Verteilung der AUC-Werte bei LogReg und LASSO

LASSO weist auf Grund zweier Ausreißer (Abb. 4.6) eine größere Bandbreite

an AUC-Werten auf und wählt im Durchschnitt mehr Variablen aus. Im Mit-

tel liegen die AUC-Werte des LASSO über denen der Logistischen Regression,

was sowohl in Abb. 4.5 als auch in Abb. 4.6 veranschaulicht wird.
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4.4 Vergleich der Methoden

4.4 Vergleich der Methoden

4.4.1 LDA und SVM

Vergleicht man nun die Ergebnisse der Linearen Diskriminanzanalyse und der

Support Vector Machine und somit auch die jeweilige Effizienz der Selekti-

onsverfahren, so erkennt man Gemeinsamkeiten bei den Korrelationsansätzen

und auch Unterschiede, insbesondere im Rankingansatz.
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Abbildung 4.7: Selektionsmethoden anhand von LDA und SVM
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4.4 Vergleich der Methoden

Alle Korrelationsansätze, Korrelation I, II und III, weisen sowohl bei der LDA

als auch bei der SVM im zweiten Schritt (was einer Korrelation von 0.05 ent-

spricht) eine geringere AUC auf, als bei einer Korrelation von 0.02. Während

die AUC-Werte der LDA bei den Korrelationsansätzen unmittelbar danach

wieder ansteigen (Korrelation I und III) bzw. gleichbleiben (Korrelation II),

sinken die AUCs der SVM im zweiten Schritt weiter. Korrelation III erreicht

hier bereits sein Minimum, Korrelation I und III haben ihre niedrigste AUC

im darauffolgenden Schritt, bei einer Korrelation von 0.20.

Gemeinsam ist beiden Klassifiaktionsmethoden, dass sowohl bei Anwendung

der LDA als auch der SVM, die maximalen AUC-Werte jeweils bei gerin-

gen Variablenanzahlen erreicht werden. Bei der LDA sind dies durchschnitt-

lich 47.4 Variablen, bei der SVM im Durchschnitt 62.6. Somit benötigt die

LDA weniger Variablen um ihr Maximum zu erreichen als die SVM. Diese

erreicht aber insgesamt eine höhere AUC. Allerdings folgt den maximalen

AUC-Werten der LDA ein umso rapiderer Abfall, desto größer die verwen-

dete Variablenmenge wird. Im Gegensatz zur SVM werden die Minima hier

erst bei der kompletten Variablenanzahl erreicht. Die AUC-Werte der SVM

haben bei größer werdender Variablenmenge lediglich eine geringe Vermin-

derung.

Betrachtet man in beiden Methoden den Rankingansatz, so liegt hier die ein-

zige Gemeinsamkeit darin, dass in beiden Fällen jeweils die AUC-Werte ab

einem Anteil von 55% höher liegen als die der Korrelationsansätze. Vorher

werden sie insbesondere von Korrelation I und II dominiert.

Während in Bezug zur SVM die AUC-Werte des Rankings kontinuierlich bis

zum Erreichen des Maximums ansteigen und sich danach leicht verringern,

zeigen die AUC-Werte der LDA einen ähnlichen Verlauf wie die Korrelati-

onsansätze. Bei einem Variablenanteil von 2% liegen die AUC-Werte unter

denen von 1%, steigen danach bis zum Erreichen des Maximums an und fal-

len schließlich bis zu einem Rankinganteil von 100% rapide ab. Auch wird

die maximale AUC im Fall der LDA schon bei einem Anteil von 8% der Ran-

kingvariablen erreicht, während dies im Fall der SVM erst bei einem Anteil

von 55% eintritt.
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4.4 Vergleich der Methoden

4.4.2 LDA, SVM, LogReg und LASSO

Vergleicht man schließlich die AUC-Werte aller Klassifikationsverfahren mit-

einander, so erreicht LASSO mit einer mittleren AUC von 0.780 das absolute

Maximum. Darunter folgen mit einer AUC von 0.777 die Korrelationsansätze

I und II der SVM bei einer Korrelationsstärke von 0.60.
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Abbildung 4.8: AUCs im Vergleich

Die AUC der Logistischen Regression mit 0.773 und die maximale AUC der

LDA mit 0.765 (bei Korrelation I und einer Korrelationsstärke von 0.45)
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4.4 Vergleich der Methoden

bilden die Maxima der anderen Klassifikationsmethoden.

Die niedrigsten AUC-Werte innerhalb der Korrelationsansätze erreichen so-

wohl bei der LDA als auch der SVM jeweils die Korrelation III-Ansätze.

Bei Betrachtung der jeweils ausgewählten durchschnittlichen Variabelnan-

zahl ergeben sich teils große Unterschiede zwischen den einzelnen Klassifi-

kationsmethoden. LASSO benötigt durchschnittlich nur 11.2 Variablen, um

sein Maximum zu erreichen, während es bei der SVM trotz geringerem AUC-

Wert im Mittel 62.6 sind. Die durchschnittlich resultierende Variablenanzahl

der Vorwärtsselektion liegt bei 6.8, während die maximale AUC der LDA auf

durchschnittlich 47.4 Variablen beruht.

Klassifikations- Mittlere Selektions- Korrelations- Durchschnittl.
methode AUC methode stärke Variablenanzahl

LDA 0.765 Korrelation I 0.45 47.4
LogReg 0.773 Vorwärts - 6.8
SVM 0.777 Korrelation II 0.60 62.6

LASSO 0.780 integriert - 11.2

Tabelle 4.3: Maximale AUC-Werte der jeweiligen Klassifikationsmethode

Ergebnisse 44



Kapitel 5

Diskussion

Zusammenfassung und Diskussion

Ziel dieser Arbeit war es, anhand der Klassifiaktionsgenauigkeit von Linearer

Diskriminanzanalyse und Support Vector Machine die Variablenselektions-

verfahren Ranking, Korrelation I, II und III miteinander zu vergleichen und

zu bewerten. Die Logistische Regression mit vorheriger klassischer Vorwärts-

selektion und das LASSO-Verfahren als multivariater Ansatz mit integrierter

Variablenselektion dienen hier als Vergleich zu den jeweiligen Messergebnis-

sen.

Die Variablenselektion, einmal als Reduzierung großer Variablenmengen und

zum anderen als Auswahl der aussagekräftigsten Variablen ist auf Grund

von immer komplexer werdenden Datenmengen zu einem Hauptbestandteil

der medizinischen Statistik herangewachsen. Besonders das Auftreten von

Microarray Daten hat die Forschung auf dem Gebiet der Klassifiaktion und

Variablenreduzierung in den letzten Jahren vorangebracht. Einige Ideen und

Verfahren wurden in dieser Arbeit aufgegriffen und angewandt.

Bei den hier verwendeten Mammographie-Screeningdaten handelt es sich

nicht um sogenannte Genexpressionsdaten, die tausende bis zehntausende

Gene beinhalten. Auch bei den gegebenen 452 Variablen kommt es, wie hier

gezeigt wurde, bei der Logistischen Regression oder der Linearen Diskrimi-

nanzanalyse nicht mehr zu aussagekräftigen Ergebnissen, sodass eine



Vorauswahl notwendig wird.

Diese Vorauswahl wird für die Lineare Diskriminanzanalyse und Support

Vector Machine mit Hilfe der Variablenselektionsmethoden Ranking, Korre-

lation I, II und III getroffen. Das Hauptinteresse dieser Arbeit liegt in dem

Abschneiden der Korrelationsansätze und der Frage, ob dieser als ”semi-

multivariat” bezeichnete Ansatz ([20]) durch die zusätzliche Betrachtung der

Korrelation der Variablen untereinander die üblichen univariaten Ansätze

ablösen kann bzw. bessere Ergebnisse liefert. Es stellt sich auch die Frage,

ob diese univariaten Ansätze als eine leicht durchführbare Alternative zu den

sehr komplexen multivariaten Variablenselektionsmethoden gesehen werden

können. Deren großer Vorteil liegt in der Beachtung von Korrelationen und

Interaktionen. Auf Grund ihrer Komplexität werden diese Ansätze selten an-

gewendet.

Der Selektionsansatz mit der geringsten AUC ist Korrelation III der LDA

und dieser ist auch gleichzeitig der mit der allgemein schlechtesten Klassifi-

kationsgenauigkeit. Auch in Bezug zur SVM resultieren nach Korrelation III

die niedrigsten AUC-Werte, was sich dadurch erklären lässt, dass die beiden

AUC-stärksten Variablen, also die mit dem größten univariaten Erklärungs-

wert, hier fehlen. Besonders für Variablenanzahlen kleiner als 36 erhält man

mit Korrelation III besonders niedrige AUC-Werte. Auffallend ist jedoch,

dass sowohl bei der LDA als auch der SVM der Korrelation II-Ansatz für

Variablenanzahlen kleiner 36 besser abschneidet als Korrelation I, obwohl

in Korrelation II die AUC-stärkste Variable nicht mit eingeht. Da die Me-

thoden lediglich an einem Datensatz evaluiert wurden, können keine Rück-

schlüsse auf ein generelles Verhalten dieser Korrelationsansätze gezogen wer-

den. Möglicherweise tragen einzelne Variablen zu diesen Ausprägungen bei

und es handelt sich um ein rein datenspezifisches Verhalten. Eine Betrach-

tung der ausgewählten Variablen könnte diese Frage klären.

Eine weitere Auffälligkeit zeigt sich darin, dass der Ranking-Ansatz, sowohl

bei der LDA als auch der SVM bei einem Anteil von 55% die Korrelati-

onsansätze übertrifft, also höhere AUC-Werte resultieren. Zwei Erklärungen

scheinen hier plausibel:

Zum einen weisen die ersten Variablen des AUC-Rankings eventuell eine
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hohe Korrelation untereinander auf, was dazu führen kann, dass sie redundan-

te Informationen beinhalten und so zu einer schlechten Prädiktion führen.

Zum anderen entspricht die Variablenmenge bei einem Rankinganteil von

55% bereits einer Korrelationsstärke von 0.95 in den Korrelationsansätzen.

Die durchschnittlich 250 ausgewählten Variablen besitzen also untereinander

bereits eine Korrelation von bis zu 0.95. Unbestritten besteht ein starker Zu-

sammenhang zwischen den ausgewählten Variablen. Die Aussage, dass mit

den Korrelationsansätzen nur Variablen selektiert werden, die nicht mitein-

ander korrelieren, trifft hier nicht mehr zu.

Im Vergleich mit der Klassifikationsgenauigkeit der Logistischen Regressi-

on und des LASSO Schätzers findet man in LASSO das Verfahren mit der

höchsten AUC, gefolgt von der SVM im Korrelation I- und II-Ansatz, jeweils

bei einer Korrelationsstärke von 0.60. Es folgen die Logistische Regression

und schliesslich die LDA.

Allein unter den Korrelationsansätzen gibt es keinen global besten Ansatz.

Korrelation II schneidet zunächst für geringere Variablenanzahlen besser ab

als Korrelation I. Dies ändert sich aber einer Korrelationsstärke von 0.45 Die

AUC-stärkste Variable auszulassen, wie es in Korrelation II der Fall ist, hat

dem Ansatz mit eben dieser Variable gegenüber keinen Vorteil.

Fazit

Im direkten Vergleich der Methoden finden die Korrelationsansätze bei ei-

ner Variablenanzahl von bis zu 200 günstige Variablenkombinationen, welche

sich in höheren AUC-Werten spiegeln. Dies gilt sowohl für die LDA als auch

die SVM. Ab einer Variablenanzahl größer als 200 dominiert jeweils das Ran-

king.

Ich persönlich bevorzuge bei der Wahl der Selektions- und Klassfikations-

methode LASSO, welches auf Grund seiner integrierten Variablenselektion

und dem dadurch multivariaten Ansatz in kurzer Zeit eine Variablenmenge

selektiert, die auch mit ihrer geringen Größe eine sehr gute Prädiktion erzielt.
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Implementierung

Wichtig im Zusammenhang mit der höchsten AUC ist die Betrachtung des

Aufwands der Implementierung, der Rechenzeit und des resultierenden Nut-

zens. Ein Vielfaches an Rechenzeit steht in keinem Verhältnis zu einer mini-

mal höheren AUC. Auch die Handhabung der verwendeten Funktionen spielt

eine wichtige Rolle.

Auf Grund der vorherigen Variablenselektion und der daraus resultierenden

10 Variablenkombinationen benötigen die LDA und SVM die meiste Rechen-

zeit: Etwa 3.5 Tage für die SVM bzw. 2.5 für die LDA. Dagegen erwies sich

die Implementierung für beide Methoden als gleich aufwändig.

Im Vergleich hierzu beträgt die Rechenzeit der LogReg nur 1.5 Tage. Aus

der Vorwärtsselektion resultiert jedoch jeweils nur eine Variablenkombinati-

on, mit der die Logistische Regression durchgeführt wird.

LASSO ist in seiner Implementierung das aufwändigste Verfahren, zumal

zusätzlich eine Kreuzvalidierung zur optimalen λ-Bestimmung durchgeführt

werden muss und erst anschließend der LASSO-Schätzer bestimmt werden

kann. LASSO ist aber auch das mit Abstand schnellste Verfahren mit einer

Rechenzeit von etwa 4 Stunden. Im Hinblick auf die daraus folgende Klassi-

fikationsgenauigkeit und der schnellen Durchführung hält sich der Aufwand

der Implementierung in Grenzen.

Ausblick

Um weitere Aufschlüsse über die Güte von univariaten und multivariaten

Variablenselektionsmethoden zu erhalten, ließen sich die hier vorgestellten

Verfahren ausweiten.

Je nach Datenbeschaffenheit bietet sich an Stelle der Monte Carlo Cross Va-

lidation z.B. für Datensätze mit extrem kleiner Beobachtungszahl Bootstrap

an[4].

Um eine noch bessere Robustheit der Schätzer zu garantieren, ist eine Auf-

stockung der 500 Iterationen auf eine Anzahl von 1000 möglich. In dieser

Analyse waren ursrpünglich 1000 Iterationen vorgesehen, diese wurden aber

Diskussion 48



wegen zu langer Rechenzeit auf die verwendeten 500 herabgesetzt.

Auch auf das Parametertuning für die Support Vector Machine wurde we-

gen einer erwarteten Rechenzeit von mehreren Wochen verzichtet. Durch ein

Tuning des Parameters λ und des Kostenparameters C können weitere Ver-

besserungen in der Prädiktionsgenauigkeit erzielt werden[2]. Ebenso verhält

es sich beim Vergleich der einzelnen Kernfunktionen.

Die Verwendung weiterer univariater Selektionsmethoden bietet ein breite-

res Spektrum an Vergleichsmöglichkeiten. Auch führt ein feineres Gitter der

Korrelationsstärken zu einem detaillierteren Verständnis der Auswirkung der

Korrelation auf die Variablenanzahl und die anschließende Prädiktion.

Für geringe Variablenanzahlen kann es auch von Interesse sein, zu sehen,

welche Variablen jeweils ausgewählt werden und wie sich die jeweilige

Variablenkombination auf die Klassifikationsgenauigkeit auswirkt.

Um ein präzises Ergebnis präsentieren zu können, sind mehrere Datensätze

zwingend erforderlich. Nur wenn sich das Verhalten der angewandten Me-

thoden auch bei der Durchführung an anderen Datensätzen wiederholt, kann

eine allgemeingültige Aussage erfolgen.
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Anhang A

Exakte Messergebnisse



Selektions- An- Variablen-
methode teil LDA SVM anzahl (φ)
Ranking 1% 0.7538540 0.7427812 5

2% 0.7499174 0.7508410 9
5% 0.7559156 0.7573101 23
8% 0.7602774 0.7603246 36
10% 0.7601812 0.7607917 45
15% 0.7500876 0.7603130 68
22% 0.7405552 0.7597164 99
55% 0.7043656 0.7728306 249
70% 0.6867101 0.7707627 316
100% 0.6509923 0.7595886 452

Korrelation 0.02 0.6946100 0.7575468 5.8
mit der 0.05 0.6663810 0.7446452 9.0

stärksten 0.20 0.7150180 0.7326827 21.4
Variablen 0.35 0.7618143 0.7644380 34.5

des 0.45 0.7645254 0.7712430 47.4
Rankings 0.60 0.7611848 0.7765495 62.6

0.75 0.7474516 0.7724933 98.3
0.95 0.6884925 0.7658260 250.5
0.98 0.6786873 0.7641890 311.6

1 0.6510343 0.7596187 451.7
Korrelation 0.02 0.7536577 0.7565851 4.5

mit der 0.05 0.7518452 0.7556453 8.8
zweitstärksten 0.20 0.7512139 0.7519868 21.0

Variablen 0.35 0.7624200 0.7639910 34.3
des 0.45 0.7636546 0.7704033 47.3

Rankings 0.60 0.7619605 0.7766769 62.6
0.75 0.7462553 0.7721498 97.9
0.95 0.6875220 0.7654593 250.4
0.98 0.6775654 0.7635834 310.7

1 0.6483317 0.7590487 450.7
Korrelation 0.02 0.6722893 0.7273905 6.0

mit der 0.05 0.6518427 0.7155845 9.0
drittstärksten 0.20 0.7177546 0.7196986 21.4

Variablen 0.35 0.7416954 0.7468673 35.3
des 0.45 0.7498963 0.7597387 47.6

Rankings 0.60 0.7529452 0.7660082 62.7
0.75 0.7398636 0.7629229 97.9
0.95 0.6843780 0.7573881 249.4
0.98 0.6766561 0.7557706 309.7

1 0.6483897 0.7518457 449.7

Tabelle A.1: AUC Mittelwerte der LDA und SVM(ungerundet)
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Selektions- An- Variablen-
methode teil LDA SVM anzahl (φ)
Ranking 1% 0.3032472 0.3055991 5

2% 0.3072428 0.3068241 9
5% 0.3061782 0.3111492 23
8% 0.3044365 0.3108953 36
10% 0.3048330 0.3123875 45
15% 0.3088998 0.3180134 68
22% 0.3059020 0.3219287 99
55% 0.3208062 0.2972383 249
70% 0.3337506 0.2981871 316
100% 0.3682584 0.3058040 452

Korrelation 0.02 0.3898753 0.3371314 5.8
mit der 0.05 0.3752517 0.3366904 9.0

stärksten 0.20 0.3438797 0.3267973 21.4
Variablen 0.35 0.3022895 0.2968151 34.5

des 0.45 0.2994298 0.2898530 47.4
Rankings 0.60 0.2994610 0.2866414 62.6

0.75 0.3077149 0.2906013 98.3
0.95 0.3461559 0.2994833 250.5
0.98 0.3491403 0.3009310 311.6

1 0.3680935 0.3058263 451.7
Korrelation 0.02 0.3145212 0.3029889 4.5

mit der 0.05 0.3155367 0.3044410 8.8
zweitstärksten 0.20 0.3131136 0.3076481 21.0

Variablen 0.35 0.3017595 0.2978486 34.3
des 0.45 0.3004944 0.2906013 47.3

Rankings 0.60 0.2976615 0.2854566 62.6
0.75 0.3090646 0.2912249 97.9
0.95 0.3467884 0.2996971 250.4
0.98 0.3499020 0.3013185 310.7

1 0.3698218 0.3063252 450.7
Korrelation 0.02 0.4025657 0.3700356 6.0

mit der 0.05 0.3847439 0.3580980 9.0
drittstärksten 0.20 0.3391180 0.3374699 21.4

Variablen 0.35 0.3218797 0.3147394 35.3
des 0.45 0.3141247 0.3014967 47.6

Rankings 0.60 0.3088374 0.2951136 62.7
0.75 0.3152160 0.2985791 97.9
0.95 0.3503296 0.3059911 249.4
0.98 0.3506370 0.3074477 309.7

1 0.3695011 0.3113363 449.7

Tabelle A.2: MSE Mittelwerte der LDA und SVM(ungerundet)
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LogReg LASSO
AUC 0.7730696 0.7796021

[0.731; 0.832] [0.712; 0.833 ]
MSE 0.2895457 0.2889555

[0.238; 0.341] [0.229; 0.358]
Variablenanzahl 6.77 11.22

[3; 19] [2; 18]

Tabelle A.3: AUC/MSE Mittelwerte der LogReg und LASSO(ungerundet), sowie
die durchschnittliche Variablenanzahl mit Angabe des jeweiligen Minimum und
Maximum
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Anhang B

Verteilung der

AUC-/MSE-Werte von LDA

und SVM
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Abbildung B.1: AUC Verteilung bei LDA
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Abbildung B.2: AUC Verteilung bei SVM
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Abbildung B.3: MSE Verteilung bei LDA
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Abbildung B.4: MSE Verteilung bei SVM
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Anhang C

Verwendeter R-Code



Variablenselektion: Ranking, Korrelation I, Korrelation II, Korrelation III

# Packages laden

library(WilcoxCV)

library(ROC)

library(MASS)

dat.gesamt <- read.table("File")

N <- 500 # Anzahl der Iterationen

verh <- 1347/3 # Für ein Verhältnis 2:1

set.seed(1334)

mccv.ind <- generate.split(niter=N,n=dim(dat.gesamt)[1],ntest=verh)

# MCCV

for(i in 1:N) {

train.allg <- dat.gesamt[-mccv.ind[i,],]

train.allg.x <- train.allg[,-1]

test.allg <- dat.gesamt[mccv.ind[i,],]

# [i,] Die i-te der 500 Iterationen wird verwendet

test.allg.x <- test.allg[,-1]

test.allg.y <- test.allg[,1]

# Variablenranking #

######################

Namen <- names(dat.gesamt)

# Trainingsdatensatz nach AUC-Werten ordnen

auc <- data.frame()

for (k in 1:(dim(train.allg)[2]-1)) {

auc[k,1] <- k

auc[k,2] <- AUC(rocdemo.sca(train.allg$Severity,

train.allg[,k+1], rule = dxrule.sca))
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auc[k,3] <- Namen[k+1]

}

names(auc) <- c("Beob","aucwert","Name")

ordnen <- auc[order(auc$aucwert,decreasing=TRUE),]

index.auc.rank <- ordnen$Beob

aucorder <- train.allg.x[,index.auc.rank]

aucorder.test <- test.allg.x[,index.auc.rank]

anteil.var <- vector()

p <- c(0.01,0.02,0.05,0.08,0.1,0.15,0.22,0.55,0.75,1)

anteil.var <- round(p*(length(dat.gesamt)-1))

sel.anteil.01 <- names(aucorder[,1:anteil.var[1]])

sel.anteil.02 <- names(aucorder[,1:anteil.var[2]])

sel.anteil.05 <- names(aucorder[,1:anteil.var[3]])

sel.anteil.08 <- names(aucorder[,1:anteil.var[4]])

sel.anteil.10 <- names(aucorder[,1:anteil.var[5]])

sel.anteil.15 <- names(aucorder[,1:anteil.var[6]])

sel.anteil.22 <- names(aucorder[,1:anteil.var[7]])

sel.anteil.55 <- names(aucorder[,1:anteil.var[8]])

sel.anteil.70 <- names(aucorder[,1:anteil.var[9]])

sel.anteil.100 <- names(aucorder[,1:anteil.var[10]])

### Korrelation

###############

# Diese Funktion vergleicht die Korrelation der

# Variablen untereinander und gibt schliesslich die

# aus, die unter der vorgegebenen Schranke liegen.

omit.cor.var <- function(cor.mat, threshold)

{

indexmenge <- vector()

for (i in 2:dim(cor.mat)[1])
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{

values <- cor.mat[!is.element(row.names(cor.mat),

indexmenge), i]

[1 : (i - length(indexmenge) - 1)]

values <- abs(values)

if (is.element(TRUE, values > threshold))

indexmenge <- c(indexmenge, row.names(cor.mat)[i])

}

selected <- row.names(cor.mat)[!is.element

(row.names(cor.mat), indexmenge)]

return(selected)

}

cor.matrix1 <- cor(aucorder)

sel.cor1.02 <- omit.cor.var(cor.matrix1,0.02)

sel.cor1.05 <- omit.cor.var(cor.matrix1,0.05)

sel.cor1.20 <- omit.cor.var(cor.matrix1,0.20)

sel.cor1.35 <- omit.cor.var(cor.matrix1,0.35)

sel.cor1.45 <- omit.cor.var(cor.matrix1,0.45)

sel.cor1.60 <- omit.cor.var(cor.matrix1,0.60)

sel.cor1.75 <- omit.cor.var(cor.matrix1,0.75)

sel.cor1.95 <- omit.cor.var(cor.matrix1,0.95)

sel.cor1.98 <- omit.cor.var(cor.matrix1,0.98)

sel.cor1.1 <- omit.cor.var(cor.matrix1,1.00)

cor.matrix2 <- cor(aucorder[-1])

sel.cor2.02 <- omit.cor.var(cor.matrix2,0.02)

sel.cor2.05 <- omit.cor.var(cor.matrix2,0.05)

sel.cor2.20 <- omit.cor.var(cor.matrix2,0.20)

sel.cor2.35 <- omit.cor.var(cor.matrix2,0.35)

sel.cor2.45 <- omit.cor.var(cor.matrix2,0.45)

sel.cor2.60 <- omit.cor.var(cor.matrix2,0.60)
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sel.cor2.75 <- omit.cor.var(cor.matrix2,0.75)

sel.cor2.95 <- omit.cor.var(cor.matrix2,0.95)

sel.cor2.98 <- omit.cor.var(cor.matrix2,0.98)

sel.cor2.1 <- omit.cor.var(cor.matrix2,1.00)

cor.matrix3 <- cor(aucorder[-1][-1])

sel.cor3.02 <- omit.cor.var(cor.matrix3,0.02)

sel.cor3.05 <- omit.cor.var(cor.matrix3,0.05)

sel.cor3.20 <- omit.cor.var(cor.matrix3,0.20)

sel.cor3.35 <- omit.cor.var(cor.matrix3,0.35)

sel.cor3.45 <- omit.cor.var(cor.matrix3,0.45)

sel.cor3.60 <- omit.cor.var(cor.matrix3,0.60)

sel.cor3.75 <- omit.cor.var(cor.matrix3,0.75)

sel.cor3.95 <- omit.cor.var(cor.matrix3,0.95)

sel.cor3.98 <- omit.cor.var(cor.matrix3,0.98)

sel.cor3.1 <- omit.cor.var(cor.matrix3,1.00)

# Abspeichern der gewählten Variablen in eine Liste

VarSel <- list(sel.anteil.01, sel.anteil.02, sel.anteil.05,

sel.anteil.08, sel.anteil.10, sel.anteil.15,

sel.anteil.22, sel.anteil.55, sel.anteil.75,

sel.anteil.100, sel.cor1.02, sel.cor1.05,

sel.cor1.20, sel.cor1.35, sel.cor1.45,

sel.cor1.60, sel.cor1.75, sel.cor1.95,

sel.cor1.98, sel.cor1.1, sel.cor2.02,

sel.cor2.05, sel.cor2.20, sel.cor2.35,

sel.cor2.45, sel.cor2.60, sel.cor2.75,

sel.cor2.95, sel.cor2.98, sel.cor2.1,

sel.cor3.02, sel.cor3.05, sel.cor3.20,

sel.cor3.35, sel.cor3.45, sel.cor3.60,

sel.cor3.75, sel.cor3.95, sel.cor3.98, sel.cor3.1)
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Anwendung der LDA auf die ausgewählten Variablen

# Packages

library(WilcoxCV)

library(ROC)

library(MASS)

dat.gesamt <- read.table("File")

N <- 500

verh <- 1347/3

set.seed(1334)

mccv.ind <- generate.split(niter=N,n=dim(dat.gesamt)[1],ntest=verh)

klasse.lda.list <- vector(length=N, mode="list")

auc.lda.list <- vector(length=N, mode="list")

anzahl.lda.list <- vector(length=N, mode="list")

mse.lda.list <- vector(length=N, mode="list")

for(i in 1:N) {

train.allg <- dat.gesamt[-mccv.ind[i,],]

train.allg.x <- train.allg[,-1]

test.allg <- dat.gesamt[mccv.ind[i,],]

test.allg.x <- test.allg[,-1]

test.allg.y <- test.allg[,1]

auc.lda <- vector(length=length(VarSel), mode="logical")

klassen.lda.matrix <- matrix(data=NA, length(test.allg.y),

length(VarSel))

anzahl.lda <- vector()

mse.lda <- vector()

for(w in 1:length(VarSel)){
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model.lda <- lda(Severity~., data=train.allg[,c("Severity",VarSel[[w]])],

tol=1.0e-40)

wkeit.lda <- predict(model.lda,newdata=test.allg[,VarSel[[w]]])$

posterior[,2]

klassen.lda <- predict(model.lda,newdata=test.allg[,VarSel[[w]]])$

class

auc.lda[w] <- AUC(rocdemo.sca(test.allg.y, wkeit.lda,

rule = dxrule.sca))

klassen.lda.matrix[,w] <- klassen.lda

anzahl.lda[w] <- length(VarSel[[w]])

mse.lda[w] <- 1/length(test.allg.y) *

sum((test.allg.y - (as.numeric(klassen.lda)-1))^2)

}

auc.lda.list[[i]] <- auc.lda

anzahl.lda.list[[i]] <- anzahl.lda

klasse.lda.list[[i]] <- klassen.lda.matrix

mse.lda.list[[i]] <- mse.lda

}
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Anwendung der SVM auf die ausgewählten Variablen

# Packages

library(WilcoxCV)

library(ROC)

library(e1071)

dat.gesamt <- read.table("File")

N <- 500

verh <- 1347/3

set.seed(1334)

mccv.ind <- generate.split(niter=N,n=dim(dat.gesamt)[1],ntest=verh)

auc.svm.list <- vector(length=N, mode="list")

klasse.svm.list <- vector(length=N, mode="list")

anzahl.svm.list <- vector(length=N, mode="list")

mse.svm.list <- vector(length=N, mode="list")

for(i in 1:N) {

train.allg <- dat.gesamt[-mccv.ind[i,],]

train.allg.x <- train.allg[,-1]

test.allg <- dat.gesamt[mccv.ind[i,],]

test.allg.x <- test.allg[,-1]

test.allg.y <- test.allg[,1]

auc.svm <- vector(length=length(VarSel), mode="logical")

klassen.svm.matrix <- matrix(data=NA, length(test.allg.y),

length(VarSel))

anzahl.svm <- vector()

mse.svm <- vector()

for(w in 1:length(VarSel)){

model.svm <- svm(formula=as.factor(Severity)~., type="C" ,
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data=train.allg[,c("Severity",VarSel[[w]])],

kernel="radial", probability=T)

wkeit.svm <- attr(predict(model.svm, newdata=test.allg[,VarSel[[w]]],

probability = T), "probabilities")[, "1"]

klassen.svm <- predict(model.svm, newdata=test.allg[,VarSel[[w]]])

klassen.svm.matrix[,w] <- klassen.svm

auc.svm[w] <- AUC(rocdemo.sca(test.allg.y, wkeit.svm,

rule = dxrule.sca))

anzahl.svm[w] <- length(VarSel[[w]])

mse.svm[w] <- 1/length(test.allg.y)*

sum((test.allg.y -(as.numeric(klassen.svm)-1))^2)

}

auc.svm.list[[i]] <- auc.svm

klasse.svm.list[[i]] <- klassen.svm.matrix

anzahl.svm.list[[i]] <- anzahl.svm

mse.svm.list[[i]] <- mse.svm

}
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Logistische Regression mit Vorwärtsselektion

# Packages

library(WilcoxCV)

library(ROC)

library(MASS)

dat.gesamt <- read.table("File")

N <- 500

verh <- 1347/3

set.seed(1334)

mccv.ind <- generate.split(niter=N,n=dim(dat.gesamt)[1],ntest=verh)

# Ausgabeobjekte:

klasse.logReg.list <- vector(length=N, mode="list")

auc.logReg <- vector()

mse.logReg <- vector()

anzahl.logReg <- vector()

for(i in 1:N) {

train.allg <- dat.gesamt[-mccv.ind[i,],]

train.allg.x <- train.allg[,-1]

test.allg <- dat.gesamt[mccv.ind[i,],]

test.allg.x <- test.allg[,-1]

test.allg.y <- test.allg[,1]

### Einfache Vorwärtsselektion

###############################

logmodel.1 <- glm(Severity~1, data=train.allg,

family=binomial("logit"))

logmodel.alle <- glm(Severity~., data=train.allg,
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family=binomial("logit"))

sel.logmodel <- stepAIC (logmodel.1, scope=list(upper=logmodel.alle,

lower=logmodel.1), direction="forward",

k=log(dim(dat.gesamt)[1]))

anzahl.logReg[i] <- length(sel.logmodel$coefficients)-1

### Logistische Regression mit Variablen aus Vorwärtsselektion

##############################################################

train.logReg <- sel.logmodel

wkeit.logReg <- predict(train.logReg, newdata=test.allg.x[,namen.logReg],

type="response")

klasse.logReg <- vector()

for(l in 1:length(wkeit.logReg))

klasse.logReg[l] <- ifelse(wkeit.logReg[l]>=0.5,1,0)

klasse.logReg.list[[i]] <- klasse.logReg

auc.logReg[i] <- AUC(rocdemo.sca(test.allg.y, wkeit.logReg,

rule = dxrule.sca))

mse.logReg[i] <- 1/length(test.allg.y) *

sum((test.allg.y - klasse.logReg)^2)

}
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LASSO mit Kreuzvalidierung zur optimalen λ Bestimmung

# Packages laden

library(WilcoxCV)

library(ROC)

library(glmnet)

dat.gesamt <- read.table("File")

N <- 500

verh <- 1347/3

set.seed(1334)

mccv.ind <- generate.split(niter=N,n=dim(dat.gesamt)[1],ntest=verh)

klasse.lasso.list <- vector(length=N, mode="list")

auc.lasso <- vector()

mse.lasso <- vector()

anzahl.lasso <- vector()

namen.lasso.list <- vector(length=N, mode="list")

namen.lasso <- vector()

for(i in 1:N) {

train.allg <- dat.gesamt[-mccv.ind[i,],]

train.allg.x <- train.allg[,-1]

test.allg <- dat.gesamt[mccv.ind[i,],]

test.allg.x <- test.allg[,-1]

test.allg.y <- test.allg[,1]

predictors.lasso <- as.matrix(train.allg[,-1])

response.lasso <- as.factor(train.allg[,1])

lambda.poss.lasso <- glmnet(x=predictors.lasso, y=response.lasso,
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family="binomial", alpha=1,

nlambda = 20, lambda.min = 0.01)$lambda

lambda.poss.lasso <- lambda.poss.lasso[1:8]

# Kreuzvalidierung zur Bestimmung des optimalen lambda

cv.ind.lasso <- generate.cv(n=dim(train.allg)[1], m=10)

n.cv <- 10

klasse.lasso <- vector(n.cv*lambda.poss.lasso, mode="list")

aucs.lasso.cv <- matrix(NA, nrow = n.cv,

ncol = length(lambda.poss.lasso),

dimnames = list(1:n.cv, lambda.poss.lasso))

model.lasso <- vector(n.cv*length(lambda.poss.lasso), mode="list")

for(j in 1:length(lambda.poss.lasso)) {

for(m in 1:n.cv) {

train.pre.lasso <- predictors.lasso[-cv.ind.lasso[m,],]

train.res.lasso <- response.lasso[-cv.ind.lasso[m,]]

test.alle <- train.allg[,2:dim(train.allg)[2]]

test.alle.cv <- as.matrix(test.alle[cv.ind.lasso[m,],])

responses.orig <- train.allg[,1]

responses.vgl <- responses.orig[cv.ind.lasso[m,]]

model.lasso[[m+(j-1)*10]] <- predict(glmnet(x=train.pre.lasso,

y=train.res.lasso, family="binomial",

alpha=1, lambda=lambda.poss.lasso[j]),

test.alle.cv, s=lambda.poss.lasso[j],

type="response")

klasse.lasso[[m+(j-1)*10]] <- ifelse(model.lasso[[m+(j-1)*10]]>=0.5,1,0)

aucs.lasso.cv[m,j] <- AUC(rocdemo.sca(responses.vgl,

model.lasso[[m+(j-1)*10]],
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rule = dxrule.sca))

}

}

# LASSO mit oben gewähltem optimalem lambda

lambda.lasso.final <- list(aucs.lasso.cv, colMeans(aucs.lasso.cv),

names(colMeans(aucs.lasso.cv))

[which.max(colMeans(aucs.lasso.cv))])

model.lasso.final <- glmnet(x=predictors.lasso, y=response.lasso,

family="binomial", alpha=1,

lambda=lambda.lasso.final[[3]])

wkeit.lasso <- predict(model.lasso.final, as.matrix(test.allg.x),

type="response")

klasse.lasso.final <- ifelse(wkeit.lasso>=0.5,1,0)

klasse.lasso.list[[i]] <- klasse.lasso.final

auc.lasso[i] <- AUC(rocdemo.sca(test.allg.y, wkeit.lasso,

rule = dxrule.sca))

mse.lasso[i] <- 1/length(test.allg.y) *

sum((test.allg.y - klasse.lasso.final)^2)

anzahl.lasso[i] <- length(which(model.lasso.final$

beta[1:dim(test.allg.x)[2]] !=0))

namenvar.lasso <- which(model.lasso.final$beta

[1:dim(test.allg.x)[2]] !=0)

namen.lasso.list[[i]] <- names(test.allg.x[,namenvar.lasso])

}
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