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Einleitung

Die Statistik hat sich in den letzten Jahren zunehmend zu einem unentbehr-
lichen Begleiter der medizinischen Wissenschaft entwickelt.

Der Einsatz von Computern lasst hochkomplexe Analysen zu, deren Aussa-
gewerte die Effizienz der medizinischen Forschung erheblich steigern kénnen.
Friithzeitige Diagnosen und die Prognose des Therapieerfolges sind Teile da-
von.

Die dadurch umfangreichen Datensétze fithren jedoch zu einer immer grofie-
ren Anzahl von Variablen. Um die Durchfiihrbarkeit der Analysen zu gewéhr-
leisten, gilt es, die Anzahl der Variablen auf die aussagekréftigsten zu be-
schranken.

Ein klassisches Beispiel hierfiir sind Microarray Daten.

Gerade in den letzten Jahren ist es in diesem Bereich der medizinischen
Statistik zu Verdnderungen gekommen. Hochdimensionale Daten erlangen
eine immer groflere Bedeutung, da man mit ihrer Hilfe weitaus komplexere
und medizinisch tiefgriindigere Fragestellungen beantworten kann. Microar-
rays ermoglichen es, gleichzeitig mehrere tausend Gene zu messen, und sind
daher weit verbreitet in der medizinischen Forschung. Sie unterstiitzen die
Identifikation von Krankheits-Biomarkern, die u.a. wichtig sein konnen zur
Erkennung verschiedener Krankheiten|21] bzw. zur Prognose von Krankheits-

verlaufen und der Pradiktion eines Therapieerfolges.

Das Problem bei hochdimensionalen Daten liegt darin, dass es deutlich mehr
Variablen als Beobachtungen gibt. In der Literatur wird dies héufig als
p >> n Problem bezeichnet, wobei p fiir die Anzahl an Variablen steht und

n fiir die Beobachtungen.



In Bezug auf die Genetik besteht ein solcher Datensatz aus mehreren tausend
oder sogar zehntausenden Genexpressionsvariablen, die angeben, wie ”aktiv”
ein bestimmtes Gen ist bzw. wie oft es transkribiert wurde. Da die Herstel-
lung solcher Microarray Daten sehr aufwéndig und teuer ist, stehen haufig

nur wenige Beobachtungen zur Verfiigung (ca. 20-300)[2].

Ziel einer statistischen Analyse ist es, anhand der vorliegenden Variablen-
auspragungen eine moglichst sichere Entscheidung beziiglich des Vorliegens
einer Krankheit zu treffen.

Das ” Vorliegen einer Krankheit” kann als binére oder nominale/ordinale Ziel-
grofe dargestellt werden. Bei einer bindren Zielgrofle gilt die Fragestellung
dem Auftreten bzw. Nicht-Auftreten des Zielmerkmals, wiahrend bei nomi-
nalen oder ordinalen Responsevariablen in mehrere Klassen (> 3) eingeteilt

wird.

Wegen der hohen Anzahl an Variablen kann die Anwendung von Standard-
pradiktionsverfahren, wie Logistische Regression oder Diskriminanzanalyse
problematisch sein, da die Modelle iiberbestimmt sind und letztendlich nicht
eindeutige Losungen der Schétzgleichungen resultieren.

Es gilt herauszufinden, welche der Variablen im Zusammenhang mit der
Krankheit stehen bzw. welche Variablen den gréfiten Erklarungswert haben.
So werden schlieflich nur die ausgewéhlten Variablen in die Klassifikation
mit einbezogen und die effiziente Anwendung standardméfliger Verfahren
ermoglicht.

Fiir die Analyse von Microarray Daten wurden in den letzten Jahren ver-
schiedene innovative Methoden entwickelt. Daraus konnten sich Standard-

verfahren etablieren, welche sich der ”Dimensionsproblematik” annehmen.

Ziel dieser Arbeit ist es, einige dieser Verfahren aufzugreifen, zu beschrei-
ben und einen Uberblick iiber die Eigenschaften der jeweiligen Methoden zu
geben. Dies geschieht anhand eines realen Datensatzes von Mammographie-
Screeningdaten, die aus einer offentlich zugénglichen Datenbank erhoben

wurden.
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Im folgenden Kapitel wird zuerst grundlegend erklart, wie mit hochdimen-
sionalen Daten umgegangen werden kann. Anschliefend wird auf die hier
verwendeten Variablenselektionsverfahren eingegangen. Kapitel 2 beschreibt
die Idee des Uberwachten Lernens, geht auf die Lineare Diskriminanzanaly-
se (LDA), die Logistische Regression (LogReg), die Support Vector Machine
(SVM), sowie die Least Absolute Shrinkage and Selection Operators
(LASSO) ein.

Anhand der Klassifikationsgenauigkeit wird schliellich die Giite der Varia-
blenselektionsverfahren gemessen.

Kapitel 3 gibt eine Einfiihrung iiber den medizinischen Hintergrund, einen
kurzen Uberblick iiber die Daten und erliutert schlieflich die Anwendung der
Methoden. Die Ergebnisse von Variablenselektion und Klassifikation sind in
Kapitel 4 dargestellt. AbschlieBend folgt eine Zusammenfassung mit Diskus-

sion, Fazit und Ausblick im letzten Kapitel.
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Kapitel 1
Dimensionsproblematik

Wie bereits in der Einleitung erwahnt, fithrt eine zu hohe Anzahl an Variablen
bei den Standardpradiktionsverfahren zu Problemen und ungenauen Vorher-
sagen. Die Aufgabe dieses Kapitels besteht darin, die Variablenmenge so zu
reduzieren, dass einerseits eine einwandfreie Anwendung der nachfolgenden
Klassifikation ermoglicht wird und andererseits die Priadiktionsgenauigkeit

nicht negativ beeinflusst wird.

1.1 Umgang mit hochdimensionalen Daten

Die Auswahl von aussagekriftigen Variablen hat in Verbindung zu hochdi-
mensionale Daten verschiedene Ziele. Zum einen kann diese als vorangehender
Schritt zur Klassifikation gesehen werden, da die gewihlte Klassifikationsme-
thode nur mit einer geringen Anzahl an Variablen umgehen kann. Zum ande-
ren kann die Variablenselektion dazu dienen, die Variablen zu identifizieren,
die mit der Krankheit assoziiert sind.

Die Klassifikation bei hochdimensionalen Daten kann man grob in drei Grup-

pen einteilen[2]:
e Ansitze, die auf vorheriger Variablenselektion beruhen
e Ansitze, die auf Dimensionsreduktion beruhen und

e Ansitze mit integrierter Variablenselektion



1.2 Vorangehende Variablenselektion

In dieser Arbeit werden verschiedene Ansétze zur Variablenselektion mit an-
schliefender Klassifikation miteinander verglichen. Auch LASSO, welches ein
Verfahren mit integrierter Variablenselektion darstellt, wird in den Vergleich

mit einbezogen.

1.2 Vorangehende Variablenselektion

Bei der Variablenselektion gilt es aus einer groflen Anzahl an Informationen
die wichtigsten auszuwéhlen, d.h. diejenigen Variablen zu selektieren, die mit
dem Auftreten der Krankheit assoziiert werden konnen.

Die Literatur unterscheidet hier univariate und multivariate Ansétze, die im

Folgenden kurz vorgestellt werden sollen.

Univariate Ansitze

Beim univariaten Ansatz wird jede Variable fiir sich betrachtet. Daher ist er
im Allgemeinen schnell und einfach durchzufiihren.

Die Variablen werden nach einem bestimmten (univariaten) Kriterium sor-
tiert, z.B. nach den Werten einer Teststatistik, um schliellich die besten
dieses Rankings auszwiihlen. Ubliche Statistiken fiir ein solches Ranking sind
der t-Test, der nicht parametrische Wilcoxon Rang Summen Test oder der
AUC-Wert.

Der Nachteil liegt darin, dass bei diesem univariaten Ansatz weder Korrela-
tionen noch Interaktionen zwischen den Variablen beachtet werden. So ist es
moglich, dass die ersten ausgewihlten Variablen so stark miteinander kor-
relieren, dass nur einige davon brauchbare Information enthalten. In einem
solchen Fall wire es also vorteilhafter, Variablen auszuwéhlen, die zwar eine
schlechtere Wertung im Ranking haben, dafiir aber nicht redundante Infor-

mationen liefern.
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1.2 Vorangehende Variablenselektion

”Semi-multivariater” Ansatz

Als ”Semi-multivariat” wird der von Jaeger et al.[20] vorgestellte Korrela-
tionsansatz gesehen. Dieser basiert zum einen auf dem univariaten Ranking
nach einer bestimmten Statistik, zum anderen wird jedoch auch die paar-
weise Korrelation zwischen den Variablen betrachtet, die jeweils unter einem
bestimmten Wert liegen soll. (s. 2.3.2)

Multivariate Ansitze

In multivariaten Ansédtzen werden die Variablen nun nicht mehr fiir sich
betrachtet, sondern Variablenkombinationen miteinander verglichen. Man
spricht hier von ”Wrapper” und ”Filter Criteria”. Das erste Kriterium ba-
siert auf der Pradiktionsgenauigkeit und somit auf der Pradiktionsregel. Das
zweite misst die Stirke der Abgrenzung (z.B. mittels der Mahalanobis Di-
stanz) verschiedener Variablenkombinationen und ist damit unabhéngig von
einer Préadiktionsregelll].

Dies fithrt zu rechentechnisch teils sehr aufwéndigen Verfahren.

Es sei noch darauf verwiesen, dass multivariate Ansétze lediglich Korrelatio-
nen zwischen den einzelnen Variablen betrachten, jedoch keine Interaktionen.
Diaz-Uriarte und de Andrés[6] stellen eine der wenigen Methoden vor, die

dies, basierend auf Random Forests, beachten.

Variablenranking: Vorbereitung fiir die Selektion

Beim Variablenranking, einer Vorstufe zur Variablenselektion, werden die Va-
riablen zuerst nach einem bestimmten Kriterium sortiert.

Verwendet wird hier der AUC-Wert (Area Under the ROC Curve). Eine
ROC (Receiver Operating Characteristic) Analyse beschreibt das Verhalt-
nis zwischen Sensitivitdt und 1-Spezifitét, also zwischen der richtig positiven
und falsch positiven Rate. Trédgt man beide Werte in ein Koordinatensy-
stem(Sensitivitat/1-Spezifitéit) ein, so ergibt sich die ROC Kurve, bei der
die Flidche zwischen der Winkelhalbierenden des ersten Quadranten und der
Kurve berechnet wird[21]. Die ROC Methode zeigt, wie gut ein System zwei

Verteilungen, mindestens ordinalskalierter Merkmale, unterscheiden kann.
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1.3 Variablenselektionsmethoden

Anschaulich gesprochen ergibt sich dann ein hoher AUC-Wert, wenn sich die
Werte in den beiden Gruppen (gesund oder krank) besonders stark vonein-
ander unterscheiden, d.h. wenn die Beobachtungen ohne Krankheit andere
Variablenauspragungen haben, als die Beobachtungen mit Krankheit.

Hat man fiir jede Variable den AUC-Wert berechnet, werden diese sortiert.
An erster Stelle des Rankings steht die Variable mit dem hochsten AUC-
Wert, an zweiter Stelle die mit dem zweithochsten AUC-Wert, usw..
Vorgestellt werden nun zwei Methoden, die auf diesem AUC Ranking beru-
hen, zuerst ohne Beachtung der Korrelationen zwischen den Variablen und

schlieflich mit deren Beriicksichtigung.

1.3 Variablenselektionsmethoden

1.3.1 Top Ranking Variablen

Eine Moglichkeit der Variablenselektion besteht darin, die ersten Variablen
dieses Rankings zu betrachten.

Es gibt keine Richtlinie bei der Bestimmung einer genauen Anzahl an Varia-
blen fiir die Klassifikation[23]. Daher werden hier einige Moglichkeiten aus-
probiert, um eine eventuelle Tendenz bzgl. der Anzahl an Variablen zu be-
obachten. Um ein breites Spektrum abzudecken, werden zehn verschiedene
Werte von 1% bis 100% der Ranking Liste betrachtet: 1%(entspricht den
ersten fiinf Variablen), 2%(9), 5%(23), 8%(36), 10%(45), 15%(68), 22%(99),
55%(249), 70%(316) und 100%(452).

Ein Problem dieses univariaten Ansatzes ist, wie schon oben beschrieben,
dass die obersten Variablen stark korrelieren und somit redundante Informa-

tion geben konnten.

1.3.2 Korrelationen

Um dieses Problem zu vermeiden wird folgender Ansatz vorgestellt, in den die
Korrelationen mit einbezogen werden[2(]. Diese sollen bei allen ausgewéahl-

ten Variablen unter einer bestimmten Grenze liegen um génzlich redundante
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1.3 Variablenselektionsmethoden

Variablen auszuschlieen. Als Grenzwert werden auch hier zehn verschiedene
Werte zwischen 0 und 1 betrachtet: 0.02, 0.05, 0.2, 0.35, 0.45, 0.6, 0.75, 0.95,
0.98 und 1.

Hierfiir wird eine Korrelationsmatrix berechnet, welche auf dem AUC-Ranking
beruht. D.h. die Variable mit dem gréfiten AUC-Wert steht an erster Stel-
le, die mit dem kleinsten an letzter. Es wird die Korrelation nach Pearson
berechnet. Begonnen wird, die Korrelation mit der stérksten Variable des
Rankings zu betrachten, also die Korrelation zwischen erster und zweiter
Variable. Liegt die Korrelation unter dem vorgegebenen Grenzwert, so wird
die Variable aufgenommen, ansonsten aus der Variablenmenge entfernt. Spal-
tenweise werden die Korrelationen mit der ersten Variablen betrachtet und
bei Uberschreiten des Grenzwerts aussortiert. AnschlieBend wiederholt sich
der Vorgang fiir die {ibrig gebliebenen Variablen, so dass schrittweise die
Korrelation aller Variablen untereinander mit dem Grenzwert abgeglichen
werden. Es resultiert schliefllich eine Variablenmenge, deren Korrelationen

jeweils den Grenzwert nicht {iberschreiten.

Der Ansatz kann leicht verdndert werden, indem die stérkste Variable weg-
gelassen und eine Korrelationsmatrix, die mit der zweitstérksten Variablen
beginnt, fiir die Selektion genutzt wird.

Interessant hierbei ist, inwiefern sich das Wegnehmen der stéarksten Variablen
des Rankings auf die resultierende Variablenmenge und die Klassifikations-
genauigkeit auswirkt.

Ein weiterer Vergleich kommt zustande mit der drittstarksten Variablen an
erster Stelle der Korrelationsmatrix und dem Weglassen der beiden AUC
starksten Variablen.

Auch fiir die Ansétze mit der zweit- und drittstarksten Variablen des Ran-

kings gelten dieselben Korrelationsgrenzen wie oben aufgelistet.

Um das Ranking und die Korrelationsansitze untereinander vergleichbar zu
machen, wurde darauf geachtet, dass bei beiden jeweils etwa gleiche Var-

iablenanzahlen resultieren. Gleichzeitig wurde das Gitter fiir
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1.3 Variablenselektionsmethoden

Variablenanzahlen, die kleiner als 100 sind, feiner gestaltet, weil es von In-
teresse ist, zu sehen, wie die Variablenselektionsmethoden bei kleinen Varia-
blenmengen abschneiden. Ziel ist es, mit moglichst wenigen Variablen eine

moglichst gute Prognose zu erreichen.

1.3.3 Einfache Vorwirtsselektion

Zum Vergleich dient auch die einfache Vorwiértsselektion, beruhend auf dem
BIC Kriterium (Bayes Informationskriterium).

Hier wird ein logistisches Modell an die Daten angepasst, in das schritt-
weise weitere Variablen aufgenommen werden, ndamlich immer die, mit der
das neue Modell den geringsten BIC-Wert aufweist. Ergeben sich bei Hin-
zunahme einer weiteren Variablen keine Verbesserungen mehr, so wird die
Vorwiértsselektion an dieser Stelle abgebrochen und die Variablenmenge als

die optimalste gesehen[10].
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Kapitel 2
Supervised Learning

Uberwachtes Lernen (Supervised Learning) spielt eine wichtige Rolle in der
Statistik und wird in der Literatur ausfiihrlich behandelt. Nachfolgend wird
ein kurzer Einblick gegeben iiber die Definition des Supervised Learnings im

Allgemeinen und iiber einzelne Methoden im Speziellen.

Eine Beobachtungseinheit w € €2, von der nicht bekannt ist, welcher Klasse
sie angehort, soll mit Hilfe des an ihr beobachteten Merkmalsvektors x,, in
eindeutiger Weise genau einer der Klassen y = 1, ..., g zugeordnet werden.

Typische Fragestellungen in der Medizin diesbeziiglich lauten z.B. "Hat der
Patient mit diesen Merkmalen Krebs oder nicht?” oder ”Welchen Schwere-

grad hat der Tumor des Patienten bei diesen Laborwerten?”.

Um solche Problemstellungen behandeln zu kénnen werden in diesem Zusam-
menhang der so genannte Lerndatensatz und der Testdatensatz eingefiihrt.
Diese dienen dazu, zuerst aus den Daten zu "lernen” um schliellich das Ge-
lernte an neuen Daten zu "testen”.

Der Lerndatensatz, fiir den die Zielvariable bereits bekannt ist, entspricht
einer Zufallsauswahl an Beobachtungseinheiten aus der Grundgesamtheit,
anhand derer eine Regel aufgestellt wird. Mithilfe dieser konstruierten Regel
wird kiinftig, allein durch Ubergabe der verschiedenen Merkmalsausprigun-

gen (z.B. klinische Messwerte, Alter, Geschlecht, etc.), eine Entscheidung



bzgl. Krankheit oder nicht Krankheit getroffen(— Klassifikation). Auf den

Testdatensatz wird die gelernte Regel anschlieBend angewendet.

Bewertet wird die Giite einer Entscheidungsregel schlieflich anhand der Ge-
nauigkeit ihrer Zuordnung, d.h. der Ubereinstimmung vorhergesagter und
tatséchlich beobachteter Werte[16].

Mit dem gegebenen Pradiktorraum X € RP und der abhéngigen Variablen
Y € {1, ..., g} liegt eine Stichprobe von Paaren aus Pradiktor- und Klassen-
variablen vor: S = {(x1,41), ..., (Xn, Yn)}

Es soll nun eine Entscheidungsregel aufgestellt werden, die jeder Beobach-
tung x aus dem Stichprobenraum S einen geschétzten Klassifikationsindex
g € {1, ..., g} zuordnet und dabei nur moglichst geringe Fehlentscheidungen
zuldsst.

Prinzipiell kann zwischen der Maximum-Likelihood- und der Bayes-
Entscheidungsregel unterschieden werden, wobei die Bayes-Entscheidungsregel
(siche Kapitel 3.1) fiir alle x die kleinste bedingte Fehlerrate

€(z) = P(d(z) # y|x)) und damit auch die kleinste Gesamtfehlerrate

e= [e(zx)f(x)dz = [ P(6(x) # y|z)) f(z)dx besitzt.

Solche Entscheidungsfunktionen

~

0: X =Y

werden gebildet, indem durch Merkmalsauspridgungen und deren bereits be-
kannter Klassenzugehorigkeit eine Zuordnungsregel aufgestellt wird[2§].

Ein mogliches Vorgehen ist den Datensatz in einen so genannten Lern- und
Testdatensatz aufzuspalten, wobei sowohl Lern- als auch Testdatensatz be-
kannte Responses haben.

Anhand des Lerndatensatzes £ = {(X12,Y1z); -, (Xnz,Yng)} wird die Ent-
scheidungsregel aufgestellt und diese mit Hilfe des Testdatensatzes

7 = {xi17,...,X,7} evaluiert. Dies geschieht indem die resultierenden Klas-

sen mit der wahren Auspriagung verglichen werden.
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2.1 Lineare Diskriminanzanalyse

Wichtig ist, dass £ und 7 disjunkte Teilmengen sind. Jede der Beobachtun-
gen aus der Grundgesamtheit £ U 7 darf demnach entweder nur in £ oder

nur in 7 vorkommen.

Die im Folgenden beschriebenen Klassifikationsverfahren sind, mit Ausnahme
von LASSO, Techniken, bei denen die Klassengrenzen linear in den Prédiktor-
variablen x sind. Der Variablenraum wird in seine Klassen zerlegt, getrennt

durch Hyperebenen['] als Klassengrenzen.

2.1 Lineare Diskriminanzanalyse

Mit der Diskriminanzanalyse wird eine Methodenklasse vorgestellt, die Dis-
kriminanzfunktionen J,(x) fiir jede Klasse modellieren und den Variablen-
vektor x schlieflich in die Klasse einordnet, die den grofiten Wert fiir seine
a posteriori Wahrscheinlichkeit bzw. Diskriminanzfunktion besitzt[16]. Die
Bayes Entscheidungsregel lautet §(z) = y <= P(ylx) = _max P(i|x).
Fiir eine optimale Klassifikation werden die a posteriori Wahrscheinlichkei-
ten P(Y = y|X = z) oder deren monotone Transformationen benotigt, die
die Wahrscheinlichkeit angeben, dass eine Beobachtungseinheit mit Merk-
malsvektor x der Klasse y angehort. Diese kann man iiber das Theorem von

Bayes bestimmen:

falfly) _  fy@)m,
f(x) Z?:l fl(aj)'/'rl

mit der bedingten Dichte f,(x) von z in Klasse y und der a priori Wahr-

Pylr) =

scheinlichkeit 7, fiir Klasse y mit ) m, = 1.

Mégliche Diskriminanzfunktionen sind [24]:
dy(x) = P(y|z) oder 0,(z) = f(x|y)m(y)

Nimmt man nun multivariat normalverteilte Klassendichten, x ~ N,(u, £,),

an, so ergibt sich fiir die Verteilung der Merkmale, gegeben der Klasse:

'Hyperebenen sind: in R? Geraden, in R? Ebenen, in R* dreidimensionale Ebenen, etc.
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2.1 Lineare Diskriminanzanalyse

o dam 1 PO ) S (2

f(xly) =

mit
>, als Kovarianzmatrix in Klasse y =1, ..., g
z als Merkmalsvektor und

tty als Mittelwert der Klasse y

Gleichung (2.1) eingesetzt in die logarithmierte Form der Bayes Regel fiihrt

zu den Diskriminanzfunktionen
1 S 1
oy(z) = _Q(X — )" B, (X = py) — 5 In(det¥,) + In7(y)

Sowohl der Term (27)2 als auch f(x) fallen raus und kommen nicht mehr
in 6,(z) vor, da beide konstant sind. Gut erkennbar ist, dass die a posteriori
Wabhrscheinlichkeit nicht mit der Diskriminanzfunktion tibereinstimmt.

Die Lineare Diskriminanzanalyse ergibt sich fiir den Spezialfall von klassen-
weise identischen Kovarianzmatrizen ¥, = X mit y =1, ...g.

Bei der Linearen Diskriminanzanalyse handelt es sich um einen entschei-
dungstheoretischen Ansatz (im Gegensatz zur historisch dlteren Fischerschen
Diskriminanzanalyse[L1]). Ein Vorteil der LDA besteht in ihrer Invarianz ge-
geniiber nichtsinguldren Transformationen (x — Az + b). Das Klassifikati-

onsergebnis bleibt also selbst bei Merkmalstransformationen gleich[9].

Mit Hilfe der Bayes Regel P(y|x)a f(x|y)m(y) in logarithmierter Form ergibt
sich fiir die Diskriminanzfunktion bei Normalverteilung mit gleichen Kovari-

anzen >, = X

quadr.Mahalanobis Distanz
-1

~ ~

(@) = —5 = m) S () +ny)

1 _
Sty Xy + In 7 (y)

« ,ugE_lx ~ 3
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2.1 Lineare Diskriminanzanalyse

Bei gleichen a priori Wahrscheinlichkeiten(m = ... = m,) wird = der Klasse
zugeordnet, deren quadratische Mahalanobis Distanz minimal ist.
Da in der Praxis die Parameter der Normalverteilung meist nicht bekannt

sind, miissen diese aus der Lernstichprobe geschétzt werden:

>

o 7(y) = “¢ die geschiitze a priori Wahrscheinlichkeit fiir Klasse y

fly =Ty = ZZ:1 i—: der geschitzte Klassenmittelpunkt

° = ﬁ ?gFl ZZn:yl<yzy - Ty)(xiy - Ty)T

mit n,: Anzahl der Beobachtungen in Klasse y
N: Anzahl der Beobachtungen insgesamt und
g: Anzahl der Klassen

Diese Schétzer ergeben den Schétzer fiir die Diskriminanzfunktionen:
b, (@) = AT e — LTS, + A (y)
Speziell fiir den Zwei-Klassen-Fall ergibt sich folgende Zuordnungsregel:

&m:%@ywmw:u—%qumfy%m_uﬁ_m%_

x wird Klasse 1 zugeordnet, wenn d(z) > 0.

Die Klassengrenzen bestehen abschnittsweise aus Hyperebenen, die sich aus
do(x) = 61(x) fitr zwei benachbarte Gebiete ergeben.

Betrachtet man die log-odds der a posteriori Wahrscheinlichkeiten bei iden-

tischen Kovarianzmatrizen,

P(k|x) fi(x) Tk
lo + log —
& Pl ) T %
T 1
= log ;’; = 5l + ) 57 e+ ) + 2757 (e + )

so erkennt man, dass die Grenze zwischen den Klassen k und 1 linear in x ist,

wie fiir jedes andere Klassenpaar auch.

Supervised Learning 11



2.2 Logistische Regression

Wird der gesamte Stichprobenraum X € RP, p > 3 in seine Klassen aufge-

teilt, so sind diese durch Hyperebenen getrennt.

2.2 Logistische Regression

Die Logistische Regression kann als Methode fiir Regression oder fiir Klas-
sifikation angewendet werden. In Bezug auf Regression geht es darum, den
Einfluss von bestimmten Variablen auf das Zielmerkmal zu bestimmen. In
der Klassifikation geht es, wie bereits oben beschrieben, darum Objekte
mit bestimmten Merkmalsausprigungen einer Klasse zuzuordnen. Der Zwei-
Klassen-Fall des Logit Modells ist weit verbreitet in der medizinischen Stati-
stik, da hier haufig binédre Fragestellungen behandelt werden, wie z.B. Patient
iiberlebt /stirbt[16].

Die Logistische Regression ist im Vergleich zur LDA allgemeiner, indem weni-
ger Annahmen getroffen werden. Im Vergleich zur LDA wird im logistischen
Modell keine Annahme iiber die Verteilung von z|y getroffen, genauso wie
auch die a priori Wahrscheinlichkeit zur Zugehorigkeit zu einer Klasse nicht

spezifiziert wird[24].

Das Logit-Modell gibt die Wahrscheinlichkeit an, dass das Objekt mit Merk-

malsausprigung = in Klasse y = 1 kommt[9]:

/
Ply=1ks) = Fwp) = 220

Auch hier sind die Parameter von P(y = 1|z) i.d.R. unbekannt und werden
geschéitzt, indem die bedingte Likelihood maximiert wird. Im Fall der LDA
geschieht dies durch Maximierung der vollen log Likelihood.

Da mit der Berechnung des Modells lediglich eine Wahrscheinlichkeit resul-
tiert, aber noch keine Zuordnung zu einer Klasse, wird ein Schwellenwert
bestimmt, ab dem ein Objekt in Klasse 1 angenommen wird. Ublich ist, die-

sen Grenzwert auf 0.5 zu setzen (aber auch jeder andere Wert ist moglich),

Supervised Learning 12



2.3 Support Vector Machines

so dass die Entscheidungsregel

S(a)=1 > P(y=1la) >

N |

lautet und z Klasse 1 zugeordnet wird, falls §(x) = By + 72 > 0, ansonsten
Klasse 0.
Resultiert dem Modell nach eine Wahrscheinlichkeit, die gréfer als 0.5 ist, so
wird die Beobachtung zu Klasse 1 zugeordnet. Liegt die Wahrscheinlichkeit
unter 0.5, so erfolgt die Zuordnung zu Klasse 0.
Auch die Logistische Regression liefert lineare Klassengrenzen, anschaulich
gezeigt durch die log-posterior odds zwischen Klasse 0 und 1:

Py ) _ 1o, EP()/1 + exp(n)

=1z
log —— =log
P(y = 0lz) 1/1 + exp(n)

= logexp(n) = Bo+ L1z +...+BpTip

2.3 Support Vector Machines

Die Grundidee der Support Vector Machines (SVM) liegt in der Klassifikati-
on durch trennende Hyperebenen. Hierbei soll eine Hyperebene so durch die
Daten gelegt werden, dass die Punkte ihrer Klasse nach getrennt werden. Da
es fiir diesen Fall moglicherweise unendlich viele trennende Hyperebenen gibt,
stellt sich die Frage nach einer eindeutig und optimal trennenden Hyperbene,
also eine Hyperebene, die den Rand zwischen beiden Klassen maximiert[13].
Die Idee hierbei ist, dass je grofler der Rand bei den Trainingsdaten ist, de-
sto besser die beiden Klassen voneinander getrennt werden kénnen. Umso
genauer ist dann auch die Klassifikation bei den Testdaten[16]. Als Rand
bezeichnet man die beiden Hyperebenen, parallel und beidseitig der trennen-
den, zwischen denen keine Datenpunkte liegen. Die Punkte direkt auf dem
Rand, also die Punkte, die der trennenden Hyperebene am néchsten liegen,
heiflen Support Vectors. In die Identifikation der Support Vectors gehen also
alle Punkte mit ein. Fiir die optimale Hyperebene sind schliellich nur die

Support Vectors von Bedeutung[29].
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2.3 Support Vector Machines

In der Praxis treten zwei verschiedene Datenstrukturen auf: Klassen, die
linear trennbar sind (Abb[2.1)) und Klassen, die nicht linear trennbar sind.
Betrachtet wird ein binéres Klassifikationsproblem mit n Beobachtungspaa-
ren {(z1,y1), (2,92), -, (Tn, yp)} mit z; € R? und y; € {—1,1}. Im Fol-
genden werden Moglichkeiten beschrieben, linear und nicht linear trennbare

Klassen zu klassifizieren[16].

2.3.1 Optimal trennende Hyperebenen

Optimal trennbare Hyperebenen kénnen nur bei linear trennbaren Problemen
bestimmt werden. Da sie die Voraussetzung fiir die Support Vector Machines
bilden, werden sie hier genauer beschrieben:

Die Hyperebene ist defniert als 27 3+ 8y = 0

Nun soll der Rand M um diese Hyperebene maximiert werden, also
maxg g, M (2.2)
unter den Bedingungen
18] = const. und y;(x] B+ By) > M Vi=1,...n (2.3)
Fiir ||5|] = 1/M sind (2.2) und (2.3) dquivalent zu
. 1 9 .
ming,s, 55" mit

yi(xl B4+ 6y) >1 Vi=1,...n

wobei die Bedingungen besagen, dass der Rand um die Hyperebene leer sein

soll und eine Breite von 1/||3|| besitzt.

Hierbei handelt es sich um ein quadratisches Optimierungsproblem mit li-
nearen Ungleichungsbedingungen.
Die Losung dieses quadratischen Optimierungproblems erfolgt mit Hilfe der

Lagrange Funktion.
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/-"‘ . Separating
f / Hyperplane

Support Vectors K

Abbildung 2.1: Optimal trennende Hyperebene[26]

Primal Lagrange Funktion:
1 n
Lp= §|WHQ - ; alyi (] B+ o) — 1] (2.4)

mit den Lagrange Multiplikatoren «;[24].
Die partiellen Ableitungen von (2.4) nach  und [y liefern:

OLp -
aa P = Q;iYiXi
a5 " z_; y

OLp -
7 =) _ ayi=0
95 ; Y

Die so genannte Wolfe dual Funktion ergibt sich durch das Einsetzen von ﬂA
in (2.4):

LD = Z oy — % Z Z Oéi(l/jyiij?Xj
=1

i=1 j=1

Die Multiplikatoren «; erfiillen zugleich die Kuhn-Tucker Bedingungen[16]:
- B= Z?zl O YiX

- 0= 2?21 oY,
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2.3 Support Vector Machines

-aiZO

- oylyi(zf B+ By) —1] =0 Vi

Ist o; > 0 (und somit y; (27 3+ (o) = 1), so liegt x; genau auf dem Rand und
wird als Support Vector bezeichnet.

Die Funktion der optimal trennenden Hyperebene lautet schliefflich:
flx) =x] B+ Bo

Um eine neue Beobachtung zu klassifizieren wird

verwendet.

2.3.2 Support Vector Classifier

Bei dem Support Vector Classifier handelt es sich um eine Mdoglichkeit, auch
bei sich iiberlappenden Klassen eine linear trennende Hyperebene zu defi-
nieren. Bei diesem Vorgehen wird wieder eine Hyperebene mit maximalem
Rand gesucht und die Uberlappungen durch so genannte ”slack” Variablen
bestraft. ”Slack” Variablen € = (€1, €3, ..., ¢;) werden definiert zur Bestrafung
der Punkte, die auf der falschen Seite der trennenden Hyperebene liegen.

Die Bedingungen fiir das Optimierungsproblem min||3|| lauten hier[16]:

Yl B+ B) > 1— € Vi

!
€ >0, Ze < const.

=1
2.3.3 Support Vector Machine

Support Vector Machine ist eine zweite Moglichkeit, nicht linear trennba-
re Daten zu klassifizieren. Mit Hilfe von Kernfunktionen (— Kernel Trick)

werden die Daten aus ihrer originalen Dimension(”Input Space”) in eine
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2.3 Support Vector Machines

hohere Dimension (”Feature Space”) projiziert, wo das urspriinglich nicht
linear trennbare Problem als ein lineares Problem aufgefasst und gelost wer-
den kann. Anschliefend werden die Daten wieder in die Ausgangsdimension
zuriick transformiert.

Um die Daten in eine hohere Dimension zu projizieren werden diese mit
Hilfe einer Funktion h transformiert. Die duale Lagrange Funktion ist dann

folgendermaflen definiert:

n n

- 1
Lp = ZOQ‘ — 5 Z Z Q05 Y < h(l’l), h(l'j) > (25)
=1

i=1 j=1

Die transformierten Daten gehen hier lediglich iiber das innere Produkt in
(2.5) ein[33].

Der so genannte ” Kernel Trick” verwendet Projektionen, bei denen das innere
Produkt einer bereits bekannten Kernfunktion entspricht und die Projektion

h nie explizit angegeben werden muss.
< h(iIZ’l), h(ﬂa) >= K(l’l, l'j)

Die Entscheidungsfunktion lautet also:
flx) = ZaiyiK($i>$) + Bo
i=1

Mit der Klassifikationsregel bzgl. sgn(f(z)) wird in die Klassen +1 und -1
sortiert.
Bei der Kernfunktion sollte es sich um eine symmetrisch, (semi) positiv de-

finite Funktion handeln. In der Literatur ibliche Kernfunktionen sind[16]:
e Polynom d-ten Grades: K (z;,z;) = (1+ < z;,2; >)?
e Radial Basis Funktion: K (x;,x;) = exp(—||z; — x;][*/¢)

e Neural Network: K (z;,z;) = tanh(k; < z;,x; > +K2)
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2.4 LASSO

2.4 LASSO

Mit den Least Absolute Shrinkage and Selection Operators (LASSO) gibt es
eine Methode, die die Eigenschaften von Ridge Regression und Variablense-
lektion vereint. Die Ridge Regression dient zur Modellregularisierung, speziell
zur Schrumpfung von Parametern, wahrend eine Variablenselektion durch-
gefithrt wird, um zum einen die Anzahl an Pradiktoren zu verringern und
zum anderen nur die wichtigen einzuschlieflen.

Der LASSO Schétzer ist so konstruiert, dass er die Koeffizienten soweit
schrumpft, dass einige von ihnen exakt 0 ergeben konnen und die zugehorige
Variable somit aus dem Modell féllt[27]. Er kann als eine Art Kompromiss

von Shrinkage-Methode und Variablenselektion angesehen werden.

2.4.1 LASSO im Linearen Modell

Die Idee des LASSO Schiétzers von Tibshirani[32] basiert auf den Annahmen
des Linearen Modells.
Betrachtet wird die hierfiir iibliche Datensituation (x;,v;),i = 1,2,...,n mit
den Einflussgrofen x; = (241, ..., xip)T und der Response Variablen y;.
Es wird davon ausgegangen, dass die Kovariablen standardisiert sind, also
dass gilt:

%Z?:lxij =0, % ?:137123‘ =1
und dass die Responsevariable um 0 zentriert ist: % S yi=y=0
Diese Standardisierung ist notwendig auf Grund der Abhéngigkeit der
LASSO Koeffizienten von der Skalierung der Kovariablen und der Wahl des
Ursprungs fiir die Response Variable.
Der LASSO Schitzer minimiert die Residuenquadratsumme unter der Be-

dingung, dass der Absolutbetrag der aufsummierten Koeffizienten eine vor-

gegebene Grenze ¢t (mehr dazu unten) nicht iiberschreitet.

n

min 12(3/1 — injﬁj)z (2.6)

i=1
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2.4 LASSO

unter der Nebenbedingung

P
Bl <t t>0 (2.7)
j=1

Ohne (2.7) handelt es sich um den gewohnlichen KQ-Schétzer. Wenn also
der KQ-Schitzer die Bedingung (2.7) erfiillt, entspricht dieser genau dem
LASSO Schétzer.

Aquivalent zu (2.6) ist das damit eng zusammenhingende Optimierungspro-

blem, namlich die penalisierte Formulierung des LASSO Schétzers[27]

n p p

min 53 (= 3w £ A1 2
i= j=1 j=1

bei dem A>"_ |G;] den Strafterm darstellt.

Der Zusammenhang zwischen (2.6) und (2.8) besteht darin, dass fiir gegebe-

nes A (0 < X\ < o0) ein t > 0 existiert, so dass beide Optimierungsprobleme

zur selben Losung fiihren.

Die Stérke der Schrumpfung der Koeffizienten 3 héngt von der Wahl des

so genannten Tuning- bzw. Lassoparameters ¢ ab. Je kleiner ¢, desto stérker

werden die Koeffizienten geschrumpft. In Bezug auf (2.8) und den Penalisie-

rungsparameter A ergibt sich ein umgekehrter Zusammenhang: Je gréfler A,

desto stéarker die Schrumpfung der LASSO Schétzungen.

Auf Grund der oben beschriebenen Abhéngigkeit zwischen der Anzahl der

selektierten Kovariablen und dem Tuningparameter ¢ gilt es, eine optimale

Schétzung fiir ¢ zu finden. Tibshirani[32] stellt hier drei Moglichkeiten zur

Schéatzung vor: Das Kreuzvalidierungsverfahren, die generalisierte Kreuzva-

lidierung(GCV) und eine analytische, unverzerrte Risikoschétzung.

Wir halten ¢ > 0 fest. Bei dem Optimierungsproblem (2.6) handelt es sich um
ein quadratisches Optimierungsproblem mit 27 Ungleichungsbedingungen[15].
Dieses numerisch zu l6sen, stellt keine triviale Aufgabe dar und den Algo-
rithmus zu lésen, wie er in [32] vorgestellt wird, zeichnet sich als ein com-

puterintensives Vorgehen ab.
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2.4.2 Modifizierte Algorithmen

Neben der geringen Rechengeschwindigkeit treten im urspriinglichen LASSO-
Algorithmus auch Probleme auf, sobald die Anzahl p der Variablen der An-
zahl n der Beobachtungen nahe kommt bzw. diese iibersteigt. Tritt die, ty-
pisch fiir Microarray Daten, p >> n Situation auf, so kénnen mit LASSO
maximal n Variablen ausgewéhlt werden[35]. Ein weiterer Nachteil bei der
urspriinglichen LASSO Schétzung liegt zudem darin, dass bei einer Gruppe
von stark korrelierten Pradiktoren dazu tendiert wird, lediglich eine Einfluss-
grofe dieser Gruppe auszuwéhlen statt mehrere[I§].

Den oben genannten Problemen wird mit zwei neuen Algorithmen begegnet:
Osborne et al.[27] stellen eine neue Moglichkeit vor, die auch fiir die Daten-
situation p >> n geeignet ist.

Efron et al.[§] haben mit LARS(Least Angle Regression, wobei das ”S” fiir
”Lasso” und " Stagewise” steht) eine Methode entwickelt, die einerseits deut-
lich weniger Iterationen benétigt und andererseits fiir hochdimensionale Da-
ten problemlos verwendet werden kann. Eine einfache Verdnderung dieses
Algorithmus fithrt zu LASSO Schétzungen, die aber deutlich weniger Re-
chenzeit bendtigen als der originale Algorithmus|S].

Die Least Angle Regression beginnt mit der Wahl des Startwerts

p=X B = 0, d.h. alle Koeffizienten werden zu Beginn gleich 0 angenom-
men. Gesucht ist die Kovariable, die am stirksten mit dem Response kor-
reliert. Nun geht man soweit in Richtung dieses Pradiktors, bis ein weiterer
Préadiktor dieselbe Korrelation mit dem aktuellen Residuenvektor hat. An-
schliefend geht LARS in die Richtung weiter, die den Winkel zwischen den
beiden ausgewéhlten Préadiktoren halbiert, bis eine dritte Variable mit der
hochsten Korrelation hinzukommt. Die Menge aller ausgewéhlten Variablen
nennt man ” Active Set”.

Die Verinderung, die beim oben beschriebenen LARS Algorithmus durch-
gefithrt wird, um exakte LASSO Schétzer zu erhalten, fiihrt dazu, dass hin-
zugefiigte Variablen wieder aus dem Active Set entfernt werden kénnen[g].
Somit durchlauft der LARS Algorithmus weniger Iterationen als die LASSO

Modifikation, welche im Gegensatz zum orignalen Algorithmus[32] trotzdem
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wesentlich weniger rechenintensiv verlduft.

2.4.3 LASSO in GLMs

Im Fall der in Kapitel 4 vorgestellten Daten handelt es sich um einen binéren
Response. Das Lineare Modell, welches die Voraussetzung fiir die vorangehen-
den Definitionen war, kann also nicht mehr als Grundlage angesehen werden.
Benotigt wird ein Generalisiertes Lineares Modell.

Analog zu LASSO (2.8) wird nun die penalisierte log Likelihood

(log Likelihood an Stelle der Residuenquadratsumme) maximiert:

max| Z{[ Dlogp(zi) + 1(g: = 2) log(1 — p(x:)) = APa(8)}] (2.9)
Der Bestrafungsterm aus (2.9) hat die Form:

PB) = (L= o)1l +allBll,
= Y50 -a)F +alg] (210)

J=1

mit « als "Elastic Net mixing Parameter”, 0 < a < 1.

Wiéhlt man a = 1 so ergibt sich A|3;| als Strafterm und man erhélt LASSO
Schéatzungen.

Friedman, Hastie und Tibshirani gehen weiter so vor, dass eine quadratische

Approximation bzgl. der log Likelihood gebildet wird[12]:

(ﬁO; - sz Zi ﬁO - a:zTﬂ)2 + C(BO; B)Q (211)

mit
= B + xTﬁ + % als "working response” und
w; = p(x;)(1 — p(z;)) als Gewichte
p(x;) wird jeweils bei den aktuellen Schiitzern der Parameter (3, 3) berech-

net.
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Neue Parameterschétzungen (5, 3) erhdlt man durch Minimieren von (2.11).

Um schliefflich das penalisierte, gewichtete KQ Problem

min{—Io (5o, B) + APL(3)}

zu losen, wendet man ”coordinate descent” an.
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Kapitel 3

Anwendung an
Mammmographie -

Screeningdaten

3.1 Das Mammakarzinom

Krebs gehort weltweit zu den 10 haufigsten Todesursachen. Unter Frauen ist
das Mammakarzinom (Brustkrebs) mit einem Anteil von 16% die am hiufig-
sten todlich verlaufende Krebsart[34].

Derzeit anerkannte Risikofaktoren fiir das Auftreten von Brustkrebs sind u.a.
das Alter, familidre Belastung/genetische Disposition, ionisierende Strahlung
(z.B. Rontgenstrahlung), aber auch die Art der Lebensfithrung, wie Alkohol-
konsum oder postmenopausales Ubergewich[BO].

Man unterscheidet zwischen benignen und malignen Brusterkrankungen. Be-
nigne bedeutet gutartig, d.h. der Tumor verdréngt durch sein Wachstum
Gewebe, dringt aber nicht in dieses ein und streut nicht im Korper. Ist der
Tumor maligne, so infiltriert dieser das Gewebe, kann es zerstoren und iiber
Blut- bzw. Lymphwege zu Lymphknoten oder Organen gelangen (Metasta-
senbildung).

17Zeit nach der Menopause



3.1 Das Mammakarzinom

Bosartige Tumore werden, basierend auf ihrer TNM-Klassifikation in ein Sta-
dium eingeteilt was die Grundlage fiir die Therapie der Wahl und die Beurtei-
lung des Therapieerfolges bildet. T(Tumor) beschreibt die Ausdehnung des
Primértumors, N(Nodulus), das Fehlen oder Vorhandensein und in diesem
Fall die Ausdehnung von Lymphknotenmetastasen und M(Metastase) das
Fehlen oder Vorhandensein von Fernmetastasen.

Beziiglich der Ausdehnung des Primé&rtumors unterscheidet man grob

in sitw?l und invasive®] Karzinome.

Die Grofle eines Karzinoms und das Ausmafl der Lymphknotenmetastasie-
rung gehoren zu den wichtigsten prognostischen Kriterien des Mamma-
karzinoms[30]. Sowohl die TumorgréBe, als auch der Lymphknotenstatus ha-
ben unabhiingig voneinander einen negativen Einfluss auf die Uberlebensrate.
Auch die Anzahl der befallenen Lymphknoten korreliert direkt mit der Grofe
des Primértumors, der Rezidiv(Riickfall)- und der Uberlebensrate. Leider ist
die klinische Einschétzung des Befalls extrem unzuverléssig und sowohl falsch
positive als auch falsch negative Befunde treten in hohem Mafle auf[5].

Die Metastasierunglz_f] des Mammakarzinoms tritt in der Regel schon frithzeitig
auf. Fernmetastasen korrelieren mit der Tumorgrofie, dem Malignitatsgrad
und der lymphogenen Ausbreitung. Der Grofiteil der an Brustkrebs sterben-
den Frauen hat weit gestreute Metastasen. Am héaufigsten werden diese in
Knochen, Lunge oder Leber lokalisiert.

Auch der Nachweis von Ostrogen- oder Progesteronrezeptoren im Tumorge-
webe hat Auswirkungen auf die Prognose[30].

Wie bei jedem Tumor des menschlichen Korpers, ist die Fritherkennung eines
Mammakarzinoms ein entscheidender Faktor hinsichtlich des Behandlungs-

erfolges.

2Carcinoma in situ: lokal begrenzter Krebsherd=friihestes Krebsstadium

3Man spricht von einem invasiven Tumor, wenn dieser in das umliegende Gewebe hin-
einwichst

4 Absiedlungen eines Tumors in entferntem Gewebe
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3.2 Mammographie

3.2 Mammographie

Eine Mammographie ist eine Rontgenuntersuchung der Brust, die die Mam-
ma in zwei Ebenen darstellt(kraniokaudaler’| und lateralei| Strahlengang).
Wegen der weichen Strahlung erhélt man eine ausgeprégte Feinstrukturen-
zeichnung. Die Mammographie ist besonders von Vorteil in der Erkennung
kleiner, nicht tastbarer Karzinome und ist Goldstandard im Bereich der bild-
gebenden Verfahren zur Fritherkennung [30].

Mit Hilfe dieser Rontgenaufnahmen kénnen Verkalkungen im Gewebe er-
kannt werden, welche Hinweise auf einen gut- oder bosartigen Befund geben
konnen. Fettgewebe zeigt sich als relativ dunkler Bereich, wéhrend Zysten,
Verkalkungen oder Karzinome rontgendichte Strukturen darstellen und auf
der Aufnahme zu einer Verschattung]| fiihren. Im Hinblick auf GréBe, Form
und Muster des so genannten Mikrokalks kann ein Urteil iiber Malignitét
oder Benignitdt erfolgen. Maligne Tumoren sind meist unscharf begrenzt
und zeigen hiufig sternformige Ausldufer, wihrend benigne Tumoren (z.B.

Zysten /Firbome) homogen dicht und glatt begrenzt sind.

Abbildung 3.1: Mammographie der linken und rechten Brust

Skraniokaudal: Vom Kopf ausgehend in Richtung Fiifle
Sseitlich (im 45° Winkel zum kraniokaudalen Strahlengang)
"Im Rontgenbild bezeichnet man schwarz als Aufhellung und weif als Verschattung
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3.3 Die Daten

Die Erstellung einer Mammographie ist Teil des Screenings, welches eine rou-
tinemé&fige Reihenuntersuchung an Frauen ohne Symptome bezeichnet. Es
dient zusammen mit weiteren Untersuchungen zur frithzeitigen Erkennung
von Brustkrebs.

Die iibliche Vorgehensweise zur Beurteilung eines Mammograms ist eine Dop-
pelbefundung durch zwei Arzte, die unabhéngig voneinander die Réntgenauf-
nahme begutachten. Die Betrachtung durch zwei Arzte (”double reading”)
fithrt zu einer hoheren Krebserkennungsrate als die Begutachtung durch le-
diglich einen Arzt (”single reading”)[14].

Eine neue Moglichkeit bieten CAD-Systeme (Computer-Aided Detection),
die den Radiologen bei den Auswertungen unterstiitzen. Hierbei werden die
digitalisierten Mammographien mit Hilfe einer Computersoftware analysiert,

verddchtige Stellen identifiziert und markiert[25].

3.3 Die Daten

Bei den dieser Arbeit zugrundeliegenden Daten handelt es sich um
Mammographie-Screeningdaten, die auf Basis der DDSM (Digital Databa-
se for Screening Mammography) erhoben wurden. Bei der DDSMﬂ han-
delt es sich um eine 6ffentlich zugdngliche Datenbank der Mammographie-
Bildanalyse-Forschungsgemeinschaft der Universitiat Siid Florida. Ziel dieser
Homepage ist die Vereinfachung der Forschung in Bezug auf CAD-Systeme
anhand einer einheitlichen und frei zugénglichen Quelle an digitalisierten
Mammographien.

Aus vier verschiedenen Krankenhédusern in den USA wurden die Rontgen-
aufnahmen bereits in den frithen 90er Jahren bezogen und bis 1999 ver-
vollstandigt. Dieser Datenbestand setzt sich zusammen aus insgesamt 2620
Beobachtungen unterteilt in "normal”, ”"Krebs”, ”"gutartig’” und ”gutartig
ohne Riickruf”. ”Normal” bezeichnet Mammographien, die als normal befun-
den wurden und vier Jahre spéter ebenfalls wieder in die Kategorie normal

eingestuft werden konnten. ”Krebs” bezeichnet Félle, bei denen ein Tumor

8http://marathon.csee.usf.edu/Mammography/Database.html

Anwendung an Mammmographie - 26
Screeningdaten
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histologisch nachgewiesen wurde. ”Gutartig” beinhaltet Aufnahmen, in de-
nen Auffalligkeiten entdeckt wurden, die nach einer erneuten Untersuchung
bestétigt werden konnten. ” Gutartig ohne Riickruf” sind Beobachtungen mit
einer nennenswerten Abnormalitéit, die jedoch keine erneute Untersuchung
erforderten.

Jede Beobachtung besteht aus vier Aufnahmen, je zwei von jeder Brust aus
kraniokaudaler und lateraler Perspektive. Zusétzliche Informationen zu jeder
Mammographie sind: Datum der Studie, Alter der Patientin zu diesem Zeit-
punkt, die Brustdichte nach ACRP|Richtlinie, Datum an dem die Mammogra-
phie digitalisiert wurde und Informationen iiber die Auflésung des Bildes[17].
Zusétzlich wird zu jedem nicht normalen Fall noch die Klassifikation geméf
der BI-RADS Kodierung (Tab. angegeben. Sowohl die Brustdichte als
auch die BI-RADS Kodierung werden von einem Radiologie-Experten be-

stimmt.
BI-RADS Befund Karzinomrisiko
1 "nothing to comment on” 0%
2 gutartig 0%
3 wahrscheinlich gutartig, < 2%
kontrollbediirftig
4 suspekt, 2-90%
abklarungsbediirftig
5 karzinomverdéchtig > 90%

Tabelle 3.1: BI-RADS (Breast Imaging Reporting and Data System)[30]

In den im Folgenden verwendeten Daten werden lediglich Félle mit malignen
oder benignen Verkalkungen einbezogen. Der daraus resultierende Datensatz
umfasst insgesamt 1347 Beobachtungen mit jeweils 453 Variablen. Als Re-
sponse dient die binédre Variable ”Severity”, die angibt, ob es sich um eine
maligne oder benigne Verkalkung handelt. Insgesamt enthélt der Datensatz
610 Beobachtungen mit malignen und 737 mit benignen Verkalkungen. Die
weiteren 452 Variablen sind metrisch und definieren z.B. einfache Gruppie-

rungsvariablen wie die Anzahl der Partikel, die Form wie Gréfle oder

9 American College of Radiology
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Kreisform, die Erscheinung wie ihre Dichte oder auch die Verteilung der Teil-

chen anhand ihrer Entfernung vom Mittelpunkt des Herdes.

3.4 Anwendung der Methoden

Die in Kapitel 1 und 2 beschriebenen Methoden werden nun auf die beschrie-
benen Mammographie-Screeningdaten angewendet.

Alle Berechnungen wurden mit der frei zugénglichen Software R ausgefiihrt™]
wobei u.a. die Pakete WilcoxCV [3], ROC, 1071 und glmnet verwendet wur-
den.

Bei der in Kapitel 3 erwédhnten Trennung des Datensatzes in einen Lern- und
Testdatensatz kann es zu einer Verzerrung der Ergebnisse kommen (Selek-
tionsbias). Diese Verfilschung der Ergebnisse kann entstehen, da die Klas-
sifikationsregel auf dem Lerndatensatz aufgestellt wird, also lediglich einem
kleinen Teil des Gesamtdatensatzes, der nicht alle Informationen enthélt[22].
Entgegenwirken kann man dem durch Kreuzvalidierung, d.h. der gesamte Da-
tensatz wird in verschiedene Kombinationen getrennt und die Anwendung auf
jeder dieser Kombinationen ausgefiihrt[31]. Hier wird wegen seiner geringen
Varianz der Fehlerrate die Monte-Carlo Kreuzvalidierung (MCCV) verwen-
det. Bei Anwendung der MCCV entsteht der Lerndatensatz £ aus zufillig
aus der Gesamtstichprobe ohne Zuriicklegen gezogenen Beobachtungen. Der
Testdatensatz 7 besteht aus den iibrigen Beobachtungen. Insgesamt werden
500 Iterationen durchgefiihrt, d.h. 500 verschiedene Lern- und Testdatensétze
generiert.

Hinsichtlich der Gréfle von Lern- und Testdatensatz gibt es keine Richtlini-
en. Géngige Varianten sind eine Trennung im Verhéltnis 2 : 1, 4 : 1 oder
9:1 [2]. Wichtig ist, dass der Testdatensatz letztendlich grof§ genug ist, um
eine addquate Trennung zwischen den Klassen zu ermoglichen[7]. Demnach
eignet sich eine Trennung im Verhéltnis 9 : 1 lediglich fiir entsprechend grofie
Datensétze, wihrend ein 2 : 1 Schema auch fiir relativ wenige Beobach-

tungen noch zu sinnvollen Ergebnissen fiihrt. Vor allem hédngt das gewéhlte

Ohttp:/ /www.r-project.org
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Verhéltnis ny : ny aber vom jeweiligen Ziel der Studie ab. Handelt es sich
lediglich um einen Methodenvergleich, so wiirde schon eine Trennung von
2 : 1 geniigen, wéhrend ein grofieres Verhéltnis gewédhlt werden sollte, sobald
es um die Vorhersagegenauigkeit an sich geht[2]. Da hier ein Vergleich von
Feature Selektionsmethoden behandelt wird, wird der Datensatz in einem

Verhéltnis von 2 : 1 getrennt.

Fiir die Aufstellung der Klassifikationsregel darf ausschliefSlich der Lernda-
tensatz verwendet werden. Die Pradiktion beruht schliefilich auf dem Test-

datensatz.

Im Folgenden werden die vier in Kapitel 2 beschriebenen Variablenselektions-
verfahren miteinander verglichen. Die Effizienz der verschiedenen Methoden
wird anhand der Klassifiaktionsgenauigkeit beurteilt, gemessen an der AUC
(Area Under the ROC Curve).

Zur besseren Ubersicht wird die Selektion nach dem Ranking der Variablen
lediglich mit ”Ranking” bezeichnet, der Korrelationsansatz, in dem die Kor-
relation mit der stdrksten Variablen betrachtet wird mit ”Korrelation 17,
der mit der zweitstiarksten ”Korrelation II” und der mit der drittstérksten
”Korrelation III”.

Lineare Diskriminanzanalyse und Support Vector Machine arbeiten mit den
resultierenden Variablen aus den Selektionsverfahren, wobei fiir die SVM der
Radial Basis Funktions Kern ohne Tuning der Hyperparameter verwendet
wird. Die Logistische Regression wird nach einer Vorwértsselektion durch-
gefiihrt. Als ein Ansatz mit integrierter Variablenselektion wird bei LASSO
der ganze Lerndatensatz iibergeben. Die Variablen werden standardisiert und

eine 10-fache Kreuzvalidierung zur optimalen A Bestimmung durchgefiihrt.
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Kapitel 4
Ergebnisse

In den folgenden Abschnitten werden die Ergebnisse der Selektions- und Klas-
sifikationsmethoden zusammenfassend dargestellt. Als Mafl zur Bestimmung
der Giite des Selektionsverfahrens wird die Area under the ROC curve (AUC)
angegeben. Der Mean Squared Error (MSE) wurde ebenfalls berechnet und
ist im Anhang B aufgefiihrt, ebenso die Tabellen der ungerundeten Ergebnis-
se und die Darstellung der Verteilung von AUC - und MSE - Werten durch
Boxplots.

Zuerst werden die Resultate der Variablenselektionsverfahren aufgefiihrt. An-
schlieend erfolgt die Betrachtung der Klassifikationsergebnisse ohne vorhe-
rige Variablenselektion. Die darauffolgenden Abschnitte erldutern die Klas-
sifikationsergebnisse der einzelnen Methoden sowie einen Vergleich der Me-
thoden.



4.1 Variablenselektion

4.1 Variablenselektion

Aus den vier Variablenselektionsverfahren Ranking, Korrelation I, Korrela-
tion II und Korrelation III resultieren je 10 verschiedene Variablenkombina-
tionen.

Beim Ranking ergeben sich 5 bis 452 Variablen, welche den Anteilen von
1%, 2%, 5%, 8%, 10%, 15%, 22%, 55%, 70% und 100% der nach der AUC
sortierten Variablenmenge entsprechen.

Bei den Korrelationsansétzen sind es durchschnittlich 4.5 bis 451.7 Variablen,
was den Korrelationsstirken von 0.02, 0.05, 0.20, 0.35, 0.45, 0.60, 0.75, 0.95,
0.98 und 1 entspricht.

Der Zusammenhang von Korrelationsstédrke und resultierender Variablenan-
zahl wird in Abb. verdeutlicht. Die Abbildung gibt an, wieviele Variablen
jeweils aus der vorgegebenen Korrelationsgrenze resultieren, basierend auf
den nach AUC-Wert geordneten Variablen.
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Abbildung 4.1: Variablenanzahl in Abhdngigkeit der Korrelation
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4.2 Klassifiaktion ohne vorherige Selektion

Erkennbar ist, dass sich die resultierenden Variablenmengen der drei Kor-
relationsansétze kaum unterscheiden. Unabhéingig von der Betrachtung der
Korrelation mit der ersten, zweiten oder dritten Variablen des Rankings, ldsst
sich also keine Auswirkung auf die Variablenanzahl feststellen. Die vermu-
tete hohe Korrelation der Variablen untereinander wird bestétigt durch den
exponentiellen Verlauf der Variablenanzahl, der in der Abbildung erkennbar
ist.

Etwa ein Viertel der Variablen weist untereinander eine Korrelation auf, die
zwischen 0.98 und 1 liegt. Zwischen 0.95 und 1 sind es knapp die Hélfte und

fiir eine Korrelation iiber 0.75 drei Viertel aller Variablen.

4.2 Klassifiaktion ohne vorherige Selektion

Um einen moglichen Effekt der Variablenselektion sichtbar zu machen, dient
Abb. [4.2] Hier wird die Verteilung der AUC-Werte fiir die gesamte Varia-
blenanzahl dargestellt.

0.8
1

AUC
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Il

LDA SVM LogReg

Abbildung 4.2: AUC bei voller Variablenanzahl
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4.3 Betrachtung der Klassifikationsergebnisse

Bei Ubergabe der kompletten Variablenmenge erreicht die SVM mit einer
durchschnittlichen AUC von 0.760 das beste Resultat, die LDA mit 0.651 das
zweitbeste und die LogReg mit 0.573 das schlechteste. Wie anhand der fol-
genden Ergebnisse zu sehen ist, verbessert die Variablenselektion die durch-
schnittliche AUC im Vergleich zum vollen Modell. Eine Ausnahme stellt die
SVM dar.

4.3 Betrachtung der Klassifikationsergebnis-

se

4.3.1 Lineare Diskriminanzanalyse

In jedem der vier Variablenselektionsansétze liefern die Modelle der Linea-
ren Diskriminanzanalyse mit den jeweils meisten Variablen die niedrigsten
AUC-Werte. Beim Ranking ist dies das Modell mit voller Variablenanzahl,
also 100% der Rankingvariablen. Bei den Korrelationsansétzen I, IT und III
handelt es sich jeweils um jene Variablenmengen, die untereinander eine Kor-

relation von bis zu 1 aufweisen.

Lineare Diskriminanz Analyse

Prozent 1 2 5 8 10 15 22 95 70 100
Anzahl 5 9 23 36 45 68 99 249 316 452
Korrelation | 0.02 | 0.05 | 0.20 0.35 0.45 0.60 0.75 | 0.95 | 0.98 1
Anzahl (¢) 5.4 8.9 21.3 34.7 47.4 62.6 98.0 | 250.1 | 310.7 | 450.7
Ranking 0.754 | 0.750 | 0.756 | 0.760 | 0.760 | 0.750 | 0.741 | 0.704 | 0.687 | 0.651
KI 0.695 | 0.666 | 0.715 | 0.762 | 0.765 | 0.761 | 0.747 | 0.688 | 0.679 | 0.651
KII 0.754 | 0.752 | 0.751 | 0.762 | 0.764 | 0.762 | 0.746 | 0.688 | 0.678 | 0.648
K III 0.672 | 0.652 | 0.718 | 0.742 | 0.750 | 0.753 | 0.740 | 0.684 | 0.677 | 0.648

Tabelle 4.1: Gerundete AUC Mittelwerte der LDA Messergebnisse fiir die ver-
schiedenen Korrelationen und prozentualen Anteile. Die jeweils mazimalen AUC-
Werte sind fettgedruckt
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4.3 Betrachtung der Klassifikationsergebnisse

Die AUC erreicht ihr Maximum in allen vier Ansétzen bei 36 bis 63 Variablen
und sinkt anschlieSend kontinuierlich ab. Innerhalb des Rankings liegt es bei
einem Anteil von 8%. Fiir Korrelation I und IT liegt es bei einer Korrelati-
onsstéirke von 0.45 und bei Korrelation III bei 0.60.

Eine ”Parallelitdt” des Verlaufes der AUC Kurven ist beim Vergleich der
Korrelationsansiitze erkennbar (Abb[4.3)). Wihrend allerdings Korrelation I
und IIT nur sehr geringe AUC-Werte fiir die ersten drei Variablenkombinatio-
nen liefern, startet Korrelation II mit einer guten Anpassung an die Daten
auch schon bei geringer Variablenanzahl. Gemeinsam haben die drei Kor-
relationsansétze, dass sie jeweils fiir eine Korrelation von 0.02 eine bessere
Vorhersagegenauigkeit besitzen, als fiir eine Korrelation von 0.05. Auch der
Ranking Ansatz zeigt fiir einen Anteil von 1% noch einen leicht besseren
AUC-Wert als fiir 2%. AnschlieSend, bei einem Anteil von 5% bzw. einer
Korrelation von 0.20 kommt es bei allen vier Methoden zu einer hoheren
bzw. bei Korrelation II zu einer gleichbleibenden AUC.

Nachdem jeder der vier Ansétze sein Maximum bei einer Variablenanzahl
unter 70 erreicht, fallen die AUC-Werte anschlieend linear im Ranking und
ndherungsweise linear in den Korrelationsansétzen ab. Dies muss nicht an
den Selektionsverfahren an sich liegen. Wahrscheinlicher ist ein Zusammen-
hang mit der LDA, welche fiir den Umgang mit grofferen Variablenmengen

nicht geeignet ist.

Ein Urteil iiber den ”besten” Selektionsansatz in Bezug auf die LDA zu fallen
ist nicht moglich. Deutlich ist allerdings, dass der Korrelation ITI-Ansatz,
in welchem die beiden AUC-stdarksten Variablen fehlen, am schlechtesten
ausfallt.

Wenn Korrelation I auch teilweise bessere AUC-Werte erreicht, so bestimmt
Korrelation II innerhalb der Korrelationsansitze die zur Klassifiaktion op-
timaleren Variablenkombinationen, was sich dadurch zeigt, dass aus Korre-
lation II fiir geringere Variablenanzahlen deutlich héhere AUCs resultieren.
Korrelation I schneidet trotz des Vorhandenseins der AUC-stérksten Varia-
blen fiir geringe Korrelationen deutlich schlechter ab als Korrelation II, zeigt

aber dann ab einer Korrelation von 0.35 einen fast identischen Verlauf.
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4.3 Betrachtung der Klassifikationsergebnisse

Die AUC-Werte des Rankings werden bis zu einer Korrelation von 0.75
grofitenteils von AUCs aus Korrelation I und II iiberboten, liegen danach
aber iiber diesen. Die iiber das Ranking resultierende Variablenmenge fiihrt

bei groflerer Variablenanzahl zu besseren Klassifikationsresultaten, als die

Korrelationsanséatze.
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Abbildung 4.3: Selektionsmethoden anhand von LDA
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4.3 Betrachtung der Klassifikationsergebnisse

Hastie, Tibshirani und Friedman[16] sprechen im Kontext der Klassifikati-
onsgenauigkeit, die man an der Fehlerrate misst, von dem so genannten ”Ba-
dewanneneffekt”, wenn die Fehlerrate fiir eine geringe Variablenanzahl hoch
ist, fiir steigende Variablenanzahl abféllt und schliefllich bei immer grofier
werdender Anzahl wieder ansteigt. Mit der AUC als Kriterium, kommt es
hier zu einem &dhnlichen Effekt: Fiir geringe Anzahlen zeigt sich keine gute
Anpassung bzw. eine niedrige AUC. Diese steigt mit Hinzunahme weiterer
Variablen und fallt wieder wenn zu viele Variablen aufgenommen werden.
Der typische ”Badewanneneffekt” ist gut erkennbar bei Betrachtung der
MSE-Werte anstelle der AUC. Siehe hierzu Anhang B, Abb[B.3|

4.3.2 Support Vector Machine

Bei einer Klassifikation mittels Support Vector Machine zeigen die vier Variablen-

Selektionsverfahren bei geringen Variablenanzahlen ihre jeweils schlechteste
Anpassung, d.h. den niedrigsten AUC-Wert .

Support Vector Machine
Prozent 1 2 5 8 10 15 22 55 70 | 100
Anzahl 5 9 23 | 36 | 45 68 99 | 249 | 316 | 452
Korrelation | 0.02 | 0.05 | 020 | 0.35 | 045 | 0.60 | 0.75 | 0.95 | 0.98 | 1
Anzahl (¢) | 54 | 89 | 21.3 | 347 | 474 | 62.6 | 98.0 | 250.1 | 310.7 | 450.7
Ranking | 0.743 | 0.751 | 0.757 | 0.760 | 0.761 | 0.760 | 0.760 | 0.773 | 0.771 | 0.760
K1 0.758 | 0.745 | 0.733 | 0.764 | 0.771 | 0.777 | 0.772 | 0.766 | 0.764 | 0.760
K11 0.757 | 0.756 | 0.752 | 0.764 | 0.770 | 0.777 | 0.772 | 0.765 | 0.764 | 0.759
K 111 0.727 | 0.716 | 0.720 | 0.747 | 0.760 | 0.766 | 0.763 | 0.757 | 0.756 | 0.752

Tabelle 4.2: Gerundete AUC Mittelwerte der SVM Messergebnisse fiir die ver-
schiedenen Korrelationen und prozentualen Anteile. Die jeweils maximalen AUC-
Werte sind fettgedruckt

Die minimale AUC liegt beim Ranking bereits bei 1% der Variablen. Korre-
lation I und Korrelation II erreichen ihre geringste AUC bei einer Korrelati-
onsstérke von 0.20, wahrend Korrelation III den niedrigsten AUC-Wert der

vier Selektionsverfahren bereits bei einer Korrelationsstérke von 0.05 zeigt.
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4.3 Betrachtung der Klassifikationsergebnisse

Basierend auf dem Ranking erreicht die SVM ihre maximale AUC bei Ver-
wendung von 55% der Variablen. Alle Korrelationsansétze besitzen ihr Maxi-
mum einheitlich bei einer Korrelationsstéarke von 0.60. Keine der AUC Kur-
ven féllt nach Erreichen des Maximums rapide ab, insbesondere die drei Kor-

relationsansétze haben einen sehr &hnlichen Verlauf und sinken nur langsam.
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Abbildung 4.4: Selektionsmethoden anhand von SVM

Auch vor Erreichen ihres jeweiligen Maximums verlaufen die Korrelations-

ansédtze I, IT und IIT &hnlich, ganz im Gegensatz zur Rankingkurve.
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4.3 Betrachtung der Klassifikationsergebnisse

Die AUC-Werte sinken bereits bei der Korrelationsgrenze von 0.05. Wihrend
Korrelation IIT unmittelbar danach wieder ansteigt, erhohen sich die AUC-

Werte im Korrelation I- und Korrelation [I-Ansatz erst ab einer Korrelation
von 0.35.

Die Korrelationskurven verlaufen anndhernd parallel. Ab einer Korrelation
von 0.35 verlaufen Korrelation I und II sogar nahezu identisch, Korrelation
I weist dabei minimal hohere AUC-Werte auf. Korrelation III zeigt bei al-

len Korrelationsgrenzen schwéchere AUC-Werte auf, als Korrelation I und II.

Die AUC-Werte des Ranking-Ansatzes verlaufen bis zu einem Anteil von 22%
der gesamten Variablenmenge unterhalb der Korrelationskurven, dies &ndert
sich ab einem Anteil von 55%. Ab dieser Variablenmenge liegt das Ranking
iiber den Korrelationsanséitzen und sinkt erst bei voller Variablenanzahl wie-
der auf dieselbe AUC wie Korrelation I.

Auch in Bezug zur SVM kristallisiert sich kein global bester Selektionsansatz
heraus. Fiir Korrelationsstéarken bis 0.35 dominiert Korrelation II die Korrela-
tionsansitze und wird anschliefend, wenn auch nur minimal, von Korrelation
I iibertroffen. Ab einer Variablenanzahl von etwa 250 liegen die AUC-Werte

des Rankings iiber denen der Korrelationsansétze.

4.3.3 Logistische Regression und LASSO

Sowohl bei Anwendung der Logistischen Regression, als auch bei LASSO,
wird keine der vorherigen Variablenselektionsmethoden Ranking, Korrelati-
on I, IT oder III durchgefiihrt.

Die Logistische Regression beruht auf vorheriger Vorwiértsselektion. Die 500
resultierenden Variablenkombinationen besitzen 3 bis 19 Variablen mit einem
Mittelwert von 6.8.
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4.3 Betrachtung der Klassifikationsergebnisse
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Abbildung 4.5: Variablenmenge LogReg und LASSO

Ein leichter negativer Zusammenhang zwischen der Anzahl der Variablen und
der AUC ist hier erkennbar (Abb4.5).

Die AUC-Werte erstrecken sich von 0.731 bis 0.832 und erreichen einen Mit-
telwert von 0.773.

Die integrierte Variablenselektion des LASSO-Verfahrens fiithrt zu 2 bis 18
Variablen bei einem Mittelwert von 11.2. Hier zeigt sich ein leichter positiver
Zusammenhang zwischen Variablenanzahl und AUC.

Die Spanne der AUC-Werte reicht von 0.712 bis 0.833 bei einem Mittelwert
von 0.780.
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4.3 Betrachtung der Klassifikationsergebnisse
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Abbildung 4.6: Verteilung der AUC-Werte bei LogReg und LASSO

LASSO weist auf Grund zweier Ausreifier (Abb. eine groBere Bandbreite
an AUC-Werten auf und wéhlt im Durchschnitt mehr Variablen aus. Im Mit-
tel liegen die AUC-Werte des LASSO iiber denen der Logistischen Regression,
was sowohl in Abb. [4.5 als auch in Abb. [4.6] veranschaulicht wird.
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4.4 Vergleich der Methoden

4.4 Vergleich der Methoden

4.4.1 LDA und SVM

Vergleicht man nun die Ergebnisse der Linearen Diskriminanzanalyse und der
Support Vector Machine und somit auch die jeweilige Effizienz der Selekti-
onsverfahren, so erkennt man Gemeinsamkeiten bei den Korrelationsanséatzen

und auch Unterschiede, insbesondere im Rankingansatz.
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Abbildung 4.7: Selektionsmethoden anhand von LDA und SVM
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4.4 Vergleich der Methoden

Alle Korrelationsansétze, Korrelation I, IT und ITI, weisen sowohl bei der LDA
als auch bei der SVM im zweiten Schritt (was einer Korrelation von 0.05 ent-
spricht) eine geringere AUC auf, als bei einer Korrelation von 0.02. Wahrend
die AUC-Werte der LDA bei den Korrelationsansiatzen unmittelbar danach
wieder ansteigen (Korrelation I und IIT) bzw. gleichbleiben (Korrelation IT),
sinken die AUCs der SVM im zweiten Schritt weiter. Korrelation III erreicht
hier bereits sein Minimum, Korrelation I und IIT haben ihre niedrigste AUC
im darauffolgenden Schritt, bei einer Korrelation von 0.20.

Gemeinsam ist beiden Klassifiaktionsmethoden, dass sowohl bei Anwendung
der LDA als auch der SVM, die maximalen AUC-Werte jeweils bei gerin-
gen Variablenanzahlen erreicht werden. Bei der LDA sind dies durchschnitt-
lich 47.4 Variablen, bei der SVM im Durchschnitt 62.6. Somit benétigt die
LDA weniger Variablen um ihr Maximum zu erreichen als die SVM. Diese
erreicht aber insgesamt eine hohere AUC. Allerdings folgt den maximalen
AUC-Werten der LDA ein umso rapiderer Abfall, desto grofler die verwen-
dete Variablenmenge wird. Im Gegensatz zur SVM werden die Minima hier
erst bei der kompletten Variablenanzahl erreicht. Die AUC-Werte der SVM
haben bei grofler werdender Variablenmenge lediglich eine geringe Vermin-
derung.

Betrachtet man in beiden Methoden den Rankingansatz, so liegt hier die ein-
zige Gemeinsamkeit darin, dass in beiden Fillen jeweils die AUC-Werte ab
einem Anteil von 55% hoher liegen als die der Korrelationsansitze. Vorher
werden sie insbesondere von Korrelation I und II dominiert.

Wihrend in Bezug zur SVM die AUC-Werte des Rankings kontinuierlich bis
zum Erreichen des Maximums ansteigen und sich danach leicht verringern,
zeigen die AUC-Werte der LDA einen dhnlichen Verlauf wie die Korrelati-
onsansitze. Bei einem Variablenanteil von 2% liegen die AUC-Werte unter
denen von 1%, steigen danach bis zum Erreichen des Maximums an und fal-
len schlieBlich bis zu einem Rankinganteil von 100% rapide ab. Auch wird
die maximale AUC im Fall der LDA schon bei einem Anteil von 8% der Ran-
kingvariablen erreicht, wihrend dies im Fall der SVM erst bei einem Anteil
von 55% eintritt.
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4.4 Vergleich der Methoden

4.4.2 LDA, SVM, LogReg und LASSO

Vergleicht man schliefilich die AUC-Werte aller Klassifikationsverfahren mit-
einander, so erreicht LASSO mit einer mittleren AUC von 0.780 das absolute
Maximum. Darunter folgen mit einer AUC von 0.777 die Korrelationsansétze
I und IT der SVM bei einer Korrelationsstéarke von 0.60.
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Abbildung 4.8: AUCs im Vergleich

Die AUC der Logistischen Regression mit 0.773 und die maximale AUC der
LDA mit 0.765 (bei Korrelation I und einer Korrelationsstérke von 0.45)
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4.4 Vergleich der Methoden

bilden die Maxima der anderen Klassifikationsmethoden.

Die niedrigsten AUC-Werte innerhalb der Korrelationsansétze erreichen so-
wohl bei der LDA als auch der SVM jeweils die Korrelation I1I-Ansétze.

Bei Betrachtung der jeweils ausgewéhlten durchschnittlichen Variabelnan-

zahl ergeben sich teils grofle Unterschiede zwischen den einzelnen Klassifi-
kationsmethoden. LASSO benétigt durchschnittlich nur 11.2 Variablen, um
sein Maximum zu erreichen, wiahrend es bei der SVM trotz geringerem AUC-
Wert im Mittel 62.6 sind. Die durchschnittlich resultierende Variablenanzahl
der Vorwirtsselektion liegt bei 6.8, wihrend die maximale AUC der LDA auf
durchschnittlich 47.4 Variablen beruht.

Klassifikations- | Mittlere Selektions- Korrelations- | Durchschnittl.
methode AUC methode starke Variablenanzahl
LDA 0.765 Korrelation I 0.45 47.4
LogReg 0.773 Vorwérts - 6.8
SVM 0.777 | Korrelation II 0.60 62.6
LASSO 0.780 integriert - 11.2

Tabelle 4.3: Maximale AUC-Werte der jeweiligen Klassifikationsmethode

Ergebnisse
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Kapitel 5

Diskussion

Zusammenfassung und Diskussion

Ziel dieser Arbeit war es, anhand der Klassifiaktionsgenauigkeit von Linearer
Diskriminanzanalyse und Support Vector Machine die Variablenselektions-
verfahren Ranking, Korrelation I, IT und III miteinander zu vergleichen und
zu bewerten. Die Logistische Regression mit vorheriger klassischer Vorwérts-
selektion und das LASSO-Verfahren als multivariater Ansatz mit integrierter
Variablenselektion dienen hier als Vergleich zu den jeweiligen Messergebnis-
sen.

Die Variablenselektion, einmal als Reduzierung grofler Variablenmengen und
zum anderen als Auswahl der aussagekriftigsten Variablen ist auf Grund
von immer komplexer werdenden Datenmengen zu einem Hauptbestandteil
der medizinischen Statistik herangewachsen. Besonders das Auftreten von
Microarray Daten hat die Forschung auf dem Gebiet der Klassifiaktion und
Variablenreduzierung in den letzten Jahren vorangebracht. Einige Ideen und
Verfahren wurden in dieser Arbeit aufgegriffen und angewandt.

Bei den hier verwendeten Mammographie-Screeningdaten handelt es sich
nicht um sogenannte Genexpressionsdaten, die tausende bis zehntausende
Gene beinhalten. Auch bei den gegebenen 452 Variablen kommt es, wie hier
gezeigt wurde, bei der Logistischen Regression oder der Linearen Diskrimi-

nanzanalyse nicht mehr zu aussagekraftigen Ergebnissen, sodass eine



Vorauswahl notwendig wird.

Diese Vorauswahl wird fiir die Lineare Diskriminanzanalyse und Support
Vector Machine mit Hilfe der Variablenselektionsmethoden Ranking, Korre-
lation I, IT und III getroffen. Das Hauptinteresse dieser Arbeit liegt in dem
Abschneiden der Korrelationsansidtze und der Frage, ob dieser als ”semi-
multivariat” bezeichnete Ansatz ([20]) durch die zusétzliche Betrachtung der
Korrelation der Variablen untereinander die iiblichen univariaten Ansétze
ablosen kann bzw. bessere Ergebnisse liefert. Es stellt sich auch die Frage,
ob diese univariaten Ansétze als eine leicht durchfithrbare Alternative zu den
sehr komplexen multivariaten Variablenselektionsmethoden gesehen werden
kénnen. Deren grofler Vorteil liegt in der Beachtung von Korrelationen und
Interaktionen. Auf Grund ihrer Komplexitiat werden diese Ansétze selten an-
gewendet.

Der Selektionsansatz mit der geringsten AUC ist Korrelation III der LDA
und dieser ist auch gleichzeitig der mit der allgemein schlechtesten Klassifi-
kationsgenauigkeit. Auch in Bezug zur SVM resultieren nach Korrelation 111
die niedrigsten AUC-Werte, was sich dadurch erklédren lasst, dass die beiden
AUC-stérksten Variablen, also die mit dem groiten univariaten Erklarungs-
wert, hier fehlen. Besonders fiir Variablenanzahlen kleiner als 36 erhilt man
mit Korrelation III besonders niedrige AUC-Werte. Auffallend ist jedoch,
dass sowohl bei der LDA als auch der SVM der Korrelation II-Ansatz fiir
Variablenanzahlen kleiner 36 besser abschneidet als Korrelation I, obwohl
in Korrelation II die AUC-stéarkste Variable nicht mit eingeht. Da die Me-
thoden lediglich an einem Datensatz evaluiert wurden, konnen keine Riick-
schliisse auf ein generelles Verhalten dieser Korrelationsansétze gezogen wer-
den. Moglicherweise tragen einzelne Variablen zu diesen Ausprigungen bei
und es handelt sich um ein rein datenspezifisches Verhalten. Eine Betrach-
tung der ausgewéhlten Variablen konnte diese Frage kléaren.

Eine weitere Auffilligkeit zeigt sich darin, dass der Ranking-Ansatz, sowohl
bei der LDA als auch der SVM bei einem Anteil von 55% die Korrelati-
onsansétze iibertrifft, also hohere AUC-Werte resultieren. Zwei Erkldrungen
scheinen hier plausibel:

Zum einen weisen die ersten Variablen des AUC-Rankings eventuell eine
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hohe Korrelation untereinander auf, was dazu fithren kann, dass sie redundan-
te Informationen beinhalten und so zu einer schlechten Pradiktion fiihren.
Zum anderen entspricht die Variablenmenge bei einem Rankinganteil von
55% bereits einer Korrelationsstiarke von 0.95 in den Korrelationsansétzen.
Die durchschnittlich 250 ausgewéhlten Variablen besitzen also untereinander
bereits eine Korrelation von bis zu 0.95. Unbestritten besteht ein starker Zu-
sammenhang zwischen den ausgewéhlten Variablen. Die Aussage, dass mit
den Korrelationsansétzen nur Variablen selektiert werden, die nicht mitein-
ander korrelieren, trifft hier nicht mehr zu.

Im Vergleich mit der Klassifikationsgenauigkeit der Logistischen Regressi-
on und des LASSO Schéitzers findet man in LASSO das Verfahren mit der
hochsten AUC, gefolgt von der SVM im Korrelation I- und II-Ansatz, jeweils
bei einer Korrelationsstirke von 0.60. Es folgen die Logistische Regression
und schliesslich die LDA.

Allein unter den Korrelationsansitzen gibt es keinen global besten Ansatz.
Korrelation IT schneidet zunéchst fiir geringere Variablenanzahlen besser ab
als Korrelation I. Dies dndert sich aber einer Korrelationsstérke von 0.45 Die
AUC-stéarkste Variable auszulassen, wie es in Korrelation IT der Fall ist, hat

dem Ansatz mit eben dieser Variable gegeniiber keinen Vorteil.

Fazit

Im direkten Vergleich der Methoden finden die Korrelationsansétze bei ei-
ner Variablenanzahl von bis zu 200 giinstige Variablenkombinationen, welche
sich in hoheren AUC-Werten spiegeln. Dies gilt sowohl fiir die LDA als auch
die SVM. Ab einer Variablenanzahl grofler als 200 dominiert jeweils das Ran-
king.

Ich personlich bevorzuge bei der Wahl der Selektions- und Klassfikations-
methode LASSO, welches auf Grund seiner integrierten Variablenselektion
und dem dadurch multivariaten Ansatz in kurzer Zeit eine Variablenmenge

selektiert, die auch mit ihrer geringen Gréfe eine sehr gute Pradiktion erzielt.
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Implementierung

Wichtig im Zusammenhang mit der héchsten AUC ist die Betrachtung des
Aufwands der Implementierung, der Rechenzeit und des resultierenden Nut-
zens. Ein Vielfaches an Rechenzeit steht in keinem Verhéltnis zu einer mini-
mal hoheren AUC. Auch die Handhabung der verwendeten Funktionen spielt
eine wichtige Rolle.

Auf Grund der vorherigen Variablenselektion und der daraus resultierenden
10 Variablenkombinationen benotigen die LDA und SVM die meiste Rechen-
zeit: Etwa 3.5 Tage fiir die SVM bzw. 2.5 fiir die LDA. Dagegen erwies sich
die Implementierung fiir beide Methoden als gleich aufwéandig.

Im Vergleich hierzu betréigt die Rechenzeit der LogReg nur 1.5 Tage. Aus
der Vorwértsselektion resultiert jedoch jeweils nur eine Variablenkombinati-
on, mit der die Logistische Regression durchgefiihrt wird.

LASSO ist in seiner Implementierung das aufwéndigste Verfahren, zumal
zusétzlich eine Kreuzvalidierung zur optimalen A-Bestimmung durchgefiihrt
werden muss und erst anschlieBend der LASSO-Schétzer bestimmt werden
kann. LASSO ist aber auch das mit Abstand schnellste Verfahren mit einer
Rechenzeit von etwa 4 Stunden. Im Hinblick auf die daraus folgende Klassi-
fikationsgenauigkeit und der schnellen Durchfiihrung hélt sich der Aufwand

der Implementierung in Grenzen.

Ausblick

Um weitere Aufschliisse iiber die Giite von univariaten und multivariaten
Variablenselektionsmethoden zu erhalten, lieen sich die hier vorgestellten
Verfahren ausweiten.

Je nach Datenbeschaffenheit bietet sich an Stelle der Monte Carlo Cross Va-
lidation z.B. fiir Datensédtze mit extrem kleiner Beobachtungszahl Bootstrap
an|[4].

Um eine noch bessere Robustheit der Schétzer zu garantieren, ist eine Auf-
stockung der 500 Iterationen auf eine Anzahl von 1000 moglich. In dieser

Analyse waren ursrpiinglich 1000 Iterationen vorgesehen, diese wurden aber
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wegen zu langer Rechenzeit auf die verwendeten 500 herabgesetzt.

Auch auf das Parametertuning fiir die Support Vector Machine wurde we-
gen einer erwarteten Rechenzeit von mehreren Wochen verzichtet. Durch ein
Tuning des Parameters A\ und des Kostenparameters C' kénnen weitere Ver-
besserungen in der Pradiktionsgenauigkeit erzielt werden[2]. Ebenso verhilt
es sich beim Vergleich der einzelnen Kernfunktionen.

Die Verwendung weiterer univariater Selektionsmethoden bietet ein breite-
res Spektrum an Vergleichsmoglichkeiten. Auch fiithrt ein feineres Gitter der
Korrelationsstiarken zu einem detaillierteren Verstéandnis der Auswirkung der
Korrelation auf die Variablenanzahl und die anschlieende Pradiktion.

Fiir geringe Variablenanzahlen kann es auch von Interesse sein, zu sehen,
welche Variablen jeweils ausgewéhlt werden und wie sich die jeweilige
Variablenkombination auf die Klassifikationsgenauigkeit auswirkt.

Um ein prézises Ergebnis prasentieren zu kénnen, sind mehrere Datensétze
zwingend erforderlich. Nur wenn sich das Verhalten der angewandten Me-
thoden auch bei der Durchfiihrung an anderen Datensétzen wiederholt, kann

eine allgemeingiiltige Aussage erfolgen.
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Anhang A

Exakte Messergebnisse



Selektions- An- Variablen-
methode teil LDA SVM | anzahl (¢)

Ranking 1% | 0.7538540 || 0.7427812 5
2% | 0.7499174 | 0.7508410 9
5% | 0.7559156 || 0.7573101 23
8% | 0.7602774 | 0.7603246 36
10% | 0.7601812 || 0.7607917 45
15% | 0.7500876 | 0.7603130 68
22% | 0.7405552 || 0.7597164 99

55% | 0.7043656 || 0.7728306 249
70% | 0.6867101 || 0.7707627 316
100% | 0.6509923 || 0.7595886 452
Korrelation | 0.02 | 0.6946100 || 0.7575468 5.8
mit der 0.05 | 0.6663810 || 0.7446452 9.0
stéarksten 0.20 | 0.7150180 || 0.7326827 21.4
Variablen 0.35 | 0.7618143 || 0.7644380 34.5
des 0.45 | 0.7645254 || 0.7712430 47.4
Rankings 0.60 | 0.7611848 || 0.7765495 62.6
0.75 | 0.7474516 || 0.7724933 98.3
0.95 | 0.6884925 || 0.7658260 250.5
0.98 | 0.6786873 || 0.7641890 311.6
1 0.6510343 || 0.7596187 451.7
Korrelation | 0.02 | 0.7536577 || 0.7565851 4.5
mit der 0.05 | 0.7518452 || 0.7556453 8.8
zweitstarksten | 0.20 | 0.7512139 || 0.7519868 21.0
Variablen 0.35 | 0.7624200 || 0.7639910 34.3
des 0.45 | 0.7636546 || 0.7704033 47.3
Rankings 0.60 | 0.7619605 || 0.7766769 62.6
0.75 | 0.7462553 || 0.7721498 97.9
0.95 | 0.6875220 || 0.7654593 250.4
0.98 | 0.6775654 || 0.7635834 310.7
1 0.6483317 || 0.7590487 450.7
Korrelation | 0.02 | 0.6722893 || 0.7273905 6.0
mit der 0.05 | 0.6518427 || 0.7155845 9.0
drittstarksten | 0.20 | 0.7177546 || 0.7196986 21.4
Variablen 0.35 | 0.7416954 || 0.7468673 35.3
des 0.45 | 0.7498963 || 0.7597387 47.6
Rankings 0.60 | 0.7529452 || 0.7660082 62.7
0.75 | 0.7398636 || 0.7629229 97.9
0.95 | 0.6843780 || 0.7573881 249 .4
0.98 | 0.6766561 || 0.7557706 309.7
1 0.6483897 || 0.7518457 449.7

Tabelle A.1: AUC Mittelwerte der LDA und SVM(ungerundet)
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Selektions- An- Variablen-
methode teil LDA SVM | anzahl (¢)

Ranking 1% | 0.3032472 || 0.3055991 5)
2% | 0.3072428 || 0.3068241 9
5% | 0.3061782 || 0.3111492 23
8% | 0.3044365 | 0.3108953 36
10% | 0.3048330 || 0.3123875 45
15% | 0.3088998 || 0.3180134 68
22% | 0.3059020 || 0.3219287 99

55% | 0.3208062 || 0.2972383 249
70% | 0.3337506 | 0.2981871 316
100% | 0.3682584 || 0.3058040 452
Korrelation | 0.02 | 0.3898753 || 0.3371314 5.8
mit der 0.05 | 0.3752517 || 0.3366904 9.0
stéarksten 0.20 | 0.3438797 || 0.3267973 21.4
Variablen 0.35 | 0.3022895 || 0.2968151 34.5
des 0.45 | 0.2994298 || 0.2898530 47.4
Rankings 0.60 | 0.2994610 || 0.2866414 62.6
0.75 | 0.3077149 || 0.2906013 98.3
0.95 | 0.3461559 || 0.2994833 250.5
0.98 | 0.3491403 || 0.3009310 311.6
1 0.3680935 || 0.3058263 451.7
Korrelation | 0.02 | 0.3145212 || 0.3029889 4.5
mit der 0.05 | 0.3155367 || 0.3044410 8.8
zweitstarksten | 0.20 | 0.3131136 || 0.3076481 21.0
Variablen 0.35 | 0.3017595 || 0.2978486 34.3
des 0.45 | 0.3004944 || 0.2906013 47.3
Rankings 0.60 | 0.2976615 || 0.2854566 62.6
0.75 | 0.3090646 || 0.2912249 97.9
0.95 | 0.3467884 || 0.2996971 250.4
0.98 | 0.3499020 || 0.3013185 310.7
1 0.3698218 || 0.3063252 450.7
Korrelation | 0.02 | 0.4025657 || 0.3700356 6.0
mit der 0.05 | 0.3847439 || 0.3580980 9.0
drittstarksten | 0.20 | 0.3391180 || 0.3374699 21.4
Variablen 0.35 | 0.3218797 || 0.3147394 35.3
des 0.45 | 0.3141247 || 0.3014967 47.6
Rankings 0.60 | 0.3088374 || 0.2951136 62.7
0.75 | 0.3152160 || 0.2985791 97.9
0.95 | 0.3503296 || 0.3059911 249 .4
0.98 | 0.3506370 || 0.3074477 309.7
1 0.3695011 || 0.3113363 449.7

Tabelle A.2: MSE Mittelwerte der LDA und SVM(ungerundet)
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LogReg LASSO
AUC 0.7730696 0.7796021
[0.731; 0.832] | [0.712; 0.833 ]
MSE 0.2895457 0.2889555
[0.238; 0.341] | [0.229; 0.358]
Variablenanzahl 6.77 11.22
[3; 19] [2; 18]

Tabelle A.3: AUC/MSE Mittelwerte der LogReg und LASSO (ungerundet), sowie
die durchschnittliche Variablenanzahl mit Angabe des jeweiligen Minimum und
Mazimum
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Anhang B

Verteilung der
AUC-/MSE-Werte von LDA

und SVM
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Anhang C
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Variablenselektion: Ranking, Korrelation I, Korrelation 11, Korrelation 111

#  Packages laden
library (WilcoxCV)
library(ROC)
library (MASS)

dat.gesamt <- read.table("File")
N <- 500 # Anzahl der Iterationen
verh <- 1347/3 # Fir ein Verhidltnis 2:1

set.seed(1334)
mccv.ind <- generate.split(niter=N,n=dim(dat.gesamt) [1] ,ntest=verh)
# MCCV
for(i in 1:N) A
train.allg <- dat.gesamt[-mccv.ind[i,],]
train.allg.x <- train.allg[,-1]
test.allg <- dat.gesamt [mccv.ind[i,],]
# [1i,] Die i-te der 500 Iterationen wird verwendet
test.allg.x <- test.allgl[,-1]
test.allg.y <- test.allgl[,1]

# Variablenranking #
R

Namen <- names(dat.gesamt)
# Trainingsdatensatz nach AUC-Werten ordnen
auc <- data.frame()
for (k in 1:(dim(train.allg)[2]-1)) {
auclk,1] <- k
auc[k,2] <- AUC(rocdemo.sca(train.allg$Severity,

train.allg[,k+1], rule = dxrule.sca))
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auc[k,3] <- Namen[k+1]
}
names (auc) <- c("Beob","aucwert","Name")
ordnen <- auc[order (auc$aucwert,decreasing=TRUE),]
index.auc.rank <- ordnen$Beob
aucorder <- train.allg.x[,index.auc.rank]

aucorder.test <- test.allg.x[,index.auc.rank]

anteil.var <- vector()
p <- ¢(0.01,0.02,0.05,0.08,0.1,0.15,0.22,0.55,0.75,1)
anteil.var <- round(p*(length(dat.gesamt)-1))

sel.anteil.01  <- names(aucorder[,1:anteil.var([1]])
sel.anteil.02 <- names(aucorder[,l:anteil.var([2]])
sel.anteil.05  <- names(aucorder[,1:anteil.var([3]])
sel.anteil.08  <- names(aucorder[,1:anteil.var([4]])
sel.anteil.10 <- names(aucorder[,l:anteil.var([5]])
sel.anteil.15  <- names(aucorder[,l:anteil.var([6]])
sel.anteil.22 <- names(aucorder[,1:anteil.var[7]])
sel.anteil.5b <- names(aucorder[,1:anteil.var([8]])
sel.anteil.70  <- names(aucorder[,l:anteil.var([9]])

sel.anteil.100 <- names(aucorder[,1:anteil.var[10]])

### Korrelation
HHHHH R R R
# Diese Funktion vergleicht die Korrelation der
# Variablen untereinander und gibt schliesslich die
# aus, die unter der vorgegebenen Schranke liegen.
omit.cor.var <- function(cor.mat, threshold)
{

indexmenge <- vector()

for (i in 2:dim(cor.mat) [1])
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cor

sel.
sel.
sel.
sel.
sel.
sel.
sel.
sel.
sel.

sel.

cor

sel.
sel.
sel.
sel.
sel.

sel.

{
values <- cor.mat[!is.element (row.names(cor.mat),
indexmenge), 1i]
[1 : (i - length(indexmenge) - 1)]
values <- abs(values)
if (is.element(TRUE, values > threshold))

indexmenge <- c(indexmenge, row.names(cor.mat) [i])

by

selected <- row.names(cor.mat) [!is.element
(row.names(cor.mat), indexmenge)]

return(selected)

}

.matrixl <- cor(aucorder)

corl.02 <- omit.cor.var(cor.matrix1,0.02)
corl.05 <- omit.cor.var(cor.matrix1,0.05)
corl.20 <- omit.cor.var(cor.matrix1,0.20)
corl.35 <- omit.cor.var(cor.matrix1,0.35)
corl.45 <- omit.cor.var(cor.matrix1,0.45)
corl.60 <- omit.cor.var(cor.matrix1,0.60)
corl.75 <- omit.cor.var(cor.matrix1,0.75)
corl.95 <- omit.cor.var(cor.matrix1,0.95)
corl.98 <- omit.cor.var(cor.matrix1,0.98)

corl.l <- omit.cor.var(cor.matrix1,1.00)

.matrix2 <- cor(aucorder[-1])

cor2.02 <- omit.cor.var(cor.matrix2,0.02)
cor2.05 <- omit.cor.var(cor.matrix2,0.05)
cor2.20 <- omit.cor.var(cor.matrix2,0.20)
cor2.35 <- omit.cor.var(cor.matrix2,0.35)
cor2.45 <- omit.cor.var(cor.matrix2,0.45)

cor2.60 <- omit.cor.var(cor.matrix2,0.60)
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sel.
sel.

sel.

sel

cor

sel.
sel.
sel.
sel.
sel.
sel.
sel.
sel.
sel.

sel.

cor2.75 <- omit.cor.var(cor.matrix2,0.75)

cor2.95 <- omit.cor.var(cor.matrix2,0.95)

cor2.98 <- omit.cor.var(cor.matrix2,0.98)

cor3.
cor3.
cor3.
cord.
cor3.
cor3.
cord.
cor3.
cor3.

cor3.

.matrix3

02
05
20
35
45
60
75
95
98

cor (aucorder[-1] [-1])

omit

omit.
omit.
omit.
omit.
omit.
omit.
omit.

omit.

.Cor

cor.

cor.

cor.

cor.

cor.

cor.

cor.

cor.

.var(cor
var (cor.
var (cor.
var (cor.
var (cor.
var (cor.
var (cor.
var (cor.

var (cor.

.matrix3,0.

matrix3,0.
matrix3,0.
matrix3,0.
matrix3,0.
matrix3,0.
matrix3,0.
matrix3,0.

matrix3,0.

.cor2.1 <- omit.cor.var(cor.matrix2,1.00)

02)
05)
20)
35)
45)
60)
75)
95)
98)

1 <- omit.cor.var(cor.matrix3,1.00)

# Abspeichern der

VarSel <- list(sel.

sel.
sel
sel
sel.
sel.
sel.
sel.
sel.
sel.
sel.
sel.

sel

anteil.O1,
anteil.08,
.anteil .22,

corl.
corl
corl
cor2.
cor2.
cor2.
cor3.

cors3.

.cor3.

20, sel
.60, sel.
.98, sel.
05, sel.
45, sel.
95, sel.
02, sel.
35, sel.
75, sel.

.corl.35, sel.corl.45,

cor2.20,
cor2.60,
cor2.98,
cor3.05,
cor3.45,
cor3.95,

sel.
sel.
sel.
sel.
sel.

sel.

cor?2.
cor2.
cor2.
cor3.
cord.

cor3.

corl.75, sel.corl1.95,

corl.l, sel.cor2.02,

35,
75,
1,

20,
60,
98,

gewdhlten Variablen in eine Liste
sel.anteil.02, sel.anteil.O05,
sel.anteil.10, sel.anteil.15,
sel.anteil.bb, sel.anteil.75,
.anteil.100, sel.cor1.02, sel.corl1.05,

sel.cor3.1)
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Anwendung der LDA auf die ausgewéhlten Variablen

#  Packages
library(WilcoxCV)
library(ROC)
library (MASS)

dat.gesamt <- read.table("File")
N <- 500
verh <- 1347/3

set.seed(1334)

mccv.ind <- generate.split(niter=N,n=dim(dat.gesamt) [1] ,ntest=verh)

klasse.lda.list <- vector(length=N, mode="list")
auc.lda.list <- vector(length=N, mode="list")
anzahl.lda.list <- vector(length=N, mode="list")
mse.lda.list <- vector(length=N, mode="1list")

for(i in 1:N) {

train.allg <- dat.gesamt [-mccv.ind[i,],]
train.allg.x <- train.allg[,-1]

test.allg <- dat.gesamt [mccv.ind[i,],]

test.allg.x <- test.allgl[,-1]
test.allg.y <- test.allgl[,1]

auc.lda <- vector(length=length(VarSel), mode="logical")

klassen.lda.matrix <- matrix(data=NA, length(test.allg.y),
length(VarSel))

anzahl.lda <- vector()

mse.lda <- vector()

for(w in 1:length(VarSel)){
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model.lda <- lda(Severity~., data=train.allg[,c("Severity",VarSel[[w]])],
tol=1.0e-40)

wkeit.lda <- predict(model.lda,newdata=test.allg[,VarSel[[w]]])$
posterior([,2]
klassen.lda <- predict(model.lda,newdata=test.allgl[,VarSell[[w]]])$
class
auc.lda[w] <- AUC(rocdemo.sca(test.allg.y, wkeit.lda,

rule = dxrule.sca))
klassen.lda.matrix[,w] <- klassen.lda

anzahl.lda[w] <- length(VarSel[[w]])
mse.lda[w] <- 1/length(test.allg.y) *
sum((test.allg.y - (as.numeric(klassen.lda)-1))"2)
}

auc.lda.list[[i]] <- auc.lda
anzahl.lda.list[[i]] <- anzahl.lda
klasse.lda.list[[i]] <- klassen.lda.matrix
mse.lda.list[[i]] <- mse.lda
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Anwendung der SVM auf die ausgewéhlten Variablen

#  Packages
library(WilcoxCV)
library(ROC)
library(e1071)

dat.gesamt <- read.table("File")
N <- 500

verh <- 1347/3

set.seed(1334)

mccv.ind <- generate.split(niter=N,n=dim(dat.gesamt) [1],ntest=verh)

auc.svm.list <- vector(length=N, mode="1list")
klasse.svm.list <- vector(length=N, mode="list")
anzahl.svm.list <- vector(length=N, mode="list")

mse.svm.list <- vector(length=N, mode="1list")

for(i in 1:N) {

train.allg <- dat.gesamt[-mccv.ind[i,],]
train.allg.x <- train.allgl[,-1]

test.allg <- dat.gesamt [mccv.ind[i,],]
test.allg.x <- test.allgl[,-1]

test.allg.y <- test.allgl,1]

auc.svm <- vector(length=length(VarSel), mode="logical")
klassen.svm.matrix <- matrix(data=NA, length(test.allg.y),

length(VarSel))
anzahl.svm <- vector()
mse.svm <- vector()
for(w in 1:length(VarSel)){
model.svm <- svm(formula=as.factor(Severity)~., type="C"
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data=train.allg[,c("Severity",VarSel[[w]])],

kernel="radial", probability=T)
wkeit.svm <- attr(predict(model.svm, newdata=test.allgl[,VarSel[[w]]],

probability = T), "probabilities")[, "1"]
klassen.svm <- predict(model.svm, newdata=test.allg[,VarSel[[w]]])
klassen.svm.matrix[,w] <- klassen.svm
auc.svm[w] <- AUC(rocdemo.sca(test.allg.y, wkeit.svm,
rule = dxrule.sca))
anzahl.svm[w] <- length(VarSel[[w]])
mse.svm[w] <- 1/length(test.allg.y)x*
sum((test.allg.y -(as.numeric(klassen.svm)-1))"2)

auc.svm.list[[i]] <- auc.svm
klasse.svm.list[[i]] <- klassen.svm.matrix
anzahl.svm.list[[i]] <- anzahl.svm

mse.svm.list[[i]] <- mse.svm
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Logistische Regression mit Vorwértsselektion

#  Packages
library(WilcoxCV)
library(ROC)
library (MASS)

dat.gesamt <- read.table("File")

N <- 500
verh <- 1347/3

set.seed(1334)

mccv.ind <- generate.split(niter=N,n=dim(dat.gesamt) [1] ,ntest=verh)

# Ausgabeobjekte:

klasse.logReg.list <- vector(length=N, mode="1list")
auc.logReg <- vector()

mse.logReg <- vector()

anzahl.logReg <- vector()

for(i in 1:N) {

train.allg <- dat.gesamt[-mccv.ind[i,],]
train.allg.x <- train.allg[,-1]

test.allg <- dat.gesamt [mccv.ind[i,],]
test.allg.x <- test.allgl[,-1]

test.allg.y <- test.allgl[,1]

### Einfache Vorwartsselektion
#HH#H R HH RS RS H

logmodel.1l <- glm(Severity~1, data=train.allg,
family=binomial ("logit"))
logmodel.alle <- glm(Severity~., data=train.allg,
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family=binomial ("logit"))
sel.logmodel <- stepAIC (logmodel.l, scope=list(upper=logmodel.alle,
lower=logmodel.1), direction="forward",
k=log(dim(dat.gesamt) [1]))

anzahl.logReg[i] <- length(sel.logmodel$coefficients)-1

### Logistische Regression mit Variablen aus Vorwartsselektion

s s s S s s s
train.logReg <- sel.logmodel

wkeit.logReg <- predict(train.logReg, newdata=test.allg.x[,namen.logReg],

type="response")

klasse.logReg <- vector()
for(l in 1:length(wkeit.logReg))
klasse.logReg[l] <- ifelse(wkeit.logReg[1]>=0.5,1,0)

klasse.logReg.list[[i]] <- klasse.logReg
auc.logReg[i] <- AUC(rocdemo.sca(test.allg.y, wkeit.logReg,
rule = dxrule.sca))
mse.logReg[i] <- 1/length(test.allg.y) *
sum((test.allg.y - klasse.logReg)~2)
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LASSO mit Kreuzvalidierung zur optimalen A\ Bestimmung

#  Packages laden
library(WilcoxCV)
library (ROC)
library(glmnet)

dat.gesamt <- read.table("File")

N <- 500
verh <- 1347/3

set.seed(1334)

mccv.ind <- generate.split(niter=N,n=dim(dat.gesamt) [1] ,ntest=verh)

klasse.lasso.list <- vector(length=N, mode="list")
auc.lasso <- vector()

mse.lasso <- vector()

anzahl.lasso <- vector()

namen.lasso.list <- vector(length=N, mode="list")

namen.lasso <- vector()

for(i in 1:N) {

train.allg <- dat.gesamt [-mccv.ind[i,],]
train.allg.x <- train.allg[,-1]

test.allg <- dat.gesamt [mccv.ind[i,],]

test.allg.x <- test.allgl[,-1]
test.allg.y <- test.allgl[,1]

predictors.lasso <- as.matrix(train.allgl[,-1])
response.lasso <- as.factor(train.allgl,1])

lambda.poss.lasso <- glmnet(x=predictors.lasso, y=response.lasso,
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family="binomial", alpha=1,
nlambda = 20, lambda.min = 0.01)$lambda

lambda.poss.lasso <- lambda.poss.lasso[1:8]

# Kreuzvalidierung zur Bestimmung des optimalen lambda
cv.ind.lasso <- generate.cv(n=dim(train.allg) [1], m=10)

n.cv <- 10

klasse.lasso <- vector(n.cv*lambda.poss.lasso, mode="list")
aucs.lasso.cv <- matrix(NA, nrow = n.cv,
ncol = length(lambda.poss.lasso),

dimnames = list(l:n.cv, lambda.poss.lasso))

model.lasso <- vector(n.cv*length(lambda.poss.lasso), mode="list")

for(j in 1:length(lambda.poss.lasso)) {

for(m in 1:n.cv) {
train.pre.lasso <- predictors.lasso[-cv.ind.lasso[m,],]
train.res.lasso <- response.lasso[-cv.ind.lasso[m,]]
test.alle <- train.allg[,2:dim(train.allg) [2]]
test.alle.cv <- as.matrix(test.allel[cv.ind.lasso[m,],])
responses.orig <- train.allg[,1]

responses.vgl <- responses.origl[cv.ind.lasso[m,]]

model.lasso[[m+(j-1)*10]] <- predict(glmnet(x=train.pre.lasso,
y=train.res.lasso, family="binomial",
alpha=1, lambda=lambda.poss.lassol[j]),
test.alle.cv, s=lambda.poss.lassol[j],

type="response")

klasse.lasso[[m+(j-1)*10]] <- ifelse(model.lasso[[m+(j-1)*10]]1>=0.5,1,0)

aucs.lasso.cv[m,j] <- AUC(rocdemo.sca(responses.vgl,
model.lasso[[m+(j-1)*10]1],
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rule = dxrule.sca))

# LASSO mit oben gewahltem optimalem lambda
lambda.lasso.final <- list(aucs.lasso.cv, colMeans(aucs.lasso.cv),
names (colMeans (aucs.lasso.cv))

[which.max(colMeans(aucs.lasso.cv))])

model.lasso.final <- glmnet(x=predictors.lasso, y=response.lasso,
family="binomial", alpha=1,
lambda=lambda.lasso.final[[3]])
wkeit.lasso <- predict(model.lasso.final, as.matrix(test.allg.x),
type="response")
klasse.lasso.final <- ifelse(wkeit.lasso0>=0.5,1,0)

klasse.lasso.list[[i]] <- klasse.lasso.final

auc.lasso[i] <- AUC(rocdemo.sca(test.allg.y, wkeit.lasso,
rule = dxrule.sca))
mse.lasso[i] <- 1/length(test.allg.y) *
sum((test.allg.y - klasse.lasso.final)"2)
anzahl.lasso[i] <- length(which(model.lasso.final$
betal[l:dim(test.allg.x) [2]] !=0))
namenvar.lasso <- which(model.lasso.final$beta
[1:dim(test.allg.x) [2]] !=0)

namen.lasso.list[[i]] <- names(test.allg.x[,namenvar.lasso])
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