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Abstract: In this Master’s Thesis, a novel combination of point process models continuous in
space-time is proposed for infectious disease data. Modelling is driven by the conditional inten-
sity function, which enables a step towards a regression framework for self-exciting spatio-temporal
point processes. The model is an extension of the discrete space additive-multiplicative conditional
intensity model proposed by Hohle (2009a), and also borrows from earthquake research, especially
from the formulation of the space-time ETAS model in Ogata, Katsura & Tanemura (2003). Es-
timation is performed by means of full maximum likelihood, which for general point processes in
space requires the evaluation of two-dimensional integrals. Therefore, various methods of numerical
integration are investigated as a prerequisite for maximum likelihood inference.

The particular application of interest is the stochastic modelling of the transmission dynamics of
the two most common meningococcal strains observed in Germany in 2002-2008. The application
showed that the proposed model and its estimation by the provided thoroughly R implementation
are applicable and valuable for the analysis of spatio-temporal infectious disease data.
Keywords: stochastic epidemic modelling, spatio-temporal point processes, conditional intensity

function, two-dimensional numerical integration, invasive meningococcal disease

Zusammenfassung: In dieser Masterarbeit wird eine neuartige Modellkombination von stetigen, raumlich-zeitlichen
Punktprozessen fiir Daten iiber das Auftreten von Infektionskrankheiten vorgeschlagen. Die Modellierung beruht
auf der bedingten Intensitatsfunktion, die einen Schritt in Richtung eines Regressionskontextes fiir ,,selbsterregende®
raumlich-zeitliche Punktprozesse ermoglicht. Das Modell ist eine Erweiterung des von Hohle (2009a) vorgeschlagenen,
raumlich diskreten, additiv-multiplikativen Modells fiir die bedingte Intensitdtsfunktion, und ist ebenfalls inspiriert
durch stochastische Erdbeben-Modelle, insbesondere durch die Formulierung des raumlich-zeitlichen ETAS-Modells
in Ogata et al. (2003). Die Modellschitzung basiert auf voller Likelihood-Inferenz, die fiir allgemeine Punktprozesse
im Raum die Berechnung von zweidimensionalen Integralen benétigt. Als Voraussetzung fiir Maximum Likelihood-
Inferenz werden deshalb auch verschiedene Methoden der numerischen Integration untersucht.

Motivierendes Anwendungsbeispiel ist die stochastische Modellierung der beobachteten Ausbreitungsdynamik der
zwei héaufigsten Meningokokkenstdmme in Deutschland in den Jahren 2002-2008. Die Anwendung zeigte, dass das
vorgeschlagene Modell und seine Schétzung mittels der sorgféltigen Implementierung in R geeignet und wertvoll fir

die Analyse von raumlich-zeitlichen Daten zu Infektionskrankheiten sind.

Schlagworter: Stochastische Modellierung von Epidemien, Raumlich-zeitliche Punktprozesse, Bedingte

Intensitatsfunktion, Zweidimensionale numerische Integration, Invasive Meningokokken-Erkrankung

Résumé : Dans ce mémoire, une nouvelle combinaison de modeles de processus ponctuels continus dans ’espace-
temps est proposée concernant des données sur les maladies infectieuses. La modélisation provient de l'intensité
conditionnelle qui permet de se diriger vers un cadre de régression pour des processus ponctuels spatio-temporels
et autoexcités. Le modele est une extension du modele additif-multiplicatif de ’intensité conditionnelle en espace
discret proposé par Hohle (2009a), et il s’inspire aussi de la recherche sur la modélisation des séismes, en particulier
de la formulation spatio-temporelle du modéle ETAS dans Ogata et al. (2003). L’estimation est réalisée a partir de
l’estimation du maximum de vraisemblance compléte. De maniére générale, pour les processus spatiaux, cela exige
I’évaluation d’intégrales bidimensionnelles. Par conséquent, diverses méthodes d’intégration numérique sont étudiées
en tant que condition indispensable pour I'inférence du maximum de vraisemblance.

L’application d’intérét particuliére concerne la modélisation stochastique de la dynamique de propagation des deux
souches de méningocoques les plus communes observée en Allemagne au cours des années 2002-2008. Les recherches
ont montré que le modele proposé avec I'estimation obtenue par la soigneuse mise en ceuvre sous R sont applicables

et utiles pour I'analyse spatio-temporelle des données sur les maladies infectieuses.

Mots-clés: modélisation stochastique des épidémies, processus ponctuels spatio-temporels, intensité conditionelle,

intégration numérique de deux dimensions, méningococcie invasive
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1 Introduction

Infectious diseases are a matter of tremendous public concern especially gaining attention
in case of outbreaks. For instance, each winter waves of influenza remind people of the
ease of infection by person-to-person contact, Norovirus outbreaks often lead to temporarily
closed schools, and the detection of new highly infectious or pathogenic viruses like the “bird
flu” (influenza subtype A/H5N1) or the current “swine flu” (influenza subtype A/HINI)
concern the World Health Organisation and its members trying to prevent a pandemic like
the Spanish flu in 1918. There are also infectious diseases in animals not threatening humans
directly like the classical swine fever or the foot and mouth disease, which often lead to the
preventive culling of animals in susceptible farms in the neighborhood of infected ones, and
cause an enormous economic damage. Collaboration of health professionals, veterinaries,
geneticists, epidemiologists, statisticians and many others is indispensable for controlling and

understanding the evolution of such epidemics.

This Master’s Thesis concentrates on stochastic modelling and associated inference for spatio-
temporal epidemic data. The aim is to establish a regression framework, where the transmis-
sion dynamics of an infectious disease and its dependency on covariates can be quantified.
Specifically, the statistical methodology is motivated by the invasive meningococcal disease
(IMD), outbreaks of which are supposed to be linked to waves of influenza. Meningococci
also seem to exhibit different degrees of infectivity according to the specific type of pathogen
eliciting the disease. The available data stem from an epidemiological database with high
geographical and temporal resolution on occurence of the disease, which are becoming more
widely available. Herein, the cases of disease are neither aggregated temporally nor within
administrative borders, which otherwise is often a consequence of the data sampling. This
motivates the use of modelling techniques which honour the high resolution. Point processes
constitute an appropriate framework for the underlying stochasticity as they represent the
individual occurence of events in space and/or time. The observations may be correlated
spatially as well as temporally, which differs from classical i.i.d. statistics and is essential for

the representation of epidemics.

This Master’s Thesis is organised as follows: the remainder of this introduction will in Sec-
tion 1.1 give an overview of invasive meningococcal disease (IMD) and present the available
data in Section 1.2. Chapter 2 moves towards point process modelling. It first sketches the

theory of point processes, as I do not assume the reader to have in-depth knowledge in this
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field of statistics, and then describes a preliminary spatio-temporal point process model for
a finite and fixed set of possible event locations. As a prerequisite for likelihood inference
of point process models continuous in space-time, methods of numerical integration will be
presented and compared in Chapter 3. Chapter 4 then investigates a novel combination of
point process models with full likelihood inference aiming at a spatio-temporal regression
framework for infectious disease data. The final general model class is then applied to the
IMD data in Chapter 5. The thesis concludes with a discussion of the results of data analysis
and the presented methodology.

1.1 Invasive Meningococcal Disease (IMD)

Throughout the thesis, I will examine a specific data set (see Section 1.2 below), which serves
as a motivating example of application for the presented methodology. It contains cases of
invasive meningococcal disease (IMD) recorded by the German National Reference Centre
for Meningococci (Nationales Referenzzentrum fiir Meningokokken, NRZM) during the years
2002-2008.

IMD is a life-threatening human disease involving meningitis (50% of cases), septicemia (5 to
20 percent) and/or pneumonia (5 to 15 percent) caused by the infection with the bacterium
Neisseria meningitidis also termed meningococcus (Rosenstein, Perkins, Stephens, Popovic
& Hughes, 2001, p. 1382). The clinical picture ranges from temporary asymptomatic bacter-
aemia to a fulminant septic course of disease, which can lead to death within a few hours
(Hellenbrand, Vogel & Elias, 2008, p.266). Meningococci can be transmitted airborne (e.g.
by coughing or sneezing) or by other mucous secretions from infected humans, where they
colonise the nasopharynx, their only natural reservoir (Rosenstein et al., 2001, p. 1379). The
incubation time is around four days. A special characteristic of the bacterium is that 5 to 10
percent of adults are asymptomatic nasopharyngeal carriers of meningococcal strains. Actu-
ally, most meningococci are commensal in humans, but only a few isolates are virulent and
cause invasive disease. “Before the 1920s, meningococcal disease was fatal in up to 70 percent
of cases”, whereas “the overall case fatility rates have remained relatively stable over the past
20 years, at 9 to 12 percent” (Rosenstein et al., 2001, p. 1382). In Germany within the years
2001-2007, the overall lethality was 8.4% (Hellenbrand et al., 2008, p.266). This is also a
success of the immediate administering of effective antibiotics such as penicillin. However, up
to 40 percent of patients with meningococcal sepsis do not survive the disease (Rosenstein
et al., 2001, p.1382), especially those who develop the Waterhouse-Friderichsen syndrome

(acute adrenal insufficiency).

As determined by the German Infection Protection Act (Infektionsschutzgesetz, IfSG, §6),

IMD is a notifiable disease. Health authorities mandatorily transmit every case to the Robert
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Koch institute (RKI), which surveys the spread of the disease (IfSG, §4). Based on the
case numbers from RKI the rates of IMD during the years 2001-2008 in Germany are at
approximately 0.53-0.95 cases per 100000 population per year, where the rate has roughly
been decreasing over the years (cf. Hellenbrand et al., 2008).

Of course, the risk of contracting IMD is much higher inside the household of an infected
person. However, secondary cases have become rare due to effective antimicrobial chemopro-
phylaxis of household members and anyone exposed to an infected patient’s oral secretions.
The risk of secondary infections “is highest during the first few days” (Rosenstein et al.,
2001, p.1384). Other important risk factors include the active or passive exposure to to-
bacco smoke and a concurrent viral infection of the upper respiratory tract (Rosenstein et
al., 2001, p.1381). Both of these risk factors damage the mucous membranes and thus facil-
itate the penetration of the mucosa by virulent meningococci, which then gain access to the

bloodstream.

The highly variable bacterium Neisseria meningitidis is classified into at least 13 serogroups
(antigen groups of bacterial strains), “with serogroups B and C responsible for the majority
of cases in Europe and the Americas and serogroups A and C predominating throughout
Asia and Africa” (Rosenstein et al., 2001, p.1379). There is however some fluctuation in
the distribution of serogroups, e.g. the serogroups Y and W-135, both commonly associated
with pneumonia, accumulated at times in the past decades in the USA. Figure 1.1 shows the
locations of all IMD cases registered by the NRZM during 2002-2008 in Germany marked
by the corresponding serogroup. Serogroups B and C dominate the map, where the former
appears in more obvious and intense clusters in and around agglomerations than the latter.
Note that regarding the incidence of the disease, i.e. the number of cases in relation to the
population size, northern and eastern (new) federal states have higher rates than southern
and western (old) federal states (Hellenbrand et al., 2008, p.269).

As an option of disease prevention, vaccination is possible against serogroups A, C, Y, and W-
135. Since 2006, vaccination of all children over 12 months using a conjugate vaccine against
serogroup C is recommended by the German Standing Vaccination Committee (STIKO)
at the RKI (Hellenbrand et al., 2008, p.266). Unfortunately, there is no licensed vaccine
against serogroup B, which is why “most cases of meningococcal disease in Germany are
not preventable by vaccination” (Elias et al., 2006, p.1693). In the USA, a quadrivalent
polysaccharide-protein conjugate vaccine against serogroups A, C, Y, and W-135 is used, but
it is relatively ineffective in young children (Rosenstein et al., 2001, p. 1385). Furthermore, “in
the abscence of an effective vaccine against serogroup B, a more widespread outbreak would
result in substantial morbidity and mortality” (Rosenstein et al., 2001, p. 1379). This is why
a correct and fast diagnosis of the meningococcal disease is of great importance. Thompson et

al. (2006) discuss the difficulty of this task keeping in mind that IMD shares many symptoms
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Figure 1.1: Locations of all IMD cases in Germany during the years 2002-2008 registered by the
German National Reference Centre for Meningococci. The figure has been generated using
EpiScanGIS (Meningococcal Disease Surveillance in Germany, http://www.episcangis
.org, as of 14 August 2009).

with less serious illnesses. Meningococcal meningitis similar to other forms of meningitis
is accompanied by headache, fever, and sometimes stiffness of the neck, nausea, vomiting,
photophobia, and an altered mental status. Meningococcal sepsis (Meningococcemia) is char-

acterized by fever and petechial or purpuric rash.

When analysing the pathogenic agents of the cases of IMD, one is concerned with the high
diversity of meningococci. Beneath their classification into serogroups, there are actually
hundreds of different finetypes of Neisseria meningitidis, i.e. different antigenic profiles of
meningococcal strains. In Germany the two most common finetypes are B:P1.7-2,4:F1-5
and C:P1.5,2:F3-3, which belong to serogroups B and C, respectively, and are denoted by
the antigen sequence types of the outer membrane proteins PorA and FetA. For a detailed
description see Elias et al. (2006), who carried out a spatio-temporal analysis of German
IMD cases registered and finetyped by the NRZM during the period 1 December 2001 and
1 June 2005 with respect to evolving spatio-temporal disease clusters. Here, “a meningococcal

disease cluster is regarded as an aggregation of cases caused by the same bacterial strain
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closely grouped in space and time” (Elias et al., 2006, p.1689). Applying a retrospective
spatio-temporal scan statistic using the SaTScan software (Kulldorff, 1997), they detected 26
small and short clusters that included a total of 68 cases corresponding to 4.2% of all cases.
The clusters covered an average of 2.6 patients (min: 2, max: 10) and the median cluster
duration was four days (min: < 1, max: 24). The median interval between the first and the
second case was four days ranging from < 1 to 23 days. The authors mention several other
analyses concerning this interval: In an American analysis 73% of secondary cases appeared
in the first two weeks after the index case, in France 72% of secondary cases occured in the
first week after the index case. In a British survey, the median interval was 1.5, 5 or 23 days

in households, schools and universities, respectively.

In the work of Elias et al. (2006), different finetypes are basically assumed as spreading
independently of each other in the sense that the finetype of the meningococcal strain does
not change during transmission. If there are two cases of different finetypes in temporal
and spatial proximity, a transmission between the two cases is out of question. Although
it must be noted that potentially “meningococci also have the capacity to [...] switch from
serogroup B to C or vice versa” (Rosenstein et al., 2001, p. 1379), this simplifying approach

of finetype-specific transmission will also be followed in this thesis.

1.2 Available Data

The following subsections describe the available data and their preparation for analysis. The
data retrieved from various sources include geographic information on Germany, registered

cases of IMD, weekly numbers of influenza cases, and official population statistics.

1.2.1 Shapefiles

An essential component in spatial statistics is the region of observation, which for the IMD
data is entire Germany. A computational representation of its shape enables mapping of the
spatial distribution of the events (cases of IMD) and the estimation of spatial point process
models. A popular electronic format for geographic data are ESRI shapefiles (Environmental
Systems Research Institute, 1998). These files describe so-called vector data, i.e. geometrical
objects to which additional information may be attributed. The geometrical objects can be
either points, lines or polygons. For instance, the boundary of Germany can be represented as
a set of 31 polygons of which the biggest one corresponds to the main region of Germany and
the others to small islands in the north. Similarly, a more detailed polygonal representation

is obtained by the boundaries of the 413 German administrative districts also called counties
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(301 “Landkreise” and 112 “Stadtkreise”, NUTS-3 level, cf. Wikipedia (2009)). These shape-
files are provided by the GeoDataCenter of the German Federal Agency for Cartography and

Geodesy and are available online from http://www.geodatenzentrum.de.

In R, shapefiles can be imported using the function read0GR from the package rgdal (Keitt,
Bivand, Pebesma & Rowlingson, 2009) resulting in an object of the class SpatialPolygons
(or SpatialPolygonsDataFrame) from the package sp (Pebesma & Bivand, 2005). The bor-
derlines of the counties from one of the shapefiles can be seen in Figure 1.3. Another class
representing sets of polygons is gpc.poly from the package gpclib (Peng, 2009). T will
especially make use of this latter class for the estimation of the spatio-temporal models of

Chapter 4 as it provides necessary methods for intersecting polygons.

1.2.2 Cases of IMD

The IMD data I have received from the NRZM consist of 636 cases of the two most common
meningococcal finetypes in Germany, B:P1.7-2,4:F1-5 and C:P1.5,2:F3-3, registered during
the years 2002-2008. Among the IMD cases finetyped at NRZM in 2008, 13.6% (B:P1.7-
2,4:F1-5) and 10.1% (C:P1.5,2:F3-3) corresponded to these finetypes, respectively (cf. German
National Reference Centre for Meningococci, 2009). Unfortunately, the supplied data are not
complete because reporting of IMD cases to the NRZM is voluntary (it is only obligatory to
the RKI). In 2003 the NRZM conducted the finetyping for approximately 65% of all IMD
cases in Germany (Schrauder et al., 2007), which could lead to an information bias when
some counties consistently report less cases than others. In the analysis of Elias et al. (2006)
the underreporting to NRZM by some counties did not substantially affect the results. The
NRZM also assumes that the coverage has increased in recent years with an approximate
value of 87% in 2008. Table 1.1 lists the available information in the NRZM dataset.

’ Finetype \ Meningococcal antigen sequence type (B:P1.7-2,4:F1-5 or C:P1.5,2:F3-3) ‘
Temporal reference | Date of sampling (e.g. blood culture or central spinal fluid), missing for
14 cases

Date of receipt of the meningococcal sample for finetyping at NRZM

Spatial reference Postcode of the patient’s residence

Geographical coordinates (longitude, latitude) of the centroid of the
postcode’s region

Official key of the county of the patient’s residence

Patient data Age of the patient at the time of sampling, missing for 1 case
Gender of the patient, missing for 5 cases

Table 1.1: Information contained in the dataset of the 636 cases of IMD.

Of the total 636 cases, 336 belong to the most common finetype of serogroup B and 300 to the

most common finetype of serogroup C. For comparison, I queried the RKI online database


http://www.geodatenzentrum.de

1.2 Available Data 7

SurvStat@RKI (Robert Koch-Institut, 2009) for registered cases of meningococci and acquired
cross tabulars by county and week for the years 2001-2009 and for the serogroups B and C
separately. In 2002-2008, the RKI registered 2401 cases belonging to serogroup B, 900
cases belonging to serogroup C, and a total of 4186 IMD cases (including many cases with
unknown serogroup). Thus, the NRZM data of the specific finetype B:P1.7-2,4:F1-5 make
up only 14.0% of all known cases of serogroup B, which also shows the high diversity of the
bacterial pathogen. For the finetype C:P1.5,2:F3-3 the corresponding proportion is 33.3%.

As usual with infectious diseases, the actual time point of infection is unknown for the IMD
cases. One only knows about the date of specimen sampling, when the infection has already
become apparent. As a rough estimate, I define the time of illness and infectivity as being
four days before the sampling date. These four days are assumed to be the median incubation
period, which actually exhibits large deviations between different cases and may also take more
than two weeks (J. Elias, personal communication). Note that this choice of time shift does not
affect the sequence of IMD cases, but only its temporal link to the cases of influenza presented
in the next subsection. To the 14 missing sampling dates the corresponding reception date

minus 5 days is imputed, which is the median lag between sampling and reception.
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Figure 1.2: Monthly numbers of IMD cases for both finetypes separately.

Figure 1.2 shows the monthly numbers of IMD cases for each finetype. Cases of IMD predom-
inantly occur during winter and early spring, which can be seen from more or less pronounced
peaks in the figure. Except from a large outbreak caused by the serogroup B finetype around
February 2005, both finetypes exhibit a comparable amount of cases per month. Observe that
for these NRZM data there is no apparent decrease in the number of cases over the years as

is the case for the complete meningococci records from the RKI (see Section 1.1).
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Figure 1.3: Spatial point patterns of the cases of meningococci by finetype during the years 2002—2008.
The area of each dot is proportional to the number of cases at its location. Also shown are
the population densities (inhabitants per km?) of Germany’s counties.

Besides being the most common finetypes, a particular interest of the NRZM in these two
specific finetypes arises because they seem to have different spatio-temporal distributions.
Figure 1.3 presents the spatial distributions of the two finetypes based on the postcodes
of the patients’ residences. Over the 7-year period some cases shared the same location;
therefore, the area of each point in the figure is drawn proportional to the number of cases
at its location. For the serogroup B finetype in (a) the highest point multiplicity is 16,
whereas for the serogroup C finetype in (b) this number is 4. In connection with the temporal
occurence of the events shown in Figure 1.2, the spatial distribution suggests that IMD is an
endemic disease, i.e. cases can occur at any time and at any location. The maps also show
the population densities (inhabitants per km?) of the counties, which can be assumed to be
roughly proportional to the population at risk of infection. Certainly, spatial heterogeneity
of the observed point patterns partially arises from spatial variation in the density of the
population at risk. Not surprisingly, the intensity of points in metropolitan areas like Berlin,
Munich or the Ruhr area is thus higher. The population data was extracted from the official
municipality statistics (Statistisches Bundesamt (DESTATIS), 2009), which also contain the

municipal area in km? required later.

Overlaying this background intensity, the NRZM observes different transmission dynamics

in the hundreds of existing finetypes. The most common finetype B:P1.7-2/4:F1-5 features



1.2 Available Data 9

a more “stationary” behaviour in the sense that infections cluster more in space and time
(especially in western North Rhine-Westphalia), whereas the serogroup C finetype appears
more diffuse and does not stay in a region for long. It is supposed that this phenomenon is
due to differences in the efficiency of the immune reactions elicited by the two finetypes. For
instance, the immunity of the nasopharyngeal mucous membrane elicited by B:P1.7-2/4:F1-5
might not be as efficient as it is against C:P1.5,2:F3-3. Animated graphics of the space-time
locations of infections would give more insight into the infectiousness of the finetypes, i.e. of

their epidemic character.
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Figure 1.4: Distributions of (a) age and (b) sex in the NRZM data for both finetypes separately. Also
shown in (a) is the age distribution in Germany’s population from 0 to 84 years quantified
by the axis on the right-hand side of the plot. For comparison in (b), the overall female
proportion in Germany is 51.0%. These population data are as of 31 December 2007.

Concerning the supplied patient data there is not much difference between the finetypes (see
Figure 1.4). The graphic (b) shows that there are slightly more male than female patients. The
corresponding proportions are similar for both finetypes, but they do not reflect the gender
distribution in Germany, which is 49.0% male and 51.0% female (as of 31 December 2007,
Statistisches Bundesamt (DESTATIS) (2009)). Graphic (a) highlights for both finetypes a
modal age of < 1 year (13.1% of all cases) followed by children of one (10.1%) and two
(7.39%) years. A reason for the high impact among infants is that they have not yet developed
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protective antibodies (Rosenstein et al., 2001, p. 1378). The frequency of the disease declines
until the age of seven years, where no single infection has been observed by NRZM. The
second large group of mainly affected persons is from about 12 to about 22 years of age with
a peak at its centre (17 years) for the serogroup B finetype and at 15 years for the serogroup
C finetype. As much as about 85.5% of affected persons are younger than 26 years. Other
cases of IMD occur occassionally at higher ages where they are distributed rather uniformly.
For comparison, the graphic also shows the age distribution of Germany’s population as of
31 December 2007 (GENESIS-Online, 2009). The observed age distribution in the IMD data

clearly does not represent the distribution in the population.

1.2.3 Cases of Influenza

As mentioned in Subsection 1.1, a concurrent viral infection of the upper respiratory tract
is an important risk factor for IMD. Furthermore, as was seen in Figure 1.2, infections with
virulent meningococci likely occur during the winter months. This suggests the assumption
that outbreaks of influenza-like diseases predispose to the spread of invasive meningococci.
Note that there are hundreds of agents causing respiratory infections and only about 10% are
actually caused by influenza viruses. The predominant pathogens of influenza-like diseases are
rhinoviruses and coronaviruses to which should be drawn more attention than they receive
at the moment (Jefferson, 2004). However, because influenza is a notifiable pathogen and
the others are not, analysis is restricted to the case numbers of influenza-like diseases due to
infections with influenza viruses only. I again queried the RKI online database SurvStat@RKI
(Robert Koch-Institut, 2009) to obtain cross tabulars for the registered number of cases of

influenza by county and week for the years 2001-2009 separately.

Figure 1.5(a) illustrates in the same plot the weekly numbers of cases for each year in Germany.
The case numbers of the current year 2009 are of course not complete and one recognises the
impact of the recent “swine flu”. This tremendous peak relative to the other years’ case
numbers in this period of the year is most likely to be partially induced by the large public
concern addressed to the “swine flu”. In “normal” years however, cases of influenza are largely
underreported, which is probably also due to ambiguous diagnoses of influenza-like diseases
(Jefferson, 2004). This also affects the stochastic modelling of the spread of influenza which
is e.g. carried out in Dargatz, Georgescu & Held (2005). Currently, the NRZM monitors if
the typical seasonal increase of the IMD cases around late February will occur earlier in 2010

as a consequence of the recent “swine flu” epidemic.

Note in the Figure 1.5(a) that the increase in the final weeks of every year already marks the
beginning of the next year’s influenza wave reaching its peak around the 10*" week (median).

In 2006, the increase was very slow and had a late peak in week number 13. Years 2001 (2489
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Figure 1.5: Weekly numbers of influenza (any type) and meningococci (any serogroup) cases for the
years 2001-2009. As the data are queried on 4 November 2009, the numbers in late 2009
are not complete. The dot on each curve designates its peak.

cases), 2002 (2575) and 2004 (3494) have also been less severe, whereas the other years had
tremendous winter outbreaks: 2003 (8488), 2005 (12 737), 2008 (14852), 2007 (18900), 2009
(50537), where the 2009 number due to the “swine flu” is much higher than the case numbers

of previous years.

Part (b) of the Figure 1.5 contains the same type of graphic as in (a), but shows the cases
of IMD of any serogroup (this data was also obtained from SurvStat@RKI). Although the
seasonality is less pronounced and exhibits much smaller peaks than in (a), one can guess
a yearly sinusoidal course with a maximum amplitude around week number 10 (the median

peak time), which coincides with the median peak of the influenza waves.

It is however difficult to recognise direct connections between outbreaks of both diseases from
the above time series. Figure 1.6 rearranges the curves and scales the number of influenza
cases to have the same maximum value as the number of IMD cases in the respective year.
In the years 2001 and 2003, the influenza wave precedes the IMD peak by about two weeks.

Their mutual sequence is inversed in 2005, and it is ambigous in the remaining years.

The connection between outbreaks of meningococci and influenza has already been analysed,
e.g. in a project work at the LMU Department of Statistics (cf. Breitenacher, Obermeier &
Schomaker, 2004), and by Jensen, Lundbye-Christensen, Samuelsson, Sgrensen & Schgnhey-
der (2004). The latter analysis is based on observations in North Jutland County, Denmark,
during 1980-1999, and the findings support “the theory that the influenza detection rate is

associated with the number of [I]MD cases in the population during the same week”. Lags of
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Figure 1.6: Weekly numbers of IMD cases for each year (solid lines) together with the scaled number
of influenza cases (dashed). The annotation of the vertical axis corresponds to the former.

one and two weeks of the influenza case numbers were also tested, but they did not show up
as being significant. In contrast, Breitenacher et al. (2004) conclude — based on the numbers
from RKI in the period January 2001 to August 2004 — that a delay of two weeks would be
the best choice. Note however that the reporting delay (infection to notification) is probably

different for influenza and meningococci.

As mentioned in Subsection 1.2.2; T use the sampling date (or its imputed value if it was
missing) minus four days as temporal reference for the IMD cases of NRZM. In contrast, the
available case numbers of influenza are given by the week of notification at RKI. Thus there is
already an artificial translation of about one week between both diseases in the data analysed
in the following chapters. When using the case numbers of influenza as an explanatory variable

for cases of IMD, different lags will be considered during model selection.

1.2.4 Data Preparation

In addition to importing and arranging the above described data from its various sources into

R, several data preparations are necessary for the point process based analyses.
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Projection of geographical into Cartesian coordinates

Doing spatial statistics one is usually concerned with geographical coordinates in longitude
and latitude, i.e. coordinates on the surface of an ellipsoid approximating the earth. The most
common coordinate frame and reference ellipsoid is called World Geodetic System (WGS) with
its latest revision being WGS 84, which is also used by the GPS satellite navigation system
and for NATO military geodetic surveying (see http://spatialreference.org/ref/epsg/
4326/). It emerged from and is only a minor refinement of the original reference ellipsoid
Geodetic Reference System 1980 (GRS 80).

The direct use of geographical event coordinates in statistics is hindered by the fact that
special distance formulae are then needed to calculate the distance between events, e.g. the
great-circle distance, and that the data are actually not 2D which makes the drawing of
graphics on the flat surface of a sheet of paper or a screen more complicated. The best
way to prevent such issues is to initially project the geographical coordinates onto a plane
in a Cartesian system (or rather into a planar coordinate reference system (CRS)) and con-
tinue the analysis using only the well known euclidean geometry, which makes a statistician’s
life much easier. One such pan-European CRS is the Furopean Terrestrial Reference Sys-
tem 89, briefly ETRS89, which is recommended by the European Environment Agency for
statistical analysis and display, especially where true area representation is required (see

http://spatialreference.org/ref/epsg/3035/).

For practical cartographic reprojections the library PROJ.4 can be used and accessed from R
through the package rgdal. Its function spTransform reprojects objects of the sp classes.
For instance, if we want to transform the WGS 84 longitude/latitude representation of Ger-
many’s counties from Figure 1.3 — say the corresponding SpatialPolygonsDataFrame is called

counties_longlat — to a Cartesian coordinate system in kilometres, the command is

R> spTransform(counties_longlat, CRS("+init=epsg:3035 +units=km"))
where the second argument defines the desired CRS through an identifying code, which is 3035
for ETRS89. An application of the spatial capabilities of R on spatio-temporal ecological data

can be found in Hengl, Loon, Sierdsema & Bouten (2008), who also provide a short overview

of R packages for spatial data.

All methods that I have implemented to handle the spatial data are available from the attached
CD (Appendix A).

Mapping of grid-based covariate information to event locations

Besides handling geographical coordinates, another aspect of spatial data is to attribute

covariate information, which is available on some spatial grid, to the event locations in order
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to analyse their effects on the spread of the disease. Although this sounds less complicated,

the task can hold many difficulties in the details.

For a municipality-based analysis using the population data from DESTATIS (Statistisches
Bundesamt (DESTATIS), 2009), it is necessary to attribute to each case location (here: a
postcode) its municipality. This is the highest available spatial resolution for the statistical
analyses in this thesis. The mapping requires a database (or shapefile) for linking post-
codes (or geographic coordinates of postcode centroids) to official municipality keys. Such a
database is freely available through the internet open community project OpenGeoDB (see
http://opengeodb.giswiki.org/). However, the mapping of the case’s postcode to a spe-
cific municipality is in fact not always possible, because postcodes can be part of multiple
municipalities (and even counties). In the IMD data, 74 of 509 postcodes do not match a
unique municipality. As there are no further hints, one could e.g. choose the municipality
representing the mean of the candidates with respect to the covariate information or choose a
municipality at random. Other difficulties arose from the fact that there are 12 300 municipal-
ities in Germany and 367 weeks in the observation period for which reason the spatio-temporal
analyses applied in this thesis would involve a data.frame of 4 514 100 rows or even 20 159 700
rows, depending on the implementation. Because the resulting computational requirements
turned out to be too heavy, the maximal spatial resolution of the covariate information will

be the county level.

For a county-based analysis, the prerequisites are better because the provided IMD data
already contain the official key of the county of the patient’s residence. The only corrections
concerned out-dated county keys of the federal states Saxony and Saxony-Anhalt due to local
government reforms in 2008 and 2007, respectively. This permitted the mapping of population
numbers from the DESTATIS data to the case data.

More laborious was the mapping of the influenza case numbers from SurvStat@RKI (Robert
Koch-Institut, 2009), which are on a county xweek grid, to official DESTATIS counties. This
is because the 425 “counties” from the RKI online database are only referenced by name,
which is not always the current official one used by DESTATIS. This drawback, as well as
the subdivision of the official county “Berlin, Stadt” into 13 parts considered by RKI and the
above mentioned reforms of Saxony and Saxony-Anhalt made a manual mapping necessary.
The temporal reference of the numbers of influenza cases must also be treated with caution
when searching for a specific date. The calendar week numbers in SurvStat@RKI are provided
in the ISO 8601 format (cf. ISO, 2004), which has the advantage that all calendar weeks are
complete 7-day-weeks. On the other hand, the number of calendar weeks of a year then either
is 52 or 53, and the last calendar week of a year can reach into the next year. Fortunately, this
format can be matched in R by the function strftime using format="%V", and format="%G"

corresponds to the week-based year.
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Breaking up tied event times

As will be explained in the next section, orderly point processes do not allow for tied event
times. Nevertheless, real data are likely to contain tied event times due to rounding and
temporal resolution. The preferred method to deal with such duplicates is to introduce some
random jitter and to perform a sensitivity analysis on whether the random variation is crucial
for the results. However, because of the complexity of the analyses in this thesis I content
myself with a single re-ordering of the tied events. For each of the finetypes, non-unique event
times are identified and the time points of the tied group are adjusted by substracting 0.01
[days] for each of the duplicated event times. For instance, if the event times are (1,1,2,2,2, 3)
the procedure returns (0.99,1,1.98,1.99, 2, 3). This onesided adjustment is reasonable because
events on the same day should be attributed with the same endemic covariates, which could
change their values at days 1, 2 or 3, respectively. Other approaches for handling ties are
known from survival analysis, but these are not applicable in the current spatio-temporal
setting, where explicit event times are needed for evaluation (cf. Diggle, Kaimi & Abellana,
2009, Section 2.3).

For the serogroup B finetype in the current data, there are 26 dates with two infections at
once, and for the serogroup C finetype this number is 16. For the latter, there is also one day

with three cases at once.



2 Point Process Theory and a Preliminary Model

Moving towards modelling of spatio-temporal point processes this chapter provides in Section
2.1 an introduction to the theory of point processes, which is essential for the understanding
of the models treated in this thesis. Section 2.2 then sketches a first spatio-temporal point

process model corresponding to a finite partition of the observation region.

2.1 Basics of the Theory of Point Processes

This section shall prepare the notation and point process methodology used in the remain-
der of this thesis. At first informally, a point process is a stochastic model underlying the
occurence of events (points) in time and/or space. Actually, most point processes in the
literature are purely temporal (e.g. renewal/failure time or survival data) or purely spatial
(e.g. locations of lightning strikes, tree population, or other events aggregated over time).
A comprehensive book for statistical analysis and modelling of the latter was written by I1-
lian, Penttinen, Stoyan & Stoyan (2008), whereas Mgller & Waagepetersen (2004) provide a
more profound description of their mathematical and measure theoretical aspects. The two
parts of Daley & Vere-Jones (2003, 2008) provide a deeper insight into general point process
theory, also covering the spatio-temporal case in Section 15.4. The Master’s Thesis by Fuest
(2009, Section 3.2) also contains an introduction to point processes with a focus on marked
point processes in time. A brief description of spatio-temporal point processes is Schoenberg,
Brillinger & Guttorp (2002), and an overview of related methods and applications is given
by Diggle (2007) and Vere-Jones (2009). The rare connection of both space and time in
classical statistics is probably due to the facts that spatio-temporal point process data has
not been routinely available and that related analyses usually demand heavy computations.
Nevertheless, there are of course applications concerning dynamic spatio-temporal behaviour,
e.g. in epidemiological surveillance, where the events constitute the time points and locations
of infections with a disease. However, because the research in this field of statistics is very
recent “the methodology of space-time point processes is still under-developed” (Illian et al.,
2008, p.426).
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2.1.1 Basic Definitions

Formally, a point process X is a random countable subset of a complete separable metric space
X, usually an Euclidean space. It can equally be represented by its corresponding random
counting measure N(B) on the state space X (silently equipped with the corresponding
Borel o-algebra B(X')), which counts the number of points falling in a measurable subset
B C X. The full distribution of the process is then defined in principle by prescribing
the finite-dimensional joint distributions of all possible families { N(By), N(B2),..., N(Bg)},
B1,Bs,...,Br C X, k € N. In this thesis, X will either be the positive real line R (temporal
point processes), the two-dimensional Euclidean space R? (spatial), or the Cartesian product
of both, Ry x R? (time x space). For instance, N(t) := N((0,¢]) denotes a purely temporal

point (or counting) process.

Occassionally, I will refer to the so-called ground process

N, (1) ::/O [V, s) = /(Oﬁt]w N(du x ds) = N((0,] x R?),

which for a spatio-temporal process counts the overall number of points up to and including
time ¢, irrespective of their locations. Note in this context that first, counting processes
have right-continuous trajectories, and second, integrals like the above are to be understood
as stochastic Lebesgue-Stieltjes integrals. In particular, if the integral is with respect to a
counting process, it actually equals the sum of the integrand values at the points of the process
inside the given limits of integration. Hence if {t1,...,¢ Ng(t)} denotes the random set of time
points where events of the process occur, i.e. where the counting process N jumps one step

higher, then the above ground process could be written as Ny(t) = >, < 1.

Usually and also in this thesis it is assumed that point processes are locally finite, i.e. only a
finite number of points falls in any bounded subset of X', and they are required to be regular in
the sense of Daley & Vere-Jones (2003, Definition 7.1.1.), which enables likelihood functions
for point processes. Regularity also implies that the point process is simple (or orderly),
meaning that events cannot occur simultaneously. A point process N on X = R¢ is regular,
if for any bounded Borel set B C X the local Janossy measures J,,(-|B), n € N, exhibit

Lebesgue-densities on X'. The local Janossy measure J,(:|B) satisfies, for @1, ...,x, € B,
Jp(dxy X -+ X day|B) = P(exactly n points in B at locations dxq,...,dz,),

where dx; here denotes the infinitesimal sphere around x;. Then, the likelihood of a realisation
x = {x1,...,x,} of a regular point process on a bounded Borel set B C R? is exactly the
Lebesgue-density j,(x1,...,x,|B) of the local Janossy measure J,(dx; X --- x dx,|B). For

the details on point process likelihoods, Janossy densities and Janossy measures, I refer to
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Daley & Vere-Jones (2003, Sections 5.3, 5.4, and 7.1).

Although the above formulation of a point process is general, it is often necessary to separate
spatial and temporal domains in a space-time setting in order to account for the evolutionary
character of time. Thereby, the observed realisation x of X is called spatio-temporal point pat-
tern, and the underlying stochastic model spatio-temporal point process. Note that although
the term “spatio-temporal” is commonly used, I always consider the temporal dimension as
the first coordinate, as it implies a natural ordering of the events. Thus, the basic format of
the data is
x={(ti,s;):i=1,...,N},

where t; is the time of occurence, and s; is the location of the ith event. These data are
assumed to form a complete record of all events occuring in a prespecified observation period
[0,T], T > 0, and observation region W C R? (higher dimensions are equally possible, but
not of interest in this thesis). Note that I use the uppercase symbol N instead of n for the
observed number of events Ny(T') to indicate that this number is actually random in point
processes. Although the symbol NV is now overloaded by the final number of events and the
related counting process N(-), there should be no ambiguity of the intended meaning in the

remainder of this thesis.

The reference point process is the Poisson process, which can be characterised by the following

two properties:

Poisson distribution of counts: the number of events in any bounded subregion B C X

follows a Poisson distribution such that
N(B) ~Po(A(B))  where  A(B):= / / AL, s)dt ds .
B

Here, A(t, s) is a non-negative function called the intensity function, and A is the inten-

sity measure.

Independent scattering: the numbers of events N(By), N(B2),..., N(By) in disjoint subre-
gions By, By, ..., By C X, k € N, are mutually independent.

The special cases, where \(¢,s) = A(t) and A(¢,s) = A(s) are called spatially homogeneous
and time-stationary, respectively. Although both terms indicate that the statistical properties
of the process do not change under translation, the term “homogeneous” is preferred in the
spatial setting, whereas “stationary” is predominantly used for temporal point processes. For
instance, a temporal point process is stationary, when the number of points occuring in an
interval does not depend on the interval’s location on the time axis, but only on the length

of the interval. In the spatial dimension, besides the similar property of homogeneity, there
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is also the property of invariance of the point process distribution under rotations about the

origin 0, which is called isotropy. A homogeneous Poisson process is isotropic.

For a general spatio-temporal point process on the Euclidean space X = R, xR?, the intensity
function is defined as the Lebesgue density of the intensity measure A(B) = E(N(B)) on the
measurable space (X, B(X)). If the density exists, which is commonly the case and assumed
here, it holds

A(B) = / Mu)du (B eBWX)),
B
Similarly, the intensity function can be defined as the limiting expectation or probability

E(N( P(N(du) =1
Mu) = Tim ENEW) o PWN(dw =1) (2.1)
|du|—0 \du| |du|—0 |d’LL|
where du denotes an infinitesimal sphere around the point u = (¢, s) with Lebesgue measure
(volume) |du|. The probability expression above holds because the process is assumed to be

simple, such that almost surely E(N(du)) € {0,1}.

The interpretation of the intensity function is easiest if the point process is homogeneous
and stationary, in which case A(t,s8) = A is a constant and the expected number of points
in B, E(N(B)) = \|Bj|, is proportional to the space-time volume of B. Thus, A is the mean
number of events per unit area and time interval. As a consequence, conditionally on the
number of events in B, the events in B are uniformly distributed. In the more general case,

the interpretation of the intensity is restricted to an infinitesimal view derived from (2.1):
E(N(dt x ds)) ~ A(t, s) |dt||ds| (2.2)

is the expected number of points in an infinitesimal sphere with center (¢,s) and volume
|dt||ds|. Because we assume that the point process is simple, this is equivalent to speaking
of the probability that a point falls in this infinitesimal ball. Note that in the context of
infectious disease epidemiology, point processes of cases can hardly be considered as stationary
or homogeneous due to casual outbreaks and the spatial inhomogeneity of the population at

risk.

2.1.2 Conditional Intensity Function and Likelihoods

As soon as time appears as a variable of the point process, the process has an “evolutionary”
character. This enables its unique representation through its conditional intensity function
(CIF), also known as conditional rate process or intensity process. It is the key to likelihood

analysis, simulation and prediction of point process models with a temporal dimension. The
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following two subsections describe the conditional intensity function and the likelihood first

for unmarked then for marked spatio-temporal point processes.

Unmarked Spatio-Temporal Point Process

A spatio-temporal point process is uniquely characterised by its so-called conditional intensity
function (CIF) X*(t,s). It represents the instantaneous rate or hazard for events at time ¢
and location s given all the observations up to time ¢t. One may think of an instantaneous
value of the Poisson rate parameter varying as time proceeds and which always depends on
what has happened before. For a rigorous mathematical definition of conditional intensities
based on the Doob-Meyer decomposition I refer to Daley & Vere-Jones (2008, Chapter 14).

The CIF is often written as A(t, s|H;) with an explicit conditioning on H;, the o-algebra gen-
erated by the past of the process which represents the information available at time ¢. I would
like to point out that in the literature there is some inconsistency in the notation of H;. Some
authors denote by H; the o-algebra of events up to but ezcluding time t, and others include
this time point. There are also papers which simply write “up to time ¢” (as I did above),
where the correct understanding is left to the reader. Looking closely at the introduction of
the conditional intensity function in Daley & Vere-Jones (2003, Section 7.2), the situation
becomes clearer. Denote by {t1,...,t N, (T)} the ordered set of random time points occuring
in the fixed interval (0,7]. The conditioning in \*(¢, s) is based on the o-algebra generated
by the observed past of the process: H; := o({t1,...,t Ng(t)}), which includes a possible event
at time point ¢ (this inherits from the more general theory of stochastic processes sketched
in Daley & Vere-Jones (2003, Appendix A3.3)). The asterisk notation shall remind that the
CIF is actually itself a stochastic process dependent on the random past history of the point
process: \*(t,s) = A*(t, s,w) depends on w through the realisation {t1(w),...,ty, @ (w)} of
the history up to time t. The actual ambiguity in the notation is due to a lack of unique-
ness in the definition of the conditional intensity function just as the density function of a
probability distribution is only determined up to a set of Lebesgue measure zero. Unique-
ness may be ensured by taking the left-continuous modification of A*(¢, s), which guarantees
its predictability: “if the conditional intensity has a discontinuity at a point of the process,
then its value at that point should be defined by the history before that point, not by what
happens at the point itself” (Daley & Vere-Jones, 2003, p.232). Hence, \*(t,s) = A(t, s|H:—)
is measurable with respect to H;— and the paths hold A\*(¢,s) = A\*(t—,s), V¢t > 0. Thus,
the conditional intensities usually appearing in point process papers are left-continuous ver-
sions and can be interpreted as the conditional risk of occurrence of an event at time point ¢
(and location s), given the realisation of the process over the interval [0,¢). Thus, similar to

the unconditional intensity in equation (2.1), the conditional intensity can be defined as the
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fimit P(N([t, ¢ + AL) x ds) = 1| H;_)
. , U+ X ds) = t—
Nts) = 1
( ’ S) At—>01,1|1(’:115‘—>0 At |d8| ’

(2.3)

where ds is an infinitesimal sphere around location s. Note that for an ordinary Poisson pro-
cess, the independence or memorylessness property yields that its conditional intensity func-

tion equals the unconditional intensity function, i.e. the information in H;_ is not needed.

Because of its dependency on the past history, the conditional intensity function is especially
useful if interest lies in modelling the evolution of the point process. Consider a parametric
model for the CIF with parameter vector @ and a completely observed realisation « = {(;, s;) :
i=1,...,N} C (0,7] x W of a spatio-temporal point process in the time period [0, 7] in the
spatial region W C R2. Then, the likelihood regarded as a function of 8 is

N T
L(6;2,T,W) = [Hl Ag(ti,si)] - exp (-/0 /W Ae(t,s)dtds>

leading to the log-likelihood

N T

102, T, W) = [Z log A3 (ti, si)] _ / / (¢, 5) dt ds . (2.4)
i=1 0 Jw

Note that I follow the convention in statistics to denote the natural logarithm by “log”, which

is otherwise also written as “In”.

For continuous space-time point processes, the evaluation of the log-likelihood (2.4) thus
incorporates integration over time and over the two-dimensional domain W. Depending on
the specific model this might be analytically intractable and in fact the “direct evaluation of
the integral term [...] is seldom straightforward” (Diggle, 2007, p.24). Because this is also
the case for the models in Chapter 4, statistical inference demands numerical methods of

integration (Chapter 3).

Diggle et al. (2009) propose a partial likelihood for spatio-temporal point processes as an
adaption of the partial likelihood for proportional hazards models in survival analysis. This
approach at least avoids temporal integration by conditioning on the observed event times
and considering the likelihood for the observed time-ordering of the events. The probability

for observing the ith event at time point 7 is

pi = )‘(tiv S'L'|Hti*)
‘ fR(tl) )\(ti, S’Htif) ds '

(2.5)

Here, R(t;) denotes the at-risk set at time ¢;. In spatially discrete processes, |W| < oo and

R(ti):{sj it zti,je{l,...,N}}U{seW:no event atsbytimeT}
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such that the integral is actually a sum (for an application see Diggle, 2006), whereas in
spatially continuous processes, events may occur anywhere in the region W, hence R(t;) = W.
The partial likelihood is the product of all those probabilities p; for i = 1,..., N, and hence
the partial log-likelihood writes

N
lp(0;2, T, W) = log(p;) - (2.6)
=1

In survival analysis, estimation based on the partial log-likelihood (2.6) is generally accepted
because maximum partial log-likelihood estimators inherit the general asymptotic properties
of full maximum likelihood estimators, such as asymptotic normality. However, there may be a
loss of efficiency and “the exact conditions under which the method gives consistent estimation
for spatial point process models have yet to be established” (Diggle, 2007, p.25). Some
parameters might also be unidentifiable from the partial likelihood — just like the baseline

hazard in proportional hazard models, which cancels out in the p; fraction (2.5).

Marked spatio-temporal point process

If the events are stochastically marked by additional characteristics, the basic format of the
data becomes
r = {(ti,si,mi) 1= 1,...,N},

where m; are further marks (covariates) related to the ith event. The symbol M shall denote
the mark space, i.e. the domain where the marks come from. If e.g. the only mark was the
finetype of the IMD case, then M = {1,2}, where the mark value 1 corresponds to finetype
B:P1.7-2,4:F1-5, and value 2 corresponds to finetype C:P1.5,2:F3-3. In other applications,
marks could also be the altitude where a lightning hits the surface of the earth, the type or
the financial amount of damage, or the magnitude of an earthquake. Furthermore, it is even
possible to formally consider the spatial location as one component of a multidimensional

mark of a temporal point process.

A marked spatio-temporal point process can be uniquely described by a CIF of the form
N*(t, s,m), where the internal history H = {H; : t > 0} of the process now also collects
values of preceding marks (Daley & Vere-Jones, 2003, Proposition 7.3.IV.). For the IMD
cases, the length of the infectious periods, the gender and the age can be considered as
unpredictable marks, i.e. they are independent of the internal history of the process, but they
can influence its subsequent evolution. For instance, young people probably spread the disease

at a higher rate and the longer they are infective the more infections they can cause. In such
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situations it is often convenient to write
)‘*(tasam) = )‘*(tvs) 'f/\/l(m|tas) ) (27)

where faq is the density of the mark distribution at a specific time ¢ and location s, and the
‘H-intensity \*(¢, s) implicitly depends on the marks through the internal history H of the
process (cf. Daley & Vere-Jones, 2003, eq. (7.3.3)). More generally, if the process depends on
some exogeneous variables (like e.g. the cases of IMD might depend on waves of influenza),
the conditional intensity function is actually controlled by some larger history, which also
incorporates the pasts of all related jointly evolving processes. If the point process further
has initial conditions, these are all gathered in the initial history Hy. It may e.g. contain

individuals, which are already infective at the beginning of the observation period.

Using the above decomposition of the marked CIF and omitting an explicit parametrisation,

the likelihood of a realisation @ is expressible in the form

L

N T

L_l_[l/\ (ti,Si,mi)] - exp (—/0 /W /M/\ (t,s,m)dtds l//vt(dm)> (2.8)
N N T

= LH1>\ (%Sz‘)} [ir{fM(mi|ti;5i)1 - exp (—/0 /W/\ (t,s) dtds) ,

where v, is the reference measure on M, and the second line follows from the assumption
that the density faq is proper, i.e. integrates to unity (Daley & Vere-Jones, 2003, Proposition
7.3.I11.). The corresponding log-likelihood is

N T N

| = [Z log X* (¢4, 8;) — / / Ne(t, 5) dt ds] + [Z log fr(mlts, si)] . (29
i=1 0 JW i=1

where the second term is an ordinary i.i.d. log-likelihood for the unpredictable marks, and the

first term prima facie looks like the log-likelihood (2.4) of an unmarked spatio-temporal point

process. But observe that the history of the process hidden in the asterisk of the CIF here

also contains past values of the marks which influence the future evolution of the process.

However, in this thesis no attempt is made to model additional marks like gender and age but
they are taken as given predictor variables in models of the CIF. In this case, the first term in
(2.9) can still be maximised as a kind of partial likelihood. Actually, “the full likelihood would
relate to a joint model for all the participating processes, including the predictor variables”,
and, “such a full representation might be the ultimate goal of the modelling stage, but one not
easily realizable in practice, so such partial likelihoods are in widespread use” (Vere-Jones,
2009, p. 180).

In the IMD application, special attention only receives the finetype of the meningococci related
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to an infection, if the cases of both finetypes are to be analysed in a common point process
model. The finetype does not only influence the future of the process but is itself influenced
by the process. For clarification imagine a regional outbreak of a specific finetype. During
this outbreak further events (“offspring”) are generated according to the degree of infectivity
of this finetype, and the instantaneous rate of infections with this same finetype in the region
of the outbreak is increased. Therefore, this mark can not be treated as given but it makes
up an additional dimension of the point process. Following equation (2.8) the log-likelihood
(or rather partial log-likelihood) of the complete point pattern of both finetypes then is of
the form

N T
| = Zlog)\*(ti,si,/@-)—/o /WZ)\*(t,s,/-{)dtds, (2.10)
=1

KEKX

where K here corresponds to the set {1,2} of the two finetypes.

In order to prevent confusions with the partial likelihood of Diggle et al. (2009), where con-
ditioning is with respect to the observed event times, I will reserve the adjective “partial”
for this approach and omit it in the widespread case where only unpredictable marks are

considered as given.

2.2 A Preliminary Point Process Model

This section briefly overviews some preliminary point process based strategies from the litera-
ture, which can be used for analysing infectious disease data. Hereby, an important distinction
is to be made concerning the resolution of the data in question: the temporal and the spa-
tial dimension may each be regarded as a discrete or a continuous space leading to different

statistical approaches.

A coarse resolution of time would rule out the modelling of the transmission of infectious
diseases. In such a case, methods of disease mapping for spatial lattice data may be applied,
e.g. a Poisson regression model. Region-specific random effects based on a Gaussian Markov
random field can be included to account for the neighborhood structure of the spatial units.
An example of application is the analysis of the yearly number of infections with tick-borne
encephalitis in the counties of the federal state Baden-Wiirttemberg carried out by Meyer &
Wimmer (2009).

In this thesis, the data are assumed to be continuous in time, and non-aggregated point-
process based analyses are the intended approach. The important case, where both the
temporal and the spatial dimensions are continuous, i.e. the events occur in a space-time
continuum, will be treated elaborately in the separate Chapter 4 with application in Chapter 5.
It is also the framework, in which the IMD data fit best, but which is most rarely found in the
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literature. Unfortunately, “generic methods for analysing spatio-temporal data-sets have not
yet become well established” (Diggle, 2007, p. 7). Elias et al. (2006, p. 1689) also complain

about the lack of objective methods in disease surveillance.

In R, purely spatial point patterns are treated by the packages spatstat (Baddeley & Turner,
2005), spatial (Venables & Ripley, 2002), and splancs (Rowlingson, Diggle et al., 2009).
Popular methods of spatial statistics like the K-function will not be investigated in this the-
sis, because considering the 7-year summary of the IMD data serves only little for describing
the dynamics of the infectious disease. Purely time-dependent point process models specified
through their conditional intensity function can be analysed with the package PtProcess,
which is part of the Statistical Seismology Library (SSLib) concerned with analysing earth-
quake events. Retrospective temporal modelling and temporal cluster detection using statis-
tical monitoring is provided by the R package surveillance (Hohle, 2007). A brief exem-
plification using the IMD data can be found in Hohle (2009b). In fact, only very few open
source software is available for the analysis of point patterns in space and time. For spatially
discrete infectious disease data, the package DCluster (Gomez-Rubio, Ferrandiz-Ferragud &
Lopez-Quilez, 2005) is concerned with the detection of spatial disease clusters (similar to what

is provided by the SaTScan software).

The package RLadyBug (Hohle & Feldmann, 2007; Hohle, Feldmann & Meyer, 2009) imple-
ments the spatio-temporal point process model proposed by Hoéhle (2009a). Here, the spatial
observation region is regarded as a finite and fixed subset W = {s1,...,s,} of R%. The
process is then viewed as a sequence {N;};—1 ., of purely temporal point processes which
interact with one another. The original application considered in Héhle (2009a) was the
stochastic modelling of transmission of the classical swine fever virus among domestic pig

farms (which make up the discrete observation “region” W).

The aim of the proposed model for the conditional intensity function is to statistically evaluate
retrospectively the spread of the disease. Requiring the spatio-temporal regression model to
be capable of modelling multiple outbreak data leads to a decomposition of the risk of infection
into two components: an endemic component, which models imported cases, and an epidemic
component, which represents infections by direct transmission inside the population. The CIF
then has the form

N (t51) = NE(E) = Yi(t) - {halt) + €£(8)}

Here, Y;(t) is the left-continuous at-risk indicator for individual ¢, which is 1 if the individual

is susceptible at time ¢, and 0 otherwise. The endemic component h;(t) is modelled as

hi(t) == exp(ho(t) + z(t)'B) ,

which expresses the endemic risk of infection in the form of a Cox model. Possible time-
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dependent covariates z;(t) act multiplicatively on the baseline risk exp(ho(t)). Conversely,
the history-dependent epidemic component e}(t) models the additive disease pressure on

individual ¢ caused by the set I*(t) of infectious individuals just before time ¢:

;)= > fllsi—s;l).

JEI*(t)

Here, each infectious individual transmits the disease to the susceptible individual ¢ with
rate according to some (usually non-increasing) function f of the distance to the susceptible
individual. In Héhle (2009a), the epidemic component is actually proposed to also depend on
the temporal distance between the susceptible and infectious individuals, and on additional

covariates specific to each pair (7, j) of a susceptible and an infectious individual.

Note that the model includes two well known special cases: the Cox model, if no epidemic
component is specified, and the compartmental SIR model, if no endemic component is con-
sidered. The case f(u) = vy equals the homogeneous SIR model with transmission parameter
Y0 > 0, i.e. the degree of infectivity does not depend on the mutual distance between the
individuals. The model also looks similar to the additive-multiplicative approach proposed
in survival analysis, see e.g. Martinussen & Scheike (2002). However, it differs essentially in

that the multivariate counting process of all individuals now has dependent paths.

For the IMD data, this compartmental model framework could be artificially entered by
considering Germany’s counties as the “individuals” ¢ = 1,...,413 and define a county as
being infectious if it contains at least one infectious patient. At any time point, a county
can thus be disease-free, i.e. susceptible, or infectious. Constrained maximum likelihood
estimation as implemented in the R package RLadyBug could then be performed using e.g. a
SIS (susceptible-infectious-susceptible) model for the counties, where the endemic component
contains population and influenza effects. However, such artificial county-based modelling of
the IMD data is not attractive, because it likely obscures dynamics of the IMD cases and
does not represent the true nature of events. Instead, this additive-multiplicative conditional
intensity model, which I call twinSIR, will serve as a prototype of the continuous spatio-

temporal modelling persued in Chapter 4.



3 Numerical Integration

Approaching the aim of spatio-temporal point processes continuous in space-time, this chapter
deals with numerical integration. Specifically, likelihood-based analysis of parametric spatio-
temporal CIF models is concerned with the evaluation of the log-likelihood from equation
(2.4). If a closed-form of the multidimensional integral term in the log-likelihood is not
available, then its calculation involves numerical integration. Therefore, various methods
for calculating or approximating numerically the definite integral of functions in one and
especially two dimensions will be presented and compared. Readers with less interest in the
numerical details of the computation may skip this chapter and proceed with the statistical

modelling in Chapter 4.

The well-developed one-dimensional case of numerical integration is also called quadrature and
is sketched in Section 3.1. The books of Davis & Rabinowitz (1984), Krommer & Ueberhuber
(1998) and Press, Teukolsky, Vetterling & Flannery (2007, Chapter 4) serve as main references.
For the more interesting two-dimensional case, also called cubature, integration over polygons
is of special interest as the spatial units, e.g. the borders of Germany or its subregions, are
represented as (sets of) polygons. Hence, Section 3.2 focuses on methods dealing with this
issue. A number of algorithms are exemplified, compared to each other and their applicability
for the inference problem at hand is discussed. This is especially interesting, because most
of the literature on spatial point processes do not treat the issue of numerical integration

explicitly.

3.1 Quadrature

A large volume of methods has been proposed for numerical integration in the basic one-
dimensional case. What they have in common is their form of approximation by adding up

weighted values of the integrand evaluated at a number of abscissae:
b n
| f@)de =Y wira)) (31)
a j=1

Here, w; are the weights and x; the abscissae (aka nodes or evaluation points) of this n-

point quadrature formula. Note that we restrict the task to functions f that are bounded and
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Riemann-integrable on the finite interval [a, b]. Computational integration over an unbounded
range or integrand is e.g. described in Krommer & Ueberhuber (1998, Sections 7.2 and 7.3,

respectively).

In the following, I will sketch the classical Newton-Cotes quadrature rules, the more so-
phisticated method of Gaussian quadrature, and Monte Carlo integration, which provides a

stochastic estimation of the integral.

3.1.1 Newton-Cotes Rules

Classical quadrature rules boil down to exactly integrating a polynomial interpolation of the
integrand over the interval [a,b]. For instance, this can be a constant, linear or quadratic
interpolation — corresponding to the midpoint rule, the trapezoidal rule and Simpson’s rule,
respectively. These rules are known as Newton-Cotes formulae. Usually they are applied in
their compound form, i.e. the interval [a,b] is divided into subintervals of equal length and
the quadrature rule is applied to each subinterval. In doing so, the overall approximation
of the integrand becomes more precise and the whole integral obviously equals the sum of
the integral pieces. The advantage of the polynomial interpolation is that its integral can be
expressed in a closed form and the equidistant grid results in simple formulae, e.g. in case of

the compound midpoint rule with n subdivisions one obtains

b n
/a f(x)dxzjz:l/a

a+jh —a

(3.2)

n

fl@)ydz~> h-fla+(j—3)h) whereh:b
+(-1)h j=1

The compound midpoint and trapezoidal rules converge to the true value of the integral at
least as fast as n=2, if f is twice continuously differentiable. Simpson’s rule converges with
rapidity n~* at worst (Davis & Rabinowitz, 1984, pp. 54, 58).

A more sophisticated polynomial interpolation of the integrand that abandons the equidis-
tance of the abscissae is e.g. used in Clenshaw-Curtis quadrature, namely the Chebyshev
approximation (cf. Press et al., 2007, Section 5.8 and 5.9.1). The next method, Gaussian
quadrature, goes even further by determining optimal abscissae and weights to attain the

maximum possible degree of accuracy for n interpolatory points.

3.1.2 Gaussian Quadrature

The Gaussian quadrature rule is of the form

b n
/ w(z) fz)de ~ 3 w; f(x;) (3.3)
a =1
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known as product formula (Krommer & Ueberhuber, 1998, p.119), i.e. it includes a known

nonnegative weight function w(zx) in the integrand.

The idea of Gaussian quadrature is to optimise not only the weights w;, but also the evaluation
points z; leading to twice the degrees of freedom compared to Newton-Cotes formulae. The
solution is to determine a set {P}’ : d =0,1,2,...} of pairwise orthogonal polynomials P}’ of

degree d with respect to the weight function w over the interval [a, b], i.e.
b
/ w(z)PY(2)PP(z)dz =0  Vs#t€No.
a

The n zeros of the polynomial P, which are real, simple, and located in the interior of [a, b]
(Krommer & Ueberhuber, 1998, Theorem 5.2.9) are chosen as clever evaluation points in
the n-point Gaussian quadrature formula. Because then, the weights w; can be determined
explicitly in such a way that the quadrature (3.3) is exact whenever f(zx) is a polynomial of
degree d < 2n — 1 (Davis & Rabinowitz, 1984, p.97). This is also the maximum degree of
accuracy of an n-point quadrature formula of the form (3.3) and attained if and only if the
quadrature rule is chosen as the Gaussian quadrature formula with respect to w (Krommer &
Ueberhuber, 1998, Theorem 5.2.10). In general, the approximation of the integral is the better
the more accurate f can be approximated by a polynomial of maximal degree 2n — 1. Press
et al. (2007, p.1089) also state that compared to Newton-Cotes rules, “the main advantage

of Gaussian integration is that it converges exponentially with n for smooth functions” f.

The calculation of the nodes and weights in Gauss formulae is well studied for the most
important weight functions and intervals, see e.g. Press et al. (2007, Section 4.6.1). The
function gauss.quad of the R package statmod (Smyth, 2009) provides an implementation.
In this thesis I will only be concerned with the so-called Gauss-Legendre case, because it
will be used as part of a two-dimensional integration method. Here, w(z) = 1, a = —1,
b =1 and hence the orthogonal polynomials in use are the Legendre polynomials (cf. Davis &
Rabinowitz, 1984, Section 1.12).

In order to make this Gauss-Legendre quadrature formula applicable to other intervals, it has
to be transformed as explained in Krommer & Ueberhuber (1998, Section 5.4.1). For instance,
it ; and wj, j = 1,...,n, are the original nodes and weights of the n-point Gauss-Legendre
rule for the interval [—1, 1], then

b—a _ a+b b—a

Z; + 5 and wj =

are the corresponding data for the n-point Gauss-Legendre rule on the interval [a, b].
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3.1.3 Monte Carlo Integration

Also a product formula (cf. equation (3.3)), but a completely different approach using ran-
domly sampled evaluation points is Monte Carlo integration. The idea is to interpret the
integral in question as the expectation of a random variate, which can be estimated by the
mean of independent and identically distributed (i.i.d.) replications of this random variate:

Let w(z) be a probability density on the domain [a,b], i.e

b
w(x) >0, Vo € [a,b] and / w(z)der =1.

Hence b
:/a w(z) f(z)dz = B(f(X)),

where [ denotes expectation and X is a random variate following the probability density w.
Due to the Strong Law of Large Numbers, the integral can be estimated by the mean of an
i.i.d. sample from the distribution £(X) of X such that the estimate

1 = i
- Z with  Xi,..., X, "% £(X) (3.4)
n j—

converges almost surely towards the expected value E(f(X)) as n — co. As this estimate is

unbiased, its root mean square error (RMSE) equals its standard deviation (sd)

RMSE(l,) = \/MSE(I, \/E I — I ( ))2) = \/Var(fn) + Bias?(I,,) = sd(I,)

and by Jensen’s inequality, the expected absolute integration error is bounded by the RMSE:

B (|1, — L(f))) :E( (I — Io( \/IE In = Lo(f))?) = RMSE(L,) = sd(,) . (3.5)

Thus, the rate of convergence in Monte Carlo integration can be measured by the standard

deviation of the estimate,

sd(f(X))
Voo
where sd(f(X)) is the standard deviation of the (transformed) random variate f(X). This is

known as the “1/y/n law” meaning that one can expect the integration error to be reduced

sd(1,) =

by a factor of 10 (one decimal place) when increasing the number of function evaluations by
a factor of 100. Although this expected convergence rate is slow compared to the determin-
istic quadrature rules described previously, it has the advantage of being independent of the
dimension of X and the integration region, respectively. The Monte Carlo method is thus

especially appealing for multidimensional integration, where it can be applied in an analogous
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manner.

In contrast to the above quadrature methods the root mean square error is a probabilistic
estimate of the integration error and does not permit guaranteed bounds on the actual error.
If the standard deviation of f(X) in (3.1.3) is not known, it is usually estimated from the

Monte Carlo sample f(x1),..., f(zy) resulting in the standard error of the integral estimate

The standard error can not only be used as a point estimate of the absolute integration
error, but also to provide asymptotic confidence intervals constructed by the Central Limit
Theorem. Let 1 — a be the desired statistical certainty, e.g. 95%, and z; be the quantile
of the standard normal distribution such that ®(z,) = ¢, where ® denotes the cumulative

distribution function of the standard normal distribution. Then the confidence interval

A A

[In — Z1—a/2 se(l,), I, + Z1—a)2 se(fn)} (3.6)
asymptotically covers the true integral value E(f(X)) with a probability of 1 — «.

Another way to reduce the expected error besides increasing the sample size n is to introduce
an alternative positive probability density on [a,b], say v(x), and reformulate the integral in

question:
w(z)

f(z)v(x)dx =1, (Ef) : (3.7)

v

()= [ w@ s@a= [

v(z)

As in (3.4) above, the integral can then be estimated by

1 < w(Y; -

If v is chosen in such a way that 1;’((;5)) f(z) is approximately constant, i.e. the transformed

random variate (% f)(Y’) exhibits approximately zero standard deviation, then the integral

estimate features only a small standard deviation and the integration error generally decreases.
This approach is known as importance sampling, but note that most authors introduce Monte
Carlo integration using uniformly sampled points without an explicit weight function, which
they reserve for importance sampling. Note as well that the rearrangement (3.7) is also useful
if it is much easier to sample points from the alternative density v than from w. If otherwise
the sampling domain poses the difficulty, it is possible to enlarge the integration region and
set f to 0 outside [a,b]. As only points in [a,b] contribute to the integral, the Monte Carlo
sample has to be larger to retain accuracy. This trick is very valuable in multidimensional

integration as presented in the next section.
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3.2 Cubature

In the present spatio-temporal integration, the vast amount of literature on one-dimensional

integration is only of limited use. Recall the integral term in the log-likelihood (2.4):

/OT (/W )\Z(t,s)ds) at |

where W C R? is the two-dimensional observation region. If one could evaluate the inner
integral for fixed ¢ by some cubature rule, then it would be possible to use one of the univariate
quadrature rules of the previous section for the outer integral and repeatedly evaluate the

inner one.

However, as stated in Press et al. (2007, Section 4.8), “integrals of functions of several vari-
ables, over regions with dimension greater than one, are not easy”. On the one hand, the
product of the number of function evaluations needed for each dimension usually explodes,
i.e. the accuracy with n evaluation points in one dimension approximately equals the accuracy
with n? evaluation points in three dimensions. On the other hand, the region of integration,
which in one dimension is a simple interval given by two numbers, might be very complicated
in two or more dimensions. For instance, the observation region W for the IMD data is
Germany, whose border is computationally represented by a set of polygons (cf. Subsection
1.2.1).

In the face of these difficulties, we are seeking for a cubature rule

s)ds ~ w; f(s;
s D (a)

for two-dimensional integration regions W set up by polygons, which may also be non-convex
or “multiply-connected” (i.e. contain holes) but they must be simple, i.e. not self-intersecting.
In general, the domain W may be expressed as the union of the simple polygons P, P, ..., P,
from which the simple polygonal holes Hy, Ho, ..., H, are substracted:

W:(PlU-"UPp)\(HlU--'UHq)

The enclosing rectangle or bounding box of W is denoted by W = [x;,x,] X [yp, y¢] and it is
the smallest rectangle such that W > W.

As an example, consider the integration of the density

_ 2
fls:11,0%) = 5 0 (—; (L=l ) 3
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of the isotropic (radially symmetric) bivariate normal distribution Na(u; 02 I3), which will be
essential for the intensity models in the next chapter. The integration region W might for
instance be set up by three polygons P; (concave), P, (concave) and H (convex) such that
W = (PyUP,) \ H. The setting is illustrated in Figure 3.1, where the contour lines belong

to the bivariate normal density with g = 0 and o2 = 25.

10
|

-5

Figure 3.1: Example polygonal region W = (P;UP,)\ H (shaded), enclosing rectangle W = [—10, 10] x
[—10,10] of W, and contour lines of the bivariate normal distribution with zero mean and
covariance matrix 25 - I5.

The task is to numerically approximate the integral as fast and as accurate as possible. This
will obviously require a trade-off between both aims. The computational cost of the cal-
culation becomes very important during the optimisation of the log-likelihood, where the
log-likelihood and hence the integral has to be evaluated for many different parameter con-

figurations.

As possible cubature methods over polygons, I examine two-dimensional generalisations of
the midpoint and trapezoidal rules, adaptive cubature, Monte Carlo integration, a two-
dimensional Gauss-Legendre rule proposed by Sommariva & Vianello (2007b), and a method
specific for the bivariate normal density using formulae found in the Abramowitz & Stegun
handbook. In order to find out which of these methods fits best to the purposes of this
thesis, I have implemented them in R. The following subsections present and exemplify the
methods with the setting of Figure 3.1 The names of the corresponding R functions available
from the attached CD (see Appendix A) are given in parantheses in the titles of the subsec-
tions. Afterwards, the cubature methods will be compared with respect to both accuracy and

speed.
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3.2.1 A Two-Dimensional Midpoint Rule (polyint.midpoint)

A generalisation of the compound midpoint rule of formula (3.2) to two dimensions is straight-
forward. The domain W of the integrand or rather its enclosing rectangle W = [x;, 2] X [y, 1]
is subdivided into a regular grid of rectangles (pixels) corresponding to the subintervals in
the one-dimensional case. The function is then evaluated at the rectangle midpoints, which
lie inside W and the weights correspond to the areas of the rectangles. Defining n, and n,
as the numbers of subintervals in the x and y directions, respectively, with corresponding
bandwidths

Ty — X -
T l and hy::yt yb7

Ny Ny

hy =

the set of evaluation points becomes

{(xl—l—(j—%)hx,yb—i-(k—%)hy) :jzl,...,nx,kzzl,...,ny} nw.

Accordingly, the two-dimensional midpoint rule is

/Wf<s>dszhzhy S5 (G m) -

Jok:(zy,y)EW

If the integrand is more or less constant in one direction, but very bumpy in the other, one
would choose a smaller bandwidth in the latter. In the case of the isotropic bivariate normal
density it is rather appropriate to have h; = h, leading to a grid of squares. Obviously,
the accuracy of the integral approximation increases with an increasing number of evaluation

points.

The only difficulty of this cubature rule is the need for a method, which decides whether
a grid point lies inside W. An implementation of the necessary components already exists
in the R package spatstat (Baddeley & Turner, 2005), see as.im and summary.im, which
also works for our example since version 1.17-0 of the package (see the corresponding release

notes).

Figure 3.2 illustrates the method using n, = n, = 25 and hence h, = h, = g—g = 0.8 resulting

in 326 function evaluations and an approximate integral value of 0.5474141.

3.2.2 A Two-Dimensional Trapezoidal Rule (polyint.linear)

When constructing a two-dimensional trapezoidal rule the main question is how the polygonal
domain W gets triangulated, i.e. how it is subdivided into triangles. The subdivision deter-
mines the piecewise linear interpolation of the integrand used in the trapezoidal cubature

rule. It is plausible that there is no unique solution to this task without further constraints.
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Figure 3.2: Ilustration of the two-dimensional midpoint rule on a 25 x 25 grid.

A famous triangulation type is the Delaunay triangulation (Press et al., 2007, Section 21.6.1),
where the constraint is that the circumcircle of any triangle contains no other vertices (but
there are other definitions, too). “It is the triangulation whose triangles best avoid small
angles and long sides” (Press et al., 2007, p.1131). The Delaunay triangulation is unique if

no three points (vertices) are collinear and no four lie on the same circle.

Figure 3.3 shows Delaunay triangulations of the example region using different sets of auxiliary
nodes. They have been constructed using the spatstat function delaunay. In variant (a)
the region is triangulated using only the vertices of the polygonal domain, whereas a 5 x 5
grid of auxiliary nodes is used in (b). In alternative (c) auxiliary nodes are radial from the
mean p = 0 of the bivariate normal density with points at distance o/2 and o. Note that

the triangulations are not unique in the latter two cases.

T T T T T T T T T T T
-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10

(a) Without auxiliary nodes. (b) 5 x 5 grid. (c¢) Radial auxiliary nodes.

Figure 3.3: Delaunay triangulation of the example region using different sets of auxiliary nodes.



36 3 Numerical Integration

Obviously, the accuracy of the approximation highly depends on this choice of auxiliary nodes.
Here, the results are (a) 0.5211882, (b) 0.4588546, (c) 0.5487904. Using the same 25 x 25
grid as in the midpoint cubature rule (see Figure 3.2), the approximation becomes 0.5287144.
As stated in Press et al. (2007, p.1142), “you need a lot of triangles to get a reasonable
representation of any function with much detailed structure.” However, the construction of
the Delaunay triangulation needs a significant amount of computation time, which grows as
O(nlogn), where n is the number of nodes. The whole procedure would presumably be faster
with a more efficient C implementation like that in Held (2001), which is not yet available in

the public domain.

3.2.3 Adaptive Cubature (polyint.adapt)

In iterative, adaptive quadrature or cubature rules, the evaluation grid is subsequently refined
until the estimated relative integration error falls below a prespecified bound . Adaptive
integration routines thus account for the nature of the integrand and distribute the evaluation
points predominantly in subdomains where the numerical integration of the integrand is
difficult. A popular adaptive cubature rule is that implemented by A. C. Genz & Malik (1980)
in the FORTRAN subroutine ADAPT. It integrates functions over d-dimensional hypercubes,
where 2 < d < 15. The R package adapt provided an interface to this method (the package
has been removed from the online repositories but old versions can still be obtained from the

archive http://cran.at.r-project.org/src/contrib/Archive/adapt/).

In order to integrate over other domains than the d-dimensional hypercube one needs to

incorporate the characteristic function of the domain, i.e.
[ #&)ds= [ 1wis) f(s)ds. (3.9)
w w

where W is the enclosing hypercube. For a two-dimensional polygonal domain this makes
again necessary a method deciding if a point lies inside a polygon. In R, this functionality is

provided by point.in.polygon from the package sp (Pebesma & Bivand, 2005).

Applying the adaptive cubature method to the example of Figure 3.1 with ¢ = 0.01 gives
an approximate integral value of 0.4829737 using 379 function evaluations. The estimated
absolute integration error is 0.002412295.

3.2.4 Monte Carlo Integration (polyint.mc.uniform, polyint.mc.gauss)

Monte Carlo integration is the preferred method for complicated integrands or complex regions

of integration, when the application of other methods becomes too sophisticated. Its big
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advantage is the easy implementation: one only needs to sample evaluation points in the

integration region W or some enclosing region.

It works in two and more dimensions in the exact same way as in one dimension, which has

already been described in Section 3.1 above (see pp. 30ff.).

Choosing the uniform distribution over the enclosing rectangle W O W for sampling the
1@3)
W]

_ F() i) ds — 77 _ 7B
[, Feras = [ vw(s) % wis)ds = (W] [ 1w(s) f(s) w(s) ds = V] B(F(S))

evaluation points, i.e. w(s) = the integral can be rewritten as in (3.9) and (3.7):

where the random variate S is uniformly distributed on W with density w(s) and

_ f(s) ifseW,
f(s) =
0 otherwise.
This yields the estimate
P L (@ — 1) (ye — )
In:|W"EZf(SJ)_ n Z f(S])
j=1 j:S;EW
with n ii.d. replications {S; : j = 1,...,n} of S, i.e. of a binomial process of n points in

W with density w. Of course, the implementation again depends on the point.in.polygon

function, which decides whether a sampled point lies inside W.

Using Monte Carlo integration with n» = 10000 for the example domain and density results
in an approximate integral value of 0.5433528 (with the given seed value). Figure 3.4(a)
shows the realised set of uniformly distributed evaluation points, 5212 of which fall into the
domain W and are actually evaluated. On a side note, this number gives a simple Monte
Carlo estimate of the area of W: £32 |W| = 208.48 (the true value is 207.895). The RMSE
of the integral estimate I, — an upper bound for the expected absolute integration error (cf.
equation (3.5)) — equals the standard deviation of I,,, which is estimated as 0.007461972.

If the integrand f already is a density from which we can generate (pseudo-)random numbers,

another idea of Monte Carlo integration is to observe that
1(f) = / f(s)ds = P(S € W) = E(1w(S)) if S~f.
w

The Monte Carlo estimate of the integral using n i.i.d. replications {S; : j =1,...,n} of S

is thus )
LS ewy
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(a) 10000 uniformly distributed points in W, of (b) 10000 points distributed as Ng2(0,25I2), of
which 5212 fall inside W. which 5423 fall inside W.

Figure 3.4: Two types of Monte Carlo integration (points are green inside W, otherwise red).

with a standard deviation (RMSE) and a standard error of

sd(I,) = <I(f>(1_[(f))>2 and se(I,) = ( n (1= In)) ’ < 5 1

n

respectively.

Figure 3.4(b) shows a sample of size n = 10000 from the corresponding N3 (0, 251) distribu-
tion forming the point estimate 0.5423 with a standard error of 0.004982075.

However, if other cubature methods are available, the use of Monte Carlo integration during
the optimisation procedure is not favourable as it is usually slower. Another problem is that
the estimated integral values are subject to chance and so would be the Maximum Likelihood

estimates.

3.2.5 Product Gauss Cubature (polyint.SV)

Iterated integration (Krommer & Ueberhuber, 1998, Theorem 1.1.5) can be used to reduce the
two-dimensional integral to a composition of one-dimensional integrals. For this purpose one
has to determine the integration range (z;(y),z,(y)) in the horizontal direction as a function

of the vertical position y (or vice versa). Then,

| #(s)ds = /y y / (y()y) f(z,y) dzdy,
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where (yp,y:) is the vertical range covered by W and f((z,y)) is conveniently written as

f(z,y).

A similar approach is taken by Sommariva & Vianello (2007b), who describe a cubature
method over arbitrary polygons. It is based on Green’s integration formula, which also
transforms a two-dimensional into a one-dimensional problem. Let II denote a polygon — for
instance one of the polygonal components of W (holes or not) — given by the anticlockwise

sequence of vertices Vi,...,Vr with Vp1 = Vi. By Green’s integration formula,

L
/| o da) =3 /M F(x,y) dy

"/l+1]

where [V}, Vi41] denotes the [th polygon side between the vertices V; and Vi1, and F(z,y) is

any fixed z-primitive of f(x,y), for instance

with fixed xg.

Figure 3.5 illustrates the procedure for f(z,y) =1, i.e.
the integral of f over the polygon II simply equals the

enclosed area. Hence the function F'(z,y) = x — x¢ has ° 7/

to be integrated along the edges of the polygon. In the

Figure, the polygon is a simple triangle described by the |> 71

vertices Vi, Vo and V3, and xg = 2 was chosen. The value . 5‘\

of F(x,y) can be seen from the corresponding length of " VA

the shading line, but it is negative if x < x9. Note . rxo<o i fxen0
that the areas outside the triangle do not contribute to T j ; J J
the overall integral, as they are always included twice X

but with different signs: The line integrand F'(x,y) con- Figure 3.5: Piecewise line integration
tributes with its inverse sign on decreasing edges (in the of F(z,y) = x—x9, 2o = 2.

direction of the arrows).

Now, the idea is to compute the inner integral F'(x,y) for fixed y by univariate n-point Gauss-
Legendre quadrature and integrate it as a function of y along the sides of the polygon again

by univariate Gauss-Legendre quadrature. The cubature rule then has the form

L n n

//H f(z,y)drdy ~ Z Z Zwlij f(flz’jﬂm) (3.10)

I=1i=1j=1

where n; = n if the side [ is parallel to the base-line x = ¢ and n; = n+ 1 otherwise. Strictly

speaking, the sum is only over the sides not being orthogonal to the base-line and not lying
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on it, because the horizontal line integral with no change in y equals 0, and F(z¢,y) = 0, Yy,
respectively. Explicit expressions for the weights wy;; and nodes (&5, m1;) as well as the proof
of this cubature rule are given in Sommariva & Vianello (2007b, Theorem 2.1). Note that n
and n; denote the numbers of points of the above mentioned univariate Gauss-Legendre rules.
Furthermore, the accuracy of the univariate Gauss-Legendre rules transfers to the Gauss-like
cubature rule, i.e. it is exact over II for all bivariate polynomials of degree 2n — 1 at most.
“Thus, when it is applied to a polynomial of degree d, it is sufficient to choose n > (d +1)/2
to get the integral up to machine precision” (Sommariva & Vianello, 2007b, Remark 2.3).
The overall number of cubature nodes resulting from a specific choice of n can be derived
from equation (3.10): it is bounded below by %nQ — if only every forth side of the polygon is
not orthogonal to the base-line and not lying on it (this was mistaken by the authors, who
give %n2 as the lower bound) — and above by Ln (n + 1) — if no side is parallel to the z or y
axis. In general, the actual number is rather at the upper bound and not all of the cubature
nodes fall inside the polygon II, but inside its enclosing rectangle. The integrand f must thus

be continuous and computable also there.

The authors have implemented their “product Gauss

0.0

cubature over polygons” in MATLAB as available from

-0.5

their homepage (see Sommariva & Vianello, 2007a). I

ported their code to R, where I make use of the func-

-1.0

tion gauss.quad from the package statmod (Smyth,

-15

2009) to compute the weights and nodes of the one-

-2.0

dimensional Gauss-Legendre quadrature rules. In the
original implementation it is also possible to rotate the

polygon in such a way that more nodes fall inside the

0.0

polygon and a higher accuracy is achieved (cf. Som-
mariva & Vianello, 2007b, Remark 2.4). This feature

is not included in my R port as it is in general not ap-

-0.5

-1.0

plicable to non-convex polygons. However, I made a

-15

small modification concerning the choice of the base-
line x = zg, which in the MATLAB code is always set

to xg = 0 when no rotation is applied. In my R port, xg

-2.0

i t to the horizontal midpoint of the b ding b
15 Seb o The Hotzontal mIdpott © bounding box, Figure 3.6: Cubature nodes resulting

which leads to higher accuracy, because more nodes fall from the original base-line

into the polygon. The difference is illustrated in Figure 2o = 0 (top) and the
3.6. It would be even worse for a polygon situated far adapted base-line (bottom)
away from z = 0. with n = 3.

Figure 3.7 shows the cubature nodes for the example region resulting from the choice n = 5

for every polygon. The overall number of nodes hence function evaluations is 415. Note that
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nodes outside W do contribute to the cubature rule. The weights are non-zero but they may

be negative.

10
|

-5

-10

-10 -5 0 5 10

Figure 3.7: Nodes of the product Gauss cubature rule with n = 5 applied to each of the three polygons
(marked by o, A and +, respectively).

Obviously, the integral has to be solved on a polygon-by-polygon basis, substracting the

integral value of the hole H from the integral over the domain P, U Ps, i.e.

/Wf(S)ds:/Plf(s)ds—k/PQf(s)ds—/Hf(S)ds’

where each sub-integral is approximated by the above described product Gauss cubature rule.
For the example density f from Figure 3.1 this results in an approximate integral value of
0.5435167.

3.2.6 Specific Methods for the Bivariate Normal Density (polyint.AS)

Besides the above cubature rules for the approximate numerical integration of general two-
dimensional functions over a polygonal domain, there exist at least two methods for the
specific case of the bivariate normal density. DiDonato & Hageman (1982) evaluate the in-
tegral over the complement of the polygon and implemented a FORTRAN program with
approximately 9-decimal-digit accuracy. Calculating the integral in this way incorporates a
polynomial approximation of a scaled primitive and its implementation seems quite cumber-
some which is why I did not port their method to R. Instead, I have used explicit formulae

found in the famous Abramowitz & Stegun handbook in Chapter 26 authored by Zelen &
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Severo (1970, Section 26.9, Example 9, pp. 956f.). These formulae treat the calculation of the
integral of the bivariate normal density over triangles AAO B, where one vertex is the origin

O = (0,0). In the following, I will give a brief summary of the approach.

As a first step, the coordinates of the polygon in question are transformed so that we integrate
the standard bivariate normal density with zero mean and the identity matrix as covariance
matrix (cf. Zelen & Severo, 1970, formula 26.3.22). Then, the polygon is divided into triangles
by some triangulation procedure. I use the tristrip functionality from the General Polygon
Clipping C library (Murta, 2009) to which the R package gpclib (Peng, 2009) provides an
interface. This is simpler and runs much faster (> 1000 times) than a Delaunay triangulation
with the spatstat function delaunay. Figure 3.8(a) shows how those two preliminary steps
work on the example domain. As the above cited formulae only cover triangles of the type
ANAOB, the integral over each triangle has to be calculated by the decomposition illustrated in
Figure 3.8(b). The signs of the three auxiliary integrals depend on the relative position of the
origin and can thus be determined automatically. The sign of an auxiliary triangle is positive,
if the origin and the remaining point, which is not used in the auxiliary triangle, lie on the
same side of the line through the other two points of the auxiliary triangle. Otherwise it is
negative, like e.g. for the auxiliary triangle ACOA, where the origin and the remaining point
B are on different sides of the line through A and C. Finally, the core of the formulae and
also their computational bottleneck is the calculation of the integral of the bivariate normal
density with zero mean, unit variance and some correlation p over some infinite rectangle
[h, 0] x [0, 00] (cf. Zelen & Severo, 1970, formula 26.3.23). This task can be performed very
accurately by the R function pmvnorm of the package mvtnorm (A. Genz et al., 2009).

Applying the outlined method to the example results in an approximated integral value
of 0.5434421 with a total of 138 pmvnorm evaluations and an estimated absolute error of
1.26 - 1013, Unfortunately, it is the slowest of all the implemented methods. The next sub-
section gives a detailed comparison of the implemented cubature functions concerning both

accuracy and speed.

3.2.7 Comparison of the Presented Methods

The preceding descriptions and exemplifications of the implemented cubature methods reveal
substantial differences concerning complexity and accuracy. Gathering all the approximated
integral values one observes a range from 0.4588546 to 0.5487904. In default of an exact
reference value of the integral, one can e.g. consider the quasi exact Abramowitz & Stegun
method, which gives the narrow interval [0.543442134975419, 0.543442134975671] for the true

value, or take a look at the convergence of the Sommariva & Vianello method when increasing
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(a) “tristrip” of the transformed domain. (b) fAABC = fABOA+fACOB —fACOA,

Figure 3.8: Illustration of the “tristrip” triangulation in (a) and the decomposition of the integral over
a triangle AABC using three triangles passing by the origin in (b).

the number n of univariate Gauss-Legendre nodes. This is shown in Table 3.1 using 16 decimal

digits (machine epsilon is 1.11 - 10716).

N result n N result
777 0.5434425697317347 13 2535  0.5434421349755513

82  0.5049443902231224 1000  0.5434421079898190 14 2926  0.5434421349755448
165 0.5496474086072402 1251  0.5434421364665062 15 3345  0.5434421349755459
276  0.5426842459879074 10 1530 0.5434421349013328 16 3792 0.5434421349755448
415  0.5435166972422180 11 1837 0.5434421349789060 17 4267  0.5434421349755449
582  0.5434359942759850 12 2172 0.5434421349754058 30 12990 0.5434421349755451

N result
27  0.7308917307681466

D UL W N =B
© oo B

Table 3.1: Convergence of the product Gauss cubature rule for an increasing number of nodes. The
column “n” denotes the requested number of univariate Gauss-Legendre nodes, whereas the
column “N” denotes the resulting total number of two-dimensional nodes.

Thus in this example, as of n = 12 the Gaussian cubature is as accurate as the quasi exact
method, but much faster. It also seems that machine accuracy has been reached with n = 14.
It is clearly a useful feature of the Gaussian cubature that one can influence the computation
time by requesting a specific degree of accuracy. Apart from the two-dimensional midpoint
rule, the other implemented rules seemed to be less accurate in relation to the computational
effort. Specifically the adapt routine did perform surprisingly bad since it returned the
interval [0.4805614, 0.4853860] for the true integral value. However, a detailed comparison of
accuracy and runtime requires a realistic and more complicated integration region than used

so far.

For this reason, I consider the integration of the isotropic bivariate normal density with
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a standard deviation of 0 = 20 [kilometres| centred near the north-western borderline of
Germany over the whole region of Germany as shown in Figure 3.9(a). Note that the contour

lines in the Figure are shown only up to a density value of 5- 1075,
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(a) Whole Germany. (b) Intersection of Germany and 6o “circle”.

Figure 3.9: Polygonal domains with enclosing rectangle, contour lines of the N3(0,40013) distribution
and a 60 “circle”.

One observes that in a predominant part of Germany the density is almost 0. The prob-
ability mass over a circular domain around the mean can also be calculated as a function
of the radius r (cf. Zelen & Severo, 1970, formula 26.3.24): Let X,Y id N(0,02), then we
search the probability that X2 + Y? < r2. Because (X/0)? and (Y/0)? are independently
distributed following the x?(1)-distribution, their sum Z := (X/0)? + (Y/o)? is distributed
as x%(2). Thus the probability in question can be calculated as P(Z < (r/c)?) in R by the
command pchisq((r/sigma)~2, 2). For instance, 99.999998 percent of the probability mass

are concentrated up to a distance 60 [kilometres] from the mean.

The computation will be faster and often also more accurate if the integration region is
narrowed to this range as shown in Figure 3.9(b). Actually, the circular domain is compu-
tationally represented as a polygon with 32 vertices and its intersection with Germany is
computed by the intersect method of the package gpclib (Peng, 2009), which again results

in a polygon. The intersection procedure took 0.036 seconds.

Table 3.2 contains the cubature results for both integration regions (parts (a) and (b), re-
spectively) using various configurations of the afore presented cubature methods. Hereby, the

configuration parameters recorded in the second column have the following meanings:

for midpoint: the number of subdivisions in each dimension (n, = ny).
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for linear: the number of auxiliary triangulation nodes.

for adapt: log;y(¢), where ¢ is the upper bound for the relative integration error.
for mc.*: the number of sampled points.

for SV: the degree of the univariate Gauss quadrature.

for AS: there is no parameter choice.

Concerning the linear trapezoidal rule it is actually also of great importance, where the
auxiliary triangulation nodes are located. For this test, I chose the radial configuration as in
Figure 3.3(c) with a point at the center and points at o and 20 distance in eight directions.
Note that this cubature rule has not been applied to the whole region of Germany, because

the Delaunay triangulation would take too long.

The column “f eval” basically contains the number of evaluations of the bivariate normal
density. However, for the AS method it is the number of evaluations of the cumulative distri-
bution function pmvnorm, and for mc.gauss it is the characteristic function of the polygon,

which is evaluated for each sampled point.

As the integral values are (only) listed in 10-digit accuracy, we may take the two results
in the last row achieved by the Abramowitz & Stegun method as the exact integral values.
They differ slightly on the eighth digit after the decimal point, which is in accordance with the
proportion of the probability mass outside the 60 circle ignored in the setting of Figure 3.9(b).
Regarding the runtime of this method it is clear that it can not be used for the log-likelihood
evaluations during the optimisation routine. As already mentioned, the same is true for the
two Monte Carlo methods, also because of the random nature of their results. However, the
table points out that mc.gauss would be the better alternative because its estimates exhibit
a smaller standard deviation. This is especially noticeable in part (a), where relatively few of
the points sampled uniformly over whole Germany fall into the main 6o region of the density

peak.

Concerning the other four cubature methods the competition obviously remains between the
midpoint and the SV method. The Delaunay triangulation for the linear trapezoidal rule
takes much too long, which impedes a dens grid of auxiliary nodes necessary for accurate
results. The adapt routine scores 2-digit accuracy, but that takes much longer than with the

midpoint and SV methods.

Now comparing the two best performing methods, the two-dimensional midpoint rule appears
to be less affected by the type of the domain. Accuracy and speed are only slightly worse
when integrating over whole Germany in (a) than in (b). The product Gauss cubature (SV)
needs a significantly higher number of nodes and also more computation time to attain the

exact integral value when integrating over whole Germany. This means that the SV method is
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(a) Results for Germany (b) Results for the 6o-region
Method Parameter f eval. Time Integral value f eval. Time Integral value
midpoint 10 66 0.03  0.0908082261 67  0.01  0.7590965857
midpoint 20 260 0.03  0.7595256939 264 0.01 0.6466609261
midpoint 50 1604 0.07 0.6783876114 1644  0.02 0.6763635916
midpoint 60 2327 0.09  0.6229258021 2372 0.02  0.6804794248
midpoint 100 6435 0.13  0.6899259967 6568  0.03 0.6817244161
midpoint 200 25740 0.25 0.6767119337 26270  0.08  0.6808681436
midpoint 500 160848 2.69  0.6804283121 164143 0.56  0.6810896454
linear 17 - - - 929 29.10 0.7882673149
adapt -1 527 1.81  0.6874490883 561  0.51  0.6927104248
adapt -2 1779 4.86  0.6714258336 1419  1.38  0.6947242080
adapt -3 5387 21.41  0.6821925229 5523 6.13  0.6827739466
adapt -4 14917  50.66  0.6809311801 24395 26.67  0.6782005452
mc.uniform 1000 644 0.29  0.6293671822 647  0.04 0.6612873856
mc.uniform 5000 3224 2.06  0.5506513848 3245  0.17  0.6494419377
mc.uniform 10000 6426 3.78  0.6165596709 6575  0.35 0.6840521611
mc.uniform 50000 32007 25.65  0.6999019599 32725 1.71  0.6922238995
mc.uniform 100000 64202  38.15 0.6595451869 65744  3.43  0.6749424592
mc.gauss 1000 1000 0.35  0.6750000000 1000 0.04  0.6750000000
mc.gauss 5000 5000 1.94  0.6696000000 5000  0.17  0.6696000000
mc.gauss 10000 10000 3.75  0.6817000000 10000  0.35  0.6817000000
mc.gauss 50000 50000 17.96  0.6766400000 50000 1.72  0.6766400000
mc.gauss 100000 100000  28.98  0.6826000000 100000  3.44  0.6826000000
SV 1 15548 0.80  0.0000990873 1836 0.10  0.7428566470
SV 2 46644 0.83  0.4297683105 5508  0.11  0.6639635988
SV 3 93288 0.87  0.9053810992 11016  0.11  0.6810251230
SV 5 233220 1.02  0.6441308961 27540 0.12  0.6810984697
SV 10 855140 2.72  0.6811809816 100980  0.18  0.6810971143
SV 15 1865760 3.97  0.6810970557 220320  0.28 0.6810971143
AS - 90924 100.76  0.6810971213 10608 11.78  0.6810971139

Table 3.2: Results from the cubature test runs: The parameter column indicates for SV the degree of the
univariate Gauss quadrature, for midpoint the number of subdivisions in each dimension,
for linear the number of auxiliary nodes, for adapt log;,(g), and for the Monte Carlo
methods the number of sampled points. The column “f eval.” gives the actual number of
function evaluations. The runtime is given in seconds.

much more sensitive with respect to the concentration of the function’s mass on a small region
of the integration domain like in Figure 3.9(a), and equivalently with respect to varying o?
for a fixed polygonal domain. In contrast, when only integrating over the main 60 region, it
basically reaches the exact integral value in 0.18 seconds, whereas the midpoint method is
only at 4 digits in 0.56 seconds. Depending on the desired minimum accuracy the method of
choice (given such a 60 intersection) would therefore be midpoint, which is as fast as 0.02
seconds for 2 digits, and SV if 3 or more digits are required. Furthermore, it would be possible
to implement the computation of the bivariate Gauss-Legendre nodes and weights in C, which

would make the SV method certainly come off as winner.

However, for the purpose of log-likelihood maximisation, the sensitivity of the Gaussian cu-

bature with respect to o2 is a big issue. Because during optimisation a variety of values
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Figure 3.10: Benchmark of the Gaussian cubature (SV) and the two-dimensional midpoint rule (MP)
on integrating the “narrow” bivariate normal density with ¢ = 1 [km] over 35 large do-
mains with a range of up to 300 km. The configuration parameters are for SV the number
n of univariate Gauss-Legendre nodes and for midpoint the factor ¢ = g, which here
equals the bandwidth A (in kilometres). The AS method was used to compute a reference
value for the integral enabling the calculation of relative integration errors.

of 0?2 is tested, it would be either necessary to compute the 60 intersection as in Figure
3.9(b) for each new value of o2, or to adaptively choose a number of knots guaranteeing
enough accuracy. Since each computation of an intersection costs about 0.04 seconds, the
evaluation of the log-likelihood for a single value of o2 would for the IMD data at least take
636 - 0.04 = 25.44 seconds — only to determine the 60 intersections for all events. Since it is
furthermore not clear how to adaptively choose the degree n as a function of ¢ and because
small 02 make necessary a very high and time consuming degree of the Gaussian cubature,
the use of the more robust two-dimensional midpoint rule is fairly appealing. With this rule

it is also straightforward how to retain accuracy when o

varies: just choose the pixel width
and height as a multiple of o, i.e. h := h; = hy = ¢o, where ¢ depends on the desired

accuracy.

Figure 3.10 shows results of a benchmark test of the two methods. The task was to integrate
the bivariate standard normal density f(s) = exp(—||s||?/2)/(27), which means having a very
small value of o = 1 kilometre. The test set consisted of the 35 unique locations of IMD cases,
which are closer than 6 km to the border of Germany. For other locations of IMD cases, the 60
circle completely falls inside Germany and hence there is nothing to do because the integral
almost equals 1 anyway. For the selected 35 locations, the intersection of the surrounding

circle of 150km radius with Germany was generated and centred at the respective location
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similar to Figure 3.9(b). This truncation has been applied in preview of a similar truncation
of the spatial kernel in the next Chapter. For each resulting test region, a reference integral

value has been computed by the AS method.

The Figure indicates that the product Gauss cubature with n = 15 systematically overesti-
mates the integral and the high number of n = 30 univariate Gauss-Legendre nodes (yielding
a total of 597.060 function evaluations) are necessary for almost exact answers. On the other
hand the computational cost of this cubature with n > 15 is greater than for the midpoint rule
with bandwiths o (¢ = 1) and 0/2 (¢ = 0.5), which for most of the regions hit the true value
of the integral very precisely. Furthermore the results show that choosing ¢ around these
values yields fast results and sufficient accuracy for the purposes of this thesis. Nevertheless,
the main advantage of the midpoint rule actually is that a similar relative accuracy would

result if we used another value of o, because the bandwidth h = ¢ ¢ is chosen appropriately.

To sum things up, this chapter presented and examined various methods of two-dimensional
numerical integration with particular attention drawn to polygonal domains and the isotropic
bivariate normal density. In the final comparative study, two methods performed very well:
the simple two-dimensional midpoint rule (cf. Subsection 3.2.1) and the rather complex prod-
uct Gauss cubature by Sommariva & Vianello (cf. Subsection 3.2.5). Although the latter
converges faster to the true integral value, it is not suitable for the use during optimisation,
because its accuracy strongly depends on the time-consuming clipping of the integration do-
main to a 60 region. A possible workaround would be to precalculate these truncated domains

for a set of values of o and recall them as and when required.

Based on the results of this chapter I finally opt for the more robust and o-adaptive two-
dimensional midpoint rule to evaluate the spatial integral in the log-likelihood (2.4) during the
optimisation routine. Having thus ensured the capability of evaluating the log-likelihood by

numerical integration, the next chapter considers specific spatio-temporal intensity models.
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This chapter seeks to specify space-time point process models for infectious disease data
through the conditional intensity function. Main interest lies in explaining the evolution of
the process based on its history, which also includes covariates like the numbers of influenza
cases and event marks like the age of the infected person. In the spatio-temporal modelling
in Section 2.2, the possible locations of the events constituted a discrete subset of the obser-
vation region. Now, the individual events are assumed to occur in a space-time continuum,
which certainly better reflects the underlying nature of the IMD point patterns. Due to
this generalisation, the estimation of such models is computationally more intensive, but the
essential task of evaluating the spatio-temporal integral term in the log-likelihood (2.4) has

been solved in the previous Chapter 3.

Various spatio-temporal point processes describing the dynamics of “infective events” are pre-
sented in Section 4.1. Here, a novel model class is proposed with a special view to infectious
diseases. The estimation of the proposed model class by means of maximum likelihood (ML)
will be discussed in Section 4.2. Section 4.3 will touch on the implementation of the data struc-
ture and the estimation procedure. The last Section 4.4 presents a different spatio-temporal
modelling approach with a tricky estimation technique, which is however not applicable for

the data analysis in Chapter 5.

4.1 Modelling Infection Dynamics

As an introduction to spatio-temporal modelling, the research on the dynamics of earth-
quake occurences boosted by Yosihiko Ogata and David Vere-Jones (cf. Ogata, 1999) will be
overviewed in Subsection 4.1.1. Here, the strong relationship between modelling earthquakes
and outbreaks of infectious diseases will become obvious. Subsequently, this Master’s The-
sis proposes a novel extension of the twinSIR model of Section 2.2 to continuous space in

Subsection 4.1.2 and a further generalisation with marks in Subsection 4.1.3.
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4.1.1 A Review on Modelling Earthquakes

Earthquakes and cases of infectious diseases have in common that they feature so-called
self-excitement, i.e. events influence the future evolution of the point process by producing
“offspring” events. Strong earthquakes cause subsequent aftershocks, and an infected indi-
vidual may transmit the virus to susceptible individuals. Point process modelling of such
clustering in space and/or time often inherits in structure from Hawkes’ self-exciting process
(Hawkes, 1971), which is a birth process with immigration. It was introduced as a purely

temporal process with conditional intensity function

MO =yt [ el wdNw =vt 3 gl —ty) (1)

j:tj <t

where 1 > 0 represents a constant “immigration” rate for new events independently of the
evolution of the process, and the function g(-) > 0 measures the increase in temporal clustering
due to events of the past. Note that the range of the stochastic integral above is (—oo,t)
(excluding t) so that the intensity process is left-continuous and hence predictable (g must
also be a left-continuous function) (Ogata, 1978, Example 4 on p. 248). As in auto-regressive
time series, “the expectation of an event occuring is given by a linear combination of past
occurences, where [...] g(-) measures the weights of such combinations” (Ogata, 1999, p. 499).
For example, Hawkes considered g(t) = ae™%, i.e. an exponential decay of the rate to produce
offspring. Thus one obtains the clustering phenomenon that offspring is more likely to occur
shortly after the parent event. According to Hawkes & Oakes (1974) the Hawkes process can
also be viewed as a cluster process, where the cluster centres equal the immigrants born at
rate 1. Associated with each immigrant is a cluster of subsidiary events formed by the births
of all of the descendants of all generations of the immigrant — in contrast to the Neyman-Scott
process, where the parent events (cluster centres) are hidden, and only one single generation

of offspring is included.

Corresponding to the superposition of rates in (4.1), events may be either immigrants emerg-
ing from a homogeneous Poisson process with rate i) or a descendent of a previous event.
With regard to the twinSIR model of Section 2.2, one could equally speak of endemic or
epidemic sources of infection. Starting from its “birth-time” each event produces offspring
according to an inhomogeneous Poisson process with rate g(t), where ¢ is relative to the birth-
time. Because this process is independent of the event’s own parentage and of other events,
p = J;° g(t)dt can be interpreted as the average number of offspring per event. Clearly,
population growth models also fit in this context of Hawkes processes — and both can be
interpreted as general branching processes. In the theory of branching processes, u is called
the basic reproduction number. If p < 1, the process is called sub-critical, because it is of

finite total size. A sub-critical Hawkes process without immigration (but with a fixed number
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Figure 4.1: The branching structure of the various generations of events in a cluster (top), and the
observed ground process on the time axis (bottom). Source: Mgller & Rasmussen (2005,
Figure 1)

of initial events) will almost surely die out, which is intuitively clear because each event on

average produces less than one descendent.

Figure 4.1 illustrates the branching structure of a Hawkes process within a cluster initiated by
the single event on the left. This event gives rise to three children one of which itself generates
new offspring and so forth. Usually one only observes the occurence of events on the time axis
without knowing about their heritage. For instance, infectious disease data in general do not
contain information about the source of infection, whether by direct person-to-person contact
or otherwise imported. The bottom line in the figure shows the corresponding temporal point

pattern.

Inspired by the self-exciting Hawkes process, Ogata (1988) proposed the so-called epidemic-
type aftershock-sequences (ETAS) model for earthquake occurences. The name of the seis-
mological ETAS model clearly indicates a relationship between earthquakes and cases of
infectious diseases so that many ideas of modelling and interpretation can be borrowed from
one another. Specifically, the original ETAS model has CIF

M () =9+ g(t —u) Pm=Mo) N (du x dm), (4.2)
(0,8)x[Mo,00)

where the mark m denotes the earthquake magnitude and Mj is the cutoff magnitude of the
data set. The observed marks introduce a weighting of the “epidemic” component of the
model (following the Gutenberg-Richter law of magnitudes). Stronger earthquakes trigger
aftershock-sequences at a higher, exponentially increasing rate (for 5 > 0). The function g is
the modified Omori formula g(t) = K (t + ¢)P, with K, ¢,p > 0, which indicates hyperbolic
decay of the aftershock rate. The complete integrand in (4.2) is usually called the response
function or triggering function, because it describes how an earthquake triggers aftershocks

as a function of time and magnitude.

Ogata’s ETAS model has been extended to a spatio-temporal version also covering the loca-
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tions of earthquakes, and a lot of alternatives for the triggering function have been considered
in the seismological literature over the years (cf. Ogata, 1998). Especially interesting in the

context of this thesis is the spatio-temporal formulation

N (t,8) =w(s)+ D wlmy) gt —t;) f(s — slm;)

Jitj<t

in Ogata et al. (2003). Here, the background intensity of new “parent” events (similar to
immigration) is represented by a now spatially varying intensity ¢(s). The second epidemic-
type component measures the rate of aftershocks at the space-time coordinate (t, s) following
an earthquake (t;, s;, m;). The triggering function is decomposed multiplicatively into effects
of the magnitude m;, of the elapsed time ¢ — ¢; since the triggering earthquake, and of the
relative location s — s; with respect to the earthquake’s epicentre. The magnitude-dependent
“impact factor” k(m;) of the earthquake and the function g are the same as in the original
ETAS model. As functional form for the spatial kernel f, an elliptic bivariate normal density
for anisotropic clusters is chosen, the parameters of which are determined a priori. Like in the
above Hawkes model, “every event with a given magnitude has the same probability structure
for generating direct ‘offspring’, irrespective of its own parentage” (Vere-Jones, 2009, p. 190),

which again offers a branching or cluster process interpretation.

4.1.2 Additive-Multiplicative Spatio-Temporal Conditional Intensity Model

In the following, I propose an additive-multiplicative model for the conditional intensity func-
tion of an infectious disease (self-exciting) process continuous in space-time. The basic frame-
work is to superimpose an endemic (immigration) and an epidemic (offspring) component

just like in the Hawkes, the ETAS, or the discrete space twinSIR models discussed so far:
X*(t,s) = h(t,s) +€e*(t,s). (4.3)

The epidemic component e*(t,s) represents the spread of the disease by person-to-person
contact, and is similar to the earthquake aftershock term in the ETAS model. The endemic
component h(t, s) models otherwise imported cases and is independent of the internal history

of the process.

Specification of the endemic component h(t, s)

The endemic component is of the multiplicative Cox-type

ht,s) = exp (ho(t, s) + B'Z(t,8)) , (4.4)
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where hg(t,s) is a parametric or nonparametric spatio-temporal log-baseline intensity and
the remainder is a linear predictor of endemic covariates Z(t, s). These exogeneous covariates
actually result from another jointly evolving point process, the history of which extends the
internal history of the process in question (cf. Subsection 2.1.2). In the application of the
IMD data, the only available endemic covariate is the number of cases of influenza (possibly

with a lag of one or two weeks) on a week x county grid (cf. Section 1.2).

The log-baseline intensity is conveniently separated in its temporal and spatial dimension

excluding any baseline space-time interaction:
ho(t, ) = BiSP(0) + 1P (5).

A common approach in modelling spatial inhomogeneity in epidemiology is to adjust for the
population at risk. Therefore, h%pat(s) is modelled as an offset for the logarithmic population
density in the county containing the location s, such that the endemic rate of infection is
proportional to the population density. The temporal log-baseline hgemp(t) is modelled by a
step function: this can either be a semiparametric zero-degree B-Spline or some parametric
trend (e.g. linear plus sinusoidal with a yearly frequency) measured at a discrete set of time
points. In the simplest case, hy™P(t) = By is a global intercept. The reason for limiting
h(t)emp(t) to be a piecewise constant function is that this greatly simplifies the later integration

of the endemic component in the log-likelihood.

Altogether, the endemic component is modelled as a piecewise constant function on some
spatio-temporal grid resulting from a decomposition of the time period [0,7] and the ob-
servation region W. The consecutive time intervals of this decomposition are denoted by
Cy,...,Cp C (0,T], and the spatial tiles (e.g. counties) are denoted by Aj,..., Ayy C W.
An illustration is provided in Figure 4.2. Let the functions 7(¢) and £(s) return the indices
of the temporal and spatial grid units containing time point ¢ and coordinate s, respectively.

Then, the endemic component can be written as

h(tv S) = exp (05(3) + 5,ZT(t),§(s)> ) (45)

where og(4) is the tile-specific offset (e.g. the log-population density), and

{#zre:ime{l,...,D} e f1,..., M}}

is a collection of covariates on the spatio-temporal grid {C1,...,Cp} x {A1,..., Ay }. For
convenience, hi™(t) is now included in this term of the linear predictor (which is why the

tilde was dropped from 3 and z), and is treated as ordinary covariates.
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Figure 4.2: Schematic illustrations of the decompositions of the (a) temporal and (b) spatial observa-
tion ranges. The dashed line in (a) represents a linear time trend of which the step function
is a discrete left-continuous version over the decomposition C1,...,Cp.

Specification of the epidemic component e¢*(¢, s)

The self-exciting component of the model essentially provides a description of the “infection
pressure” at a space-time location (¢, s) caused by each infectious individual. This infectivity
of an infectious individual j, denoted by e;(t, s), corresponds to the inhomogeneous rate of
a Poisson process, the realisations of which are the space-time locations of infected individ-
uals. Like in almost all self-exciting spatio-temporal point processes in the literature, this
“triggering function” is factorised into separate effects of marks, elapsed time, and relative
location:

ejt,s) = Mgt — 1) f(s —55),  (t> 1) (4.6)

where m; is a vector of unpredictable marks attached to the infected individual, and g and
f are positive, Riemann-integrable, temporal and spatial interaction functions, respectively.
The linear predictor vy + v'm; of marks shall reflect that different individuals might cause
more or less secondary cases, depending on individual characteristics. Young people or in-
fants might trigger more secondary cases than adults, which presumably are more attentive
concerning their infectivity. The individual social contact network certainly affects the risk of
triggering secondary cases, although this characteristic is hardly measurable in practice. The
linear predictor of marks anyway enables modelling the effect of individual-specific covariates

on the degree of infectivity.

The interaction functions describe the decay of infectivity with an increasing spatial or tem-
poral distance from the infection source. Note therefore that concerning their multiplicative
decomposition in equation (4.6), it would e.g. not be reasonable to split up the components

additively: the distance of previously infected individuals j to a location s would then con-
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tribute to the total infection pressure at this location even when g(t —t;) ~ 0, i.e. when the
individual j actually is no longer infective. In contrast, the interaction of the temporal and

spatial components in (4.6) arranges for zero contribution of individuals with g(t —¢;) = 0.
In infectious disease applications, f is usually a radially symmetric kernel corresponding to
an isotropic spread of the disease, such that f(s — s;) = f(||s — sj|). A typical example is

sl

f(s) =exp ( 572 ) (s €R? 0 >0), (4.7)

i.e. the kernel of a radially symmetric bivariate normal density with zero mean. The temporal

interaction function could be chosen similar to the original Hawkes model as
g(t) =e (t>0,a>0) (4.8)

representing an exponential temporal decay of infectivity. If f or g are modelled as constant
functions equal to 1, individuals spread the disease homogeneously in space or time, respec-
tively. Other types of interaction functions could be taken from the families of parametric
correlation functions known from time series analysis or spatial statistics, e.g. the powered

exponential correlation function.

The resulting epidemic component e*(¢, s) then is the sum of the contributions (4.6) of all

infectious individuals at time ¢ and location s. Formally,
“(t.s) = | Lo.g(t — D) Lo (lls — 1) 70F7™ (¢ — ) f(s — &) N(df x da x dm)
(0,t) x W xM

where ,6 > 0 are known maximum temporal and spatial interaction ranges. In the infectious
disease context, € is an upper bound for the length of the infectious period, and § is the
maximum spatial cluster size. Assuming infinite ranges is also possible and corresponds to a
never ending spread of the disease (temporally or spatially). A past event only influences the
process (is infective) at time ¢ and location s, if both indicator functions are true, i.e. if it
occured at most € time units ago at a location within distance §. These indicator functions
could alternatively be included in the interaction functions f and g. However, treating ¢ and
0 as hyperparameters suggests this convenient decomposition. Specifically, because the above
stochastic integral is actually a sum, a more intuitive notation of e*(¢, s) can be introduced:
Let Ny(t) be the ground process counting the events irrespective of their location, then define
I*(t, s;¢,0) as the history-dependent set that contains the indices of all past events which are

still infective at time ¢ and location s:

I*(t78;€7 5) = {] € {17277N9(t_)} : ]1(0,5}(t _t]) =1A 1[0,5]("8 - ’S]H) = 1} :
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Using this notation, the epidemic component has the suggestive notation

e*(t,s) = Z ej(t,s) = Z 0™ g (¢ — tj) f(s —sj). (4.9)

jEI*(t,85€,0) JET*(t,85¢,0)

For convenience, the explicit conditioning on ¢ and § will be dropped from the function I*.

Definition of twinstim and comparison with other models

Altogether, the proposed CIF model for a spatio-temporal point process with components
(4.5) and (4.9) is

A*(t,8) = exp (Os(s> + 5/Z7(t),€(s)) + Y T Mgt — ) f(s — sj) (4.10)
JEI*(t,8)

and I assign to the model (4.10) the name twinstim. This both suggests the similarity to the
additive-multiplicative twinSIR model of Section 2.2 as well as it indicates a spatio-temporal

(conditional) intensity model.
The main differences between twinstim and twinSIR models are:

« In the twinSIR model, possible event locations constitute a finite subset of R2, i.e.
W = {s1,...,sm}. This enables compartmental model formulations like SIR models
and its extensions, because the “population” W has a fixed size beforehand. Therefore,
re-infection of the same unit can in principle be modelled. This is not possible in the
spatially continuous setting of twinstim. Here, the “population” is considered as a
subset W C R? of infinite size with respect to the counting measure on R?. This means
that the (random) number of events theoretically has no upper bound, that events may

occur at any location in W, and that a re-infection has zero probability.

e The spatial and temporal distance kernels in twinSIR are modelled as a linear com-
bination of basis functions, whereas in twinstim this restriction is dropped and any

Riemann-integrable functions with any number of parameters may be supplied.

e Last but not least, the twinSIR model is computationally more straightforward, because

integrals over W are simple summations and numerical integration is not needed.

It should be mentioned that further similar models have been considered by Peter Diggle. In
Diggle (2007, 1.3.2.2) he describes a self-exciting spatio-temporal point process resembling to

the epidemic component e*(t, s) from equation (4.9). Specifically, his example is

Ng(t-)

N(ts)= Y glt—1t;) f(s —s5), (4.11)

J=1
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where f is the density of the No(0; 02 I5)-distribution and g is the intensity function of an

inhomogeneous Poisson process holding
o
,u::/ g(t)dt < oo.
0

The CIF in (4.11) equals the epidemic component e*(t,s) except that (4.11) contains no
individual-specific weighting factor and that there are no maximum interaction ranges € and
0, which truncate f and g. Hence, Diggle’s model is included in the twinstim class by
neither specifying an endemic component (representable by ho(t,s) = —oo) nor a weighting
of infectives (79 = 0), and assuming £ = oo = §. Thus, the model basically is a Hawkes process
without immigration, spatially enriched by a Thomas process. Starting from a collection of
events at time point 0, every event subsequently generates offspring, all offspring subsequently
generate further offspring, and so forth. The generation of offspring follows the same rules

for every progenitor:

Times of offspring: According to an inhomogeneous Poisson process on R with intensity

g(u —t), where ¢ is the “birth-time” of the progenitor.

Locations of offspring: Independently distributed following the isotropic bivariate normal

distribution centred at the location of the progenitor with variance matrix o2 I5.

The point process described by the CIF (4.11) consists of the collection of all resulting offspring
(t;, s;) such that Hy = {(¢;, s;) : t; < t} and H contains the initial set of events. The temporal
rule above also yields that the total number of offspring generated by an event has a Poisson
distribution with mean p. The number of events as a function of time thus forms a simple
branching process, which was illustrated in Figure 4.1 for a single initial event. In the case
1 < 1, i.e. each event generates on average less than one offspring event over the whole time,

the process is sub-critical and its eventual extinction is almost sure.

However, in a Hawkes process with immigration like in general twinstim’s, new parent events
may always appear and initiate new outbreaks. Similar to the number p above, an individual-
specific mean number y; of infections caused by individual j inside its spatio-temporal range

of interaction can equally be established for a twinstim:

By = /0 /Rzej(t’s)H(OVa](t_tj)1[0,6](H8—s,-||)dtds

= oo [T gt - t)ad] [ [ 7o~ 5 10l - sl s

= eMotymy . [/06 g(t) dt] . l/b(o,a) f(s) ds] . (4.12)

Here, b(0, §) denotes the disc centred at (0,0) with radius 6. The integration domain R4 x R?

above stems from the theoretical point of view that the point process has an unlimited state
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space. In practice, this is of course not the case, which is why individuals near the border
would be attributed a smaller value of p; resulting from the integration over W instead of
R2. Similarly, an individual which has been infected just before the end of the observation
period at time 7" would have p; ~ 0 if only integrating over [0,7]. This is however not
the intended interpretation, because it is evident that this individual triggered events which
have not been observed. These edge effects are thus overcome by the formulation (4.12),
which also simplifies interpretation. Specifically, the number p; offers an intuitive way of
interpreting the parameters vg and «. The “intercept” e’ multiplied by the two integrals is
the mean number of infections caused by an infective individual whose marks m; all equal
zero. The effects of the marks can then be interpreted as usual in Poisson regression models:
a unit positive change in a specific mark mj; (ceteris paribus) multiplies the mean number
by the corresponding parameter €. An alternative interpretation of those parameters works
if g and f obey a maximum value of 1 located at the origins 0 and (0,0), respectively. The
epidemic intercept €7 then equals the instantaneous rate of infection caused by an infective

with m; = 0 just after her infection in an infinitesimal region around her position.

Another paper by Diggle et al. (2009) — pre-published online during the writing of this thesis
— discusses a spatio-temporal “population growth model” with respect to partial likelihood
inference. In contrast to the above model (4.11), this model also contains a constant intensity
for progenitor events (immigrants) corresponding to the endemic component h(t,s) from
equation (4.4), and a temporally limited range of interaction. Specifically, their model is (in

this thesis’ notation)

Ng(t=)

)\*(t, S) = 660 + Z e f(S — Sj) ]]_(0’5] (t — tj) s (413)
Jj=1

and is thus also covered by the twinstim class. In their simulation example they used a
radially symmetric Gaussian density for f, but they only considered rectangular observation
regions over which the integration of f is straightforward (as the product of univariate normal
random variates). The model exemplifies that some parameters may not be identifiable from
the partial likelihood, which here is the case for 3y and vg: only the ratio e /e is identifiable
(cf. Diggle et al., 2009, Section 3.2).

4.1.3 Type-Specific twinstim

The IMD data actually represent a spatio-temporal point pattern marked by the finetype of
infection. Although the model of the previous subsection already allows for a finetype-specific
weight of infectivity through the vector of marks m;, it is not applicable for a joint modelling

of both finetypes. The main issue is that the finetypes do not cause mutual infections but only
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the same finetype is transmitted (cf. Subsection 1.1). Both finetypes should however have the
same relation to the population at risk and, as I assume for simplicity, to the case numbers of
influenza and the time trend. The only finetype-specific element in the endemic component
would be the intercept, corresponding to the global background rate. However, the most
important distinction concerns their epidemic behaviour represented by the epidemic weight
and the two interaction functions. For instance, the serogroup B finetype would have a higher
epidemic weight and a relatively narrow spatial interaction function corresponding to more
intense but rather local clustering. Taking everything into account, the model of the previous
subsection will now be extended to a marked version, which enables the joint modelling of

both finetypes.

Denote by K = {1,..., K} C N the set of possible event types. Define an indicator matrix

Q = (k1)K ek Qg € {0;1}

which determines the possible ways of transmission. If g;; equals 1, an infective type k event
can cause an event of type [. For instance, the IMD data would require Q = I, because the
transmission is finetype-specific. A marked spatio-temporal point process on (0,7] x W x K

is then defined by the following model for the conditional intensity function:
N (t,s,k) = h(t,s,k)+e*(t,s,K) (4.14)

h(t,s,5) = exp (h§P(k) + og(e) + B'Zr(1) (s))
e*(t,s,k) = Z e;j(t,s)

jeI*(t,s,K)
ej(t,s) = exp(on; +7'17;) - g(t —tjlr;) - f(s — sjlk;)
U(ts,m) = {Ge{l,. Not=)}: Lot —t) =1 A Tpgllls = sil) =1 A g =1}

Here, the transmission indicators from the matrix @ have been integrated into I*(t,s, k).
Note that additional marks m; of the events are still not being modelled but are part of the
history of the process (see the discussion around equation (2.7)). The new endemic baseline

component hiP®() either represents a type-specific endemic intercept, i.c.
K
t
hg'P° (k) = Bok Lig=ry (k) = Box »
k=1

or contains only a single global intercept h[t)ype(/f) = [y, corresponding to the hypothesis
Bo = Bo1 = -+ = Po,k. In any case, the parameter vector 3 of the third term in the linear
predictor of h(t, s, k) should of course no longer contain an intercept. The model further as-
sumes that this term does not depend on k, which means that the effect of endemic covariates

(case numbers of influenza as well as the time trend) is homogeneous over the event types.
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In the epidemic component, 7o, ; denotes a type-specific intercept. As already mentioned, this
is no real extension of the previous model, where the event type could already be treated as
an unpredictable mark. However, the history-dependent set I*(t, s, k) of infective individuals
now accounts for the transmission regime @ between the event types, and the interaction

functions are allowed to depend on the type of the infective event. For instance,

_lisl®

2
20%

f(s|k) =exp ( > (s € R?%, 0, > 0) (4.15)
models a type-specific decay of infectivity with increasing distance from the source of infection.
A type-specific exponential decay of infectivity as time goes by is similarly possible for the

temporal interaction function g:

g(t|k) = e =t (t>0,a,>0,keK). (4.16)

4.2 Inference

The unmarked twinstim of Subsection 4.1.2 can be treated as a special case of the marked
version of Subsection 4.1.3 by assuming K = {1}. Maximum likelihood estimation will thus
be presented only for the marked twinstim, i.e. we are given a parametric model of the CIF
introduced in (4.14):

No(t, s, 1) = exp (h§P (k) + 0g(e) + B'Zr(1) (s))

+ Y exp(Yow; + VM) galt —tjlkg) - fols — sjlky) (4.17)
jeI*(t,8,K)

where h{**(k) = fo.. is the type-specific endemic intercept being equal to fy in case of a
type-invariant endemic model. For convenience, the parameters vyo := (y0,1,---,%.x) and
4 of the epidemic linear predictor will be treated together denoting v := (vg,%)’. Dummy
variables for the event types are included in the mark vector /. For instance, if event j
is of type kj, then the mark vector of this event is m; := (0,...,0,1,0,... ,ﬁz})’, where the
1 appears at position ;. Hence, the epidemic linear predictor is 4'm;, and the parameter
vector in question is

0= (Bo.B.,7,0', &), (4.18)

where Bo = (Bo,1,- - -, Po,kx) (type-specific) or Bo = [y (type-invariant), and o and o are the

parameter vectors of the spatial and temporal interaction functions f, and g4, respectively.

Parameter estimates can be obtained by maximisation of the log-likelihood (2.10) or the

partial log-likelihood (2.6) with respect to 8. Trading the partial likelihood off against the
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full likelihood, the results of the simulation study in Diggle et al. (2009) support satisfactory
relative efficiency of the partial likelihood. However, I do not see great benefit in using the par-
tial likelihood approach because the need for spatial integration — which is the computational
bottleneck of routine statistical inference — remains. Furthermore, as already mentioned, the
parameters e and € would not both be identifiable, but only their ratio. As a conse-
quence of these defaults — although I have implemented the partial likelihood alternative (see

Appendix A) — I will concentrate on full maximum likelihood estimation.

Subsections 4.2.1 and 4.2.2 give in turn the log-likelihood and score functions related to the
type-specific twinstim. An estimation of the expected Fisher information matrix is given
in Subsection 4.2.3. Here, I also discuss asymptotic properties of the maximum likelihood
estimators, and touch possibilities of model selection. See Fahrmeir, Kneib & Lang (2007,

Appendix B.4) for a compendium of likelihood inference.

Note that for the complex (marked) twinstim class, analytical maximisation of the log-
likelihood is not feasible, and a numerical optimisation routine will be required. This will be

further discussed in Section 4.3.

4.2.1 Log-Likelihood Function

According to equation (2.10), the log-likelihood decomposes in a sum over the observed con-
ditional log-intensities log Aj(t;, i, ki), ¢ = 1,..., N, and a time-space-mark integral (in the
general sense of Lebesgue-Stieltjes). The components of the sum can be directly calculated
for a specific value of the parameter vector 0 after having determined the set I*(t;, s;, ki)
of potential sources of infection for the ith event. Furthermore, the integrated conditional

intensity function in the log-likelihood is

T T T
/ / Z)\Z(t,s,n)dtds:/ / Zhg(t,s,m)dtds—k/ / > eplt,s,k)dtds
0 WHGIC 0 WK,GIC 0 W&GIC

such that the integrations of the endemic and the epidemic component can be performed

separately.

Recalling that the endemic component is a piecewise constant function on the spatio-temporal
grid {C1,...,Cp} x{A1,..., Ar}, the first integral is in fact a sum over this grid of smallest

observed units in space-time:

D M
/OT /W Z he(t,s,k)dtds = (Z exp (hgype(,g))> Z Z‘CTHAH exp (Og_i_ﬁ/zﬂé) (4.19)

KEK KEK T=1¢&(=1
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The integrated epidemic component can be simplified — moving the indicators of the function

I*(t, s, k) back into the sum — as follows:

T N ,
/0 /w SN 10t —t) Lo s (lls = s5ll) Gy €™ galt — tj]5;) fo(s — sj|k;) dtds

KEK j=1

N , T
= ™| [ bt = talt =t ] | [ oi(ls = s fals = 51m;) ds

J=1

g, | M ) a|| [ folsin) ds] . (4.20)

Arj,. ‘= (Z q;-cj,/{>

KEKX

is the number of different event types which can be triggered by an event of type x;, and
R; = [W N b(S]‘; 5)} — 8 (4.21)

is the spatial interaction region centred at the location of the jth event, where b(s;;d) denotes
the disc centred at s; with radius . Recall that such a type of region R; was already seen
in Figure 3.9(b). In the case of unlimited spatial transmission (§ = c0), R; = W — s; equals

the translation of the whole observation region by s; such that s; becomes the origin.

The evaluation of the two-dimensional integral over the domains R; is the most sophisticated
task of the log-likelihood evaluation. Following the results from Chapter 3, the integral is
computed by the two-dimensional midpoint rule. For the special case of the type-specific
Gaussian kernel (4.15), robust accuracy for any value of o, is guaranteed by an adaptive
choice of the bandwidth h = ¢ 0, (see Subsection 3.2.7).

In contrast, the evaluation of the definite integral over the temporal interaction function is
analytically accessible for the simple choices of g, assumed in this thesis. Provided Gq/(t|x)

denotes an antiderivative of go(t|x), the first integral equals
min{T—t;;e}
/0 ga(tlr;) dt = Ga(min{T — t;;e}|r;) — Ga(0]ry) -

For instance, the type-specific exponential decay function g, from equation (4.16) has an-

tiderivative
—ay t

Galtlr) = — (o > 0). (4.22)

Qg
The case «a,;, = 0, would correspond to a time-invariant infectivity, i.e. go(t) = 1 with an-
tiderivative Go(t|k) = t.



4.2 Inference 63

4.2.2 Score Function

Being able to calculate the log-likelihood for a specific set of parameters @ is the basic pre-
requisite for numeric maximum likelihood inference. For numerical maximisation of the log-
likelihood it is moreover advantageous to have its derivative with respect to 0, i.e. the score

function. In what follows, analytical derivations of the score function are given.

Let 9 denote any subvector of 8. Then, the partial derivative of the log-likelihood with respect
to ¥ is

©) =210 o~ a9 ti: 510 1) // Z 9 it s, k) dtd (4.23)
S :7 == S, S, .
v ) g9 0t 5 1)
and the score function is

SB0

S

so)= 210)— | 1 | 0)
I A
So
Sa

The necessary partial derivatives of the CIF with their respective time-space-mark integrals

are given in the subsequent paragraphs, and can then be plugged into the equation (4.23).

Endemic intercept(s) Bo:

Let Bo, k € {1,..., K} be one of the type-specific intercepts in Bg. Then,

, exp (o + 0(s) + Bz ) i1 =E,
Ap(t, s, k) =
0Bk 0 otherwise,

since the parameter ) j only appears in the endemic component hg(t, s, ) and only if k = k.

The corresponding integrated value is

D M

//ZaﬂOkA9t5“>dtds—eﬁ°’“ S 31 Aeexp (0 + B'2re)

T=1¢&=1

cf. the integral of the endemic component in equation (4.19). If the model assumes a type-

invariant endemic intercept Bg = Jy, then

0
5, —Xg(t,s,K) =exp (ﬁo + Og(s) T B Zr(t), §(s))
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with integrated value

/ / Z 850 t S /i) dtds = Keﬁo . Z Z‘C HA&‘exp (05 +/6z7-,§)

r=1¢=1

Endemic covariate effects 3:

0
8,6)\

with corresponding integral vector (element-wise integral values)

5(t, 5, 1) = exp (R (k) + 0(s) + B2 6(5)) - Zr(t) ()

D M
(Zexp(htype )) ZZ|C ||A§|eXp O¢ —I—,BZTg) Zrg .

KEK T=1£=1

Epidemic effects v = (v(,7)":

a * 'm;
5 0(t 8 k) = Yo M galt —tlk)) fo(s — sjlrj) my
2l JEI*(t,8,K)

and the corresponding integral can be deduced similar to equation (4.20) as

N

s min{T—t;;e}
S . ij[/o ga(tmj)dtH/R f(,(s|/-@j)ds].
3

Jj=1

Parameters o and o of the interaction functions:

For a general spatial kernel f,(s|k),

0 Lo
%AZ(t,S,/{) = Z e’ ga(t — tj|k;) { fo(s 3j|“j)}

JET*(t,8,K)
with corresponding integral

N . min{T—t;;e} . & o
ZQNj,. € L/O ga( ‘K’j) ][/R a?fa’

J

(s|nj)ds} .

Similarly, for a general temporal kernel gq (t|),

9 * 'm; 9
st = ™ gl — )] als = sln)

JET*(t,8,K)
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with corresponding integral
N , min{T—t;;e} 9
Zqﬁj,, ermi [/ —9Ja(t|Kj) dt] [/ fo(s|kj) ds] :
i=1 0 O

The analytic derivatives of f and g with respect to o and «, respectively, have to be deter-

mined for the specific model at hand and plugged into the above formulae. For instance, a

type-specific Gaussian kernel with o = (01, ...,0k)" as in equation (4.15) has partial deriva-
tives
exp (— ”20”2 ) ”0!2 if £ =k,
6—]‘0( s|lk) = k k for any k € KC. (4.24)
Tk 0 otherwise,
The type-specific temporal exponential decay function with o = (a1, ..., ak) from equation

(4.16) has partial derivatives

o) —te ! if k=&,
—gal(tlk) = for any k € K. (4.25)
day 0 otherwise,

While the integral of % fo(8|k) over the region R; will be approximated by numerical inte-
gration, the temporal function % ga(t|K) is assumed to permit analytical integration. Specif-

ically for (4.25), using integration by parts,

1 —a t
/—te’a”tdt = (t—i— ) ¢ : (4.26)

Qx Qr

4.2.3 Fisher Information Matrix, Uncertainty, Model Selection

The inverse of the Fisher information matrix (observed or expected) at the maximum likeli-
hood estimate (MLE) /1, is in general likelihood theory used as an estimate of the variance
matrix of éML. This procedure is well known from classical i.i.d. statistics under Fisher
regularity conditions, where the maximum likelihood estimator is consistent, asymptotically
efficient, and asymptotically normal. The precise conditions under which asymptotic prop-
erties of maximum likelihood estimators hold for spatio-temporal point processes have been
established by Rathbun (1996). Specifically, the conditions for existence, consistence and
asymptotic normality of a local maximum Orrr as T — oo for a fixed observation region W

are, roughly spoken:

e Regularity conditions on the CIF, which are “satisfied by all reasonable point pro-
ces models” (Rathbun, 1996, p.62): almost sure positivity almost everywhere, H;-

predictability (which follows from left-continuity), continuity in 6, and almost sure
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integrability over [0,7] x W, for 0 < T' < co. Note that positivity of the CIF (4.17) is
guaranteed without imposing constraints on @ by only requiring the functions g, and

fo to be nonnegative.

o Existence and continuity in @ of the first and second partial derivatives of the CIF with
respect to any parameter. This ensures that the log-likelihood is twice differentiable
with respect to 8. The last subsection actually verifies differentiability, and I also wrote

down the analytical Hessian.

o A further spatial integrability condition involving the partial derivatives (see Rathbun,
1996, p. 61, condition (A3)).

o Two sophisticated conditions that give appropriate growth, convergence, and continuity
of the Hessian matrix as T' — oo. This roughly means that “information” increases and

converges with observation length (and thus with the number of observed events).

For the special case of inhomogeneous Poisson point processes in either time or space the
conditions are given in Rathbun & Cressie (1994). Since the last two conditions above are
very difficult to verify for the (marked) twinstim class, I assume them to be satisfied — also
for the marked version. This assumption is supported by the provided example of a self-
exciting point process in Rathbun (1996, Section 5), where the conditions have been shown
to be fulfilled. With p = 1 and ~(s) = |W|~! therein, his example equals the unmarked
twinstim
No(ts) =P+ 3 e fy(s — 8) galt — ;)
JEI*(t,5)

with € = d = oo and the typical choices (4.8) and (4.7) for f, and g4, respectively.

“Alternatively, simulations [e.g. parametric bootstrap] may be useful for obtaining approxi-
mate standard errors and for other types of inference” (Schoenberg et al., 2002, p. 7). However,
the implementation of a simulation algorithm for the twinstim class is beyond the scope of
this Master’s Thesis. Hence, estimation of the uncertainty of 8, is restricted to the asymp-

totic properties based on the Fisher information matrix.

The first possibility to compute the observed Fisher information is to analytically determine
and implement the negative Hessian of the log-likelihood function. In the face of the complex
form of the Hessian for a general twinstim, I did not in further detail consider its implemen-
tation because there are simpler alternatives. On the one hand, the optimisation procedure
described in 4.3 returns a numerical approximation of the Hessian matrix at the MLE. On the
other hand, the expected Fisher information Z(€) can be estimated by the “optional variation

process” — adapted from Martinussen & Scheike (2002, p.64) to the marked spatio-temporal

///( log)\etSﬂ)>®2dN(t,s,/<;)

setting —
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through its observed realisation

®2
) , (4.27)
=0

where a®? := aa’ for a vector a. The same estimator was also recommended and used in

7 @2 )\*(tlasivﬁl)
* — 06" 6
7(0)= E ( — log A5(ti, 8i, i) . 9) = El (}M
i=1 = i— g\lis S i

Rathbun (1996, equation (4.7), note that here the inverse is given). Given the implementation
of the score function, the calculation of 7 (é M) poses no difficulties because a similar quantity
already appeared in equation (4.23). In the application, the numerical approximation of the
observed Fisher information and the estimation of the expected Fisher information at O
were sufficiently close to deduce that the approach and my implementation are valid. Only
if “information” is very limited, e.g. for badly identified epidemic parameters in case of few
observed person-to-person infections, the numerical approximation could either fail or result
in a (numerically) singular matrix, which can not be inverted. Fortunately, this is not the

case for Z(Oyrr).

Uncertainty of the parameter estimates is thus deduced from the diagonal of 7~/ 2(éML),
which contains the standard errors of the parameters. Considering the asymptotic normal-
ity of 1, ordinary component-wise Wald confidence intervals of the type (3.6) can be
constructed. In principle, of course, likelihood-based confidence intervals dominate Wald
confidence intervals, but they require heavy computations of likelihood profiles and demand
numeric root-finding. Such computations were not further investigated in this Master’s The-
sis, because the Wald approach was regarded as the only feasible approach with respect to

the computational cost.

However, likelihood ratio tests and AIC procedures “apply to point processes as to any other
class of stochastic models” (Daley & Vere-Jones, 2008, p.502) and are main ingredients of
model selection. The former will e.g. be used to test whether the null hypothesis of a type-
invariant endemic intercept By = (o1 = --- = Bo,x can be rejected. Generally, if the linear
null hypothesis Hy : CO = d is tested against Hy : CO # d, where the (r x p)-matrix C has
rank(C) = r < p, and p := dim(0) is the number of parameters, then the (log-)likelihood

ratio test statistic is

L1(6y) A AN a
T (L;(9;)> =2(1(6) ~ ho(B0)) x*r).

Here, Ll(él) denotes the maximum likelihood value of the unrestricted model, and Lo(éo)
denotes the maximum likelihood value of the restricted model under the null hypothesis Hy.
If the former is “sufficiently” larger than the latter, then Hy will be rejected in favour of
H;,. The meaning of “sufficiently” depends on the number 7 of hypotheses and the confidence
level, and is determined by the asymptotic x?(r)-distribution of the test statistic.
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The AIC (Akaike’s information criterion) is defined as
AIC = —2l(éML) +2p,

and represents a trade-off between goodness of fit and model complexity. Models exhibiting
smaller AIC values are generally more favourable. It is especially helpful for the comparison of
non-nested models and could also be used to examine hyperparameters like € and § by “brute

force” trying a range of values, although uncertainty of these parameters is not assessable.

4.3 Implementation

The implementation of all necessary computations for fitting models of the (marked) twinstim
class in R made up a considerable amount of time during my Master’s Thesis period. All the
code is available from the CD attached as Appendix A. In this section, I will give an overview
of the usage of the two main R functions. Further details are found in the code on the CD.
It is worth pointing out that the provided implementation is not limited to the analysis of
the IMD data or infectious diseases, but is applicable in the quite general context of spatio-
temporal self-exciting point processes. It could therefore serve as a basis for future research

and other applications.

The first step towards fitting a model of the twinstim class is to convert the data about
occurrences of events and covariate information in space-time into a standardized structure.
The available data usually consists of a dataset, say events, where each row represents an
observed event. More precisely, events is required to be a SpatialPointsDataFrame (defined
by the package sp). Besides the location and the time point, there may also be a number of
marks attached to the events. Furthermore, it must contain a specification of the assumed
maximum temporal and spatial ranges of interaction € and 6. In order to fit a twinstim
with an inhomogeneous endemic component to the observed point pattern, a second dataset
(data.frame), say stgrid, provides endemic covariate information on some spatio-temporal
decomposition of the observation region as described in the text of Figure 4.2. These two
objects are the main ingredients of an object of the S3 class "epidata". Such an object can

be constructed by the call
R> epi <- as.epidata(events, stgrid, W, gmatrix, nCircle2Poly)

where additionally, W is the observation region of the point pattern (inheriting from the sp
class SpatialPolygons), gmatrix is the |K| x |K| indicator matrix Q in case of a multitype
epidemic, and nCircle2Poly determines the number of edges for the polygonal approximation
to a circle. For the IMD data, W represents Germany’s borders, gmatrix=diag(2) because

transmission is finetype-specific, and I always used nCircle2Poly=32 in the analyses of the
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next chapter. The converter function as.epidata checks the consistency of the supplied data
and prepares everything for the model estimation. For example it computes the individual
influence regions R; defined in equation (4.21). After coercion of the present IMD data into

an object of the class "epidata", this object prints in R as shown in Figure 4.3.

R> imd

History of an epidemic

Observation period: 0 -- 2569

Observation window (bounding box): [4031.295, 4672.253] x [2684.102, 3551.343]
Spatio-temporal grid (not shown): 367 time blocks, 413 tiles

Types of events: 'B' 'C'

Overall number of events: 636

coordinates ID time tile type eps.t eps.s pnr age sex BLOCK

12 (4112.19, 3202.79) 1 3.99 05554 B 30 150 103 17 male 1

50 (4122.51, 3076.97) 2 4.00 05382 C 30 150 402 3 male 1

39 (4412.47, 2915.94) 3 9.00 09574 B 30 150 312 34 female 2

40 (4202.64, 2879.7) 4 11.00 08212 B 30 150 314 15 female 2

78 (4128.33, 3223.31) 5 26.00 05554 ¢ 30 150 629 15 male 4

9 (4089.92, 3178) 6 28.00 05170 C 30 150 86 16 male 4
start popdensity influenzaO influenzal influenza2 influenza3

12 0 260.8612 0 0 0 0

50 0 519.3570 0 0 0 0

39 7 209.4464 0 0 0 0

40 7 1665.6117 0 0 0 0

78 21 260.8612 0 0 0 0

9 21  454.7456 0 0 0 0

[....]

Figure 4.3: Textual representation of the IMD data as an object of the class "epidata".

Here, only the first six rows of the event table are printed. The coordinates are in the
ETRS89 coordinate reference system (cf. Subsection 1.2.4). By this projection, the events
are located in a Cartesian coordinate system, where the unit is one kilometre. The time
is counted in days since 24 December 2001, which is the Monday of the week of the first
case. Note the adjusted time point 3.99 resulting from the tie breaking procedure described
in Subsection 1.2.4. The spatio-temporal grid has a week x county resolution, thus there are
a total D = 367 time intervals and M = 413 tiles. The column tile equals the index £(s;)
of the spatio-temporal grid stgrid, here referenced by the official key of the county. The
column BLOCK (7(%;)) indexes the time interval (i.e. week) where the event occured, and its
lower bound is given in the column start. The column eps.t equals € = 30 [days|, and eps.s
equals § = 150 [km] (these choices will be discussed in the next chapter). While the columns
type, pnr (patient number), age, and sex are marks of the events (i.e. the mark vector m;),
the columns popdensity (population density), and influenza[0-3] contain the values of
the endemic covariates at the time and location of the events (mapped from stgrid). The

numbers of influenza cases for the corresponding week of time and county tile are given
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as influenza0. The other influenza columns represent lagged versions of these numbers, for
instance, influenzal is the case number of influenza in the county tile one week before the

infection.

Based on such epidata objects, the function twinstim can perform maximum likelihood
estimation for the model class of the same name. An example call is:
fit <- twinstim(
endemic = ~ 0 + offset(log(popdensity)) + I(start/365) + influenza0,
typeSpecificEndemicIntercept = TRUE,
epidemic = ~ 0 + type, siaf = siaf_log, tiaf = tiaf,
data = imd,
optim.args = list(par = rep(0,9), method = "nlminb", hessian=TRUE),
finetune = TRUE, nCub = 12, partial = FALSE
)
This specifies an endemic component with a finetype-specific intercept, an offset for the log-
population density, a linear time trend and a linear effect of the case numbers of influenza.
For numerical reasons and easier interpretation, the time in the linear trend is rescaled to
years. The epidemic component also has a type-specific intercept (the type variable is coded
as a factor variable in R). The arguments siaf and tiaf specify the spatial and temporal
interaction functions, respectively. In fact, the interaction functions have to be provided
with all necessary analytical derivatives and integrals. The type-invariant exponential decay

function g, from equation (4.8) is e.g. implemented as

tiaf <- list(

g
G = function(t, alpha) if (alpha == 0) t else -exp(-alphax*t)/alpha,

function(t, alpha) exp(-alpha*t),

deriv = function(t, alpha) as.matrix(-t*exp(-alpha*t)),

Deriv = function(t, alpha) if (alpha == 0) as.matrix(-t~2/2) else
as.matrix((t+1/alpha)*exp(-alpha*t)/alpha),

npars = 1

)
Here, G,(t) = [g,(t)dt, deriv,(t) = a%ga(t), and Deriv,(t) = [deriv,(t)dt (see equa-
tions (4.22), (4.25), and (4.26)). Note that the special case e = 0 is also accounted for, and

no efforts are made to artificially restrict the parameter to the domain R.

The specification of the spatial interaction function will be exemplified by a type-specific
Gaussian kernel like in equation (4.15), but the parameters o, are re-parametrised to the

log-scale in order to avoid constrained optimisation and inference:

Is|*

zxp@)) (s € R2, gy = log(0)) (4.28)

fo(s|k) = exp <

where ¢ = (¢1,...,¢K) . For the evaluation of the score function and the Fisher information
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matrix of Subsections 4.2.2 and 4.2.3, respectively, we further need the partial derivatives of

f with respect to the elements of ¢:

5 oxp (— ol ) Sl k=,
—fo(slk) = 2exp(ier)® ) exp(er) for any k € K. (4.29)
g otherwise,

The basic form of specification of the spatial interaction function then is:

siaf_log <- list(
f = flog,
deriv = deriv_flog,
Fcircle = intCircle_flog,
effRange = function (logsd) 6+*exp(logsd),
npars = K

)

Here, flog is the implementation of the type-specific Gaussian kernel from equation (4.28),

and deriv_flog its derivative with respect to ¢ from equation (4.29):

flog <- function (s, logsd, types) {
sLengthSquared <- rowSums (s~2)
sd <- exp(logsd) [types]
exp (-sLengthSquared/2/sd~2)

deriv_flog <- function (s, logsd, types) {
sLengthSquared <- rowSums (s~2)
L <- length(sLengthSquared)
deriv <- matrix(0, L, length(logsd))
sd <- exp(logsd) [types]
deriv[cbind(1:L,types)] <- exp(-sLengthSquared/2/sd”2) * sLengthSquared / sd”2

deriv

Note that the argument s above is a matrix of coordinates, and logsd is the vector ¢. More-
over, the implementation is designed to take special care concerning the integration over those
influence regions R;, which are actually discs completely inside W. This occurs if the minimal
distance from s; to the boundary of W is smaller than or equal to § (the minimal distance
is calculated by the spatstat function bdist.points). In this case, the Gaussian kernel
can be integrated quickly through the distribution function of a y2-distribution as explained
in Subsection 3.2.7. The calculation is implemented by the function given as Fcircle =
intCircle_flog, which computes the integral of £ over a disc with centre (0,0) as a function

of its radius 7r:
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intCircle_flog <- function(r, logsd, type) {
sd <- exp(logsd) [type]
pchisq((r/sd) "2, 2) * 2*pi*sd"2
}
Another application of this quick integration is motivated by computational convenience.
The function effRange returns the “effective range” for the cubature for a specific value of
¢r = log(oy), which is chosen as 60, (cf. Subsection 3.2.7). Hence, if R; N 5(0,60,) is a
circular domain completely inside W, then f can be integrated quickly by Fcircle using
r = min(60y,0) as the radius. However, if these tricks are not applicable, then the type-
specific Gaussian kernel is integrated numerically by the adaptive two-dimensional midpoint
rule. In the twinstim call on page 70, the parameter nCub determines the desired bandwidth
h = 0.50,, = effRange/nCub, i.e. ¢ = 0.5 (cf. Subsection 3.2.7).

The remaining arguments to the twinstim call on page 70 are control arguments for the
optimisation procedure. The logical value partial determines whether to maximise the full or
partial likelihood, and optim.args defines the start value for 8 (here a vector of zeros) and the
type of algorithm. For instance, the Nelder-Mead simplex algorithm (Nelder & Mead, 1965)
could be used as implemented in the R function optim. This is a general-purpose optimiser,
which only uses function values (no derivatives), and — according to the documentation of
optim — is “robust” and “works reasonably well for non-differentiable functions” It also
provides a numerical approximation of the Hessian matrix at the optimum (if hessian=TRUE),
which is the negative observed Fisher information matrix. The only drawback is that it is
slow compared to Newton-methods which make use of function derivatives. In quasi-Newton
methods, the Hessian matrix is iteratively updated numerically, a common example being the
Broyden—Fletcher-Goldfarb—Shanno (BFGS) algorithm (described in, e.g., Press et al., 2007,
Section 10.9), which is as well implemented in optim. Another implementation can be found
in the PORT Mathematical Subroutine Library (Fox, Hall & Schryer, 1978), a collection of
FORTRAN 77 routines developed by Bell Labs. Its publicly available general minimisation
routines (see http://www.netlib.org/port/readme) are accessible from within R through
the function nlminb. In contrast to optim, it also accepts an analytical Hessian on input,
which is used during optimisation and then usually converges faster than BFGS. This is
why I found method="nlminb" to be the best choice for optimisation. Note that I used the
estimation of the expected Fisher information matrix from equation (4.27) for the (negative)

Hessian provided to nlminb.

To guard against false convergence, maximisation is commonly repeated from a range of
starting values. Additionally, I always applied Nelder-Mead optimisation as a second step to
validate and finetune the point of maximum likelihood found by nlminb. This did never
reveal any substantial changes of the MLE. Furthermore, for numerical reasons, convergence

is usually improved by scaling the log-likelihood function to have values around 1.
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Figure 4.4: Shape of the normalised log-likelihood function around the MLE (indicated by the dashed
vertical lines) of an example model for the serogroup B point pattern. The horizontal line
is always at —1.92 such that a 95% confidence interval based on the estimated likelihood is
bounded by the two intersections of the line with the normalised estimated log-likelihood.
The parameters of the endemic component are in the top row, epidemic parameters are in
the bottom row.

Figure 4.4 illustrates a typical quality of the shape of the log-likelihood function. The cen-
tral point around which the partial shapes are computed is (Bo,ﬁtrend,ﬁmﬁuenza,%,6) =
(—2.8,—0.032,0.0076, —12,20), which is the MLE of the model. Each plot shows the nor-
malised log-likelihood as a function of the parameter on the horizontal axis, when fixing the
other parameters at their MLE value. This is known as the estimated likelihood approach.
The bottom-right plot for the parameter o of the spatial interaction function shows the log-
likelihood shape using two different choices of accuracy for the two-dimensional midpoint rule.
The evaluation using ¢ = 1, i.e. an adaptive bandwidth of h = ¢ is of course more noisy. In
this case, trying different starting values would be especially important for the parameter o.
However, for reliability and reasonable computation time, I used ¢ = 0.5 in the analyses of
the IMD data presented in the next chapter. Note that there was no apparent difference in
runtime between the two choices of ¢, because in the plot, ¢ > 5: in relation to the affected
integration regions R; with 6 = 150, the small implied numbers of subdivisions for h = o
(ngy = ny < 60 subdivisions) and h = 0.50 (n; = n, < 120 subdivisions) have no crucial
impact on computation time (cf. Table 3.1(b)). Concerning the intercept 7o of the epidemic

component, maximisation must also be driven with care: If the algorithm happens to jump
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to far to the left, i.e. the weight €70 of the epidemic component becomes numerically equal
to zero, then the derivative in g is approximately zero, the algorithm gets stuck, and o is no

longer identifiable.

The shape of the log-likelihood around its maximum suggests that symmetric Wald confidence
intervals for the MLEs based on the quadratic approximation of the log-likelihood are appli-
cable. The sharp decline of the log-likelihood for high values of Ginfluenza i due to some high
numbers of influenza cases (range: 0—314). Rescaling the numbers of cases by e.g. considering
influenza/10 could improve the numerical conditioning here. In general, however, further
development using efficient compiled C code for the likelihood evaluations would be welcome
to enable the routine use of likelihood-based confidence intervals. Note that the generation of
each of the plots in the figure took about 3.4 minutes. Because there are 50 evaluation points

in each plot, a single evaluation of the log-likelihood cost about 4.0 seconds.

4.4 A Tricky but Insufficient Alternative

With regard to the sophisticated modelling and corresponding estimation presented in the
previous sections, the question arises whether there is no simpler point process model for
the analysis of the IMD data at hand. Indeed, in line with the Cox model, an appealing

(unmarked) form for the conditional intensity function would be a log-linear model

Ap(t,s) = exp (n;(t, S)) , (4.30)

where
ne(t,s) = 0'z*(t, s)

is a linear predictor. Here, 2*(¢, s) incorporates influence factors on the conditional intensity
that may vary both in space and time, and may also depend on the history of the process. As
for twinstim’s no constraints on @ have to be imposed to guarantee nonnegativity of the con-
ditional intensity. However, the major advantage of such modelling is that the corresponding
log-likelihood function is almost surely concave (cf. Ogata, 1978, example on p.255) so that,

if it exists, its maximum is unique.

For the IMD data, possible influence factors would include

/

2(t,8) = (hF"(s), b ™ (1), 2O (t, 8), " (2, 9))

where the baseline components hgP*(s) and hi™P(t) denote the population density and a

time trend, respectively. The covariate z(©) (t,s) = zit()z

influenza during the week 7(¢) of the time point ¢ in the county £(s) containing coordinate s.

),£(8) denotes the number of cases of
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The history-dependent term e*(¢, s) is the same as in equation (4.9). Usually, the population

density will be treated as an offset term, such that the conditional intensity function

No(t,8) = hi™(s) - exp (mj(t, 5))
is proportional to the population density.

The charm of the log-linear model (4.30) for the conditional intensity lies in a tricky estimation
procedure discovered by Berman & Turner (1992) for purely temporal point processes and
the spatial Poisson process. Specifically, the log-likelihood related to the log-linear CIF model
can easily be transformed into the log-likelihood of a weighted Poisson GLM. Thus, the broad
range of well designed standard implementations can be used to obtain estimates and standard
errors of the parameters. Basically, the trick is to include the observed event locations into
the set of evaluation points for the numerical approximation of the integral term in the log-
likelihood (2.4):

/ / Ap(t,s)dtds ~ ZTUkZUl)\g (tk, 81) (4.31)
k=1

where W, and ¥; are quadrature and cubature weights, respectively, and

“data points” C “design points”
x:={(tys):i=1,....,.N} C {(tx,8):k=1,....np,1l=1,....,ny} =G

Hence, the log-likelihood can be written as

N nr nw
10) ~ Y log(Ng(ti,s:)) Zzwk Ui Xp (L, 31)
i=1 k=11=1
nr nw
= > ) wy (7 log A (6) — AZZ(O)) ;
k=11=1
where wy; := Wy, ¥U; are “observation” weights,

Na(0) = Ny (B, 51) = exp (njy(0))  with 5y (0) = mj (e, 1),

and 0 = 14((fx, &), which indicates if the grid point (#, &) is a data point. Up to a
constant not depending on the parameters, this log-likelihood is known from Poisson GLMs
with pseudo reponse variables %, weights wyy, log-link, and linear predictor terms 7;,;(0).
Note that the linear predictor must be known not only at the locations @ of observed events,

but at every point of the grid G.

The extension of the Berman & Turner device to a wider class of spatial point processes as

described in Baddeley & Turner (2000) is e.g. used in spatstat for the estimation of such
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models. However, the approach is insufficient for the modelling of self-exciting point processes
like applied in this thesis. The log-linear formulation of the CIF (4.30) restricts estimation to
the intercept ~g of the triggering function, which can be factorised from the history-dependent
sum e*(t, s). Further parameters like the effects of marks, or the parameters of the interaction
functions f, and go are not log-linear. Thus, their estimation is not possible by the Berman
& Turner device, which actually means that the whole triggering function must be given in

advance.

As a consequence, I only investigate in the next chapter the applicability of the presented
twinstim class on the IMD data.



5 Application

The previous chapter introduced the twinstim class for (marked) point processes in contin-
uous space-time with a self-exciting character. This chapter will now apply the theoretical
considerations on the IMD data presented in Section 1.2 which motivated the development of
twinstim. Model selection and interpretation will in turn be carried out for the serogroup B
finetype (Section 5.1), for the serogroup C finetype (Section 5.2), and then for the joint point
pattern of both finetypes (Section 5.3).

For all models, I will use the logarithmic population density as an offset in the linear predictor
of the endemic component. Hence, the endemic risk of observing an infection in a specific
county is always proportional to its population density. Furthermore, I assume the maximum
interaction ranges ¢ = 30[days] and 6 = 150 [km|. These choices are both conservative,
because the true ranges are expected to be much smaller. The temporal cluster size is chosen
based on the results in Elias et al. (2006) already mentioned in Subsection 1.1. For their
space-time cluster detection, they also used a maximum range of 30 days and found that “the
time between the first and the second case may rarely exceed this temporal limit”. The longest
detected interaction then in fact was 24 days. Imposing a spatial bound § on the distance
over which transmission occurs is mainly motivated by a speed-up of the estimation procedure
and improved accuracy of the numerical integration for narrow kernels. Furthermore, it has
also a subject matter motivation because the occurence of two cases at a large distance away
from each other is unlikely caused by direct transmission of the disease. In Elias et al. (2006),
the spatial cluster size was bounded by the population included in the clusters rather than
their spatial extent in kilometres. This imposes smaller cluster sizes in metropolitan areas like
Berlin, and permits larger ones in rural areas. Specifically, they chose the maximum spatial

cluster size to correspond to 7% of the German population (5777 219).

Concerning the interaction functions, besides from the constant versions ¢g(t) = 1 and f(s) =
1, only the Gaussian kernel (4.7) (type-invariant) or (4.15) (type-specific), and the exponential
decay function (4.8) (type-invariant) or (4.16) (type-specific) are considered. The Gaussian
kernels are reparametrised to depend on the standard deviation on the log-scale to avoid

constrained inference, see equation (4.28).

Selecting a model in the regression context usually begins with the smallest or the largest

possible model, followed by forward, backward or stepwise selection of model components. In
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principle, this procedure is also advisable for selecting a point process model through its CIF.
However, the computational cost of model estimation is tremendous once a spatial interaction
function is included in the model. Thus, as a pragmatic approach, I always estimate some
preliminary models with assumed homogeneous mixing, i.e. g(t) = 1, f(s) = 1 — also to
determine sensible start values for the subsequent estimation of models with inhomogeneous
triggering functions. In order to illustrate twinstim, I will provide brief interpretations along

with the intermediate models during model selection.

Table 5.1 defines the notations used throughout this chapter.

Symbol R variable Description

(t,s,K) - Days since 24 December 2001, coordinate in ETRS89 (kilo-
metre scale), finetype (B=1, C=2).

(1(¢),&(8)) - Week number of time point ¢, county of coordinate s.

|t] start Monday of week 7(t), i.e. lower bound of time intervals
Cy,...,Ch.

Pe(s) popdensity | County-specific population density (inhabitants per km?).

Zf—l()t),g( 5) influenzal | Number of influenza cases registered at the RKI in the
county £(s), I weeks before the week 7(t), I € {0,1,2,3}.

Mj sex sex Indicator variable for the patient’s gender (O=female,
1=male)

M age age Age of the patient

vr =log(oy) | siaf.k Standard deviation of the Gaussian kernel on the log-scale.

o tiaf.k Parameter of the temporal interaction function gq.

Table 5.1: Notation of variables used throughout this chapter.

5.1 Finetype B:P1.7-2,4:F1-5

The first model fitted to the observed point pattern of 336 cases of the serogroup B finetype
(cf. Figures 1.2(a) and 1.3(a)) is

2
365

> exp(y) -

JEI*(L,s)

4]

)\Z(t, S) = Pg(s) " €XP (BO + Btrend 5 g T Bsin SiD (LtJ > + Beos cos (LtJ ’ %)

365
(5.1)

3
@
+ Z ﬁinﬂuenza,l ZT(t),§(5)> *
=0

The epidemic component models a completely homogeneous triggering function, i.e. it simply
equals €7 times the number |I*(¢, s)| of potential sources of infection. In other words, every
infectious individual spreads the disease at the homogeneous rate €’ during her infectious

period of 30 days inside her spatial influence range of 150 kilometres around her position. The
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endemic linear predictor consists of an intercept, a linear time trend scaled to years (leaving
aside leap years), a sine-cosine wave at frequency 32% corresponding to a time-of-year effect,
and effects for the case numbers of influenza with lags from 0 to 3 weeks. The estimation
took 1.5 minutes and the results are shown in Table 5.2. Its first part contains the parameter
estimates, where endemic and epidemic parameters are separated by a horizontal line, and

the second part shows the AIC and the log-likelihood of the model.

’ Estimate Std. Error zvalue P([Z] > [z]) |

(Intercept) —20.402892 0.135465 —150.614 <2-10716
I(start/365) —0.027941 0.032837 —0.851 0.394839
sin(start*2*pi/365) 0.276376 0.099496 2.778 0.005473
cos(start*2*pi/365) 0.369904 0.095454 3.875 0.000107
influenza0 0.015920 0.012306 1.294 0.195793
influenzal —0.018402 0.040532 —0.454 0.649817
influenza?2 0.006092 0.039275 0.155 0.876741
influenza3 —0.008332 0.025397 —0.328 0.742851
(Intercept) —15.9431 0.2468 —64.6 <2-10716

AIC: 9986.4

Log-likelihood: —4984

Table 5.2: Results from the initial fit. The statistics of endemic and epidemic parameters are separated
by a horizontal line. The first (Intercept) row thus belongs to the endemic intercept 3y,
whereas the second one belongs to 4.

Both intercepts are of course significantly different from zero because they scale the effects
to the level of the spatio-temporal intensity. For a better understanding, just assume that
the pattern stems from a stationary and homogeneous Poisson process. Then, the maximum

likelihood estimate of the rate of this process would be

N 336
T|W| 2569 - 357603

Avr = ~ 3.66 - 1077 ~ exp(—14.8) ,
which equals the mean number of events per day per km?. The endemic intercept additionally
adjusts for the level of the population density, which ranges up to 4225 inhabitants per km?

in Munich.

To give a first idea of the appealing interpretation of the epidemic intercept 7y through
equation (4.12): Would the above model be true, then each infected individual caused on
average fi; = i = exp(%p) - 30 - 1502 m ~ 0.25 secondary cases, which epidemiologists would
call the basic reproduction number Ry of the disease. The twinstim class thus offers a
practical way to estimate this number while adjusting for endemic effects like the population
density. A 95% Wald confidence interval (CI) for i can be constructed as a transformation
of the confidence interval for 4y (its bounds are plugged into the above formula for /i), which
yields the range [0.16,0.41].
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The time trend is slightly negative and its value would mean that the endemic background
risk for infections decreased about (1 — eﬁtrcnd) -100% =~ 2.8% per year. The sine-cosine wave
for time-of-year effects seems to be an important explanatory covariate, whereas none of the
case numbers of influenza is significant. Certainly, they partially explain a similar character-
istic through their seasonality as the deterministic wave. However, the correlations between
the sine-cosine terms and the influenza covariates do not exceed the value 0.184. As an al-
ternative to linear modelling of the influenza case numbers I considered the transformations
log(1 + influenza) and y/influenza, but they yielded smaller likelihoods and would also

complicate interpretation.

Starting from the above model, I next removed the most ambigious effects (according to
the p-value) in turn and checked the decrease of the AIC value. The results are listed in
Appendix B. Observe that the time trend as well as all influenza effects (in the order of lags
2, 3, 1, 0) were dropped from the model. I checked the sensitivity of the model selection with
regard to exclusion of the epidemic component. Carrying out the selection procedure without
the epidemic component, the above mentioned terms were equally dropped from the model.
It should moreover be noted that the AIC was worse compared to the models with epidemic
component. For instance, fitting the initial model without the epidemic component yields an
AIC of 10007 (compared to 9986.4 when it is included).

This preliminary model selection suggests that a deterministic trigonometric oscillation suf-
ficiently explains the seasonal variations of the serogroup B finetype. On top of that, there
seems not to be a specific effect of influenza in the sense that larger waves of influenza cause
more cases of this IMD finetype. Trying to improve the time-of-year effect by adding its
first harmonic (half-year period) sin(2w|t]) + cos(2w|[t]), where w := 2%, worsens the AIC
(see Table B.6). It could be supposed that the deterministic sine-cosine wave obscures the
effect of influenza. However, running the selection procedure without this deterministic wave,
all endemic effects but the intercept are in turn removed from the model, and the order of

deselection of the different influenza lags is the same as well.

As a next step, I modelled inhomogeneous spatial and temporal interaction functions. To
be sure, I also included the influenza effects with lags 0 and 1 in the model. The parameter
estimates from a previous model have been used as start values for the optimisation algorithm,
but several runs using different start values for the new parameter ¢ = log(o) were necessary
for convergence to the point of maximum likelihood. This is related to the discussion on Figure
4.4. Note that each run now costs considerably more computation time due to the necessary
bivariate numerical integration of f,(s). On average the log-likelihood maximisation of the
following models took 56 minutes (range: 27 — 87). The results of the converged model

estimation are shown in Table 5.3.
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’ Estimate Std. Error z value P([Z] > [z]) |
(Intercept) —20.56630 0.07100 —289.683 <2.10°1°

sin(start*2*pi/365) 0.24048 0.09779 2.459 0.013922
cos(start*2*pi/365) 0.30964 0.09397 3.295 0.000984
influenza0 0.01622 0.01088 1.491 0.136032
influenzal —0.01726 0.01722 —1.003 0.316069

(Intercept) —12.13582 0.20143 —41.643 <210 1©
siaf.1 2.91783 0.09636 30.281 < 210716

tiaf.1 0.01886 0.01723 1.095 0.274
AIC: 9857.4
Log-likelihood: —4921

Table 5.3: Results for the model with inhomogeneous spatial and temporal interaction function.

The estimates of the endemic component do not differ substantially from the corresponding
model with homogeneous mixing (see Table B.3). Higher values of influenza0 — the numbers
of influenza cases reported to RKI during the actual week and county of the IMD infections
— seem to increase the endemic risk of infection. If there occur 10 more cases of influenza in
a particular week and county, given the same internal history of the process (i.e. the same
past cases of IMD) and the same number of influenza cases in the previous week, the model
would predict a local increase of the endemic risk of infection with the IMD finetype B by
about 18%. The effect is however not significant on the 5% level and the 95% Wald confidence
interval is [—0.005106, 0.037550]. It is also questionable whether the effect of influenza on the
endemic predictor is linear at all. The lagged number of influenza cases influenzal would

have an inverse interpretation, because the point estimate of the effect is negative.

Compared to the models with homogeneous mixing, the epidemic intercept =y increased in
the current model. This is because it compensates for the narrowed spatial range of inter-
action induced by the spatio-temporally decreasing triggering function. However, the basic
reproduction number implicated by this model is 4 =~ 0.26 and is thus almost the same as
with homogeneous mixing. Note that providing a confidence interval for fi, which is in fact a
complex transformation of the basic estimators 4g, &, and @, is no longer straightforward by
means of just transforming basic confidence intervals. If a simulation algorithm for twinstim’s
was available, then parametric bootstrap could be used to compute approximate confidence

intervals for i and any other statistics.

Concerning the difficulties of convergence, the parameter « of the temporal interaction func-
tion might be the reason for hard identifiability of the model. Observe that endemic effects
generally receive more information from the data than epidemic effects. This is because the
endemic effects concern all observed realisations \*(¢;, s;) of the conditional intensity, whereas
epidemic effects only appear in a limited number, depending on the set I*(¢;, s;) of potential
sources of infection for individual 7. For instance, individuals that attracted the disease far

away from infective individuals will have I*(t;, s;) = 0, which means that epidemic effects can
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not be identified from such observations.

The distribution of the number |I*(¢;, s;)| of potential causative events for the 336 observed
infections is shown in Figure 5.1(a). As much as 130 infections (i.e. 38.7%) do not have
any progenitors 30 days before and 150 km around them. Most other infections have 1 to
3 potential vectors. The largest cluster contains 11 possible vectors of the disease. Figure
5.1(b) shows a histogram of the temporal distances t; — t; between possible sources and
infections. These distances are well uniformly distributed over the range (0,30]. The same

type of histogram for the spatial distances ||s; — s;|| in (c) shows a similar broad distribution.
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Figure 5.1: Figures related to the potential sources of infection I(¢;, s;) for finetype B:P1.7-2,4:F1-5.

In Table 5.3 the parameter estimate & (tiaf.1) of the temporal interaction function is not
significantly different from zero, i.e. from a temporally constant infectivity. Figure 5.2 shows
the fitted exponential decay with & = 0.01886 together with its lower and upper bound
corresponding to the 95% Wald confidence interval [—0.01491,0.05264] for &. Because this
confidence interval includes the value o = 0, the hypothesis of a constant temporal interaction

function g(t) = 1 can not be rejected.

As a consequence, and because « seemed to be hardly identifiable, the temporal interaction
function is again assumed to be constant. This yields an AIC of 9856.7 (see Table B.7), which
is smaller than in the previous model. With removed «, convergence of the optimisation
procedure was no longer a problem. Because the numbers of influenza cases still do not
explain much of the IMD dynamics, they are finally dropped from the model (see Table B.8
for the intermediate drop of influenzal only) yielding a further decrease of AIC and the

estimates in Table 5.4.

Removing any of the remaining components would re-increase AIC. Hence, we have found
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Figure 5.2: Fitted temporal interaction function (solid) and lower and upper bounds (dashed) corre-
sponding to 95%-confidence limits of &. The null hypothesis of time-invariant infectivity
g(t) =1 is symbolised by the grey line.

’ Estimate  Std. Error z value  P(|Z] > [z]) |

(Intercept) —20.56740 0.06951 —295.892 < 2-1071°
sin(start*2+pi/365) 0.24343 0.09346 2.605 0.009200
cos (start*2pi/365) 0.31240 0.09385 3.329 0.000873

(Intercept) —12.39911 0.18914 —65.55 <2-1071°

siaf.1 2.91739 0.09662 3019 <2-10716
AIC: 9854.4
Log-likelihood: —4922

Table 5.4: Results for the selected model with spatial interaction function.

a simple, but well-identified model, which explains the spatio-temporal dynamics of the

serogroup B finetype by baseline seasonality and a distance-dependent triggering function

éj(t,s) =exp(Ho) - fo(s — 8;) = exp(fo) - exp (—W) = exp (—12.4 — HS_SJ”2> .
2 exp(p)? 2-18.492
A point estimate for the corresponding basic reproduction number is i ~ 0.27, i.e. about
one out of four infectives causes a secondary case. Figure 5.3(a) shows the estimated time-
of-year effect exp (ﬁsin sin(tw) + BCOS cos(t w)) which multiplies the global endemic baseline
rate exp(ﬁg) ~ 1.17-107%. Note that the discretisation of time on the weekly grid has been
ignored for this illustration. The typical increase of IMD cases around late February (see
Figure 1.5(b)) is caught by this function. The estimated spatial interaction function, which
is an isotropic Gaussian kernel, is plotted as a function of the distance from the infective
individual in Figure 5.3(b). It suggests that transmission of the finetype B:P1.7-2,4:F1-5

is effectively limited to about 50km from the residence of the infected individual. This
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Figure 5.3: Fitted seasonality and isotropic spatial interaction function f(s) = f(||s]).

represents, in part, the natural boundedness of individuals’ movements.

The analysis carried out so far assumed homogeneous individuals, i.e. the available marks
of gender and age have not been used to discriminate infectivity. Starting from the above
selected model, T investigated a gender effect, a linear effect of the age (on the predictor level)
and an effect for infants. The age effects both were not significant (see Tables B.9 and B.10).
Note that the goodness-of-fit of these models can not be compared to the previous models
without marks, because age or gender were missing for 4 individuals and estimation could
only be performed on the subset of complete observations. Further investigations trying to
identify different levels of infectivity for specific age groups could be valuable, but are not
considered in this thesis. In contrast to the age effect, male and female infectives seem to
have a different ability to transmit the disease. Table 5.5 shows the estimation results of the

selected model enriched by an effect of gender.

Again, the (log-)likelihood of this model is not comparable with above results due to 3 missing
values for the gender of the IMD cases of the serogroup B finetype. However, the parameter
estimates of the endemic component and also the estimated log-standard deviation of the
Gaussian kernel are very similar to the estimates of the unmarked model in Table 5.4. The
mean number of infections entailed by a female infective is fifemale = 0.38, whereas male cases
only cause exp(Ysexmale) * ffemale =~ 0.17 secondary cases on average, i.e. less than half as much
as females. The 95% Wald confidence interval for the proportionality factor exp(9sexmale) for
males is [0.233, 0.888].
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’ Estimate Std. Error z value P([Z] > [z]) |

(Intercept) —20.57285 0.06964 —295.428 <2.10716
sin(start*2*pi/365) 0.27003 0.09373 2.881 0.003967
cos(start*2*pi/365) 0.32228 0.09421 3.421 0.000624

(Intercept) —12.0516 0.2236 —53.907 <2.10716

sexmale —0.7883 0.3417 —2.307 0.0210
siaf.1 2.9178 0.0955 30.552 <2.10716
AIC: 9774
Log-likelihood: —4881

Table 5.5: Results for the model with gender-specific infectivity.
5.2 Finetype C:P1.5,2:F3-3

For the observed point pattern of 300 cases of the serogroup C finetype, this section presents
a similar analysis as for the serogroup B finetype in the previous section. The results are pro-
vided more concisely as above, while similarities and differences with respect to the serogroup
B finetype are discussed. Model selection begins with the model of equation 5.1, i.e. a rich en-
demic component and the simplest epidemic component of constant interaction. Estimation

results of this initial model are given in Table 5.6 below.

’ Estimate Std. Error z value P([Z] > [z]) |

(Intercept) —20.324542  0.124533 —163.206 <2-10"16
I(start/365) —0.057714 0.031967 —1.805 0.07101
sin(start*2*pi/365) 0.357065 0.098528 3.624 0.00029
cos(start*2*pi/365) 0.170707 0.095221 1.793 0.07301
influenza0 —0.026165 0.045310 —0.577 0.56363
influenzal 0.004043 0.045546 0.089 0.92927
influenza?2 0.010041 0.037261 0.269 0.78756
influenza3  —0.008592 0.023066 —0.372 0.70954
(Intercept) —16.4509 0.3135 —52.48 <2.10716

AlC: 9198.8

Log-likelihood: —4590

Table 5.6: Results of the initial model for the point pattern of finetype C:P1.5,2:F3-3.

This model implies the point estimate (i ~ 0.15 for the basic reproduction number, which
is smaller than in the same model for the serogroup B finetype (see Table 5.2). A 95%
confidence interval is [0.082,0.281], which overlaps with the corresponding confidence interval
from the serogroup B finetype. Although the negative time trend is more pronounced for the
serogroup C finetype, it is not significant on the 5% level in this model. The sine-cosine wave
for time-of-year effects is as important as for the serogroup B finetype, while again, none of

the lags of the numbers of influenza cases has a significant impact.

Appendix C contains the intermediate results of the subsequently performed model selection.
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Following the AIC, the influenza effects with lags 1, 3 and 2 weeks are removed from the
model. Removing influenza0 leads to a small increase of the AIC. However, a likelihood
ratio test of the hypothesis Binfluenza,0 = 0 has p-value 0.1402, and thus there is no statistical
evidence for an effect of the numbers of influenza cases. Alternatively, modelling an effect
of influenza0 without a sine-cosine wave yields a worsened AIC of 9205.8 and a p-value of
0.8134 for the Wald test on influenza0. Adding a half-year period sine-cosine wave did not
improve the goodness-of-fit. Fitting the initial model without the epidemic component yields
a worse AIC of 9210.3.

As a next step, inhomogeneous interaction functions were included into the epidemic compo-
nent. To be sure about its role an effect of influenza0 was also considered. Estimating the
model was equally problematic as for the serogroup B finetype, and different start values were
tried for convergence of the optimisation routine. The runtime of likelihood maximisation for
the models with an inhomogeneous spatial interaction function was 47 minutes on average
(range: 22 — 87). The results of the highest attained likelihood are shown in Table 5.7.

’ Estimate Std. Error zvalue P([Z] > [z]) |

(Intercept) —20.28084 0.11986 —169.206 < 2-1016
I(start/365) —0.06961 0.03194 —2.180 0.02929
sin(start*2pi/365) 0.35357 0.09599 3.683 0.00023
cos (start*2+pi/365) 0.20535 0.09203 2.231 0.02565
influenza0 —0.02216 0.03176 —0.698 0.48537
(Intercept) —13.176888  0.387036 —34.05 <2-10716
siaf.1 2.957433 0.160761 1840 <2-10716
tiaf.1 0.007578  0.022308 0.34 0.734

AIC: 9158.5

Log-likelihood: —4571

Table 5.7: Results for the model with inhomogeneous spatial and temporal interaction function.

Although these estimation results are not reliable (as we will see with the next model), I will
provide some brief comments. Concerning the estimates of the endemic component, the time
trend is significantly negative, whereas the effect of influenzaO remains ambigious. A point
estimate for the basic reproduction number implicated by this model is i ~ 0.12, which is

smaller than with assumed homogeneous mixing.

Figure 5.4 shows the distributions related to the observed potential sources of infection.
The numbers |I*(t;, s;)| are even smaller than for the serogoup B finetype, which indicates,
that most infections of the serogroup C finetype did not occur by direct person-to-person
transmission, and is in concordance with the lower basic reproduction number of this finetype.
Specifically, as much as 142 infections (i.e. 47.3%) do not have any progenitors 30 days

before and 150 km around them. The largest clusters contain only four possible vectors of
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Figure 5.4: Figures related to the potential sources of infection I(¢;, s;) for finetype C:P1.5,2:F3-3.

the disease. With regard to this characteristic, it is plausible that the parameter « of the

temporal interaction function is hardly identifiable from the data.

Nevertheless, Figure 5.5 shows the fitted exponential decay with & = 0.007578 and its lower
and upper bound corresponding to the large 95% Wald confidence interval [—0.03615,0.05130]
for &. The Figures 5.4(b) and 5.4(c) show histograms of the temporal and spatial distances
between possible sources and infections. As for the point pattern of the serogroup B finetype,

these distances have a broad distribution over the ranges (0, 30] and [0, 150], respectively.

9a(t)
1.0 15 2.0

0.5

0.0

T T T T T T T
0 5 10 15 20 25 30

t (days after infection)

Figure 5.5: Fitted temporal interaction function (solid) and lower and upper bounds (dashed) corre-
sponding to the 95%-confidence limits of &. The null hypothesis of time-invariant infectivity
g(t) = 1 is symbolised by the grey line.

Because the parameter o seemed to be hardly identifiable, the temporal interaction function

is henceforth assumed to be constant. By this simplification the optimisation procedure
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converges without problems. It yields an AIC of 9156.4 (see Table C.5), which is smaller
than in the previous model. Note in particular that the new maximum log-likelihood value
-4571.19 is slightly higher than without the restriction o = 0 in Table 5.7 (-4 571.23), which
theoretically is not possible, and thus shows that the estimation of the last model actually did
not converge to the global maximum of the log-likelihood. Because the effect of influenza0
still seems ambigious (the corresponding Wald test has p-value 0.5198), I estimated the model

without this effect the results of which are shown in Table 5.8 below.

’ Estimate Std. Error z value P([Z] > [z]) |

(Intercept) —20.27226 0.11827 —171.400 <2-1071°
I(start/365)  —0.07522 0.03097 —2.429 0.01514
sin(start*2xpi/365) 0.30717 0.09083 3.382 0.00072
cos(start*2*pi/365) 0.20038 0.08978 2.232 0.02562
(Intercept)  —13.0936 0.3114 —42.04 <2-10°16
siaf.1 2.8362 0.1493 18.99 <2-10716

AIC: 9156.9

Log-likelihood: —4572

Table 5.8: Results for the selected model with inhomogeneous spatial interaction function.

There is a very small increase of the AIC, but the likelihood ratio test of the hypothesis
Binfluenza,0 = 0 has p-value 0.1148. Hence, there is still no evidence that the numbers of
influenza cases explain the endemic risk of infection. However, in contrast to the finally
selected model for the serogroup B point pattern, there remains a significant negative effect of
the time. The endemic background risk for infections with the serogroup C finetype discreased
about 7.2% per year (95%-CI: [1.4,12.7]%). This decrease was not apparent from the plot
of the monthly case numbers in Figure 1.2(b), but observe that the model adjusts for the
clustering of cases due to direct transmission of the disease. The described temporal decrease
refers to the endemic background risk only, which is not observable from the aggregated
time series. The decreasing endemic risk could e.g. be induced by the new vaccination policy
against serogroup C introduced by the STIKO in 2006 (see Section 1.1). The recommendation
of vaccination is assumed to have entailed an increased coverage rate of vaccination in the
population since 2006, but detailed data are not yet available (Hellenbrand et al., 2008,
p.269). However, more data and detailed analyses are necessary to evaluate the effect of the
vaccination coverage. Changepoint models or a flexible modelling of the time trend could be

of interest in this context, but are not further investigated in this thesis.

The basic reproduction number in the selected model for finetype C:P1.5,2:F3-3 is estimated
to be i =~ 0.11, i.e. about only one out of nine infectives causes a secondary case. Figure
5.6(a) shows the temporal function

exp < Btrend% + Bsin sin (t 32%) + ﬁACOs cos (t ;;;))
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which multiplies the global endemic baseline rate exp(fy) ~ 1.57 - 107%9 (95%-CI: [1.25 -
107%9,1.98 - 107%9]). For comparison, the time-of-year effect of the serogroup B finetype is
also shown. Note that the graphic ignores the discretisation of time on a weekly grid used
for model estimation. Besides the temporally decreasing endemic risk for the serogroup C
finetype, the shapes of the sine-cosine waves are similar between the finetypes. The fitted
spatial interaction functions of both finetypes are plotted in Figure 5.6(b) as function of the
distance from the infective individual. The plot indicates no substantial differences between
the finetypes, but the 95%-confidence interval for the serogroup C finetype is wider. This is
a consequence of the fewer information attributed to the epidemic component because of the
small numbers of observed potential sources of infection shown in Figure 5.4(a). However, the
smaller basic reproduction number of the serogroup C finetype is due to smaller estimates of
the epidemic intercept 4o ~ 2.06 - 107% (95%-CI: [1.12-107%,3.79- 107°%]) and the standard
deviation & = exp(¢) ~ 17.1 (95%-CI: [12.7,22.8]) of the spatial kernel.
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Figure 5.6: Fitted temporal effects and isotropic spatial interaction functions f(s) = f(||s||) for both
finetypes from the models in Tables 5.4 (for B) and 5.8 (for C).

Estimating different infectivities depending on the age or gender of the patient did not reveal
significant effects. In particular, female infectives of the serogroup C finetype do not have a
significantly higher potential of causing secondary cases as was the case for the point pattern of

the serogroup B finetype. The results are shown in Tables C.6, C.7, and C.8 in Appendix C.
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5.3 Joint Modelling of Both Finetypes

Up to now the point patterns of the two finetypes have been analysed independently of each
other. Although visual and heuristic comparisons of the estimated statistics between the
finetypes are possible, the differences can as yet not be assessed statistically. For instance
we would like to test whether the weight of the epidemic component and thus the basic
reproduction number is significantly higher for the finetype B:P1.7-2,4:F1-5. Similarly, testing

for a different global endemic baseline risk exp(/y) is approached.

For this purpose, the twinstim class has been extended in Section 4.1.3 in order to model a
univariate discrete mark, which here corresponds to the finetype of the IMD case. As initial

model for the complete point pattern of 636 cases of IMD, I consider the CIF

1]

* . 27
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+ Z ﬁinﬁuenza,l ZT(t)’g(s)> =+ Z eXp(PYO,n)
=0

jeTI*(t,s,K)

assuming a type-specific endemic log-baseline risk 3y, and a type-specific log-rate g, of
transmission, which is homogeneous in space-time and limited to the same finetype by setting
Q = I,. Thus, at a specific point in time and location in space, the intensity for an event
of type k is determined by o, 70,x, and the current number of infectives of type x. Note
that the model imposes the same effect of time and of the numbers of influenza cases for both
finetypes, which is a questionable assumption. In the previous analyses, the serogroup C
finetype had a more pronounced and significant decreasing time trend, whereas the decrease
was not significant for the serogroup B finetype. Table 5.9 presents the estimation results of
the initial model. The computation took only 3.7 minutes because an inhomogeneous spatial

transmission kernel is not yet included.

’ Estimate Std. Error z value P([Z] > [z]) |

typeB —20.332130  0.107217 —189.636 <2-101°
typeC —20.392231  0.102255 —199.424 < 2-10716
I(start/365)  —0.043354  0.022577 —1.920 0.0548
sin(start*2+pi/365) 0.308931  0.068179 4531 5.86-107%
cos(start*2xpi/365) 0.270002  0.066548 4.057  4.97-107%
influenza0 0.008077 0.010299 0.784 0.4329
influenzal  —0.013046  0.015254 —0.855 0.3924
typeB —15.9722 0.2515 —6351 <2-10°1°
typeC —16.4259 0.3020 —54.39  <2.10716

AIC: 19175

Log-likelihood: —9578

Table 5.9: Results of the initial joint model of both point patterns.
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As could already be expected from the previous analyses, the effects of influenza are not
significant. Removing them subsequently from the model improves the AIC and the corre-
sponding likelihood ratio tests also do not reject the hypotheses Finfluenza,0 = 0 (p = 0.4711)
and Ginfluenza,1 = 0 (p = 0.3126). The estimated model without influenza effects is shown in
Table 5.10.

’ Estimate Std. Error z value P([Z] > [z]) |

typeB —20.33038 0.10658 —190.758 < 2-10716
typeC —20.39042 0.10223 —199.465 < 2-1071¢
I(start/365)  —0.04472 0.02249 —1.989 0.0467
sin(start*2pi/365) 0.30023 0.06541 4.590  4.43-1079
cos(start*2+*pi/365) 0.27076 0.06632 4.082  4.46-107%
typeB  —15.9721 0.2502 —63.83 <2-10716
typeC  —16.4317 0.3034 —54.16 <2-10716

AIC: 19172

Log-likelihood: —9579

Table 5.10: Dropped influenza effects from the initial model.

The effect of the time trend represents a trade off between both finetypes and is significant
on the 5% level. It corresponds to a yearly decrease of the endemic risk by about 4.4%
(95%-CTI: [0.065,8.497]%). The implied basic reproduction numbers are 0.25 (B) and 0.15
(C) with corresponding 95% Wald confidence intervals [0.15,0.40] (B) and [0.086,0.281] (C),
respectively. These estimates are similar to the initial separate models for the finetypes.
Likelihood ratio tests of the hypotheses of common endemic and epidemic intercepts can be
performed by fitting the corresponding model under the null hypothesis. This yields a p-value
of 0.5538 for the null hypothesis 3p1 = (o2, and a p-value of 0.2392 for the null hypothesis
v0,1 = 7o,2. Hence, there is no statistical evidence for any type-specific effects in this model

with assumed constant interaction functions.

This assumption is now dropped for the spatial kernel, which is additionally modelled with
type-specific standard deviations. However, as a consequence of the experiences of the previ-
ous sections, no further attempts are made to model an inhomogeneous temporal interaction
function. Table 5.11 shows the estimation results for the model with a type-specific Gaus-
sian kernel. Unfortunately, maximisation did not converge up to required standard accuracy.
However, the AIC decreased importantly compared to the model with homogeneous spatial

transmission.

Supported by the corresponding likelihood ratio test of the previous model a common endemic
intercept is estimated next. Log-likelihood maximisation did again not converge, neither when
additionally assuming ¢1 = 2. Convergence was only reached when assuming both intercepts
to be type-invariant, but permitting type-specific Gaussian kernels. Estimation results for this

model are shown in Table 5.12. Because other models were not identifiable, likelihood ratio
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Estimate  Std. Error z value P([Z] > [z]) |

typeB —20.40179 0.10350 —197.126 <2-10716
typeC —20.37031 0.09827 —207.284 < 2-10716
I(start/365)  —0.04678 0.02259 —2.070 0.0384
sin(start*2pi/365) 0.27554 0.06574 4.191  2.77-107%
cos(start*2*pi/365) 0.25834 0.06529 3.957 7.60-107%
typeB —12.42354 0.19100 —65.05 <2-10716
typeC —13.45309 0.29437 —45.70 <2-10716
siaf.1 2.91644 0.09902 29.45 < 2-10716
siaf.2 3.07297 0.15116 20.33  <2-10716

AIC: 19010

Log-likelihood: —9496

Table 5.11: Result of the joint model with a type-specific Gaussian kernel.

’ Estimate Std. Error z value P(|Z] > |z])

(Intercept) —20.37333 0.08769 —232.325 <2-10°1°
I(start/365) —0.04901 0.02231 —2.197 0.0281
sin(start*2*pi/365) 0.27104 0.06502 4.169  3.06-107%
cos(start*2*pi/365) 0.26007 0.06475 4.016 5.91-107%
(Intercept) —12.57470 0.16407 -76.64 <2-1071°
siaf.1 2.98210 0.09383 3178 <2-10716
siaf.2 2.60018 0.10577 2458 <2-1071¢

AIC: 19008

Log-likelihood: —9497

Table 5.12: Result of the joint model with type-invariant intercepts and a type-specific Gaussian kernel.

tests are not applicable. As also indicated by the separate model fits of the previous sections,
this joint model suggests a wider kernel for the serogroup B finetype (61 = 19.7, 95%-CIL:
[16.4,23.7]) than for the serogroup C finetype (62 = 13.5, 95%-CI: [10.9, 16.6]). Figure 5.7(b)
shows the type-specific spatial interaction functions. They differ from the respective curves
of the separate model estimation because of the imposed common endemic effects and the
imposed common epidemic intercept. The common temporal decrease averaged over both

finetypes is shown in Figure 5.7(a).
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Figure 5.7: Imposed common temporal effect and isotropic spatial interaction functions f(s|k) =
f(Is|l|x) from the model in Table 5.12.



6 Discussion and Outlook

This Master’s Thesis is a contribution towards a regression framework for self-exciting spatio-
temporal point processes modelled through their conditional intensity function. The par-
ticular application of interest was infectious disease epidemiology, specifically, the stochastic

modelling of the spreading dynamics of two different strains of meningococci.

For this purpose, basic characteristics of invasive meningococcal disease were considered.
The corresponding marked spatio-temporal point patterns observed in Germany during the
years 2002-2008 were described as well as their potential relation to waves of influenza was
investigated. Before considering any stochastic models, I provided a short introduction into
the basics of the necessary theory of point processes. As a prerequisite for the evaluation of
the likelihood for complex spatial point process models for non-standard observation regions,
two-dimensional numerical integration over polygonal domains was investigated in detail. A
brief overview of existing approaches to analysing spatio-temporal point process data was

provided.

In the main part of this thesis — motivated by the available high resolution IMD data — a
conditional intensity model for self-exciting point processes in continuous space-time with
an optional discrete mark was proposed. This model called twinstim was inspired on the
one hand by the additive-multiplicative modelling for self-exciting temporal point processes
in discrete space proposed by Hohle (2009a), and on the other hand by the spatio-temporal
ETAS model for the occurences of earthquakes. Model estimation by means of maximum

likelihood was derived and thoroughly implemented in R.

The proposed model was finally applied to the observed point patterns of the two IMD fine-
types, first separately, then jointly using the time-space-mark formulation of twinstim. Esti-
mation results indicated a time decreasing endemic risk of infection with finetype C:P1.5,2:F3-
3, and a higher infectivity of female infectives of finetype B:P1.7-2,4:F1-5. The considered age
effects on infectivity (linear and infant indicator) were not significant for any of the finetypes.
A sine-cosine wave fitted time-of-year effects on the endemic baseline risk while there was
no evidence for a superimposed effect of the numbers of influenza cases or its lagged ver-
sions. An exponential decay of infectivity during the infectious period could not be identified
from the data. In contrast, decreasing infectivity in space according to an isotropic Gaussian

kernel around an infective’s location was estimated to have a standard deviation of 18.5km
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(95%-CI: [15.3,22.3]) for finetype B:P1.7-2,4:F1-5, and of 17.1km (95%-CI: [12.7,22.8]) for
finetype C:P1.5,2:F3-3. Different estimated weights of the infectious nature of the finetypes
yielded basic reproduction numbers of 0.27 (B) and 0.11 (C), respectively, which attributes a
higher degree of clustering to the finetype B:P1.7-2,4:F1-5. The joint modelling of both point
patterns using an event type mark was intended to permit comparative likelihood ratio tests
on type-specific effects. However, the maximisation procedure did not converge for most of
the joint models with a spatially inhomogeneous triggering function. Hence the desired tests

could not be performed.

The application showed that the proposed model and its possible estimation by the provided
R implementation are applicable and valuable for the analysis of spatio-temporal infectious
disease data. The basic reproduction number, accessible through the estimated triggering
function, is an important characteristic of an infectious disease. By the twinstim formulation
its estimation is adjusted for endemic effects like the population density and localised waves
of influenza. Another attractive option provided by twinstim (but not used in this thesis) is
its ability to estimate, for each observed event, the probability that that event is an initiating
event (i.e. not the offspring of some earlier event). Specifically, this probability equals the
proportion of the endemic component in the value of the observed conditional intensity at

the event in question.

The current analysis pointed out that the epidemic component should be modelled in the
philosophy of KIS (keep it simple), because this component receives less information from
the data, which did e.g. not permit identification of a time-dependent triggering function.
Furthermore, a simple but well-identified model is often more attractive than a model con-
taining more parameters than can be reasonably interpreted and estimated. However, the
sine-cosine wave provides no causative interpretation of the modelled seasonality, which is
why the endemic part of the model is open for further modelling. Spatio-temporal envi-
ronmental covariates that potentially explain the heterogeneity of the IMD cases could be
investigated for inclusion in the endemic component. Moreover, flexible semiparametric mod-
elling of the temporal baseline would be attractive, because the parametric specifications of
the temporal trend and the seasonality impose a limited shape of the temporal effect as seen
in Figure 5.6(a).

Common problems of the analysis of point patterns include tied observations and edge effects.
This thesis did only consider a single artificial permutation of tied event times for the analysis
(cf. Subsection 1.2.4). More accurate analyses must carry out sensitivity analyses on the
specific choices made with respect to breaking ties (e.g. use different randomisations). Edge
(or boundary) effects may lead to seriously biased parameter estimates obtained via likelihood
maximisation. Even Vere-Jones (2009) does “not know of any simple way of dealing with

these”. According to him, the simplest workaround is the definition of a buffer zone around
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an inner observation region in both time (preceding) and space (surrounding), and build the
likelihood just based on the data points lying within the inner observation region. Points of
the buffer zone then provide information needed to compute the conditional intensity within
the inner observation region. However, a sufficient amount of observations is needed to afford
a genuine buffer zone. This requirement does especially not hold for the IMD data, although
the performed estimation certainly suffers from edge effects because many IMD cases are at the
border of the spatial observation region Germany. In this context Elias et al. (2010) elucidate,
whether an increase of disease activity in the region of Aachen (Germany) represented local
emergence or cross-border spread from the Netherlands. Hence, the actual disease clusters are
wider than observed with a restriction to Germany, which potentially causes underestimation
of the epidemic weight in twinstim. Another form of potential bias is also related to data
sampling: location is given as centroid of the postcode boundary of the patient’s residence,
which may not always appropriatly reflect the area of the social contact network. However,

an operationalisation of the social contact network is hardly accessible.

Other spatial interaction functions than the isotropic Gaussian kernel could be considered.
For example in the context of modelling dynamics of forest fires, an anisotropic kernel ac-
counting for the main wind direction could be supposed. The characteristic function of the
maximum spatial interaction range [0, 6] could then take some form of Mahalanobis distance if
applicable. The temporal interaction function g(t) might obey as alternative parametric form
a trapezoidal shape, where infectivity first increases to 1 and then slowly decreases back to 0
(cf. Lawson & Leimich, 2000, Figure 3). Both interaction functions could also be modelled
as semiparametric zero-degree B-splines (step functions), which on the one hand simplifies
integration but on the other hand poses the questions of the choice of knots and parameter

penalisation for sufficient smoothness.

However, full space-time variation of the conditional intensity function in twinstim’s can
actually only result from the interaction functions of the epidemic component, because in
the endemic component I only allowed for a piecewise constant spatio-temporal log-baseline.
Otherwise, the implementation of the integrated CIF in the log-likelihood and its derivatives
with respect to the parameters of a continuous parametric trend in the score function would
have been much more cumbersome. Although this would be a possible extension of the model,
the results of the IMD analysis were probably not affected crucially by the discretisation of the

temporal baseline on a weekly grid with regard to a total observation length of 367 weeks.

Note that in this thesis, the interaction functions were chosen to be normalised to take a
maximum value of 1 rather than integrating to 1 over R? or Ry, respectively. In my opinion
using densities is not advantageous since the implied unit integral over R? or R, respec-
tively, does not appear in the estimation formulae because integration is always limited to

the domains (0,7 and W. In contrast, requiring the interaction function to have a maximum
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value of 1 (usually at their origin) simplifies the interpretation of v as the unique weighting

factor. Presumably this also improves parameter identifiability.

Theoretically, the values € and ¢ of maximum interaction ranges could also be individual-
specific marks like age and gender. In particular, €; would be the length of the individual’s
infectious period. A full point process model would then assume a distribution for the length
of the infectious period (e.g. exponential), the density of which multiplies the CIF as in
equation 2.7. Although the implementation allows for observed individual specific values of
¢ and 6, this approach is generally not applicable for infectious disease data, because lengths

of infectious periods and spatial ranges of infectivity are hardly observable.

In the marked twinstim of Section 4.1.3, the triggering function e;(¢,s) did actually not
account for the type & of the triggered event, but only for the types x; of the triggering events.
Similar to multitype epidemics in the context of the compartmental SIR model in Andersson
& Britton (2000, Chapter 6), an extension would be to also model different intensities for
the mutual transmission between the event types through a generalised transmission matrix
Q = (qx,1), qx; € R. The original epidemic intercepts Y0,5; would be replaced by gy, s, i.e. the

log-baseline intensity of transmission from type x; to x, and 7, then equals 3, cx Gx; i

Besides type-specific transmission rates, the model may be extended by tile-specific (county-
specific) endemic effects. In the current formulation the deterministic offset for the population
density substitutes such effects, which could be modelled stochastically by introducing frailties
like in extended Cox models. Spatial random effects following a Gaussian Markov random

field which assumes similar effects of neighboring tiles are a typical tool (Rue & Held, 2005).

Moving into the direction of random effects leads to different strategies of estimation. Specifi-
cally, a Bayesian framework could be aspired if the twinstim class is extended to incorporate
frailties, or if the temporal baseline or the interaction functions are modelled as zero-degree
B-Splines with a smoothness penalty. The corresponding penalised likelihood inference can
already be regarded as an empirical Bayesian approach, thus an extension to full Bayesian
inference would not be far. On the one hand, this would also have the advantages that infer-
ence must not rely on asymptotic properties (e.g. the estimation of parameter uncertainty by
the estimated expected Fisher information matrix), that inference accounts for uncertainty of
hyperparameters (e.g. by assuming probability distributions for € and ¢§), and that credibility
intervals for transformed statistics like the basic reproduction number are directly available
from the MCMC output. On the other hand, careful tuning and diagnosis is always required

to assure convergence of the MCMC samples to a stationary distribution.

Other variants of estimation are Monte Carlo maximum likelihood known from purely spa-
tial point processes (see Mgller & Waagepetersen, 2004, Chapter 8) or the Expectation-
Maximisation (EM) algorithm. For the former, Diggle (2007) states that “in practice these
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methods often need careful tuning to each application and the associated cost of developing
and running reliable code can be an obstacle to their routine use”. The use of the EM algo-
rithm for spatio-temporal branching processes was explored by Veen & Schoenberg (2006),
who considered the space-time ETAS model for exemplification. While observing conver-
gence problems of numerical log-likelihood maximisation, they found the EM estimation to

be “extremely robust and accurate”.

Perhaps the most important directions for future work on the twinstim class are the im-
plementation of a simulation algorithm and investigations of residual processes for assessing
the goodness-of-fit proposed by Ogata (1988) for temporal point processes. Simulation of
the marked spatio-temporal twinstim is possible through the temporal ground process with
CIF \j(t) using Ogata’s modified thinning algorithm as e.g. described in Daley & Vere-Jones
(2003, Algorithm 7.5.V.). If the temporal interaction function is constant, then no rejection
sampling step is required. The hyperparameters € and § must either be given as determin-
istic values or could be drawn from a specified distribution. If the triggering function of the
epidemic component depends on unpredictable marks, an additional sampling scheme must
be specified for these: either a distribution for random generation or e.g. sampling from the

set of observed marks as in the bootstrap.
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Appendices



A Contents of the Enclosed CD

The results of this Master’s Thesis can be reproduced with the material on the enclosed CD.

It contains the following files:

CITATION File on how to cite this Master’s Thesis: BIBTEX entry, plain text.
LICENCE File stating usage permissions and restrictions.
data Data folder.
graphics Directory containing the presented figures.
literature Directory with some of the literature referenced to.
mydata Collection of cached data objects and model fits.

R Directory with R source code.

The following components might be especially interesting for future research:

— The file polygon-integration.R contains the functions polyint.* of
Section 3.2 implementing the various cubature rules over polygons.

— The subdirectory epidemic contains the main code for the analysis in
Chapter 5 (which was briefly described in Section 4.3), and might soon
be integrated into a contributed R package of the same name. The file
epidata.R provides the converter as.epidata to generate an object
of the S3 class "epidata". The file twinstim.R contains the partial
and full log-likelihood (cf. Section 4.2.1), the score function (cf. Section
4.2.2), the estimation of the fisher information matrix (cf. Section 4.2.3),
as well as the interfacing function twinstim. Some typical $3 methods

for model fits are implemented in the file twinstim-methods.R.

thesis Directory containing the IATEX and Sweave sources.

With GNU make, R (and necessary packages) and PDFIATEX installed, one can compile this
Master’s Thesis using the Makefile in the root directory by make Thesis.pdf.



B Model Selection

Steps for Finetype B:P1.7-2,4:F1-5

Estimate Std. Error z value P(|Z] > |z]) ‘

(Intercept) —20.401054  0.135303 —150.781 <2-10716
I(start/365) —0.028137 0.032795 —0.858 0.39092
sin(start*2*pi/365) 0.275318 0.099357 2.771 0.00559
cos(start*2*pi/365) 0.374639 0.095277 3.932 8.42-1079
influenza0 0.015578 0.011083 1.406 0.15984
influenzal —0.015540 0.019406 —0.801 0.42326
influenza3 —0.004647 0.024891 —0.187 0.85189
(Intercept) —15.9547 0.2484 —64.23 <2-10716

AIC: 9984.4

Log-likelihood: —4984

Table B.1: Dropped i

nfluenza?2 from the initial model of Table 5.2.

Estimate Std. Error zvalue P(|Z| > |z]) ‘

(Intercept) —20.40267 0.13533 —150.759 <2-10716
I(start/365) —0.02820 0.03253 —0.867 0.38605
sin(start*2*pi/365) 0.27208 0.09677 2.811 0.00493
cos (start*2*pi/365) 0.37575 0.09515 3.949 7.84-1079
influenza0 0.01710 0.01094 1.563 0.11812
influenzal —0.01980 0.01777 —1.114 0.26522
(Intercept) —15.9532 0.2468 —64.64 <2-10716

AIC: 9982.5

Log-likelihood: —4984

Table B.2: Dropped influenza3 from the model of Table B.1.
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’ Estimate Std. Error z value P([Z] > [z]) |

(Intercept) —20.50301 0.07703 —266.169 <2.10710
sin(start*2*pi/365) 0.28117 0.09612 2.925 0.00344
cos(start*2*pi/365) 0.37706 0.09537 3.954 7.7-1079

influenzaO 0.01713 0.01093 1.567 0.11721

influenzal —0.02037 0.01773 —1.149 0.25060

(Intercept) —15.9341 0.2422 —65.8 <2-10716
AIC: 9981.3
Log-likelihood: —4985

Table B.3: Dropped I(start/365) from the model of Table B.2.

’ Estimate Std. Error z value P(|Z] > |z])

(Intercept) —20.507315 0.076450 —268.246 <2-10"1'°
sin(start*2*pi/365) 0.271011 0.094458 2.869 0.00412
cos(start*2*pi/365) 0.378273 0.095335 3.968 7.25-1079°

influenza0 0.003368 0.007652 0.440 0.65982

(Intercept) —15.9394 0.2426 —65.71 <2-10716

AlIC: 9980.9
Log-likelihood: —4985

Table B.4: Dropped influenzal from the model of Table B.3.

’ Estimate Std. Error z value P(|Z] > |z])

(Intercept) —20.50140 0.07503 —273.255 < 210716
sin(start*2*pi/365) 0.28095 0.09159 3.067 0.00216
cos(start*2*pi/365) 0.38228 0.09500 4.024  5.73-107%

(Intercept) —15.9494 0.2435 —65.49 <2.10716

AIC: 9979.2
Log-likelihood: —4986

Table B.5: Dropped influenza0 from the model of Table B.4.

’ Estimate Std. Error z value  P(|Z] > [z]) |

(Intercept) —20.50095 0.07507 —273.085 < 2-10716
sin(start*2*pi/365) 0.25062 0.09406 2.664 0.00771
cos(start*2*pi/365) 0.39376 0.09706 4.057  4.97-107%

sin(2*start*2%pi/365) 0.11151 0.09207 1.211 0.22581
cos(2*start*2*pi/365) —0.11048 0.09368 —1.179 0.23825
(Intercept) —15.9775 0.2494 —64.07 <2-10716

AIC: 9980.3

Log-likelihood: —4984

Table B.6: Adding the first harmonic to the model of Table B.5 worsens AIC.
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] Estimate Std. Error z value P(IZ] > [z]) |

(Intercept) —20.55360 0.07111  —289.057 <2.10716
sin(start*2*pi/365) 0.24900 0.09790 2.543 0.01098
cos(start*2*pi/365) 0.28510 0.09408 3.030 0.00244
influenza0 0.01734 0.01087 1.595 0.11077
influenzal —0.01864 0.01719 —1.084 0.27837
(Intercept) —12.38526 0.18894 —65.55 <2-10716
siaf.1 2.91781 0.09656 30.22 <2-10716

AIC: 9856.7

Log-likelihood: —4921

Table B.7: Dropped tiaf.1 from the model of Table 5.3.

’ Estimate Std. Error z value P([Z] > [z]) |

(Intercept) —20.577543 0.070636 —291.319 <2-10°1°
sin(start*2*pi/365) 0.238214 0.096247 2.475 0.013322
cos(start*2*pi/365) 0.317140 0.094123 3.369 0.000753
influenzaO 0.004566 0.007705 0.593 0.553435
(Intercept) —12.39553 0.18872 —65.68 <2-1071°
siaf.1 2.91780 0.09624 3032 <2-1071°

AIC: 9855.8

Log-likelihood: —4922

Table B.8: Dropped influenzal from the model of Table B.7.

Estimate  Std. Error z value P(|Z] > |z]) ‘
(Intercept) —20.58306 0.06981 —294.826 <2.10"16
sin(start*2*pi/365) 0.27712 0.09406 2.946 0.003218
cos(start*2*pi/365) 0.32557 0.09443 3.448 0.000565
(Intercept) —1.205¢+01 2.593¢—01  —46.475 <2-10°16
sexmale —7.905¢ —01 3.402¢ — 01 —2.324 0.0201
age 7.149¢ — 04 8.048¢ — 03 0.089 0.9292
siaf.1 2.918¢ + 00 9.478e — 02 30.785 <2.10716
AIC: 9746.4
Log-likelihood: —4866

Table B.9: Additional effects for age and sex added to the model of Table 5.4. Due to missing values

of the marks, the log-likelihood (and AIC) can not be compared with the models above.

’ Estimate Std. Error z value P(|Z| > |z]) ‘

(Intercept) —20.58111 0.06981 —294.829 <2-1071°
sin(start*2xpi/365) 0.27243 0.09402 2.897 0.003762
cos(start*2xpi/365) 0.31773 0.09446 3.364 0.000769
(Intercept) —12.02286 0.23244  —51.726 <2-1071°
sexmale —0.78091 0.34060 —2.293 0.0219
age==0TRUE  —0.22028 0.47743 —0.461 0.6445
siaf.1 2.91733 0.09475 30.791 < 2-10716

AIC: 9746.3

Log-likelihood: —4866

Table B.10: Additional effects for infants (age==0) and sex added to the model of Table 5.4. The
log-likelihood (and AIC) can only be compared with the model in Table B.9 above.
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’ Estimate Std. Error zvalue P([Z] > [z]) |

(Intercept) —20.324569 0.124507 —163.240 <2-1016
I(start/365) —0.057444 0.031955 —1.798 0.072234
sin(start*2*pi/365) 0.357462 0.098497 3.629 0.000284
cos(start*2*pi/365) 0.170430 0.095187 1.790 0.073379
influenza0  —0.024424 0.040898 —0.597 0.550372
influenza2 0.012009 0.030140 0.398 0.690313
influenza3 —0.008471 0.022961 —0.369 0.712174
(Intercept) —16.4533 0.3134 —525 <2-10716

AIC: 9196.9

Log-likelihood: —4590

Table C.1: Dropped influenzal from the initial model of Table 5.6.

’ Estimate Std. Error z value P(|Z] > |z])

(Intercept) —20.324472  0.124401 —163.379 <2-10716
I(start/365) —0.057884  0.031917 —1.814 0.069745
sin(start*2+pi/365) 0.354253  0.098490 3.597 0.000322
cos (start*2+pi/365) 0.171482  0.095115 1.803 0.071404
influenza0  —0.023049  0.040447 —0.570 0.568778
influenza?2 0.003978  0.024616 0.162 0.871632
(Intercept) —16.4542 0.3135 —5249 <2-10°16

AIC: 9195

Log-likelihood: —4591

Table C.2: Dropped influenza3 from the model of Table C.1.
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] Estimate  Std. Error z value P([Z] > [z]) |

(Intercept) —20.32399 0.12432 —163.476 <2-1071°
I(start/365) —0.05781 0.03188 —1.814 0.069743
sin(start*2*pi/365) 0.35616 0.09797 3.635 0.000278
cos(start*2*pi/365) 0.17002 0.09499 1.790 0.073459
influenza0 —0.01965 0.03203 —0.614 0.539538
(Intercept) —16.4543 0.3131 —52.56 < 2-10716

AIC: 9193

Log-likelihood: —4591

Table C.3: Dropped influenza?2 from the model of Table C.2.

’ Estimate Std. Error z value P(|Z] > |z])

(Intercept) —20.32709 0.12440 —163.407 <2-101°
I(start/365) —0.06155 0.03125 —1.970 0.048864
sin(start*2*pi/365) 0.32735 0.09305 3.518 0.000435
cos (start*2xpi/365) 0.15764 0.09291 1.697 0.089754
(Intercept)  —16.4361 0.3077 —53.41 <2-1071°

AIC: 9193.3

Log-likelihood: —4592

Table C.4: Dropped influenza0l from the model of Table C.3.

] Estimate  Std. Error zvalue P([Z] > |2])

(Intercept) —20.27251 0.11845 —171.149 <2.10716
I(start/365) —0.07061 0.03172 —2.226 0.026008
sin(start*2*pi/365) 0.33355 0.09540 3.496 0.000472
cos(start*2*pi/365) 0.21354 0.09150 2.334 0.019601
influenza0 —0.02040 0.03170 —0.644 0.519828
(Intercept) —13.0923 0.3117 —42.00 <2.10716
siaf.1 2.8360 0.1497 18.94 <2-10716

AIC: 9156.4

Log-likelihood: —4571

Table C.5: Dropped tiaf.1 from the model of Table 5.7.

’ Estimate Std. Error z value P(|Z] > |z])

(Intercept) —20.29276 0.11874 —170.901 <2-1071°
I(start/365)  —0.06969 0.03104 —2.245 0.02474
sin(start*2xpi/365) 0.29416 0.09083 3.239 0.00120
cos(start*2xpi/365) 0.19196 0.08993 2.135 0.03280
(Intercept) —12.93890 0.43377 —29.829 <2-10716
sexmale 0.21221 0.48015 0.442 0.659
age —0.01377 0.01784 —0.772 0.440
siaf.1 2.79113 0.15757 17.713 <2-10716

AIC: 9100.4

Log-likelihood: —4542

Table C.6: Additional effects for age and sex added to the model of Table 5.8. Due to missing values
of the marks, the log-likelihood (and AIC) can not be compared with the models above.
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’ Estimate Std. Error zvalue P([Z] > [z]) |

(Intercept) —20.28979 0.11901 —170.494 <2-1071°
I(start/365)  —0.07187 0.03113 —2.308 0.02097
sin(start*2xpi/365) 0.29955 0.09114 3.287 0.00101
cos (start*2pi/365) 0.19430 0.09002 2.158 0.03090
(Intercept)  —13.2294 0.4379  —30.209 <2-10716
sexmale 0.3267 0.4626 0.706 0.480
age==0TRUE —0.2919 0.7731 —0.378 0.706
siaf.1 2.8359 0.1484 19.107 <2-10°16

AIC: 9101.1

Log-likelihood: —4543

Table C.7: Additional effects for infants (age==0) and sex added to the model of Table 5.8. The
log-likelihood (and AIC) can only be compared with the model in Table C.6 above.

’ Estimate Std. Error zvalue P([Z] > [z]) |

(Intercept) —20.29142 0.11907 —170.419 <2-1071°
I(start/365)  —0.07159 0.03113 —2.300 0.021468
sin(start*2+pi/365) 0.30381 0.09111 3.334 0.000855
cos(start*2xpi/365) 0.19525 0.09007 2.168 0.030175
(Intercept)  —13.2472 0.4252  —31.152 <2-10716
sexmale 0.3126 0.4584 0.682 0.495
siaf.1 2.8360 0.1483 19.129 <2-10716

AIC: 9099.3

Log-likelihood: —4543

Table C.8: Additional effect for sex (only) added to the model of Table 5.8. Due to a different set
of observations caused by the missing values, the log-likelihood (and AIC) can not be
compared with the models above.
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