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1. Introduction

Lasso regularization [Tib96] is one of the most commonly used regularization methods,
because it includes the technique of variable selection. All those coefficients whose corre-
sponding predictors have vanishing or low influence on the response are shrunk to zero.
By introducing the elastic net [ZH05], a regularization technique which additionally shows
the grouping property was proposed. Thereby, the absolute values of the coefficients are
estimated nearly equal if the corresponding predictors are highly correlated.

In this thesis, a new regularization method, the pairwise fused lasso [Pet09], is presented
which has both the variable selection and the grouping property. The goal of this thesis is
to examine the performance of the pairwise fused lasso and to select appropriate weights
for its penalty term. Furthermore, the pairwise fused lasso solutions based on two different
approximation procedures (LQA [Ulb10b] and LARS [EHJT04]) are compared.

The remainder of this thesis is organized as follows. Chapter 2 gives an overview of
already established regularization techniques and proposes the LARS algorithm for solving
penalized least squares problems. In Chapter 3 the pairwise fused lasso and its modifications
with respect to additional weights are presented. Moreover, the computational approach for
solving the penalized regression problem is discussed. Chapter 4 gives a brief summary of
generalized linear model theory. Furthermore, the local quadratic approximation approach
for fitting penalized generalized linear models is described. For studying the performance
of the new regularization method, simulations based on the linear model are presented in
Chapter 5 whereas simulations based on generalized linear models, especially the logit and
Poisson model, are given in Chapter 6. Chapter 7 comprises real data examples. And finally
we conclude in Chapter 8.
Tables and Figures which illustrate the simulation results described in Chapters 5 and 6 can
be found in Appendix A and Appendices B, C, respectively.
Furthermore, the accompanying CD contains the R-code and functions for the simulation
studies and the computation of the corresponding measures.
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2. Regularization Methods

2.1. Motivation

Classical linear regression assumes that the response vector y = (y1, . . . , yn)T is a linear
combination of p regressors x1, . . . , xp and an unknown parameter vector β = (β1, . . . , βp)T

as well as an additive error term ε = (ε1, . . . , εn)T. Hence the normal regression model is
given by

y = Xβ + ε, (2.1)

where ε ∼ Nn(0, σ2I) and the design matrix X =
�

x1| . . . |xp
�

which is based on n iid
observations.
The response is centered and the predictors are standardized. Consequently:

1
n

nX
i=1

yi = 0,
1
n

nX
i=1

xij = 0;
1
n

nX
i=1

x2
ij = 1 ∀j ∈ {1, . . . , p}.

Since the response is centered and the predictors are standardized, no intercept has to be
estimated.
The usual estimation procedure for the parameter vector β is the minimization of the residual
sum of squares with respect to β:

bβOLS = argmin
β

(y− Xβ)T (y− Xβ) . (2.2)

Then, the ordinary least squares (OLS) estimator bβOLS =
�

XTX
�−1

XTy is obtained by
solving the estimation equation �

XTX
�

β = XTy. (2.3)

The OLS estimator is optimal within the class of linear unbiased estimators if the predictors
are orthogonal. However, if there are highly correlated predictors in the regression model,
multi-collinearity occurs. This can lead to problems in the computation of the OLS estimator.
For this purpose, we distinguish the following two situations: exact multi-collinearity and
approximate multi-collinearity. In the case of exact multi-collinearity, two (or more) predictors
xi, xj are linearly dependent. Consequently, both the design matrix X and the matrix (XTX)

no longer have full rank p. Thus, the inverse
�

XTX
�−1

cannot be calculated, Equation
(2.3) cannot be solved and the OLS estimator has not a unique solution. If there is only an
approximate linear dependence between several variables, we have to deal with approximate
multi-collinearity. In this case, X is of full rank and XTX is regular, such that Equation
(2.3) has a unique solution. But due to this almost linear dependence, the determinant

7



2. Regularization Methods

|XTX| reaches a value near zero and the OLS estimator exhibits a very large variance,
var( bβOLS) = σ2(XTX)−1. According to Hoerl and Kennard [HK70], the length of the OLS
vector tends to be longer than the length of the true parameter vector, i.e. ‖βOLS‖ ≥ ‖βtrue‖.
Since the determinant is defined by |XTX| =

Qn
i=1 λi [FKL07], at least one eigenvalue λi

tends to be very small in the case of approximate multi-collinearity. Thus, a measure of
collinearity is the condition number κ [Tou03] which is given by

κ(X) =
�

λmax

λmin

�1/2
. (2.4)

Clearly, κ ≥ 1, with large values suggesting approximate multi-collinearity.
A further drawback of the usual estimation procedure is the lack of variable selection. Even
coefficients whose corresponding predictors have vanishing or low influence on the response
remain in the regression model. With a large number of predictors, we would like to deter-
mine a parsimonious model which is easier to interpret. Indeed, subset selection produces a
sparse model but it is extremely variable because it is a discrete process [Bre96].
To overcome these problems [HK70, Bre96], regression modeling by regularization tech-
niques was proposed. The regularization methods are based on penalty terms and should
yield unique estimates of the parameter vector β. Furthermore, an improvement of the
prediction accuracy can be achieved by shrinking the coefficients or setting some of them to
zero. Thereby we obtain regression models which should contain only the strongest effects
and which are easier to interpret. In the following, an overview of some already established
regularization techniques is given.

2.2. Penalized Least Squares

Regularization approaches for normal regression problems are based on penalized least
squares

PLS (λ, β) = (y− Xβ)T (y− Xβ) + P (λ, β) (2.5)

and estimates of the parameter vector β are obtained by minimizing this equation, i.e.

bβ = argmin
β

{PLS (λ, β)} . (2.6)

The penalty term P (λ, β) depends on the tuning parameter λ which controls the shrinkage
intensity. For the tuning parameter λ = 0 we obtain the ordinary least squares solution.
On the contrary, for large values of λ the influence of the penalty term on the coefficient
estimates increases. Hence, the penalty region determines the properties of the estimated
parameter vector, whereas desirable features are variable selection and a grouping effect.
An estimator shows the grouping property if it tends to estimate the absolute value of
coefficients (nearly) equal if the corresponding predictors are highly correlated.

8



2.2. Penalized Least Squares

2.2.1. Ridge Regression

One of the most popular alternative solutions to ordinary least squares estimates is ridge
regression introduced by Hoerl and Kennard [HK70].
Because of the ‖βOLS‖ ≥ ‖βtrue‖ problem described in section 2.1, ridge regression designs
its penalty term in such a way that the length of the parameter vector β is restricted.
Consequently the ridge estimate is defined by

bβridge = argmin
β

§ nX
i=1

�
yi −

pX
j=1

xijβ j
�2
ª

, s.t.
pX

j=1

β2
j ≤ t, t ≥ 0. (2.7)

Equivalent to this constrained notation of ridge regression is the following penalized regres-
sion problem:

bβridge = argmin
β

§ nX
i=1

�
yi −

pX
j=1

xijβ j
�2

+ λ

pX
j=1

β2
j

ª
, λ ≥ 0. (2.8)

Thus, the parameter t is clearly related to the parameter λ. This means that for a specific
value λ there exists a value t such that the estimation equations (2.7) and (2.8) exhibit the
same solution, i.e. bβridge =

�
XTX + λI

�−1
XTy, (2.9)

where I is the p× p identity matrix. By adding λI to XTX, this results in a regular and
invertible matrix even in both cases of multi-collinearity. Thus, ridge regression provides
unique estimates in such situations.
Contrary to the ordinary least squares estimates the ridge estimator is not unbiased. Hence
this regularization method accepts a little bias to reduce the variance and the mean squared
error, respectively of the estimates and possibly improves the prediction accuracy. Due to this,
the resulting model is less sensitive to changes in the data. Summarizing, ridge regression
yields more stable estimates by shrinking coefficients, but does not select predictors and
therefore does not give an easily interpretable model.
Because of the missing variable selection, further regularization techniques were developed
as e.g. lasso regularization.

2.2.2. Lasso

The least absolute shrinkage and selection operator (lasso), proposed by Tibshirani [Tib96],
does both continuous shrinkage and automatic variable selection simultaneously. As with
the ridge regression the lasso estimates are obtained by minimizing the residual sum of
squares subject to a constraint. Instead of the L2-penalty, the lasso imposes the L1-norm on
the regression coefficients, i.e. the sum of the absolute value of the coefficients is restricted:

bβlasso = argmin
β

§ nX
i=1

�
yi −

pX
j=1

xijβ j
�2
ª

, s.t.
pX

j=1

|β j| ≤ t, t ≥ 0. (2.10)

9



2. Regularization Methods

Or equivalently, the lasso determines the coefficient vector bβlasso satisfying

bβlasso = argmin
β

§ nX
i=1

�
yi −

pX
j=1

xijβ j
�2

+ λ

pX
j=1

|β j|
ª

, λ ≥ 0. (2.11)

On the basis of the design of the constraint
Pp

j=1 |β j| ≤ t, values of t < tOLS with tOLS =Pp
j=1 |bβ j,OLS| cause a shrinkage of the coefficients. With decreasing values of the parameter

t the estimated lasso coefficients are shrunk towards zero and some coefficients are exactly
set to zero; for t = 0 all of them are equal to zero. Otherwise, a value of t ≥ tOLS results in
the unpenalized least squares estimates if the OLS estimator exists. In comparison to the
parameter t, the parameter λ has the contrary effect on the estimation.

Figure 2.1.: Contours of the error and constraint regions for the lasso (left) and ridge
regression (right).

For the two-dimensional case (R2), Figure 2.1 shows why the lasso exhibits the property
to select predictors. The contours of the residual sum of squares are ellipses, centered
at the ordinary least squares estimate. The constraint region for the lasso is the rotated
square |β1|+ |β2| ≤ t, whereas that for ridge regression is the disk β2

1 + β2
2 ≤ t. The first

point where the elliptical contours touch the constraint region corresponds to the lasso and
ridge solution, respectively. Since the first osculation point of the ellipses can be a vertex of
the square, the lasso solution can have one coefficient β j equal to zero. In contrast, ridge
regression cannot produce zero solutions because there are no vertices in the constraint
region that can be touched.

2.2.3. Elastic Net

Besides the advantage of variable selection, the lasso also has some limitations. As discussed
by Tibshirani [Tib96] ridge regression dominates the lasso with regard to the prediction

10



2.2. Penalized Least Squares

accuracy in the usual n > p case if there are high correlations among the variables. Another
drawback of the lasso solution is the fact that in p > n situations, it selects at most n
variables. Moreover, the lasso does not group predictors as pointed out by Zou and Hastie
[ZH05]. If there is a group of highly correlated predictors, the lasso tends to select only
some arbitrary variables from this group.
A regularization and variable selection method which additionally shows the grouping
property is the elastic net, presented by Zou and Hastie [ZH05]. The elastic net criterion is
defined by

PLSenet (λ1, λ2, β) =
nX

i=1

�
yi −

pX
j=1

xijβ j
�2

+ λ1

pX
j=1

|β j|+ λ2

pX
j=1

β2
j| {z }

Penet(λ1,λ2,β)

, (2.12)

which depends on two tuning parameters λ1, λ2 > 0 and leads to the penalized least squares
solution of the elastic net criterionbβenet = argmin

β

{PLSenet (λ1, λ2, β)} . (2.13)

The elastic net penalty is a convex combination of the lasso and ridge penalty and in
constraint form given by (1− α)

Pp
j=1 |β j| + α

Pp
j=1 β2

j ≤ t with α = λ2/ (λ1 + λ2). For
α = 1 we obtain simple ridge regression, whereas for α = 0 the lasso penalty is given.
Equation (2.12) is called the näıve elastic net, because it is similar to either ridge regression
or the lasso and tends to overshrink in regression problems. Thus, Zou and Hastie defined
the elastic net estimates bβ as a rescaled näıve elastic net solution

bβ = (1 + λ2) bβenet. (2.14)

For various reasons [ZH05], (1 + λ2) is chosen as the scaling factor.
The interesting property of the elastic net is that it can select groups of correlated variables.
According to Zou and Hastie the difference between the coefficient paths of predictors xi
and xj is given by

���bβi (λ1, λ2)− bβ j (λ1, λ2)
���/ nX

i=1

|yi| ≤
1

λ2

q
2
�
1− ρij

�
, (2.15)

where ρij is the sample correlation and bβi (λ1, λ2), bβ j (λ1, λ2) are the näıve elastic net
estimates. If xi and xj are highly correlated, i.e. ρij → 1, the coefficient paths of variable xi
and variable xj are very close. In the case of negatively correlated predictors (ρij → −1),
we consider −xj. Thus, the elastic net enforces that the regression coefficients of highly
correlated variables tend to be equal, up to a sign if they are negatively correlated. Figure
2.2 illustrates the grouping effect and shows the coefficient paths of the lasso and the elastic
net for the idealized example given by Zou and Hastie [ZH05]. The design matrix X in this

11



2. Regularization Methods
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Figure 2.2.: Coefficient paths of lasso (left) and elastic net, λ2 = 0.5 (right).

setting consists of

x1 = Z1 + ε1, x2 = −Z1 + ε2, x3 = Z1 + ε3,
x4 = Z2 + ε4, x5 = −Z2 + ε5, x6 = Z2 + ε6,

where Z1, Z2 are two independent U(0, 20) variables and εi, i = 1, . . . , 6 are independent
and identically distributed N(0, 1

16 ) for sample size n = 100. The response y for this model
is generated as N(Z1 + 0.1Z2, 1). The coefficient built-up of the elastic net in the right panel
of figure 2.2 shows that this regularization method selects the influential predictors x1, x2,
x3 and yields the grouping effect. In contrast, from the solution paths in the left panel can be
seen that the lasso paths are very unstable and that correlations within a group of predictors
cannot be identified.
For solving the penalized least squares problem in equation (2.12), the given data set (y, X)
is extended to an artificial data set (y∗, X∗), whereas the (n + p)-dimensional vector y∗ and
the (n + p)× p-matrix X∗ are defined by

X∗ = (1 + λ2)−1/2
�

X√
λ2I

�
, y∗ =

�
y
0

�
. (2.16)

Because of this augmentation the elastic net problem can be written as a lasso type problem
and solved with the LARS algorithm [EHJT04]. Hence, the elastic net can select all p
predictors in the p > n case and not only n variables as the lasso, since the transformed
matrix X∗ has rank p. Further details to the algorithm LARS are given in section 2.3.

12



2.3. LARS Algorithm

2.3. LARS Algorithm

Least angle regression [EHJT04] is a model selection algorithm which is associated with
forward stepwise regression. According to Weisberg [Wei85], forward stepwise regression
builds a model sequentially, adding one variable at a time. At the beginning, from a set of
possible predictors we choose the one having largest absolute correlation with the response
y and fit a linear model. Next, we add to the model that variable which has the largest
absolute partial correlation with the response, adjusted for the predictors which are already
included in the model. Thus, after k steps, k variables are selected according to this criterion
for the partial correlations. Then they are used to build a k-parameter linear model.
The least angle regression (LARS) algorithm is based on a similar strategy, but ”only enters
as much of a predictor as it deserves” [HTF09]. Thus, it consists of the following steps:

1. We standardize the predictors to have mean zero and unit norm. Then, we start with
the residual r = y− ȳ and all coefficients equal to zero (β1, β2, . . . , βp = 0) as with
forward stepwise regression.

2. We identify the predictor xj most correlated with r.

3. Instead of fitting xj completely, we move the coefficient β j continuously from 0 towards
its least squares value 〈xj, r〉, until some other competitor xk has as much correlation
with the current residual as does xj.

4. We move the corresponding coefficients β j and βk in the direction defined by their joint
least squares coefficient of the current residual on (xj, xk), until some other competitor
xl has as much correlation with the current residual. I.e. the algorithm proceeds in a
direction equiangular between the predictors xj and xk.

5. We continue in this way until all the predictors are in the model and we arrive at the
full least squares solution in n > p situations after p steps. In the p > n case, the
algorithm reaches a zero residual solution after n− 1 steps. The number of steps is
n− 1 rather than n because the design matrix has been centered and hence it has row
rank n− 1.

To implement this equiangular strategy, Hastie et al. [HTF09] describe the algebra of the
algorithm as follows: at the beginning of the kth step, Ak is the active set of variables and
βAk the coefficient vector for these variables; k− 1 coefficients are nonzero and only the just
inserted coefficient equals zero. The direction δk for this step is defined by

δk =
�

XT
Ak

XAk

�−1
XT
Ak

rk, (2.17)

where rk = y− XAk βAk is the current residual. Then, the coefficient profile turns out to
be βAk(α) = βAk + α · δk. The parameter α denotes the step size which makes the current
residual equally correlated with the variables in the active set and another competitor. Owing
to the piecewise linearity of the algorithm and information of the covariance of the predictors,
the step size can be exactly calculated at the beginning of each step. If the fit vector at the

13



2. Regularization Methods

beginning of this step is f̂k, then it evolves to

f̂k(α) = fk + α · uk, (2.18)

with uk = XAk δk the new fit direction. This vector uk denotes the smallest and equal angle
with each of the variables in the active set Ak. Therefore the name ”least angle regression”
was chosen.

By a simple modification of the LARS algorithm the entire lasso path can be generated.
For this purpose, Hastie et al. [HTF09] proceed as follows:
If the predictors are standardized, the LARS algorithm can be equivalently stated in terms
of inner products instead of correlations. Let A be the active set of variables at any step of
the algorithm. The inner product of these variables with the current residual y− Xβ can be
computed by

xT
j (y− Xβ) = α · sj, ∀j ∈ A, (2.19)

where sj ∈ {−1, 1} denotes the sign of the inner product and α indicates the common step
size. Furthermore, |xT

j (y− Xβ)| ≤ α, ∀k /∈ A. The lasso criterion in equation (2.11) can be
written in vector form, i.e.

R (β) =
1
2
‖y− Xβ‖2

2 + λ‖β‖1. (2.20)

Let B be the active set of variables in equation (2.20) for a specified value of the tuning
parameter λ. For these variables, R(β) is differentiable and the stationary conditions yield

xT
j (y− Xβ) = λ · sign

�
β j
�

, ∀j ∈ B. (2.21)

If the sign of any nonzero coefficient β j agrees with the sign sj of the inner product, equation
(2.19) and (2.21) are the same. However, if the coefficient of an active variable passes
through zero, the LARS algorithm and lasso differ. Hence, constraint (2.21) is violated for
the corresponding variable and this variable is excluded from the active set B. The stationary
conditions for the variables which are not in the active set require that

|xT
j (y− Xβ)| ≤ λ, ∀k /∈ B, (2.22)

which again agrees with the unmodified LARS algorithm. Thus, the lasso modification allows
the active set B to decrease, whereas the active set A grows monotonically as the unmodified
LARS algorithm progresses. LARS is computationally very efficient since it requires only the
same order of magnitude of computational effort as ordinary least squares applied to the full
set of variables.

14



3. Pairwise Fused Lasso

In the subsequent chapters of this thesis a new regularization technique, the pairwise fused
lasso, is presented. The fused lasso from Tibshirani et al. [TSR+05] can be considered as
motivation for this new method. Besides the computational approach for solving the new
penalized regression problem, modifications of the pairwise fused lasso penalty with regard
to additional weights are discussed.

3.1. Fused Lasso

Another technique for regularized regression with both the grouping and the selection
property is the fused lasso. Since the lasso ignores the order of predictors, Tibshirani et al.
[TSR+05] generalized the lasso penalty to those ordered situations. The fused lasso penalty
is defined by

PFL(λ1, λ2, β) = λ1

pX
j=1

|β j|+ λ2

pX
j=2

|β j − β j−1|, (3.1)

where the predictors xj, j = 1, . . . , p can be ordered in some meaningful way. For instance
for functional data, the predictors xj(t) are ordered according to some index variable t.
Besides the absolute values of the coefficients, the fused lasso also penalizes the L1-norm of
their consecutive differences. Hence, the clustering property is motivated by the adjacency
of predictors. The first term of the penalty encourages sparsity of the regression coefficients,
whereas the second term encourages sparsity of their adjacent differences. Hence, some
components β j are exactly zero and the coefficient profile is piecewise constant. The contours
of the sum of squares loss function and the contours of the constraint region for the fused
lasso penalty are shown in Figure 3.1. As with ridge regression and lasso regularization,
the first osculation point of the elliptical contours of the residual sum of squares with the
constraint region corresponds to the fused lasso solution. The regression coefficients in
Figure 3.1, determined by the ellipses, satisfy the lasso penalty

Pp
j=1 |β j| = t1 (gray square)

and the difference penalty
Pp

j=2 |β j − β j−1| = t2 (black rectangle), where t1 and t2 are the
tuning parameters. As mentioned in section 2.2.2, the lasso selects no more than min(n, p)
variables. This is a drawback in the p > n case. A similar behavior shows the fused lasso
solution. In high dimensional situations, the fused lasso selects at most p sequences of
non-zero coefficients instead of p non-zero components β j like the lasso. Besides this sparsity
property, the application of the least angle regression algorithm [EHJT04] is a further
similarity to lasso regularization. The complete sequence of lasso and fusion problems can be
solved with this algorithm. By transforming X to Z = XL−1, applying the LARS procedure
and then transforming back, the fusion problem is solved. Thereby, the p× (p− 1)-matrix L
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3. Pairwise Fused Lasso

Figure 3.1.: Contours of the error and constraint region for the fused lasso.

has elements Lii = 1, Li+1,i = −1 and Lij = 0 otherwise. Thus, in consequence θ = Lβ. For
further details to this computational approach we refer to Tibshirani et al. [TSR+05].
In addition, the quantity of degrees of freedom used for fitting ŷ is of interest. Generally,
the number of degrees of freedom is the difference between the number of cases and the
number of parameters in the model [Wei85]. For the fused lasso one degree of freedom is
defined as a sequence of one or more successive coefficients bβ j which are non-zero and equal
to one another, i.e.

d f (ŷ) = p− #{β j = 0} − #{β j − β j−1 = 0, β j, β j−1 6= 0}. (3.2)

More on degrees of freedom, especially effective degrees of freedom, will be described in
chapter 5.

3.2. Pairwise Fused Lasso Penalty

The pairwise fused lasso [Pet09] is a generalization of the fused lasso penalty to situations
where the predictors xj, and hence the corresponding parameters β j, have no natural order
in j. In this generalized formulation, the fusion refers to all possible pairs of predictors and
not only to adjacent ones. Thus, the pairwise fused lasso penalty is defined by

PPFL(λ1, λ2, β) = λ1

pX
j=1

|β j|+ λ2

pX
j=2

j−1X
k=1

|β j − βk|, λ1, λ2 > 0. (3.3)

An equivalent manner of representation is the following:

PPFL(λ, α, β) = λ

24α

pX
j=1

|β j|+ (1− α)
pX

j=2

j−1X
k=1

|β j − βk|

35 , λ > 0. (3.4)
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3.3. Selection of Weights

Thereby, λ and α with α ∈ [0, 1] are the tuning parameters instead of λ1 and λ2 as in Equation
(3.3). On the one hand, the first summand of the pairwise fused lasso penalty conforms
to the lasso penalty and accounts for variable selection. On the other hand, the second
summand is the sum of the absolute values of all (p

2) pairwise differences of regression
coefficients. This part of the penalty term induces clustering.

3.3. Selection of Weights

Possibly to achieve an improvement of the prediction accuracy of the model fitted on the
test data or of the mean squared error of the estimated parameter vector, the pairwise fused
lasso penalty can be modified by adding different weights. Accordingly, a modification of
this penalty term is given by

PPFL (λ, α, β) = λ

24α

pX
j=1

wj|β j|+ (1− α)
pX

j=2

j−1X
k=1

wjk|β j − βk|

35 , (3.5)

where wj and wjk are the additional weights. One possibility is to choose wj = |βML
j |−1

and wjk = |βML
j − βML

k |−1, where βML
j denotes the maximum likelihood estimates of the

regression coefficients. This choice is motivated by the adaptive lasso [Zou06] and its oracle
properties. Further, an estimation procedure obeys the oracle properties if it identifies
the correct subset model A, i.e. {j : β̂ j 6= 0} = A, and if it has the optimal estimation

rate. This rate is given by
√

n( bβA − β∗A) d→ N(0, Σ∗), where Σ∗ is the covariance matrix
knowing the true subset model and β∗A denotes the subset of the true parameter vector
elements. As pointed out by Zou [Zou06], these oracle properties do not hold for the lasso
but for the adaptive lasso if data-dependent weights are chosen. Hence, in contrast to the
primary definition of the pairwise fused lasso where all parameters have the same amount
of shrinkage (3.4), the weighted formulation (3.5) forces the coefficients to be unequally
penalized by assigning different weights to different components. Large values of |βML

j | yield
small weights wj and consequently a decreasing shrinkage of the corresponding parameters.
If the maximum likelihood estimates of the jth and the kth predictor have nearly the same
value, the weight wjk causes a large influence of the difference penalty term.
Another possibility is to convert the pairwise fused lasso to a correlation based penalty.
For instance, the elastic net shows a relationship between correlation and grouping where
strongly correlated covariates tend to be in or out of the model together, but the correlation
structure is not used explicitly in the penalty term. A regularization method, which is based
on the idea that highly correlated covariates should have (nearly) the same influence on the
response except for their sign, is the correlation based penalty proposed by Tutz and Ulbricht
[TU09]. Coefficients of two predictors are weighted according to their marginal correlation.
As a result, the intensity of penalization depends on the correlation structure. Therefore, the
penalty term of the pairwise fused lasso can be transformed into

PPFL (λ, α, β, ρ) = λ

24α

pX
j=1

|β j|+ (1− α)
pX

j=2

j−1X
k=1

1
1− |ρjk|

|β j − sign(ρjk)βk|

35 , (3.6)
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3. Pairwise Fused Lasso

where ρjk denotes the marginal correlation between the jth and the kth predictor. The
marginal correlation is given by

ρjk = ρ
�

xj, xk
�

=
cov

�
xj, xk

�q
var

�
xj
�È

var (xk)
. (3.7)

The factor sign(ρjk) is caused by the fact that two negatively correlated predictors have the
same magnitude of influence but different signs. That is, for ρjk → 1, the coefficients bβ j andbβk are nearly the same and for ρjk → −1, bβ j will be close to −bβk, respectively. In the case
of uncorrelated predictors (ρjk = 0) we obtain the usual, unweighted pairwise fused lasso
penalty.

The marginal correlation, used in the penalty term, is the familiar measure of coherence. It
measures the interaction between the predictors xj and xk without taking further covariates
into account. But the coherence can be of another type if all influential features are included
in the analysis. In contrast to the marginal correlation, the partial correlation determines
to what extent the correlation between two variables depends on the linear effect of the
other covariates. Thereby, the aim is to eliminate this linear effect [Rei06]. For this reason, it
makes sense to investigate the correlation based penalty in Equation (3.6) also with partial
correlations instead of the marginal ones.
To define the partial correlations, we consider p regressors, x =

�
x1, . . . , xp

�
, with ex-

pectation E(x) = µ and covariance matrix cov(x) = Σ. The inverse covariance matrix
cov(x)−1 = Σ−1 is known as the concentration or precision matrix where cjk denote the
corresponding elements, Σ−1 = (cjk). According to Whittaker [Whi90], the following two
definitions describe the relationship between the elements of the inverse covariance matrix
and the partial correlations:

• Each diagonal element of Σ−1 is the reciprocal of the partial variance of the corre-
sponding variable predicted from the rest,

cjj =
1

var
�

xj|x−j
� , (3.8)

where x−j denotes the vector x without the jth component, i.e.
x−j =

�
x1, . . . , xj−1, xj+1, . . . , xp

�
.

• Each off-diagonal element of Σ−1 is the negative of the partial correlation between the
two corresponding variables xj and xk after adjustment for all the remaining covariates
and scaled by the associated inverse partial variances:

cjk = −
È

cjjckk ρ
�

xj, xk|x−jk
�

(3.9)

and
ρ
�

xj, xk|x−jk
�

= −
cjk√cjjckk

, (3.10)

respectively. Thereby, x−jk is the vector x without the jth and the kth predictor.
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3.3. Selection of Weights

Thus, by scaling the elements of a matrix with its diagonal elements, the partial correlations
can be calculated in a similar manner as the marginal correlations. Moreover, the precision
matrix shows if two variables are partially uncorrelated. In such cases the elements next to
the respective diagonal elements are zero.

In addition to the empirical partial correlations we consider regularized partial correla-
tions. According to Ledoit and Wolf [LW04], when the number of variables is much larger
than the number of observations, the covariance matrix is estimated with a lot of error. Thus,
the empirical covariance matrix cannot be considered a good approximation of the true
covariance matrix. An approach for a shrinkage estimator of the covariance matrix is given
by Schäfer and Strimmer [SS05] and Opgen-Rhein and Strimmer [ORS07]. The procedure
for obtaining regularized variances and covariances is described in the following:

σ∗jk = ρ∗jk
q

σ∗jjσ
∗
kk (3.11)

with

ρ∗jk = (1− λ∗1) ρjk

σ∗jj = λ∗2σmedian + (1− λ∗2) σjj

and

λ∗1 = min

�
1,

P
j 6=k dvar

�
ρjk
�P

j 6=k ρ2
jk

�

λ∗2 = min

�
1,

Pp
j=1 dvar

�
σjj
�

Pp
j=1

�
σjj − σmedian

�2

�

Let xij be the ith observation of the predictor xj and x̄j its empirical mean. With

wijk = (xij − x̄j)(xik − x̄k) and w̄jk =
1
n

Xn

i=1
wijk, (3.12)

the unbiased empirical covariance equals σjk = n
n−1 w̄jk. Correspondingly, we obtain the

empirical variance σjj and correlation ρjk = σjk/√σjjσkk. The variance of the empirical
variances is defined by dvar(σjj) =

n
(n− 1)3

nX
i=1

(wijj − w̄jj)2 (3.13)

and dvar(ρjk) can be estimated by applying this formula to the standardized data matrix.
The optimal correlation shrinkage intensity λ∗1 and the optimal variance shrinkage level
λ∗2 are estimated using an analytic formula by Schäfer and Strimmer [SS05] and Opgen-
Rhein and Strimmer [ORS07], respectively. Due to these two different tuning parameters,
separate shrinkage for variances and correlations is performed. Thereby, the variances are
shrunk towards σmedian, the median value of all σjj. The corresponding partial correlations
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3. Pairwise Fused Lasso

ρ∗(xj, xk|x−jk) can again be derived from the resulting inverse covariance matrix

Σ∗−1 = (σ∗jk)
−1 = (c∗jk). (3.14)

This two-way shrinkage formula for the covariance matrix estimator is implemented in the R
package corpcor [SORS09]. In particular, regularized estimates of partial correlations and
partial variances can be computed using the function pcor.shrink() of this package.

3.4. Solving the Penalized Least Squares Problem

For solving the penalized regression problembβ∗ = argmin
β

(y− Xβ)T (y− Xβ) + PPFL (β, λ, α) (3.15)

we have to transform this problem as proposed by Petry [Pet09] and described below. The
approach is similar to the idea of Zou and Hastie [ZH05] where the representation of the
elastic net as a lasso type problem was used. By reparametrization, the coefficients θjk and
θj0 are defined by

θjk = β j − βk, 1 ≤ k < j ≤ p,
θj0 = β j, 1 ≤ j ≤ p. (3.16)

Thus, the restriction
θjk = θj0 − θk0, 1 ≤ k < j ≤ p (3.17)

holds. Correspondingly let ∆X denote the n ×
� p

2

�
-matrix which contains the pairwise

differences of all predictors. With ∆jk = xj − xk, 1 ≤ k < j ≤ p, this is given by

∆X =
�
∆21|∆31| . . . |∆p1|∆32|∆42| . . . |∆p(p−1)

�
. (3.18)

Further, let
θ =

�
θ10, . . . , θp0, θ21, . . . , θp(p−1)

�T
(3.19)

be the corresponding coefficient vector for the expanded design matrix (X|∆X).
Then the pairwise fused lasso penalty has the form

PPFL (θ, λ, α) = λ

24α

pX
j=1

wj0|θj0|+ (1− α)
p−1X
j=1

pX
k=j+1

wjk|θjk|

35 . (3.20)
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3.4. Solving the Penalized Least Squares Problem

The redundancy (3.17) is implied by using an additional penalty term with large γ yieldingbθ∗ (γ, λ, α) = argmin
θ

(y− (X|∆X) θ)T (y− (X|∆X) θ)

+γ

p−1X
j=1

pX
k=j+1

�
θj0 − θk0 − θjk

�2
(3.21)

+λ

24α

pX
j=1

wj0|θj0|+ (1− α)
p−1X
j=1

pX
k=j+1

wjk|θjk|

35 .

For γ→ ∞ the restriction (3.17) is fulfilled. With reparameterization (3.16) the approximate
estimator (3.21) can be formulated as a lasso type problem. Hence, criterion (3.21) can be
written as bθ∗ (γ, λ, α) = argmin

θ

(y0 − Dθ)T (y0 − Dθ)

+λ

24α

pX
j=1

wj0|θj0|+ (1− α)
p−1X
j=1

pX
k=j+1

wjk|θjk|

35 , (3.22)

where y0 =
�
yT, 0T

p̃

�T
with 0 p̃ denoting a zero vector of length p̃ =

� p
2

�
and

D =
�

X|∆X
√

γÜC
�

(3.23)

Matrix ÜC is the p̃× ( p̃ + p)-matrix which includes the constraints (3.17). Let δjk, 1 ≤ k <
j ≤ p, denote a p-dimensional row vector with −1 at the kth and +1 at the jth component
and all other components equal zero. With τm we define a p̃-dimensional row vector whose
m-th component is −1 and zero otherwise. Then all constraints given by (3.17) can be
summarized in matrix notation:

ÜC =

0BBBBBBBBBBBBBB@

δ21 τ1
δ31 τ2
...

...
δp1 τp−1
δ32 τp
δ42 τp+1
...

...
δp(p−1) τp̃

1CCCCCCCCCCCCCCA
(3.24)
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3. Pairwise Fused Lasso

Now Θ is the index set of the components of θ given by (3.19) and we transform (3.22) to

bθ∗ = argmin
θ

(y0 − Dθ)T (y0 − Dθ) + λ

�
pX

j=1

|α · wj0 · θj0|+
p−1X
j=1

pX
k=j+1

|(1− α) · wjk · θjk|

�

= argmin
θ

(y0 − Dθ)T (y0 − Dθ) + λ

 X
t∈Θ

|α · wt · θt|+ |(1− α) · wt · θt|
!

. (3.25)

Consequently, (3.25) is a lasso type problem on the expanded design matrix D where the
components of θ are weighted by α and (1− α). This parametrization demands a rescaling
of the constraints matrix ÜC (3.24). In (3.25) the parameters are multiplied with α, (1− α)
respectively. Accordingly, the matrix ÜC in the design matrix D in (3.25) is of the form

C = ÜCdiag(l), l =
�

α−1, · · · , α−1| {z }
p

, (1− α)−1, · · · , (1− α)−1| {z }
p̃

�T
. (3.26)

The ith component of the estimate eβPFL,λ,α is obtained by summing up all components of

θ =
�
θ01, · · · , θ0p, θ21, · · · , θp(p−1)

�T
whose index contains i in at least one place.

This approach to solve the penalized least squares problem for the pairwise fused lasso is
implemented in the R function GFL.base(). In addition, the modified penalty term with
maximum likelihood estimates as weights (Eq. (3.5)) and the correlation based penalty term
with marginal correlations (Eq. (3.6)) are implemented in the functions GFL.base.kq()
and GFL.base.cor(), respectively [Pet09].

3.5. Preliminaries

In this section we introduce the basic notation and definitions for the different pairwise
fused lasso penalties. This notation will be used throughout Chapters 5 and 6:

• pfl:
PFL penalty according to Equation (3.4);

• pfl.kq:
PFL penalty according to Equation (3.5) with OLS estimates as weights in the case of
normal distribution;

• pfl.ml:
PFL penalty according to Equation (3.5) with ML estimates as weights in the case of
binomial and Poisson distribution, respectively;

• pfl.cor:
correlation based PFL penalty according to Equation (3.6) with marginal correlations;
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3.5. Preliminaries

• pcor.shrink:
correlation based PFL penalty according to Equation (3.6) with regularized partial
correlations;

• pcor.emp:
correlation based PFL penalty according to Equation (3.6) with empirical partial
correlations;

• kqpcor.shrink/mlpcor.shrink:
equals the penalty pcor.shrink, but with additional weights wj = |βML

j |−1 for the lasso
term in the penalty;

• kqpcor.emp/mlpcor.emp:
equals the penalty pcor.emp, but with additional weights wj = |βML

j |−1 for the lasso
term in the penalty;
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4. Penalized Generalized Linear Models

4.1. Generalized Linear Models

In practice, the errors εi are often not assumed to be normally distributed as proposed in
Section 2.1. Therefore, generalized linear models are formulated in order to extend the the-
ory of classical linear models by further distributions of the response variable. According to
Fahrmeir and Tutz [FT01], a generalized linear model is characterized by two assumptions:
the distributional assumption constitutes that, given xi, the yi are (conditionally) indepen-
dent and that the (conditional) distribution of the response variable belongs to a simple
exponential family, i.e. the density of yi can be written as

f (yi | θi, φ) = exp
�

yiθi − b(θi)
φ

+ c(yi, φ)
�

. (4.1)

In this context θi is the natural parameter, φ is an additional scale or dispersion parameter and
b(·), c(·) are functions corresponding to the type of the exponential family. The (conditional)
expectation is E(yi|xi) = µi. Note that the scale parameter φ does not depend on the
observation i.
The relationship between the mean of the response variable µi and the linear predictor
ηi = xT

i β is determined by the structural assumption. Thus, we have:

µi = h(ηi), ηi = g(µi) = h−1(µi), resp. (4.2)

where h(·) is the response function and g(·), the inverse of h, is the so-called link function.
The natural parameter θi is a function of the expectation µi, i.e. θi = θ(µi). Furthermore,
the mean is of the form µi = b′(θi) = ∂b(θi)/∂θi and v(µi) = b′′(θi) = ∂2b(θi)/∂θ2

i . The
variance function v(µi) results from var(yi|xi) = φv(µi), the variance of the response yi.
The specification of the mean µi = h(ηi) implies a certain variance structure since both
are based on derivatives of b(θi). If the natural parameter is directly related to the linear
predictor, the link function is called natural or canonical link function and is given by

θ(µi) = ηi, g(µi) = θ(µi), resp. (4.3)

Besides the normal distribution, the binomial, the Poisson and the gamma distribution are
also members of the exponential family. These distributions have the following natural link
functions:

ηi = µi for the normal distribution,
ηi = −1/µi for the gamma distribution,
ηi = log µi for the Poisson distribution,
ηi = log (µi/(1− µi)) for the Bernoulli distribution.
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4. Penalized Generalized Linear Models

Further details on the distributions just mentioned are given in the following:

Models for continuous response
In the terminology of generalized linear models, the normal regression model is given by

yi|xi ∼ N(µi, σ2), µi = ηi = xT
i β. (4.4)

Thereby, the link function is the canonical link. The components of the exponential family for
this distribution are θ(µi) = µi, b(θi) = θ2

i /2 and φ = σ2. If the response yi is non-negative
another link function has to be chosen. This involves a non-negative mean µi, e.g. the
log-link:

µi = exp(ηi)⇔ log(µi) = ηi (4.5)

A further distribution for continuous non-negative responses is the gamma distribution.
Besides its expectation µi > 0, the density includes the shape parameter ν > 0 which
causes the greater flexibility of the gamma distribution. Thus, we have θ(µi) = −1/µi,
b(θi) = − log(−θi) and φ = −1/ν. With var(yi) = µ2

i /ν, an increasing expectation impli-
cates an increasing variance. In addition to the natural link ηi = 1/µi, two other important
link functions for the gamma distribution are the identity link ηi = µi and the log-link
ηi = log(µi).

Models for binary response
A binary outcome yi ∈ {0, 1} can be modeled by the Bernoulli distribution, i.e. yi ∼ B(1, πi).
Thereby, the response probability is defined by

E(yi|xi) = P(yi = 1|xi) = µi = πi (4.6)

and θ(πi) = log(πi/(1− πi)), b(θi) = log(1 + exp(θi)) = − log(1− πi) and φ = 1 are
the components of the exponential family. This implies the variance structure var(yi|xi) =
πi(1− πi). The following three models and their corresponding link functions are the most
common to relate the response probability πi to the linear predictor ηi = xT

i β [FT01].

1. The logit model is determined by the canonical link function

g(πi) = log
�

πi

1− πi

�
= ηi. (4.7)

Therefore, as the resulting response function we obtain the logistic distribution function

πi = h(ηi) =
exp(ηi)

1 + exp(ηi)
. (4.8)

2. In the probit model, the response function conforms to the standard normal distribution
function, i.e.

πi = h(ηi) = Φ(ηi), g(πi) = Φ−1(πi) = ηi, resp. (4.9)
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3. Furthermore, the complementary log-log model is based on the link function

g(πi) = log(− log(1− π)) = ηi. (4.10)

Models for count data
A common distribution for count data is the Poisson distribution with parameter λi > 0
and responses yi ∈ {0, 1, 2, . . .}. The parameters of the exponential family are given by
θ(µi) = log(µi), b(θi) = exp(θi) and φ = 1 with µi = λi. Due to the non-negativity of the
response, a frequently used link function is again the log-link as for the normal distribution.

4.2. Maximum Likelihood Estimation

Maximum likelihood is the estimation procedure for generalized linear models. Since
the responses belong to an exponential family (4.1), the log-likelihood for independent
observations y1, . . . , yn is given by

l(β) =
nX

i=1

li(θi) =
nX

i=1

log f (yi | θi, φ) =
nX

i=1

yiθi − b(θi)
φ

. (4.11)

Here, function c(yi, φ) is omitted because it does not depend on θi and therefore not on β.
The first derivative of the log-likelihood is the score function

s(β) =
∂l(β)

∂β
. (4.12)

Using the relations θi = θ(µi), µi = h(ηi) and ηi = xT
i β, the score function is given by

s(β) =
nX

i=1

si(β) =
nX

i=1

∂li(θi)
∂θ

∂θ(µi)
∂µ

∂h(ηi)
∂η

∂ηi

∂β
(4.13)

=
nX

i=1

xiDiσ
−2
i (yi − µi)

where Di is the first derivative of the response function h(ηi) evaluated at ηi = xT
i β, i.e.

Di = ∂h(ηi)/∂η, and σ2
i = φv(h(ηi)). The observed information matrix is

Fobs(β) = − ∂2l(β)
∂β∂βT =

�
− ∂2l(β)

∂βi∂β j

�
ij

, (4.14)

27



4. Penalized Generalized Linear Models

i.e. the matrix of negative second derivatives which depends on the observations. Thus, the
expected information matrix or Fisher matrix is given by

F(β) = E(Fobs(β)) =
nX

i=1

Fi(β) (4.15)

=
nX

i=1

xixT
i D2

i σ−2
i .

For the canonical link function (4.3), the expected and the observed information matrix are
identical:

F(β) = Fobs(β). (4.16)

In matrix notation, the score function and the Fisher matrix have the following form:

s(β) = XTDΣ−1(y− µ) (4.17)

and
F(β) = XTDΣ−1DTX = XTWX, (4.18)

respectively. Thereby, D = diag(∂h(η1)/∂η, . . . , ∂h(ηn)/∂η) denotes the diagonal matrix of
derivatives, Σ = (σ2

1 , . . . , σ2
n) is the covariance matrix and W = DΣ−1DT is the diagonal

weight matrix.
The matrix notation is useful for the computation of the maximum likelihood solution. The
maximum likelihood estimates are obtained by solving the equation

s( bβ) = 0. (4.19)

According to Fahrmeir and Tutz [FT01], Equation (4.19) is in general non-linear and thus
has to be solved iteratively. A widely used iteration procedure for this is Fisher scoring.
Starting with an initial estimate bβ(0), Fisher scoring iterations are defined by

bβ(k+1) = bβ(k) + F−1( bβ(k))s( bβ(k)), k = 0, 1, 2, . . . (4.20)

where bβ(k) denotes the estimate in the kth step. Iteration is stopped if some termination
criterion is reached, e.g.

‖ bβ(k+1) − bβ(k)‖
‖ bβ(k)‖

≤ ε. (4.21)

This means that the iteration is stopped if the changes between successive steps are smaller
than the specified threshold ε.
The Fisher scoring iterations in Equation (4.20) can be alternatively seen as iteratively
weighted least squares. Therefore, we define working observations as

ỹi( bβ) = xT
i β + D−1

i (yi − µi) (4.22)
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4.3. Local Quadratic Approximations

and the corresponding vector of working observations ỹ( bβ) = (ỹ1( bβ), . . . , ỹn( bβ))T. Then,
the Fisher scoring iterations can be written asbβ(k+1) = (XTW( bβ(k))X)−1XTW( bβ(k))ỹ( bβ(k)). (4.23)

Another iterative procedure to solve Equation (4.19) is the Newton Raphson method. Thereby,
the expected information matrix F(β) is replaced by the observed information matrix Fobs(β)
in the Fisher scoring iteration in Equation (4.20).

4.3. Local Quadratic Approximations

In this section we describe the local quadratic approximation approach, introduced by Ulbricht
[Ulb10b]. This algorithm fits penalized generalized linear models and thereby comprises a
large class of penalties.
In the following, b = (β0, βT)T denotes the vector of unknown parameters in the predictor.
In addition to the coefficients of the p regressors, β = (β1, . . . , βp)T, the vector b contains
an intercept β0. We want to solve the penalized minimization problem

min
b
− l(b) + Pδ(λ, β), (4.24)

where l(b) is the log-likelihood of the underlying generalized linear model. The penalty
term is the sum of J penalty functions and is given by

Pδ(λ, β) =
JX

j=1

pλ,j(|aT
j β|). (4.25)

Thereby, aj is a known vector of constants and pλ,j : R∗+ → R∗+. The subscript δ represents
the specific penalty family, e.g. PPFL(λ, β) denotes the pairwise fused lasso penalty in
Equation (3.3). The penalty proposed by Fan and Li [FL01] is of the structure Pδ(λ, β) =Pp

j=1 pλ(|β j|). Since vector aj has only one non-zero element in this case, this penalty term
does not take into account any interactions between the regression coefficients. Hence, the
approach of Fan and Li [FL01] can be only applied to few penalty families such as ridge and
lasso, but not to the fused lasso or pairwise fused lasso.
The sum of all J penalty functions pλ,j(|aT

j β|) in Equation (4.25) determines the penalty
region, whereas the number J of penalty functions does not have to conform to the number
of regressors p. Furthermore, the type of the penalty function and the tuning parameter λ
do not have to be the same for all J penalty functions. For illustration purposes, we consider
the pairwise fused lasso penalty

PPFL(λ1, λ2, β) = λ1

pX
j=1

|β j|+ λ2

pX
j=2

j−1X
k=1

|β j − βk|.
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4. Penalized Generalized Linear Models

According to the notation of Equation (4.25), the pairwise fused lasso penalty can be
described by

PPFL(λ1, λ2, β) =
p̃+pX
j=1

pλ,j(|aT
j β|), (4.26)

with p̃ = (p
2). The p penalty functions for the lasso penalty term are given by

pλ,j(·) = λ1|aT
j β|, j = 1, . . . , p, (4.27)

where aj = (0, . . . , 0, 1, 0, . . . , 0)T with a one at the jth position. We obtain for the p̃ penalty
functions for the difference penalty term:

pλ,j(·) = λ2|aT
j β|, j = p + 1, . . . , p̃ + p (4.28)

with the p-dimensional vector aj = (0, . . . ,−1, 0, . . . , 1, 0, . . . , 0) with a one at the kth position
for k = p + 2, . . . , p̃ + p, and a minus one at the lth position for l = p + 1, . . . , k− 1.
An often applied principle in solving a convex optimization problem is to use a quadratic
approximation of the objective function. If the latter is twice continuously differentiable
iterative procedures of the Newton type are appropriate (Sec. 4.2). Therefore, we need the
gradient and the Hessian of the objective function. Since the first term of Equation (4.24)
is the negative log-likelihood, we can use the corresponding score function and expected
Fisher information matrix. For the second term, we cannot proceed the same way because it
includes L1-norm terms. Therefore, Ulbricht [Ulb10b] developed a quadratic approximation
of the penalty term (4.25) which is described in the following. Based on this approximation,
Newton-type algorithms (Sec. 4.2) can be applied.
Let ξ j = |aT

j β| and

p′λ,j =
dpλ,j

dξ j
. (4.29)

We assume that pλ,j is continuously differentiable for all ξ j > 0. Due to this assumption we
set

p′λ,j ≡ lim
ξ j↓0

p′λ,j(ξ j). (4.30)

Using Equation (4.30), for ξ j ≥ 0 we obtain the gradient of the jth penalty function

∇pλ,j =
∂pλ,j

∂β
= p′λ,j(ξ j)sgn(aT

j β)aj, (4.31)

which implies that

sgn(aT
j β) =

aT
j β

|aT
j β|

. (4.32)

If the update β(k) of the Newton-type algorithm is close to β, we can use the approximation

sgn(aT
j β(k)) ≈

aT
j β

|aT
j β(k)|

. (4.33)
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However a drawback of this approximation is that it is restricted to |aT
j β(k)| 6= 0. Therefore, if

|aT
j β(k)| appears in the denominator, we use the approximation |aT

j β(k)| ≈ ζ j. The parameter
ζ j is given by

ζ j =
r�

aT
j β(k)

�2
+ c, (4.34)

where c is a small positive integer (for the computations in chapters 5 and 6 we choose
c = 10−8). Thus, we can overcome the restriction in Equation (4.33) and improve on the
numerical stability.
Next, we consider the following equation:

aT
j βaT

j

�
β− β(k)

�
=

�
aT

j β
�2 − aT

j βaT
j β(k)

=
1
2

h�
aT

j β
�2 − 2aT

j βaT
j β(k) +

�
aT

j β(k)
�2i

+
1
2

h�
aT

j β
�2 −

�
aT

j β(k)
�2i

=
1
2

�
aT

j

�
β− β(k)

��2
+

1
2

�
βTajaT

j β− βT
(k)ajaT

j β(k)
�

(4.35)

If β(k) is close to β, the first term of the right hand side of Equation (4.35) is nearly zero.
Consequently, we obtain the approximation

aT
j βaT

j

�
β− β(k)

�
≈ 1

2

�
βTajaT

j β− βT
(k)ajaT

j β(k)
�

. (4.36)

Using the approximations in Equations (4.33) and (4.36), the first order Taylor expansion of
the jth penalty function in the neighborhood of β(k) can be written as

pλ,j
�
|aT

j β|
�
≈ pλ,j

�
|aT

j β(k)|
�
+∇pT

λ,j

�
β− β(k)

�
≈ pλ,j

�
|aT

j β(k)|
�
+ p′λ,j

�
|aT

j β(k)|
� aT

j β

ζ j
aT

j

�
β− β(k)

�
≈ pλ,j

�
|aT

j β(k)|
�
+

1
2

p′λ,j

�
|aT

j β(k)|
�

ζ j

�
βTajaT

j β− βT
(k)ajaT

j β(k)
�

(4.37)

Approximation (4.37) is a quadratic function of β. Using matrix notation and summation
over all J penalty functions it is equivalent to

JX
j=1

pλ,j
�
|aT

j β|
�
≈

JX
j=1

pλ,j
�
|aT

j β(k)|
�
+

1
2

�
βT Aλβ− βT

(k)Aλβ(k)
�
, (4.38)

with

Aλ =
JX

j=1

p′λ,j

�
|aT

j β(k)|
�

ζ j
ajaT

j (4.39)
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which does not depend on the parameter vector β. Since an intercept is included in the
model, the penalty matrix is extended to

A∗λ =
�

0 0T

0 Aλ

�
, (4.40)

where 0 is the p-dimensional zero vector. The quadratic approximation of the penalty
term (4.38) and a second order Taylor expansion of the negative log-likelihood at b(k) =
(β0,(k), βT

(k))
T result in a local approximation of the penalized minimization problem in

Equation (4.24), which is defined by

Q (b) := −l
�
b(k)

�
− s

�
b(k)

�T �
b− b(k)

�
− 1

2

�
b− b(k)

�T
H
�
b(k)

� �
b− b(k)

�
+

JX
j=1

pλ,j
�
|aT

j β(k)|
�
+

1
2

�
bTA∗λb + bT

(k)A∗λb(k)
�

. (4.41)

Here, s and H denote the score function and the Hessian of the log-likelihood, respectively.
To apply a Newton-type algorithm to this local quadratic minimization problem, we have to
compute the gradient and the Hessian of Equation (4.41).
The gradient is

∂Q
∂b

= −s
�
b(k)

�
− H

�
b− b(k)

�
+ A∗λb (4.42)

and for b = b(k) it evaluates to

∂Q
∂b

����
b=b(k)

= −s
�
b(k)

�
+ A∗λb. (4.43)

The corresponding Hessian is given by

∂2Q
∂b∂bT =

∂2Q
∂b∂bT

�����
b=b(k)

= −H
�
b(k)

�
+ A∗λ. (4.44)

In order that it is not necessary to compute the second order derivative in each iteration, we
use −E (H(b)) = F(b) as in the Fisher-scoring algorithm (q.v. Sec. 4.2). Thereby, F denotes
the Fisher information matrix corresponding to the log-likelihood l(b). Then, starting with
the initial value b(0) and extending Equation (4.44) by the Fisher information F(b(k)), the
update step of the quasi-Newton method is

b(k+1) = b(k) −
�

F(b(k)) + A∗λ
�−1 −

¦
s(b(k)) + A∗λb(k)

©
. (4.45)

Ulbricht [Ulb10b] calls this method ”quasi”-Newton because an approximation of the Hessian
is used.
Iterations are carried out until the relative distance moved during the kth step is less or equal
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to a specified threshold ε, i.e. the termination condition is

‖b(k+1) − b(k)‖
‖b(k)‖

≤ ε, ε > 0. (4.46)

Since the approximation of the penalty term is a quadratic function, the update in Equation
(4.45) is equivalent to the update of a quadratically penalized generalized linear model
estimation problem. Accordingly, the update can be rewritten as a penalized iteratively
re-weighted least squares (P-IRLS) problem

b(k+1) =
�

XTWX + A∗λ
�−1

XTWỹ. (4.47)

With the following derivation, Ulbricht [Ulb10b] shows that ỹ = D−1(y− µ) + Xb(k) holds:

b(k+1) = b(k) −
�

F(b(k)) + A∗λ
�−1 ¦−s(b(k)) + A∗λb(k)

©
= b(k) −

�
XTWX + A∗λ

�−1

8><>:−XTW

2664D−1(y− µ) + Xb(k)| {z }
=:ỹ

−Xb(k)

3775+ A∗λb(k)

9>=>;
= b(k) −

�
XTWX + A∗λ

�−1 ¦−XTWỹ +
�
XTWX + A∗λ

�
b(k)

©
=

�
XTWX + A∗λ

�−1
XTWỹ (4.48)

The update in Equation (4.47) is iterated until convergence. Hence, at convergence the
estimate is of the form b̂ =

�
XTWX + A∗λ

�−1
XTWỹ. Thus, b̂ is a weighted quadratically

penalized least squares solution. With X∗ := WT/2X and ỹ∗ := WT/2ỹ, the estimate can be
written as

b̂ =
�

X∗TX∗ + A∗λ
�−1

X∗Tỹ∗ (4.49)

which is a quadratically penalized solution to the linear model ỹ∗ = X∗b + ε, where
ε ∼ Nn(0, σ2I). An alternative formulation for the solution is

S(b) = min
b
‖ỹ∗ − X∗b‖2 +

1
2

bTA∗λb (4.50)

for a given value of λ. Using Equation (4.49) we obtain

ˆ̃y∗ = X∗
�

X∗TX∗ + A∗λ
�−1

X∗Tỹ∗ (4.51)

as an estimate of ỹ∗.
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5. Simulation Study I

5.1. Simulation Settings

In this section we present some simulation settings to investigate the performance of the
pairwise fused lasso. Furthermore we compare this new method with already established
ones. All simulations in this chapter are based on the linear model

y = Xβtrue + ε, ε ∼ Nn(0, σ2I). (5.1)

50 replications are performed for every simulation scenario and in each replication we gener-
ate a training, a validation and a test data set. The observation numbers of the corresponding
data sets are denoted by ntrain/nvali/ntest.

Since we investigate a regularization method with both variable selection and grouping
property, we use similar simulation scenarios as Zou and Hastie [ZH05].

1. The first setting is specified by the parameter vector βtrue = (3, 1.5, 0, 0, 0, 2, 0, 0)T and
standard error σ = 3. The correlation between the i-th and the j-th predictor follows
from

corr(i, j) = 0.5|i−j|, ∀i, j ∈ {1, . . . , 8} . (5.2)

The observation numbers are 20/20/200.

2. In this simulation scenario the parameter vector is
βtrue = (0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85)T and the correlation is given by Equa-
tion (5.2). The observation numbers are 20/20/200 again.

3. In this setting we have p = 20 predictors. The parameter vector is structured into
blocks:

βtrue =
�

0, . . . , 0| {z }
5

, 2, . . . , 2| {z }
5

, 0, . . . , 0| {z }
5

, 2, . . . , 2| {z }
5

�T
.

The standard error σ is 15 and the correlation between two predictors xi and xj is
given by corr(i, j) = 0.5. The observation numbers are 50/50/400.

4. This setting consists of p = 20 predictors. The parameter vector is given by

βtrue =
�

3, . . . , 3| {z }
9

, 0, . . . , 0| {z }
11

�T

and σ = 15. The design matrix X is specified by the following procedure. First we
generate three auxiliary predictors Zj ∼ Nn(0, I), j ∈ {1, 2, 3}. With these predictors
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we generate

xi = Z1 + ε̃i, i ∈ {1, 2, 3},
xi = Z2 + ε̃i, i ∈ {4, 5, 6},
xi = Z3 + ε̃i, i ∈ {7, 8, 9},

with ε̃i ∼ Nn(0, 0.01I), i ∈ {1, . . . , 9}. The predictors xi, i ∈ {10, . . . , 20}, are white
noise, i.e. xi ∼ Nn(0, I). Thus, within the first three blocks of 3 variables there
is a quite high correlation, but there is no correlation between these blocks. The
observation numbers are 50/50/400.

5. This setting is the same as Setting 4 except for the parameter vector which is given by:

βtrue =
�
5, 5, 5, 2, 2, 2, 10, 10, 10, 0, . . . , 0| {z }

11

�T
.

The first three settings are also performed for the following correlation structure: the
correlation between two predictors xi and xj in the first and the second scenario is given by

corr(i, j) = 0.9|i−j|, ∀i, j ∈ {1, . . . , 8} , (5.3)

whereas the third setting is realized for the correlation corr(i, j) = 0.9.

5.2. Technical Issues

In the following, we present some technical issues for the computational approach for fitting
penalized regression models. The computations in this work are realized with the statistical
software package R [R D09]. The local quadratic approximation approach as described
in Section 4.3 is implemented in the package lqa [Ulb10a]. Predominantly we used the
function cv.lqa() of this package to fit for each simulation setting a set of models for
different tuning parameter candidates and different penalties. The procedure measuring the
model performance is specified in more details on the basis of the function cv.lqa() and
its arguments.

• The function argument family identifies the exponential family of the response and
the link function of the model. In this simulation study, a normal distribution and its
canonical link are chosen (cf. Sec. 4.1).

• We investigate the pairwise fused lasso penalty and all modifications of this penalty
term as described in Section 3.5. Furthermore, already established regularization
methods like ridge regression, the lasso and the elastic net are considered. These
different penalty terms are specified by the argument penalty.family.

• The tuning parameter candidates are given via the argument lambda.candidates.
For this purpose, we generate a sequence s of equidistant points in [−11, 11]. For
the tuning parameter λ we generate a sequence exp(s) of length 100 for the distinct
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pairwise fused lasso penalties as well as for the ridge, lasso and elastic net penalty in all
simulation settings. In contrast, the length of the sequence for the tuning parameter α
(which can only take values from 0 to 1) differs depending on the particular setting. In
the first and the second simulation setting with only 8 regressors, we have a sequence
of length 101. In the other three settings (each with 20 predictors) we choose only a
sequence of length 11 to keep the computation time within bounds.

• The training data set is used for model fitting. Thus, we fit on these training data a
penalized linear model for each tuning parameter candidate or each possible combi-
nation of tuning parameters if the penalty term is specified by two parameters. Then,
the validation data are used for evaluating the performance of this set of models
according to a specific loss function (argument loss.func). In this study, we choose
the squared loss as loss function, i.e. PEy,vali = 1

nvali
‖yvali − Xvali

bβ‖2. We determine

the model with the parameter vector bβopt which minimizes the squared loss PEy,vali.

• Finally, we measure the performance of the selected model on the test data set.
We compute the prediction error of bβopt on the test data set, PEy,test = 1

ntest
‖ytest −

Xtest
bβopt‖2. Furthermore, we determine the mean squared error of this coefficient

vector, MSEβ = ‖ bβopt − βtrue‖2.

5.3. Results Setting 1

In this section, the results for the first simulation setting are presented. Before we go into
detail on these results, we comment on the subsequent tables which contain the medians of
the measured values.

Since 50 replications are performed for each simulation scenario, we can calculate the
standard deviation of the medians by bootstrapping. According to Efron and Tibshirani
[ET98], we therefore select B = 500 independent samples x∗1, x∗2, . . . , x∗B, each consisting
of n = 50 data values sampled with replacement from x, which denotes the corresponding
vector of estimates for the 50 replications. We evaluate the median corresponding to each
bootstrap sample, i.e. θ̂∗(b) = median(x∗b), b = 1, 2, . . . , B. Then, the standard error can
be estimated by the sample standard deviation of the B replications

ÒseB =
( BX

b=1

�
θ̂∗(b)− θ̂∗(·)

�2
/(B− 1)

)1/2

, (5.4)

where θ̂∗(·) =
PB

b=1 θ̂∗(b)/B. This algorithm is implemented in the function bootstrap
of the same-named package [Tib09]. In the following tables, the resulting estimates of the
standard deviation are quoted in parentheses.

In addition to the prediction error and the mean squared error, the hits and the false
positives [TU09] are calculated. Since a model should include all influential variables,
these criteria measure the performance of procedures to identify the relevant variables.
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Thereby, hits denotes the number of correctly identified influential variables. The number
of non-influential predictors which are wrongly specified as influential are given by the
false positives. Since we are using approximation procedures, a threshold ε1 is specified
to distinguish influential and non-influential predictors. This threshold is set to 0.0001 in
all simulation settings. This means that all those variables whose absolute value of the
corresponding coefficient is greater than ε1 are considered influential.

To evaluate the grouping property of regularization methods, we compute the effective
degrees of freedom. For this purpose, we consider the estimated standardized regression
coefficients. Standardized coefficients whose absolute values differ from each other by at
most ε2 are considered to be one cluster. The approach to investigate the absolute values of
the coefficients is motivated by the definition of the grouping property (c.f. Sec. 2.2). Then,
the number of effective degrees of freedom corresponds to the number of influential clusters
which are represented by those coefficients whose absolute values are again greater than
the specified threshold ε2. The choice of ε2 can be made dependent on the true parameter
vectors βtrue of the particular settings. In this study, we choose ε2 = 0.001 for all simulation
scenarios because all the true regression coefficients in the given settings are greater or equal
0.85. Consequently, in settings with smaller coefficients, a smaller threshold ε2 for clustering
and identification of the effective degrees of freedom has to be chosen. A problem with
clustering is that a coefficient possibly cannot be clearly assigned to a cluster. This is the
case for example, if the absolute value of the difference between |β1| and |β2| corresponds
to the absolute value of the difference between |β2| and |β3|, but the absolute value of the
difference of |β1| and |β3| exceeds the threshold ε2. Then, the question would be whether
β1 and β2, β2 and β3 or all three coefficients form a cluster. In this work, we do not consider
this problem but assign the concerned coefficients to any cluster and determine the number
of effective degrees of freedom.

The simulation results for the first setting with correlation ρ = 0.5 are given in Tables
5.1, 5.2 and Figures 5.1, 5.2. The boxplots of the predictors for the different pairwise fused
lasso (PFL) penalties as well as for ridge regression, the lasso and the elastic net are shown in
Figure 5.2. The corresponding medians of the predictors are presented in Table 5.2. Figure
5.1 illustrates both the boxplots of the prediction error (PE) on the test data set and the
boxplots of the mean squared error (MSE) of the parameter vector β. Furthermore, Table
5.1 contains the medians of the prediction error, the mean squared error, the hits and the
false positives and the effective degrees of freedom.

Initially, we consider the first ten regularization methods in Table 5.1. For these methods
we use the function cv.lqa() (Sec. 5.2). As Figure 5.2 and Table 5.2 illustrate, all ten
procedures identify the relevant variables β1, β2 and β6. Accordingly, the median of the
hits in Table 5.1 equals 3 for each penalty. The PFL methods using partial correlations, the
elastic net and the lasso estimate 4 of 5 non-influential predictors influential according to the
threshold ε1 = 0.0001, the other methods identify all of them wrong. Except ridge regression,
the effective degrees of freedom of all procedures have values between 4 and 7. Since
ridge regression shows neither the variable selection property nor the grouping property,
ridge regression has 8 effective degrees of freedom. If we consider the prediction error
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Method Median
PE MSE hits false.pos df.eff

pfl 12.10 (0.39) 4.09 (0.36) 3 5 6
pfl.kq 12.19 (0.45) 4.33 (0.57) 3 5 4
pfl.cor 12.18 (0.53) 4.01 (0.45) 3 5 6
pcor.shrink 12.26 (0.38) 3.82 (0.34) 3 4 6
pcor.emp 12.16 (0.45) 3.70 (0.38) 3 4 6
kqpcor.shrink 12.10 (0.44) 3.60 (0.37) 3 4 5.5
kqpcor.emp 11.99 (0.44) 3.84 (0.41) 3 4 6
enet 12.35 (0.44) 3.52 (0.29) 3 4 7
ridge 12.74 (0.67) 4.12 (0.65) 3 5 8
lasso 12.87 (0.50) 3.98 (0.44) 3 4 6
pfl(lars) 12.01 (0.48) 4.40 (0.42) 3 5 5
pfl.kq(lars) 11.82 (0.32) 3.75 (0.40) 3 4 4
pfl.cor(lars) 12.27 (0.44) 3.72 (0.41) 3 4 5
kq∗ 17.47 (1.13) 10.39 (1.39) 3 5 8
enet∗ 12.57 (0.52) 3.83 (0.53) 3 3 6
ridge∗ 12.63 (0.64) 4.03 (0.59) 3 5 8
lasso∗ 12.53 (0.56) 4.10 (0.57) 3 3 5

Table 5.1.: Results for the 1st simulation setting and correlation ρ = 0.5, based on 50
replications.

and the mean squared error (Fig. 5.1), the performance does not strongly differ between
these procedures. Considering the medians in Table 5.1, kqpcor.emp has the best prediction,
followed by kqpcor.shrink and pfl. With respect to the accuracy of the parameter estimate,
the elastic net dominates kqpcor.shrink and pcor.emp.
One aim of this thesis is to compare the pairwise fused lasso solutions based on the local
quadratic approximation approach (LQA) and the solutions based on the LARS algorithm.
Thus, additionally we compute pfl, pfl.kq and pfl.cor with the functions GFL.base(),
GFL.base.kq() and GFL.base.cor(), respectively (Sec. 3.4). In Table 5.1, these
procedures are denoted by pfl(lars), pfl.kq(lars) and pfl.cor(lars). Comparing the medians
of the measured values, the two approaches lead to similar but not identical results. One
reason for this could be that the LARS algorithm has the property to set some coefficients
exactly to zero whereas the LQA approach yields solutions which are near but not exact zero.
On the other hand, the procedures work with different approximations and thus have similar
but not identical solutions.
Furthermore, we compute ridge regression, the lasso and the elastic net with already
established functions and packages. Ridge regression (ridge∗) is implemented in function
lm.ridge() [VR02]. For the computation of lasso estimates (lasso∗) and elastic net
estimates (enet∗), the packages lasso2 [LVTM09] and elasticnet [ZH08] can be used.
With respect to the prediction error and the mean squared error, ridge∗, lasso∗ and enet∗

show nearly the same performance as those based on the LQA approach. The OLS estimator
(kq∗) has the largest prediction error and mean squared error among all procedures in this
setting.
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Figure 5.1.: Boxplots of the prediction error on the test data set and MSE of β for the 1st
simulation setting and correlation ρ = 0.5

The first setting is also realized for the correlation ρ = 0.9. The results are given in Tables
5.3, A.1 and Figures A.1, A.2 from the appendix. If we consider the mean squared error
and the prediction error, pfl.cor has the best performance. However in comparison to the
setting for correlation ρ = 0.5, the accuracy of the parameter estimates decreases. By means
of the minimal number of effective degrees of freedom, pfl.kq has the strongest clustering.
Although pfl.kq considers all variables as relevant (3 hits, 5 false positives), there are only
3 effective degrees of freedom. This means that the coefficients of the 8 predictors form 3
clusters in the case of highly correlated predictors.

To draw a comparison, in the following sections the results for the methods pfl(lars),
pfl.kq(lars), pfl.cor(lars) and kq∗, ridge∗, lasso∗, enet∗ are listed in the tables. We will
explicitly highlight basic differences compared to the corresponding methods based on the
LQA approach. For all other cases, the description of the results refers to the procedures
computed by function cv.lqa(). Therefore, only for these procedures the boxplots of the
prediction error and the mean squared error as well as the boxplots of the predictors are
illustrated in the figures.
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5.3. Results Setting 1
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Figure 5.2.: Boxplots of the predictors for the 1st simulation setting and correlation ρ = 0.5
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5. Simulation Study I

Predictor Method
pfl pfl.kq pfl.cor pcor.shrink pcor.emp

β1 2.30 (0.23) 2.52 (0.18) 2.45 (0.28) 2.47 (0.25) 2.53 (0.25)
β2 1.13 (0.10) 0.96 (0.18) 1.03 (0.12) 1.13 (0.15) 1.11 (0.13)
β3 0.07 (0.08) 0.01 (0.06) 0.01 (0.05) 0.00 (0.04) 0.00 (0.03)
β4 0.01 (0.03) 0.00 (0.03) 0.00 (0.02) 0.00 (0.00) 0.00 (0.01)
β5 0.22 (0.10) 0.01 (0.08) 0.00 (0.09) 0.00 (0.05) 0.00 (0.03)
β6 1.08 (0.11) 1.17 (0.17) 1.11 (0.14) 1.18 (0.14) 1.16 (0.13)
β7 0.28 (0.06) 0.08 (0.10) 0.19 (0.11) 0.07 (0.10) 0.09 (0.09)
β8 0.12 (0.11) 0.01 (0.09) 0.02 (0.08) 0.00 (0.07) 0.00 (0.07)

Predictor Method
kqpcor.shr kqpcor.emp enet ridge lasso

β1 2.59 (0.22) 2.70 (0.26) 2.46 (0.17) 2.32 (0.21) 2.64 (0.20)
β2 1.00 (0.15) 1.01 (0.13) 1.11 (0.16) 1.10 (0.10) 1.07 (0.17)
β3 0.00 (0.04) 0.00 (0.03) 0.00 (0.03) 0.08 (0.10) 0.00 (0.00)
β4 0.00 (0.01) 0.00 (0.01) 0.00 (0.02) 0.06 (0.16) 0.00 (0.00)
β5 0.00 (0.03) 0.00 (0.01) 0.00 (0.04) 0.06 (0.19) 0.00 (0.00)
β6 1.16 (0.21) 1.18 (0.22) 1.17 (0.10) 1.14 (0.12) 1.19 (0.11)
β7 0.02 (0.08) 0.08 (0.11) 0.05 (0.08) 0.26 (0.12) 0.00 (0.07)
β8 0.00 (0.02) 0.00 (0.04) 0.00 (0.05) 0.29 (0.18) 0.00 (0.01)

Table 5.2.: Medians of the predictors for the 1st simulation setting and correlation ρ = 0.5
based on 50 replications.
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5.3. Results Setting 1

Method Median
PE MSE hits false.pos df.eff

pfl 11.26 (0.26) 7.90 (0.88) 3 5 5
pfl.kq 11.63 (0.33) 10.54 (0.68) 3 5 3
pfl.cor 11.21 (0.24) 7.64 (0.94) 3 5 5
pcor.shrink 11.32 (0.23) 8.85 (0.70) 3 5 5
pcor.emp 11.29 (0.20) 8.64 (0.61) 3 5 5
kqpcor.shrink 11.24 (0.37) 8.78 (0.90) 3 5 4
kqpcor.emp 11.26 (0.29) 8.89 (0.86) 3 5 4
enet 11.51 (0.27) 8.95 (0.57) 3 5 8
ridge 11.49 (0.31) 8.81 (0.62) 3 5 8
lasso 12.10 (0.44) 11.64 (1.83) 3 3 6
pfl(lars) 11.24 (0.25) 8.05 (1.00) 3 5 4
pfl.kq(lars) 11.16 (0.31) 8.69 (1.14) 3 4 3
pfl.cor(lars) 11.28 (0.24) 7.90 (1.03) 3 5 4
kq∗ 17.47 (1.13) 55.22 (8.13) 3 5 8
enet∗ 11.47 (0.25) 8.21 (0.79) 3 4 7
ridge∗ 11.45 (0.25) 8.91 (0.73) 3 5 8
lasso∗ 11.98 (0.30) 10.72 (1.89) 3 3 5

Table 5.3.: Results for the 1st simulation setting and correlation ρ = 0.9, based on 50
replications.
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5. Simulation Study I

5.4. Results Setting 2 and 3

Although we investigate regularization methods with variable selection property we perform
setting 2 which consists solely of relevant variables. For correlation ρ = 0.5, the results are
given in Tables 5.4, A.2 and Figures A.3 and A.4 from the appendix.

Method Median
PE MSE hits false.pos df.eff

pfl 10.25 (0.17) 0.39 (0.10) 8 – 3
pfl.kq 10.08 (0.23) 0.42 (0.15) 8 – 2
pfl.cor 10.94 (0.34) 0.93 (0.20) 8 – 5
pcor.shrink 10.97 (0.29) 1.12 (0.19) 8 – 4
pcor.emp 11.24 (0.35) 1.19 (0.28) 8 – 5
kqpcor.shrink 11.16 (0.28) 1.22 (0.19) 8 – 4
kqpcor.emp 11.24 (0.26) 1.42 (0.23) 8 – 5
enet 11.62 (0.26) 1.91 (0.14) 8 – 8
ridge 11.60 (0.22) 1.76 (0.14) 8 – 8
lasso 13.35 (0.48) 4.47 (0.36) 8 – 7
pfl(lars) 10.23 (0.22) 0.40 (0.10) 8 – 2
pfl.kq(lars) 10.30 (0.18) 0.42 (0.13) 8 – 2
pfl.cor(lars) 11.06 (0.35) 1.23 (0.29) 8 – 4
kq∗ 17.47 (1.13) 10.39 (1.39) 8 – 8
enet∗ 12.58 (0.37) 3.01 (0.27) 7 – 7
ridge∗ 11.69 (0.24) 1.83 (0.16) 8 – 8
lasso∗ 13.38 (0.41) 4.62 (0.46) 6 – 6

Table 5.4.: Results for the 2nd simulation setting and correlation ρ = 0.5, based on 50
replications.

In this setting, pfl and pfl.kq have the best performance with respect to the prediction error
and the mean squared error. Furthermore, they have only 3 and 2 effective degrees of
freedom, respectively. The lasso has both the worst prediction and the worst mean squared
error. This results from the fact that the lasso has the selection but not the grouping property.
All methods identify the 8 relevant variables.

The results for the same setting but with highly correlated predictors (ρ = 0.9) are il-
lustrated in Tables 5.5, A.3 and Figures A.5, A.6. Considering the prediction accuracy and
the accuracy of the coefficient estimates, pfl.cor shows the best performance. Compared to
the setting with medium correlated predictors (Tab. 5.4), the number of effective degrees
of freedom in Table 5.5 decreases or remains the same. None of the pairwise fused lasso
methods is able to estimate all coefficients to be equal and thus to form only one cluster.
Instead, at least two groups are identified. Ridge regression and the elastic net estimate all
parameters different (8 effective degrees of freedom). Because of the performed variable
selection (6 hits), the lasso has only 6 effective degrees of freedom. This means that the
lasso selects only some variables from the group of highly correlated predictors.
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5.4. Results Setting 2 and 3

Method Median
PE MSE hits false.pos df.eff

pfl 10.22 (0.27) 0.63 (0.24) 8 – 3
pfl.kq 10.17 (0.20) 0.96 (0.39) 8 – 2
pfl.cor 10.13 (0.24) 0.27 (0.10) 8 – 2
pcor.shrink 10.22 (0.20) 0.47 (0.29) 8 – 3
pcor.emp 10.36 (0.25) 0.97 (0.35) 8 – 3
kqpcor.shrink 10.35 (0.20) 0.98 (0.35) 8 – 3
kqpcor.emp 10.52 (0.28) 1.17 (0.36) 8 – 4
enet 10.65 (0.19) 1.49 (0.40) 8 – 8
ridge 10.61 (0.25) 1.28 (0.44) 8 – 8
lasso 11.87 (0.31) 10.20 (1.18) 6 – 6
pfl(lars) 10.23 (0.26) 0.38 (0.17) 8 – 2
pfl.kq(lars) 10.25 (0.21) 0.88 (0.18) 8 – 2
pfl.cor(lars) 10.23 (0.24) 0.28 (0.17) 8 – 2
kq∗ 17.47 (1.13) 55.22 (8.13) 8 – 8
enet∗ 10.47 (0.23) 1.97 (0.22) 8 – 8
ridge∗ 10.68 (0.24) 1.39 (0.42) 8 – 8
lasso∗ 11.84 (0.40) 10.90 (1.17) 5 – 5

Table 5.5.: Results for the 2nd simulation setting and correlation ρ = 0.9, based on 50
replications.
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5. Simulation Study I

The third simulation setting contains two groups of relevant variables. The simulation results
for this setting with correlation ρ = 0.5 are given in Tables 5.6, A.4 and Figures A.7, A.8,
A.9. Note that pfl and pfl.cor perform best but the performance does not diverge for these
methods, except for the lasso since the lasso is the only procedure which shrinks coefficients
exactly to zero in this setting. Indeed the lasso does not identify all relevant variables, but
its median of false positives equals 4.5. By contrast, the other procedures estimate the 10
non-influential variables influential. As illustrated in Figures A.8, A.9 and Table A.4, all
procedures except the lasso estimate the 20 coefficients nearly equal. For instance, pfl.cor
estimates all coefficients equal since it has only one effective degree of freedom. However,
this value is only desirable if all variables are correctly specified. Note that in this setting
enet∗ and the elastic net based on the LQA approach differ with regard to the hits and the
false positives as well as the median of the mean squared error.

Method Median
PE MSE hits false.pos df.eff

pfl 239.77 (2.97) 20.39 (0.25) 10 10 1.5
pfl.kq 240.50 (4.13) 20.82 (0.52) 10 10 2.5
pfl.cor 239.81 (2.99) 20.35 (0.20) 10 10 1
pcor.shrink 243.54 (4.03) 20.60 (0.59) 10 10 6
pcor.emp 244.44 (3.66) 21.53 (1.50) 10 10 7
kqpcor.shrink 245.59 (4.59) 21.38 (1.18) 10 10 6.5
kqpcor.emp 247.44 (4.39) 21.78 (1.84) 10 10 6
enet 247.28 (4.32) 22.37 (1.57) 10 10 19.5
ridge 242.92 (4.56) 21.63 (1.24) 10 10 20
lasso 261.56 (5.26) 54.01 (3.77) 7 4.5 10
pfl(lars) 239.81 (3.00) 20.38 (0.28) 10 10 1.5
pfl.kq(lars) 240.21 (4.21) 20.32 (0.38) 10 10 1
pfl.cor(lars) 239.81 (3.04) 20.48 (0.28) 10 10 1.5
kq∗ 379.96 (10.06) 284.16 (22.11) 10 10 20
enet∗ 251.85 (3.17) 35.26 (2.39) 7 5 12
ridge∗ 246.75 (3.62) 21.98 (1.79) 10 10 20
lasso∗ 266.87 (4.65) 54.82 (3.91) 6 4 9

Table 5.6.: Results for the 3rd simulation setting and correlation ρ = 0.5, based on 50
replications.

The simulation results for the third setting and correlation ρ = 0.9 are given in Tables 5.7,
A.5 and Figures A.10, A.11, A.12. The regularization methods show the same behavior as
for the case with correlation ρ = 0.5. Note that for this correlation structure lasso∗ has a
much smaller mean squared error than the lasso based on the LQA approach. Furthermore,
the PFL methods based on the LARS algorithm and those based on the LQA approach differ
with regard to the prediction error.

In order to investigate whether the procedures identify grouped variables if the difference
between influential and non-influential variables is much larger, we present another simula-
tion scenario (Setting 7). Except for the true parameter vector, this scenario equals the third

46



5.4. Results Setting 2 and 3

Method Median
PE MSE hits false.pos df.eff

pfl 233.96 (3.00) 20.54 (0.33) 10 10 1.5
pfl.kq 234.00 (3.78) 20.32 (0.30) 10 10 2
pfl.cor 233.96 (3.82) 20.35 (0.17) 10 10 1
pcor.shrink 233.93 (3.35) 20.80 (1.49) 10 10 4.5
pcor.emp 234.75 (2.69) 20.91 (2.45) 10 10 4
kqpcor.shrink 236.60 (3.97) 25.39 (2.97) 10 10 4
kqpcor.emp 235.39 (3.56) 26.99 (4.88) 10 10 4
enet 234.95 (2.72) 28.93 (3.17) 10 10 19
ridge 234.90 (3.01) 24.81 (1.83) 10 10 20
lasso 241.19 (4.37) 92.99 (6.60) 5 4 8
pfl(lars) 249.81 (2.81) 20.21 (0.39) 10 10 3
pfl.kq(lars) 253.26 (3.11) 19.78 (0.47) 10 10 3.5
pfl.cor(lars) 249.81 (2.96) 20.21 (0.38) 10 10 3
kq∗ 379.96 (10.06) 157.87 (12.28) 10 10 20
enet∗ 257.63 (6.02) 30.07 (2.79) 8 5 13
ridge∗ 249.59 (5.46) 18.63 (0.68) 10 10 20
lasso∗ 279.61 (4.92) 39.29 (2.15) 7 4 11

Table 5.7.: Results for the 3rd simulation setting and correlation ρ = 0.9, based on 50
replications.

setting and is also performed for both correlation ρ = 0.5 and correlation ρ = 0.9. Thereby,
the parameter vector is given by

βtrue =
�

0, . . . , 0| {z }
5

, 10, . . . , 10| {z }
5

, 0, . . . , 0| {z }
5

, 10, . . . , 10| {z }
5

�T
.

As illustrated in Table A.9 and Figures A.18, A.19, each procedure identifies the two groups
of relevant variables in this simulation scenario with correlation ρ = 0.5. Note that indeed
the group structure of the non-influential predictors is identified, but the corresponding
coefficients are not set to zero. Considering the prediction error in Table 5.8 and Figure
A.17, kqpcor.emp has the best prediction followed by the other PFL methods using partial
correlations.

The simulation results for this setting with highly correlated predictors are given in Tables
5.9, A.10 and Figures A.20, A.21, A.22. The regularization methods again show the same
behavior as described for the third simulation scenario with correlation ρ = 0.5. All PFL
procedures estimate the 20 coefficients nearly equal 5 which is the mean of the true parameter
vector in setting 7.
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Method Median
PE MSE hits false.pos df.eff

pfl 319.56 (5.62) 149.35 (10.04) 10 9 16
pfl.kq 329.58 (6.79) 168.78 (19.13) 10 10 7
pfl.cor 319.65 (6.71) 152.94 (11.62) 10 9 16
pcor.shrink 315.80 (4.27) 140.83 (12.00) 10 9 16
pcor.emp 315.88 (4.70) 145.50 (15.21) 10 9 16
kqpcor.shrink 315.56 (7.41) 149.01 (13.51) 10 9 14
kqpcor.emp 312.22 (6.51) 144.64 (13.22) 10 9 14
enet 317.95 (7.30) 142.71 (7.59) 10 9.5 19
ridge 324.15 (7.06) 160.41 (7.10) 10 10 20
lasso 324.79 (7.89) 163.79 (11.73) 10 8 17

Table 5.8.: Results for the 7th simulation setting and correlation ρ = 0.5, based on 50
replications.

Method Median
PE MSE hits false.pos df.eff

pfl 279.95 (3.74) 460.86 (15.32) 10 10 8.5
pfl.kq 286.33 (4.91) 476.22 (12.58) 10 10 4
pfl.cor 279.92 (5.46) 477.59 (16.81) 10 10 8
pcor.shrink 283.60 (4.71) 426.46 (25.75) 10 10 9
pcor.emp 279.70 (4.95) 436.51 (23.09) 10 10 8
kqpcor.shrink 279.16 (4.73) 425.07 (16.73) 10 10 8
kqpcor.emp 277.94 (3.24) 413.13 (12.85) 10 10 8
enet 278.06 (5.45) 375.06 (14.53) 10 10 20
ridge 274.85 (3.69) 367.99 (9.68) 10 10 20
lasso 302.41 (4.86) 600.53 (29.57) 10 8 16

Table 5.9.: Results for the 7th simulation setting and correlation ρ = 0.9, based on 50
replications.
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5.5. Results Setting 4 and 5

5.5. Results Setting 4 and 5

In the following, the results for the fourth and the fifth simulation scenario are presented.
Due to their design, these two settings are well suited for studying the selection and the
grouping property of regularization methods.

Method Median
PE MSE hits false.pos df.eff

pfl 261.00 (5.45) 41.64 (8.67) 9 10 10.5
pfl.kq 250.61 (5.45) 107.32 (12.19) 9 7.5 6
pfl.cor 265.75 (3.82) 38.51 (16.84) 9 8 10.5
pcor.shrink 263.02 (2.98) 37.42 (13.23) 9 9 11
pcor.emp 260.16 (3.20) 34.81 (14.35) 9 8.5 11
kqpcor.shrink 253.09 (3.53) 112.98 (9.69) 5 2 6.5
kqpcor.emp 253.74 (3.78) 111.19 (10.79) 5 2.5 7
enet 260.64 (2.69) 33.72 (9.09) 9 8.5 16
ridge 264.33 (3.49) 24.83 (0.88) 9 11 20
lasso 264.90 (4.02) 100.67 (6.20) 7 5 11
pfl(lars) 260.32 (6.41) 47.37 (9.03) 9 9.5 8
pfl.kq(lars) 253.61 (4.66) 94.07 (22.72) 7 4 5
pfl.cor(lars) 262.84 (3.18) 38.82 (15.82) 9 7 10
kq∗ 369.87 (7.82) 4057.24 (315.11) 9 11 20
enet∗ 262.27 (5.41) 20.40 (5.79) 9 4 11
ridge∗ 266.21 (3.07) 24.90 (0.88) 9 11 20
lasso∗ 265.05 (3.80) 105.96 (7.96) 4 5 8

Table 5.10.: Results for the 4th simulation setting, based on 50 replications.

The prediction errors and the mean squared errors given in Tables 5.10, 5.11 and Figures
A.13, 5.3 show an oppositional behavior for the PFL procedures using weights based on
the ordinary least squares estimates. Both in setting 4 and in setting 5, pfl.kq has the best
prediciton, followed by kqpcor.shrink and kqpcor.emp. However, considering the accuracy of
the parameter estimates, pfl.kq, kqpcor.shrink and kqpcor.emp have maximum mean squared
errors. Since the ordinary least squares estimates are not correctly determined, the mean
squared error of the corresponding PFL methods tends to be much larger.
Note that in setting 5 pfl.kq(lars) and pfl.cor(lars) have almost the same prediction errors as
the corresponding PFL methods based on the LQA approach, but the mean squared errors
differ strongly. Thereby, pfl.kq(lars) performs better than pfl.kq, whereas pfl.cor performs
better than pfl.cor(lars) with respect to the mean squared error.
As illustrated in Figures A.14, A.15 and Table A.6 for setting 4 and in Figures 5.4, 5.5
and Table A.8 for setting 5, pfl, pfl.cor, pcor.shrink, pcor.emp, the elastic net and ridge
regression work quite well in identifying the groups of relevant predictors. Except for ridge
regression and pfl in setting 4 and additionally pfl.kq in setting 5, the procedures show good
performance in selecting variables.
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Figure 5.3.: Boxplots of the prediction error on the test data set and MSE of β for the 5th
simulation setting

In order to detect whether the procedures identify grouped variables even if the predictors
which form one group are not in adjacent columns in the design matrix, we present another
simulation scenario (Setting 6). This setting equals setting 5 except for the parameter vector
which is a permutation of the parameter vector in setting 5 and given by

βtrue = (5, 2, 0, 0, 0, 10, 0, 10, 2, 0, 0, 0, 0, 5, 10, 2, 0, 0, 5, 0)T .

The simulation results are given in Tables 5.12, A.7 and Figures A.16, 5.6, 5.7. The red
squares in the boxplots of the predictors in Figures 5.6, 5.7 indicate the true parameters. As
in setting 4 and 5, pfl.kq, kqpcor.shrink and kqpcor.emp have maximum mean squared errors,
but the best performance with respect to the prediction error. Considering the boxplots of
the predictors, ridge regression exceeds the other procedures, although it is not able to select
predictors at all. Therefore, ridge regression has indeed the largest prediction error but has
the best performance with respect to the accuracy of the parameter estimates.
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5.5. Results Setting 4 and 5
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Figure 5.4.: Boxplots of the predictors for the 5th simulation setting
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Figure 5.5.: Boxplots of the predictors for the 5th simulation setting

Method Median
PE MSE hits false.pos df.eff

pfl 266.43 (4.86) 189.15 (44.89) 9 9 10.5
pfl.kq 254.11 (5.66) 543.81 (51.63) 9 10 6
pfl.cor 264.67 (4.36) 48.07 (76.95) 9 9 11.5
pcor.shrink 265.80 (3.98) 103.23 (72.95) 9 8.5 11
pcor.emp 265.59 (3.51) 54.40 (70.67) 9 8.5 11
kqpcor.shrink 254.58 (3.97) 269.23 (159.51) 9 5.5 8
kqpcor.emp 257.42 (3.37) 355.94 (156.73) 7 4.5 7.5
enet 263.65 (4.05) 90.80 (58.76) 9 7 15
ridge 284.43 (7.90) 42.12 (4.05) 9 11 20
lasso 264.90 (3.92) 330.20 (26.06) 7 5 11.5
pfl(lars) 266.99 (5.57) 156.19 (59.03) 9 7.2 8
pfl.kq(lars) 257.02 (5.15) 367.24 (140.86) 5 2 6
pfl.cor(lars) 265.76 (4.51) 207.66 (63.98) 8.5 7.5 10
kq∗ 369.87 (7.82) 4057.23 (315.11) 9 11 20
enet∗ 262.96 (4.16) 36.58 (9.38) 8 3.5 11
ridge∗ 283.97 (7.70) 43.36 (3.94) 9 11 20
lasso∗ 269.72 (3.75) 336.35 (37.31) 5 5 9

Table 5.11.: Results for the 5th simulation setting, based on 50 replications.
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Figure 5.6.: Boxplots of the predictors for the 6th simulation setting
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Figure 5.7.: Boxplots of the predictors for the 6th simulation setting

Method Median
PE MSE hits false.pos df.eff

pfl 266.72 (4.75) 137.38 (89.23) 9 9 11
pfl.kq 258.30 (3.99) 610.57 (53.32) 8 6.5 6
pfl.cor 267.60 (4.87) 278.79 (38.50) 8 8 12
pcor.shrink 269.98 (4.88) 277.04 (47.84) 8 8 11
pcor.emp 265.01 (4.39) 254.21 (72.05) 8 8 11
kqpcor.shrink 258.40 (4.16) 607.10 (118.57) 6 4.5 8
kqpcor.emp 256.36 (4.09) 438.55 (161.53) 7.5 6 9
enet 267.40 (3.53) 143.10 (50.65) 8 7 15
ridge 283.67 (4.83) 51.70 (5.53) 9 11 20
lasso 264.08 (4.48) 377.02 (49.35) 7 5.5 12

Table 5.12.: Results for the 6th simulation setting, based on 50 replications.
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6. Simulation Study II

6.1. Binary Regression

In this section, we present some simulations based on generalized linear models to investigate
the performance of the pairwise fused lasso. For binary responses we choose the logit model
(c.f. Sec. 4.1), i.e.

yi ∼ B(1, πi) with πi =
exp(xT

i βtrue)
1 + exp(xT

i βtrue)
.

Basically, we use the same simulation settings as proposed in Section 5.1, except for the
observation numbers of the training, the validation and the test data set. In each simulation
scenario of this study, the observation numbers ntrain/nvali/ntest correspond to 100/100/400.
Furthermore, the predictor ηi = xT

i βtrue from the Normalcase is multiplied by a factor a in
order to realize an appropriate domain for the logistic response function. The value range
of the predictor should be approximately the interval [−4, 4]. Thus, for each setting we
determine a factor a and multiply the true parameter vector from the Normalcase by this
factor. The corresponding value of this factor and the modified parameter vector for each
simulation setting are given by:

• Setting 1:
a = 0.40 → βtrue = (1.2, 0.6, 0, 0, 0, 0.8, 0, 0)T

• Setting 2:
a = 0.55 → βtrue =

�
0.47, . . . , 0.47| {z }

8

�T

• Setting 3:
a = 0.15 → βtrue =

�
0, . . . , 0| {z }

5

, 0.3, . . . , 0.3| {z }
5

, 0, . . . , 0| {z }
5

, 0.3, . . . , 0.3| {z }
5

�T

• Setting 4:
a = 0.15 → βtrue =

�
0.45, . . . , 0.45| {z }

9

, 0, . . . , 0| {z }
11

�T

• Setting 5:
a = 0.10 → βtrue =

�
0.75, 0.75, 0.75, 0.3, 0.3, 0.3, 1.5, 1.5, 1.5, 0, . . . , 0| {z }

11

�T

The procedure to measure the model performance is basically the same as described in
Section 5.2, thus we again use function cv.lqa() for model fitting. Additionally we make
the following changes:
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6. Simulation Study II

• Instead of the squared loss we use the deviance to evaluate the model performance on
the validation data.

• The tuning parameter candidates are generated in the same manner as proposed
in Section 5.2. However in contrast to the first simulation study, the length of the
sequence for the tuning parameter α is 11 in each simulation scenario.

• To measure the performance of the selected model on the test data, we compute
the pearson statistic. According to Fahrmeir and Tutz [FT01], the pearson statistic is
defined by

χ2 =
nX

i=1

(yitest − bµitest)
2

v(bµitest)
,

where bµitest = h(xT
itest
bβopt) and v(bµitest) are the estimated mean and variance function,

respectively.

In the following we present the simulation results. The table for each simulation scenario
contains the medians of the pearson statistic (PS), the mean squared error (MSE), the hits,
the false positives and the effective degrees of freedom. Both the threshold ε1 which is used
to distinguish influential and non-influential predictors and the threshold ε2 which is used
for the computation of the effective degrees of freedom are set to 0.0001 in this simulation
study.

6.1.1. Results Setting 1, 2 and 3

Method Median
PS MSE hits false.pos df.eff

pfl 380.70 (8.77) 0.51 (0.06) 3 5 7
pfl.ml 374.69 (9.16) 0.50 (0.06) 3 3.5 5
pfl.cor 376.67 (13.13) 0.51 (0.05) 3 5 6
pcor.shrink 375.28 (12.57) 0.48 (0.06) 3 5 7
pcor.emp 371.95 (11.93) 0.48 (0.06) 3 4 7
mlpcor.shrink 371.37 (11.93) 0.47 (0.05) 3 3 5
mlpcor.emp 376.48 (11.83) 0.48 (0.05) 3 3 5
enet 368.29 (9.08) 0.46 (0.05) 3 4 7
ridge 374.95 (13.14) 0.55 (0.04) 3 5 8
lasso 374.09 (10.72) 0.51 (0.05) 3 4 7

Table 6.1.: Results for the 1st simulation setting and correlation ρ = 0.5, based on 50
replications.

The simulation results for the first setting with correlation ρ = 0.5 are given in Table 6.1
and Figures 6.1, 6.2. Considering the median of the pearson statistic as measure for the
adequacy of a model, the elastic net performs best. Furthermore, the elastic net has the
smallest mean squared error followed by the PFL methods using partial correlations. Both
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6.1. Binary Regression

the median of the false positives and the effective degrees of freedom are the smallest for
the PFL procedures using maximum likelihood estimates.
Comparing these results with the ones for correlation ρ = 0.9 given in Table 6.2 and Figures
B.1, B.2 we observe that except for the lasso all procedures estimate the five non-influential
predictors influential. The lasso has the worst performance both in terms of the prediction
accuracy and in terms of the accuracy of the parameter estimates. As in the simulation
study for normal distribution, the median of the prediction error and the pearson statistic,
respectively, decreases for highly correlated predictors, but the median of the mean squared
error increases for all regularization methods.

Method Median
PS MSE hits false.pos df.eff

pfl 358.17 (11.07) 0.97 (0.12) 3 5 5
pfl.ml 360.05 (15.95) 1.27 (0.13) 3 5 4
pfl.cor 361.31 (14.49) 1.01 (0.11) 3 5 5
pcor.shrink 353.24 (11.14) 1.00 (0.10) 3 5 5
pcor.emp 352.69 (11.06) 1.04 (0.11) 3 5 5
mlpcor.shrink 357.38 (13.29) 1.00 (0.12) 3 5 5
mlpcor.emp 356.32 (12.63) 1.06 (0.12) 3 5 5
enet 354.26 (9.26) 1.06 (0.14) 3 5 7
ridge 350.99 (16.75) 1.15 (0.14) 3 5 8
lasso 366.78 (9.41) 1.42 (0.15) 3 4 6

Table 6.2.: Results for the 1st simulation setting and correlation ρ = 0.9, based on 50
replications.

For the second simulation scenario and correlation ρ = 0.5, the results are shown in Table
6.3 and Figures B.3, B.4, whereas the results for correlation ρ = 0.9 are illustrated in
Table 6.4 and Figures B.5, B.6. Considering the median of the mean squared error and
the effective degrees of freedom, the PFL methods dominate the elastic net, the lasso as
well as ridge regression for both correlation structures. Thereby, pfl, pfl.ml and pfl.cor have
the best performance amongst the PFL methods. Due to two effective degrees of freedom,
pfl.ml shows the strongest grouping in each case. With respect to the pearson statistic, for
correlation ρ = 0.5 the PFL methods using regularized partial correlations have the smallest
median, whereas for correlation ρ = 0.9 the PFL methods using empirical partial correlations
perform best. The lasso has in both cases the worst prediction and the worst mean squared
error because of the missing grouping property. Furthermore, the lasso selects again only 6
of 8 relevant variables if they are highly correlated (ρ = 0.9).
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Figure 6.1.: Boxplots of the pearson statistic on the test data set and MSE of β for the 1st
simulation setting and correlation ρ = 0.5
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Figure 6.2.: Boxplots of the predictors for the 1st simulation setting and correlation ρ = 0.5
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Method Median
PS MSE hits false.pos df.eff

pfl 379.36 (12.01) 0.08 (0.02) 8 – 3.5
pfl.ml 375.72 (11.71) 0.08 (0.02) 8 – 2
pfl.cor 374.51 (11.78) 0.12 (0.01) 8 – 4.5
pcor.shrink 357.05 (8.89) 0.26 (0.03) 8 – 5
pcor.emp 360.93 (7.95) 0.29 (0.02) 8 – 6
mlpcor.shrink 355.89 (7.25) 0.27 (0.02) 8 – 5
mlpcor.emp 360.30 (7.93) 0.28 (0.02) 8 – 6
enet 379.29 (8.71) 0.43 (0.03) 8 – 8
ridge 379.88 (9.55) 0.43 (0.02) 8 – 8
lasso 429.54 (15.72) 0.65 (0.04) 8 – 8

Table 6.3.: Results for the 2nd simulation setting and correlation ρ = 0.5, based on 50
replications.

Method Median
PS MSE hits false.pos df.eff

pfl 343.12 (21.53) 0.16 (0.06) 8 – 3
pfl.ml 336.35 (23.26) 0.17 (0.07) 8 – 2
pfl.cor 349.22 (18.81) 0.12 (0.05) 8 – 3
pcor.shrink 327.51 (20.70) 0.21 (0.05) 8 – 4
pcor.emp 310.93 (22.45) 0.22 (0.10) 8 – 4.5
mlpcor.shrink 316.72 (17.46) 0.21 (0.04) 8 – 4
mlpcor.emp 311.09 (17.81) 0.21 (0.05) 8 – 4
enet 320.02 (15.26) 0.63 (0.16) 8 – 8
ridge 316.78 (12.20) 0.51 (0.11) 8 – 8
lasso 361.90 (23.33) 1.86 (0.21) 6 – 6

Table 6.4.: Results for the 2nd simulation setting and correlation ρ = 0.9 based on 50
replications.
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6.1. Binary Regression

For the third setting, the regularization methods show the same behavior as described in the
previous simulation study for normal distribution (Sec. 5.4). As illustrated in Figures B.8,
B.9 for correlation ρ = 0.5 and Figures B.11, B.12 for correlation ρ = 0.9, all procedures
except the lasso estimate the 20 regression coefficients nearly equal. Thus, the median of
the hits and false positives (Tab. 6.5, 6.6) corresponds to 10 for these methods. For the
setting with highly correlated predictors, the PFL methods, especially pfl, pfl.ml and pfl.cor,
have a small number of effective degrees of freedom. This indicates a strong clustering. The
boxplots of the pearson statistic and the mean squared error are shown in Figures B.7, B.10.

Method Median
PS MSE hits false.pos df.eff

pfl 389.38 (13.31) 0.47 (0.01) 10 10 8
pfl.ml 369.52 (15.88) 0.47 (0.01) 10 10 4
pfl.cor 380.79 (11.67) 0.48 (0.01) 10 10 6
pcor.shrink 363.02 (9.77) 0.49 (0.02) 10 10 9
pcor.emp 363.83 (12.13) 0.52 (0.02) 10 10 9
mlpcor.shrink 357.82 (10.10) 0.51 (0.02) 10 10 8.5
mlpcor.emp 351.02 (8.93) 0.51 (0.02) 10 10 9.5
enet 345.36 (6.30) 0.53 (0.03) 10 9.5 19
ridge 343.69 (8.91) 0.48 (0.03) 10 10 20
lasso 376.37 (9.33) 0.84 (0.05) 7 5 12

Table 6.5.: Results for the 3rd simulation setting and correlation ρ = 0.5, based on 50
replications.

Method Median
PS MSE hits false.pos df.eff

pfl 350.77 (26.92) 0.47 (0.05) 10 10 1
pfl.ml 358.77 (26.06) 0.48 (0.08) 10 10 2
pfl.cor 354.33 (26.12) 0.47 (0.07) 10 10 1.5
pcor.shrink 338.23 (25.39) 0.48 (0.07) 10 10 4.5
pcor.emp 345.62 (20.77) 0.48 (0.10) 10 10 4
mlpcor.shrink 338.45 (23.66) 0.49 (0.09) 10 10 4
mlpcor.emp 355.23 (20.07) 0.49 (0.12) 10 10 4
enet 343.74 (21.04) 0.83 (0.17) 10 10 19.5
ridge 325.06 (18.77) 0.60 (0.06) 10 10 20
lasso 355.22 (19.02) 2.24 (0.12) 5 4 9

Table 6.6.: Results for the 3rd simulation setting and correlation ρ = 0.9 based on 50
replications.
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6.1.2. Results Setting 4 and 5

For the fourth simulation setting, the results are given in Table 6.7 and Figures B.13, B.14,
B.15, whereas the results for the fifth setting are illustrated in Table 6.8 and Figures 6.3, 6.4,
6.5. Both in setting 4 and in setting 5, besides the lasso the PFL methods using weights based
on maximum likelihood estimates have the worst performance with respect to the mean
squared errors. However, these PFL procedures have the smallest medians of both the false
positives and the effective degrees of freedom. Considering the boxplots of the predictors,
ridge regression works best in identifying the groups of relevant predictors although it has
neither the variable selection nor the grouping property.

Method Median
PS MSE hits false.pos df.eff

pfl 353.62 (8.61) 0.70 (0.24) 9 9 11
pfl.ml 359.78 (16.37) 2.24 (0.23) 8.5 6 6
pfl.cor 343.64 (11.66) 1.03 (0.33) 9 8 11
pcor.shrink 358.33 (12.22) 0.98 (0.24) 9 8 11
pcor.emp 347.01 (7.85) 0.65 (0.18) 9 8.5 11
mlpcor.shrink 361.86 (11.30) 1.69 (0.47) 5 3 7
mlpcor.emp 352.60 (8.12) 1.87 (0.49) 5 2.5 7
enet 349.43 (7.13) 1.17 (0.24) 9 8 15
ridge 357.84 (13.48) 0.50 (0.04) 9 11 20
lasso 356.27 (7.54) 2.00 (0.11) 6 4 11

Table 6.7.: Results for the 4th simulation setting based on 50 replications.

Method Median
PS MSE hits false.pos df.eff

pfl 304.60 (11.09) 2.13 (0.33) 8 8 11
pfl.ml 334.68 (11.53) 4.17 (0.26) 8 4.5 6
pfl.cor 296.58 (13.55) 1.48 (0.43) 6 8 12
pcor.shrink 292.04 (11.93) 1.94 (0.36) 8 8 12
pcor.emp 292.98 (9.04) 1.75 (0.34) 8 7.5 12
mlpcor.shrink 324.67 (20.89) 4.95 (0.43) 5 2 7
mlpcor.emp 325.82 (20.02) 4.97 (0.36) 5 2 6.5
enet 294.25 (11.64) 1.73 (0.24) 8 6 14
ridge 307.36 (12.30) 0.96 (0.05) 9 11 20
lasso 301.22 (12.25) 3.30 (0.44) 7 5 12

Table 6.8.: Results for the 5th simulation setting based on 50 replications.
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Figure 6.3.: Boxplots of the pearson statistic on the test data set and MSE of β for the 5th
simulation setting
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Figure 6.4.: Boxplots of the predictors for the 5th simulation setting
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Figure 6.5.: Boxplots of the predictors for the 5th simulation setting
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6.2. Poisson Regression

The simulations in this section are based on the Poisson model with the log-link as link
function (c.f. Sec. 4.1), i.e.

yi ∼ Po(λi) with λi = exp(xT
i βtrue).

Analogously to the simulation study on binary responses (Sec. 6.1), the predictor ηi = xT
i βtrue

is multiplied by a factor a. Since the value range of the mean µi = λi should be approximately
in the interval [0, 8], we again determine for each setting (as proposed in Section 5.1) the
corresponding factor a and multiply the true parameter vector by this factor. The observation
numbers for the training, the validation and the test data set remain the same as in section
5.1. Thus, the modified parameter vectors are given by

• Setting 1:
a = 0.15 → βtrue = (0.45, 0.225, 0, 0, 0, 0.3, 0, 0)T

• Setting 2:
a = 0.20 → βtrue =

�
0.17, . . . , 0.17| {z }

8

�T

• Setting 3:
a = 0.05 → βtrue =

�
0, . . . , 0| {z }

5

, 0.1, . . . , 0.1| {z }
5

, 0, . . . , 0| {z }
5

, 0.3, . . . , 0.3| {z }
5

�T

• Setting 4:
a = 0.05 → βtrue =

�
0.15, . . . , 0.15| {z }

9

, 0, . . . , 0| {z }
11

�T

• Setting 5:
a = 0.03 → βtrue =

�
0.15, 0.15, 0.15, 0.06, 0.06, 0.06, 0.3, 0.3, 0.3, 0, . . . , 0| {z }

11

�T

Note that the procedure and statistics to evaluate the model performance described for the
simulations based on the logit model in Section 6.1 remain the same for this simulation
study here.

In the following we present the simulation results. As in the simulation study for binary
responses, the tables contain the medians of the pearson statistic (PS), the mean squared
error (MSE), the hits, the false positives and the effective degrees of freedom. The figures
which illustrate the boxplots of the predictors, the pearson statistic and the mean squared
error are presented in Appendix C.
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6.2. Poisson Regression

6.2.1. Results Setting 1, 2 and 3

Tables 6.9 and 6.10 show that the lasso identifies only two of the three relevant variables.
However, the lasso has the smallest median of false positives. Considering the median of
the mean squared error, the performance does not diverge for the regularization techniques
except for the lasso in the setting with correlation ρ = 0.9.

Method Median
PS MSE hits false.pos df.eff

pfl 274.05 (18.84) 0.20 (0.02) 3 5 4
pfl.ml 275.52 (15.16) 0.22 (0.01) 3 5 3
pfl.cor 282.06 (24.94) 0.20 (0.02) 3 5 4
pcor.shrink 280.86 (26.66) 0.20 (0.02) 3 4 4.5
pcor.emp 285.11 (17.87) 0.19 (0.02) 3 4 4
mlpcor.shrink 276.97 (18.13) 0.21 (0.03) 3 4 4
mlpcor.emp 277.99 (20.17) 0.22 (0.02) 3 4 5
enet 285.29 (18.81) 0.18 (0.02) 3 4 6
ridge 292.48 (15.80) 0.21 (0.01) 3 5 8
lasso 304.16 (18.73) 0.20 (0.04) 2 2 4

Table 6.9.: Results for the 1st simulation setting and correlation ρ = 0.5 based on 50 replica-
tions.

Method Median
PS MSE hits false.pos df.eff

pfl 218.03 (8.08) 0.23 (0.01) 3 5 4
pfl.ml 223.00 (10.11) 0.25 (0.02) 3 5 2.5
pfl.cor 221.69 (11.31) 0.22 (0.01) 3 5 4
pcor.shrink 215.39 (7.45) 0.23 (0.01) 3 5 4
pcor.emp 212.82 (7.48) 0.23 (0.01) 3 5 4
mlpcor.shrink 218.38 (13.49) 0.24 (0.02) 3 5 4
mlpcor.emp 212.52 (13.42) 0.25 (0.02) 3 5 4
enet 205.77 (8.55) 0.22 (0.02) 3 5 8
ridge 210.32 (9.80) 0.21 (0.02) 3 5 8
lasso 221.06 (12.04) 0.32 (0.05) 2 3 5

Table 6.10.: Results for the 1st simulation setting and correlation ρ = 0.9 based on 50
replications.
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6. Simulation Study II

Considering the effective degrees of freedom in Tables 6.11 and 6.12, pfl, pfl.ml and pfl.cor
show the strongest grouping, especially in that setting with highly correlated predictors. In
contrast to the simulation on binary responses, the lasso selects only six of eight relevant
variables not only in the setting with correlation ρ = 0.9 but also in the setting with
correlation ρ = 0.5.

Method Median
PS MSE hits false.pos df.eff

pfl 249.46 (15.07) 0.04 (0.01) 8 – 3
pfl.ml 249.46 (14.99) 0.04 (0.01) 8 – 2
pfl.cor 266.02 (16.24) 0.11 (0.03) 8 – 4
pcor.shrink 264.94 (13.52) 0.11 (0.03) 8 – 5
pcor.emp 278.67 (18.59) 0.14 (0.02) 8 – 5
mlpcor.shrink 273.77 (11.04) 0.13 (0.04) 8 – 5
mlpcor.emp 284.64 (18.71) 0.16 (0.03) 8 – 5
enet 281.64 (10.08) 0.16 (0.02) 8 – 8
ridge 279.74 (12.91) 0.14 (0.01) 8 – 8
lasso 331.07 (20.20) 0.21 (0.02) 6 – 6

Table 6.11.: Results for the 2nd simulation setting and correlation ρ = 0.5 based on 50
replications.

Method Median
PS MSE hits false.pos df.eff

pfl 225.12 (11.27) 0.01 (0.01) 8 – 1
pfl.ml 227.63 (10.48) 0.02 (0.02) 8 – 2
pfl.cor 222.48 (11.34) 0.01 (0.01) 8 – 1
pcor.shrink 216.48 (8.95) 0.01 (0.01) 8 – 3
pcor.emp 216.36 (11.67) 0.02 (0.01) 8 – 4
mlpcor.shrink 217.43 (7.52) 0.02 (0.01) 8 – 3
mlpcor.emp 216.86 (8.78) 0.03 (0.02) 8 – 4
enet 221.84 (11.05) 0.10 (0.02) 8 – 8
ridge 221.84 (11.50) 0.07 (0.01) 8 – 8
lasso 255.36 (18.37) 0.33 (0.05) 5.5 – 5

Table 6.12.: Results for the 2nd simulation setting and correlation ρ = 0.9 based on 50
replications.
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6.2. Poisson Regression

The results for the third setting are given in Tables 6.13 and 6.14. Note that the behavior of
the regularization procedures is again the same as described for the simulations based on
the linear model (Sec. 5.4) as well as the logit model (Sec. 6.1.1). This means that again
the procedures except the lasso estimate all regression coefficients nearly equal and thus
consider all non-influential predictors influential (10 false positives).

Method Median
PS MSE hits false.pos df.eff

pfl 407.92 (15.58) 0.05 (0.00) 10 10 2.5
pfl.ml 403.88 (16.15) 0.05 (0.00) 10 10 3
pfl.cor 415.39 (17.81) 0.05 (0.00) 10 10 2
pcor.shrink 398.62 (16.24) 0.05 (0.00) 10 10 5
pcor.emp 400.90 (16.02) 0.06 (0.00) 10 10 6
mlpcor.shrink 408.52 (17.64) 0.06 (0.01) 10 10 5.5
mlpcor.emp 402.22 (16.81) 0.07 (0.01) 10 10 6
enet 404.81 (18.30) 0.07 (0.01) 10 10 19
ridge 392.28 (14.67) 0.06 (0.01) 10 10 20
lasso 460.23 (25.61) 0.15 (0.02) 6 4 10

Table 6.13.: Results for the 3rd simulation setting and correlation ρ = 0.5 based on 50
replications.

Method Median
PS MSE hits false.pos df.eff

pfl 420.23 (16.43) 0.05 (0.00) 10 10 1
pfl.ml 423.40 (16.59) 0.05 (0.00) 10 10 2
pfl.cor 423.97 (14.54) 0.05 (0.00) 10 10 1
pcor.shrink 415.71 (12.92) 0.06 (0.01) 10 10 4.5
pcor.emp 420.67 (14.46) 0.07 (0.01) 10 10 5
mlpcor.shrink 428.39 (12.17) 0.06 (0.01) 10 10 4
mlpcor.emp 425.47 (13.62) 0.06 (0.01) 10 10 4
enet 416.38 (15.01) 0.08 (0.01) 10 10 19
ridge 409.55 (16.66) 0.06 (0.00) 10 10 20
lasso 431.51 (16.20) 0.27 (0.02) 4 3 8

Table 6.14.: Results for the 3rd simulation setting and correlation ρ = 0.9 based on 50
replications.
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6. Simulation Study II

6.2.2. Results Setting 4 and 5

Tables 6.15 and 6.16 illustrate that similarly for the fourth and fifth simulation setting the
results for the Poisson model corresponds to those for the logit model (Sec. 6.1.2). Thus,
with respect to the accuracy of the parameter estimates, pfl.ml, mlpcor.shrink, mlpcor.emp
as well as the lasso have the worst performance.

Method Median
PS MSE hits false.pos df.eff

pfl 468.07 (16.62) 0.10 (0.02) 9 10 10
pfl.ml 432.27 (13.97) 0.35 (0.05) 7 6 6
pfl.cor 501.11 (24.53) 0.19 (0.03) 7.5 8 10.5
pcor.shrink 490.96 (26.16) 0.19 (0.03) 7 6.5 10
pcor.emp 484.78 (19.49) 0.16 (0.04) 9 8 10
mlpcor.shrink 450.86 (16.54) 0.29 (0.04) 5.5 3 7
mlpcor.emp 455.47 (16.54) 0.29 (0.05) 5 3 7
enet 481.05 (19.87) 0.11 (0.02) 9 8 15
ridge 484.40 (18.27) 0.07 (0.01) 9 11 20
lasso 500.05 (25.03) 0.27 (0.01) 6 5 11

Table 6.15.: Results for the 4th simulation setting based on 50 replications.

Method Median
PS MSE hits false.pos df.eff

pfl 476.20 (19.53) 0.19 (0.03) 9 9 10.5
pfl.ml 428.16 (13.41) 0.59 (0.04) 6 4 6
pfl.cor 483.16 (19.61) 0.26 (0.03) 6.5 7 10.5
pcor.shrink 474.66 (17.01) 0.25 (0.04) 8 7 10
pcor.emp 479.92 (16.59) 0.26 (0.03) 6.5 7 11
mlpcor.shrink 461.58 (23.31) 0.52 (0.06) 5 2 6
mlpcor.emp 457.27 (22.69) 0.53 (0.06) 5 2 6
enet 477.03 (23.03) 0.21 (0.04) 7 7 13
ridge 512.06 (26.45) 0.13 (0.01) 9 11 20
lasso 488.66 (21.14) 0.42 (0.05) 5 5 11

Table 6.16.: Results for the 5th simulation setting based on 50 replications.
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7. Data Examples

Here, we present two real data examples in order to illustrate the application of the local
quadratic approximation approach to generalized linear models. For one example the Gamma
distribution is applied, whereas for the other example we choose the Poisson distribution.
The tuning parameters for the pairwise fused lasso methods, the elastic net, the lasso as well
as the ridge regression are selected via tenfold cross validation. Afterwards we estimate the
corresponding models. We only specify the residual deviance of the fitted model because
computationally it is too expensive to compute the prediction error on the data set of random
splits. Furthermore, we evaluate the effective degrees of freedom.

7.1. Income Data Set

The income data set consists of the following 19 regressors: height, age, working position,
working hours a week, married, employee, size of the company (20-200 employees, more
than 200 employees), occupation (manager, scientist, engineer, office worker, sales assistant,
farmer, craftsman, operator) and graduation (CSE, GCSE, Abitur). The goal is to estimate the
income of 3344 women and 3752 men by using these regressors. Due to the non-negativity
of the response, we choose the Gamma distribution (Sec. 4.1). Furthermore, for numerical
reasons we prefer the log-link to the identity link. The results for the different regularization
methods are shown in Table 7.1 (for men) and in Table 7.2 (for women).

Method
pfl pfl.ml pfl.cor pcor.shrink pcor.emp

res.dev 494.7 494.6 494.5 494.5 494.5
df.eff 18 14 19 19 19

Method
mlpcor.shr mlpcor.emp enet ridge lasso

res.dev 494.5 494.5 494.5 494.5 494.5
df.eff 19 19 19 19 19

Table 7.1.: Residual deviance and effective degrees of freedom for men.

Considering the residual deviance, the performance does not diverge for these methods.
Except for pfl and pfl.ml, the procedures have 19 effective degrees of freedom.
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7. Data Examples

Method
pfl pfl.ml pfl.cor pcor.shrink pcor.emp

res.dev 528.6 528.5 528.5 528.5 528.5
df.eff 18 18 19 19 19

Method
mlpcor.shr mlpcor.emp enet ridge lasso

res.dev 528.5 528.5 528.5 528.5 528.5
df.eff 19 19 19 19 19

Table 7.2.: Residual deviance and effective degrees of freedom for women.

7.2. Bones Data Set

This study aims at estimating the age by various measurements of bones for 87 persons. The
underlying data set consists of 20 predictors: osteon fragments, osteon population density,
type I osteon, type II osteon, Haverssche canals, non Haverssche canals, Volkmannsche
canals, resorption lacuna, percentage of resorption lacuna, percentage of general lamellae,
percentage of fragmental bones, percentage of osteonal bones, surface of an osteon, surface
of a resorption lacuna, quotient of the surface of an resorption lacuna and the surface of an
osteon, activation frequency, size of an compact bone, bone formation rate, femur class and
gender. Some of the predictors are highly correlated, i.e. ρij ≈ 0.9. Furthermore, we choose
the Poisson model and its canonical link (Sec. 4.1). The residual deviance and the effective
degrees of freedom for each regularization method are illustrated in Table 7.3.

Method
pfl pfl.ml pfl.cor pcor.shrink pcor.emp

res.dev 30.89 32.09 36.31 30.89 30.89
df.eff 13 9 8 13 13

Method
kqpcor.shr kqpcor.emp enet ridge lasso

res.dev 32.09 35.26 30.89 31.03 31.80
df.eff 9 8 13 20 13

Table 7.3.: Residual deviance and effective degrees of freedom.

Except for ridge regression, all methods show the grouping and variable selection property,
since the number of effective degrees of freedom is between eight and thirteen. Thereby, pfl,
pcor.shrink, pcor.emp and the elastic net have the smallest residual deviance and thirteen
effective degrees of freedom. The procedures pfl.cor and kqpcor.emp have only eight effective
degrees of freedom but the largest residual deviance.
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8. Conclusion

In this thesis, we examined the performance of the pairwise fused lasso, a new regularization
method. Thereby, we computed the pairwise fused lasso solutions by the approximation
procedures LQA [Ulb10b] and LARS [EHJT04] to evaluate the local quadratic approximation
(LQA) approach for solving penalized regression problems. Furthermore, we computed ridge
regression, the lasso and the elastic net with already established packages as well as the
package lqa [Ulb10a]. Thus, on the one hand, we compared the pairwise fused lasso with
already proposed regularization techniques, and on the other hand, again the LQA approach
was evaluated. In the following, the most significant results of this thesis are summarized
and approaches for further investigation are proposed.

The simulation studies in Chapters 5 and 6 show that the pairwise fused lasso represents a
well-performing alternative regularization method which exhibits both the variable selection
and the grouping property. Compared to the elastic net [ZH05], the simulation results
illustrate that in most cases the pairwise fused lasso dominates the elastic net with respect to
the prediction error on the test data set as well as the mean squared error of the parameter
vector β. Although the elastic net also has the grouping property, it performs worse in
grouping highly correlated predictors since it exhibits large medians of the effective degrees
of freedom in each simulation setting.
Considering the different modifications of the pairwise fused lasso penalty proposed in
Section 3.3, we conclude that our choice of weights neither significantly improves the
prediction accuracy nor the accuracy of coefficient estimates. Indeed in some simulation
settings the pairwise fused lasso penalties using both partial correlations and ordinary least
squares estimates have a smaller prediction error, but with respect to the mean squared
error they have the worst performance among all regularization methods (c.f. setting 4
and 5 in Sec. 5.5). However, we encountered another possibility to modify the pairwise
fused lasso penalty. In the correlation based pairwise fused lasso penalty (Eq. 3.6), we
are weighting the difference of coefficients by 1

1−|ρjk |
. An alternative weighting would be

|ρjk|. This means that if predictors are uncorrelated (ρjk = 0), the pairwise fused lasso
penalty simplifies to the lasso penalty. For the fifth setting with highly correlated predictors
within the groups (c.f. Sec. 5.1), the solutions for the pairwise fused lasso procedures using
|ρjk| in the penalty term are already computed. Thereby, we choose for ρjk the marginal
correlation, the regularized partial correlation as well as the empirical partial correlation.
Furthermore, we again considered the combination of partial correlations and additional
weights wj = |βML

j |−1 for the lasso term in the penalty. The first results show that these
modifications of the pairwise fused lasso penalty term achieve a considerable improvement
of the mean squared error if the used correlations ρjk corresponds to regularized partial
correlations.
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8. Conclusion

Comparing the pairwise fused lasso solutions based on the LQA approach and the solutions
based on the LARS algorithm, our simulations show that these two approaches lead to
similar but not identical solutions since they work with different approximations. For the
simulations based on the linear model in Chapter 5, we computed ridge regression, the lasso
and the elastic net additionally with already established functions and packages, whereas
the solutions show nearly the same performance as those based on the LQA approach. By
contrast, the computations for the Poisson and logit model in Chapter 6 are solely based
on the LQA approach. Indeed the algorithm implemented in package lasso2 [LVTM09]
provides the computation of penalized generalized linear models, but for the elastic net no
package is established for fitting penalized Poisson models. However, for the computation
of elastic net estimates for logistic regression models the package glmnet [FHT09] can be
used. According to this, the main advantage of the local quadratic approximation approach
is that it provides the computation of penalized generalized linear models and thereby
comprises a large class of penalties and exponential families. Note that the LQA approach is
computationally expensive. With respect to penalized generalized regression models, further
simulation studies could address the comparison of solutions based on the LQA approach and
those based on algorithms implemented in already established packages, such as glmnet
[FHT09] and glmpath [PH07].
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A. Simulations: Normal Distribution

A.1. Setting 1
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Figure A.1.: Boxplots of the prediction error on the test data set and MSE of β for the first
simulation setting and correlation ρ = 0.9
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A. Simulations: Normal Distribution
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Figure A.2.: Boxplots of the predictors for the first simulation setting and correlation ρ = 0.9
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A.1. Setting 1

Predictor Method
pfl pfl.kq pfl.cor pcor.shrink pcor.emp

β1 1.88 (0.17) 1.68 (0.26) 1.85 (0.23) 1.70 (0.22) 1.63 (0.23)
β2 0.97 (0.12) 0.87 (0.18) 1.02 (0.11) 1.05 (0.11) 1.05 (0.07)
β3 0.50 (0.08) 0.38 (0.18) 0.48 (0.10) 0.46 (0.12) 0.52 (0.14)
β4 0.58 (0.08) 0.56 (0.09) 0.58 (0.09) 0.59 (0.10) 0.53 (0.11)
β5 0.47 (0.09) 0.45 (0.13) 0.43 (0.11) 0.40 (0.11) 0.51 (0.10)
β6 0.63 (0.08) 0.67 (0.17) 0.60 (0.11) 0.62 (0.11) 0.63 (0.11)
β7 0.33 (0.13) 0.42 (0.12) 0.35 (0.08) 0.22 (0.10) 0.22 (0.08)
β8 0.13 (0.13) 0.23 (0.15) 0.18 (0.10) 0.24 (0.10) 0.18 (0.10)

Predictor Method
kqpcor.shr kqpcor.emp enet ridge lasso

β1 1.69 (0.34) 1.73 (0.28) 1.79 (0.21) 1.58 (0.19) 2.34 (0.26)
β2 0.89 (0.12) 1.02 (0.11) 1.04 (0.09) 1.07 (0.07) 0.69 (0.28)
β3 0.60 (0.12) 0.53 (0.14) 0.40 (0.14) 0.74 (0.07) 0.00 (0.02)
β4 0.60 (0.13) 0.56 (0.16) 0.54 (0.14) 0.58 (0.11) 0.01 (0.16)
β5 0.44 (0.19) 0.51 (0.16) 0.34 (0.17) 0.48 (0.07) 0.00 (0.03)
β6 0.80 (0.11) 0.76 (0.11) 0.71 (0.07) 0.79 (0.07) 0.70 (0.27)
β7 0.12 (0.14) 0.11 (0.13) 0.28 (0.13) 0.54 (0.10) 0.00 (0.02)
β8 0.00 (0.09) 0.08 (0.10) 0.02 (0.08) 0.31 (0.14) 0.00 (0.00)

Table A.1.: Medians of the predictors for the first simulation setting and correlation ρ = 0.9
based on 50 replications.
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A. Simulations: Normal Distribution

A.2. Setting 2
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Figure A.3.: Boxplots of the prediction error on the test data set and MSE of β for the second
simulation setting and correlation ρ = 0.5
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A.2. Setting 2
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Figure A.4.: Boxplots of the predictors for the second simulation setting and correlation
ρ = 0.5
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A. Simulations: Normal Distribution

Predictor Method
pfl pfl.kq pfl.cor pcor.shrink pcor.emp

β1 0.81 (0.04) 0.80 (0.04) 0.74 (0.06) 0.77 (0.08) 0.71 (0.09)
β2 0.74 (0.03) 0.73 (0.04) 0.68 (0.03) 0.67 (0.05) 0.64 (0.05)
β3 0.77 (0.03) 0.73 (0.04) 0.77 (0.05) 0.75 (0.04) 0.69 (0.05)
β4 0.68 (0.02) 0.68 (0.05) 0.67 (0.03) 0.68 (0.03) 0.65 (0.03)
β5 0.67 (0.04) 0.71 (0.04) 0.66 (0.05) 0.66 (0.03) 0.58 (0.04)
β6 0.75 (0.06) 0.77 (0.04) 0.73 (0.05) 0.73 (0.06) 0.69 (0.05)
β7 0.78 (0.03) 0.78 (0.03) 0.76 (0.04) 0.77 (0.05) 0.74 (0.04)
β8 0.76 (0.04) 0.72 (0.03) 0.68 (0.07) 0.65 (0.08) 0.62 (0.09)

Predictor Method
kqpcor.shr kqpcor.emp enet ridge lasso

β1 0.79 (0.06) 0.76 (0.08) 0.63 (0.12) 0.71 (0.12) 0.65 (0.26)
β2 0.70 (0.05) 0.63 (0.06) 0.58 (0.09) 0.55 (0.08) 0.44 (0.15)
β3 0.73 (0.04) 0.74 (0.04) 0.65 (0.07) 0.65 (0.08) 0.62 (0.29)
β4 0.66 (0.03) 0.62 (0.04) 0.60 (0.09) 0.69 (0.09) 0.51 (0.14)
β5 0.65 (0.04) 0.58 (0.04) 0.63 (0.09) 0.63 (0.08) 0.39 (0.16)
β6 0.68 (0.06) 0.68 (0.05) 0.68 (0.08) 0.68 (0.08) 0.60 (0.22)
β7 0.76 (0.05) 0.76 (0.04) 0.77 (0.07) 0.77 (0.06) 0.74 (0.14)
β8 0.64 (0.09) 0.60 (0.09) 0.54 (0.12) 0.61 (0.08) 0.40 (0.18)

Table A.2.: Medians of the predictors for the second simulation setting and correlation
ρ = 0.5 based on 50 replications.
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A.2. Setting 2
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Figure A.5.: Boxplots of the prediction error on the test data set and MSE of β for the second
simulation setting and correlation ρ = 0.9

81



A. Simulations: Normal Distribution
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Figure A.6.: Boxplots of the predictors for the second simulation setting and correlation
ρ = 0.9
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A.2. Setting 2

Predictor Method
pfl pfl.kq pfl.cor pcor.shrink pcor.emp

β1 0.70 (0.02) 0.69 (0.04) 0.74 (0.03) 0.70 (0.03) 0.68 (0.03)
β2 0.75 (0.03) 0.73 (0.04) 0.77 (0.02) 0.73 (0.03) 0.70 (0.03)
β3 0.83 (0.03) 0.84 (0.04) 0.85 (0.03) 0.80 (0.03) 0.83 (0.04)
β4 0.83 (0.02) 0.81 (0.03) 0.83 (0.03) 0.83 (0.04) 0.81 (0.05)
β5 0.80 (0.02) 0.76 (0.04) 0.78 (0.02) 0.77 (0.02) 0.75 (0.03)
β6 0.79 (0.03) 0.77 (0.03) 0.77 (0.03) 0.78 (0.04) 0.81 (0.05)
β7 0.82 (0.02) 0.81 (0.03) 0.78 (0.03) 0.80 (0.03) 0.79 (0.04)
β8 0.75 (0.04) 0.78 (0.07) 0.81 (0.05) 0.73 (0.05) 0.70 (0.05)

Predictor Method
kqpcor.shr kqpcor.emp enet ridge lasso

β1 0.70 (0.04) 0.67 (0.04) 0.63 (0.07) 0.65 (0.04) 0.13 (0.15)
β2 0.77 (0.03) 0.72 (0.04) 0.64 (0.08) 0.69 (0.06) 0.08 (0.14)
β3 0.88 (0.03) 0.84 (0.04) 0.81 (0.05) 0.80 (0.05) 0.09 (0.22)
β4 0.82 (0.03) 0.81 (0.04) 0.86 (0.08) 0.87 (0.07) 0.31 (0.38)
β5 0.78 (0.03) 0.74 (0.05) 0.82 (0.08) 0.83 (0.06) 0.55 (0.29)
β6 0.77 (0.04) 0.76 (0.06) 0.78 (0.06) 0.78 (0.06) 0.12 (0.16)
β7 0.81 (0.04) 0.78 (0.05) 0.80 (0.06) 0.78 (0.05) 0.48 (0.29)
β8 0.75 (0.07) 0.81 (0.07) 0.65 (0.08) 0.68 (0.06) 0.07 (0.20)

Table A.3.: Medians of the predictors for the second simulation setting and correlation
ρ = 0.9 based on 50 replications.
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A. Simulations: Normal Distribution

A.3. Setting 3
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Figure A.7.: Boxplots of the prediction error on the test data set and MSE of β for the third
simulation setting and correlation ρ = 0.5
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A.3. Setting 3
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Figure A.8.: Boxplots of the predictors for the third simulation setting and correlation ρ = 0.5
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A. Simulations: Normal Distribution
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Figure A.9.: Boxplots of the predictors for the third simulation setting and correlation ρ = 0.5
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A.3. Setting 3

Predictor Method
pfl pfl.kq pfl.cor pcor.shrink pcor.emp

β1 0.90 (0.04) 0.92 (0.03) 0.94 (0.04) 0.85 (0.04) 0.80 (0.08)
β2 0.89 (0.03) 0.92 (0.03) 0.92 (0.02) 0.87 (0.07) 0.85 (0.12)
β3 0.95 (0.03) 0.93 (0.05) 0.97 (0.03) 0.90 (0.04) 0.87 (0.05)
β4 0.88 (0.03) 0.88 (0.04) 0.91 (0.03) 0.83 (0.05) 0.74 (0.07)
β5 0.93 (0.04) 0.93 (0.04) 0.96 (0.03) 0.87 (0.04) 0.82 (0.05)
β6 0.98 (0.03) 0.99 (0.03) 0.98 (0.02) 0.92 (0.04) 0.90 (0.04)
β7 0.96 (0.03) 0.96 (0.02) 0.97 (0.03) 0.98 (0.05) 0.95 (0.05)
β8 0.94 (0.02) 0.96 (0.04) 0.96 (0.02) 0.89 (0.04) 0.85 (0.04)
β9 0.96 (0.01) 0.96 (0.02) 0.96 (0.02) 0.92 (0.03) 0.89 (0.03)
β10 0.94 (0.02) 0.95 (0.03) 0.95 (0.03) 0.88 (0.04) 0.86 (0.05)
β11 0.89 (0.04) 0.91 (0.04) 0.92 (0.03) 0.77 (0.07) 0.74 (0.09)
β12 0.91 (0.03) 0.90 (0.03) 0.95 (0.03) 0.83 (0.04) 0.80 (0.08)
β13 0.90 (0.05) 0.89 (0.03) 0.93 (0.03) 0.76 (0.07) 0.72 (0.07)
β14 0.86 (0.04) 0.93 (0.03) 0.90 (0.02) 0.79 (0.08) 0.77 (0.08)
β15 0.94 (0.04) 0.93 (0.04) 0.94 (0.04) 0.86 (0.05) 0.82 (0.06)
β16 0.97 (0.04) 0.93 (0.03) 0.94 (0.03) 0.94 (0.03) 0.93 (0.03)
β17 0.97 (0.04) 1.00 (0.04) 0.99 (0.04) 0.93 (0.05) 0.90 (0.03)
β18 1.00 (0.03) 0.99 (0.03) 0.99 (0.03) 0.92 (0.05) 0.97 (0.06)
β19 0.97 (0.05) 0.95 (0.03) 0.97 (0.03) 0.97 (0.06) 0.98 (0.07)
β20 0.99 (0.02) 0.96 (0.03) 0.99 (0.02) 0.92 (0.04) 0.91 (0.03)

Predictor Method
kqpcor.shr kqpcor.emp enet ridge lasso

β1 0.84 (0.04) 0.79 (0.07) 0.55 (0.10) 0.61 (0.08) 0.00 (0.00)
β2 0.78 (0.12) 0.69 (0.25) 0.56 (0.16) 0.79 (0.16) 0.00 (0.03)
β3 0.89 (0.06) 0.84 (0.07) 0.57 (0.16) 0.73 (0.14) 0.00 (0.00)
β4 0.86 (0.08) 0.78 (0.07) 0.54 (0.09) 0.63 (0.08) 0.00 (0.01)
β5 0.88 (0.05) 0.82 (0.04) 0.78 (0.18) 0.79 (0.10) 0.00 (0.03)
β6 0.96 (0.03) 0.91 (0.05) 1.01 (0.11) 1.10 (0.08) 0.02 (0.28)
β7 0.99 (0.06) 0.94 (0.06) 0.98 (0.13) 1.04 (0.11) 0.03 (0.26)
β8 0.91 (0.04) 0.87 (0.04) 1.01 (0.12) 1.00 (0.10) 0.03 (0.27)
β9 0.93 (0.03) 0.89 (0.05) 1.04 (0.12) 1.05 (0.09) 0.13 (0.27)
β10 0.88 (0.04) 0.87 (0.04) 0.92 (0.14) 0.94 (0.10) 0.03 (0.08)
β11 0.81 (0.10) 0.75 (0.12) 0.51 (0.07) 0.58 (0.05) 0.00 (0.00)
β12 0.81 (0.08) 0.74 (0.08) 0.62 (0.16) 0.69 (0.09) 0.00 (0.00)
β13 0.74 (0.10) 0.64 (0.11) 0.35 (0.14) 0.54 (0.11) 0.00 (0.00)
β14 0.80 (0.11) 0.73 (0.12) 0.59 (0.12) 0.64 (0.08) 0.00 (0.00)
β15 0.88 (0.06) 0.81 (0.06) 0.57 (0.11) 0.65 (0.07) 0.00 (0.00)
β16 0.96 (0.03) 0.94 (0.04) 1.15 (0.13) 1.11 (0.09) 0.80 (0.53)
β17 0.94 (0.05) 0.89 (0.05) 1.00 (0.12) 1.04 (0.11) 0.09 (0.22)
β18 1.02 (0.07) 1.01 (0.06) 1.25 (0.23) 1.30 (0.18) 1.08 (0.48)
β19 0.98 (0.03) 0.97 (0.04) 1.30 (0.19) 1.42 (0.17) 1.13 (0.55)
β20 0.90 (0.04) 0.89 (0.04) 1.02 (0.07) 1.03 (0.08) 0.10 (0.31)

Table A.4.: Medians of the predictors for the third simulation setting and correlation ρ = 0.5
based on 50 replications.
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A. Simulations: Normal Distribution
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Figure A.10.: Boxplots of the prediction error on the test data set and MSE of β for the third
simulation setting and correlation ρ = 0.9
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A.3. Setting 3
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Figure A.11.: Boxplots of the predictors for the third simulation setting and correlation
ρ = 0.9
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A. Simulations: Normal Distribution
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Figure A.12.: Boxplots of the predictors for the third simulation setting and correlation
ρ = 0.9
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A.3. Setting 3

Predictor Method
pfl pfl.kq pfl.cor pcor.shrink pcor.emp

β1 0.94 (0.02) 0.95 (0.02) 0.95 (0.02) 0.92 (0.02) 0.93 (0.02)
β2 0.91 (0.03) 0.95 (0.03) 0.92 (0.03) 0.87 (0.05) 0.85 (0.04)
β3 0.96 (0.02) 0.96 (0.02) 0.96 (0.02) 0.90 (0.02) 0.91 (0.02)
β4 0.91 (0.03) 0.94 (0.03) 0.94 (0.03) 0.90 (0.03) 0.92 (0.02)
β5 0.95 (0.02) 0.94 (0.02) 0.94 (0.02) 0.92 (0.02) 0.93 (0.02)
β6 0.93 (0.03) 0.96 (0.02) 0.96 (0.02) 0.90 (0.04) 0.91 (0.03)
β7 0.94 (0.02) 0.95 (0.02) 0.95 (0.02) 0.93 (0.03) 0.94 (0.02)
β8 0.95 (0.02) 0.95 (0.02) 0.95 (0.02) 0.94 (0.03) 0.95 (0.03)
β9 0.93 (0.03) 0.97 (0.03) 0.96 (0.03) 0.92 (0.03) 0.93 (0.02)
β10 0.96 (0.02) 0.96 (0.02) 0.96 (0.01) 0.94 (0.03) 0.94 (0.02)
β11 0.95 (0.03) 0.96 (0.03) 0.93 (0.03) 0.90 (0.03) 0.93 (0.03)
β12 0.95 (0.03) 0.96 (0.03) 0.95 (0.02) 0.93 (0.03) 0.92 (0.02)
β13 0.96 (0.03) 0.94 (0.02) 0.95 (0.02) 0.94 (0.04) 0.93 (0.03)
β14 0.95 (0.02) 0.95 (0.03) 0.94 (0.02) 0.91 (0.04) 0.91 (0.03)
β15 0.96 (0.02) 0.95 (0.03) 0.96 (0.03) 0.93 (0.02) 0.92 (0.03)
β16 0.97 (0.02) 0.97 (0.02) 0.98 (0.02) 0.93 (0.02) 0.95 (0.02)
β17 0.96 (0.03) 0.95 (0.03) 0.95 (0.03) 0.93 (0.03) 0.95 (0.02)
β18 0.95 (0.02) 0.98 (0.03) 0.95 (0.02) 0.93 (0.02) 0.95 (0.02)
β19 0.94 (0.03) 0.96 (0.03) 0.95 (0.03) 0.90 (0.04) 0.89 (0.03)
β20 0.94 (0.02) 0.96 (0.02) 0.94 (0.01) 0.94 (0.02) 0.94 (0.02)

Predictor Method
kqpcor.shr kqpcor.emp enet ridge lasso

β1 0.92 (0.05) 0.91 (0.05) 0.81 (0.20) 0.94 (0.12) 0.00 (0.11)
β2 0.86 (0.08) 0.77 (0.13) 0.53 (0.21) 0.77 (0.09) 0.00 (0.00)
β3 0.89 (0.04) 0.89 (0.06) 0.76 (0.11) 0.83 (0.08) 0.00 (0.00)
β4 0.87 (0.07) 0.87 (0.06) 0.83 (0.09) 0.88 (0.04) 0.00 (0.00)
β5 0.92 (0.03) 0.92 (0.03) 0.77 (0.11) 0.84 (0.12) 0.00 (0.01)
β6 0.90 (0.05) 0.89 (0.06) 0.82 (0.17) 0.90 (0.11) 0.00 (0.03)
β7 0.93 (0.05) 0.88 (0.07) 0.93 (0.13) 0.98 (0.08) 0.00 (0.02)
β8 0.94 (0.03) 0.94 (0.06) 0.92 (0.08) 1.04 (0.08) 0.00 (0.10)
β9 0.92 (0.03) 0.93 (0.04) 0.91 (0.07) 1.04 (0.09) 0.00 (0.01)
β10 0.95 (0.04) 0.95 (0.04) 0.91 (0.09) 0.99 (0.07) 0.00 (0.00)
β11 0.89 (0.04) 0.89 (0.05) 0.72 (0.12) 0.84 (0.09) 0.00 (0.00)
β12 0.94 (0.04) 0.94 (0.04) 0.73 (0.12) 0.77 (0.10) 0.00 (0.00)
β13 0.91 (0.05) 0.89 (0.08) 0.91 (0.13) 0.97 (0.08) 0.00 (0.01)
β14 0.89 (0.04) 0.91 (0.06) 0.82 (0.12) 0.93 (0.08) 0.00 (0.01)
β15 0.90 (0.05) 0.87 (0.06) 0.90 (0.08) 0.94 (0.05) 0.00 (0.00)
β16 0.93 (0.03) 0.92 (0.04) 0.96 (0.10) 1.02 (0.07) 0.00 (0.03)
β17 0.94 (0.03) 0.97 (0.04) 0.90 (0.08) 0.93 (0.06) 0.00 (0.01)
β18 0.95 (0.04) 0.95 (0.04) 0.93 (0.13) 1.07 (0.11) 0.00 (0.20)
β19 0.91 (0.05) 0.87 (0.07) 0.95 (0.09) 1.00 (0.06) 0.00 (0.01)
β20 0.95 (0.04) 0.99 (0.06) 1.06 (0.13) 1.19 (0.11) 0.38 (0.38)

Table A.5.: Medians of the predictors for the third simulation setting and correlation ρ = 0.9
based on 50 replications.
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A. Simulations: Normal Distribution

A.4. Setting 4
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Figure A.13.: Boxplots of the prediction error on the test data set and MSE of β for the fourth
simulation setting
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A.4. Setting 4
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Figure A.14.: Boxplots of the predictors for the fourth simulation setting
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A. Simulations: Normal Distribution
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Figure A.15.: Boxplots of the predictors for the fourth simulation setting
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A.4. Setting 4

Predictor Method
pfl pfl.kq pfl.cor pcor.shrink pcor.emp

β1 2.25 (0.13) 1.52 (0.76) 2.02 (0.23) 1.86 (0.31) 2.07 (0.25)
β2 2.13 (0.14) 0.75 (0.58) 2.03 (0.19) 1.99 (0.30) 2.04 (0.23)
β3 2.29 (0.18) 2.17 (0.75) 2.32 (0.23) 2.59 (0.28) 2.50 (0.24)
β4 2.12 (0.16) 0.66 (0.36) 2.09 (0.26) 2.25 (0.28) 2.14 (0.30)
β5 2.28 (0.14) 1.82 (0.94) 1.95 (0.28) 2.05 (0.34) 2.13 (0.24)
β6 2.05 (0.17) 0.66 (0.69) 1.96 (0.28) 2.23 (0.21) 2.13 (0.23)
β7 2.20 (0.12) 0.73 (0.59) 2.19 (0.23) 2.43 (0.19) 2.39 (0.16)
β8 2.25 (0.11) 1.38 (0.74) 2.06 (0.28) 2.29 (0.27) 2.34 (0.24)
β9 2.20 (0.12) 0.72 (0.73) 2.20 (0.23) 2.31 (0.23) 2.33 (0.24)
β10 0.34 (0.23) 0.00 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
β11 0.21 (0.31) 0.00 (0.03) 0.00 (0.03) 0.00 (0.03) 0.00 (0.04)
β12 0.44 (0.24) 0.00 (0.07) 0.00 (0.07) 0.00 (0.07) 0.00 (0.09)
β13 0.00 (0.10) 0.00 (0.01) 0.00 (0.04) 0.00 (0.07) 0.00 (0.11)
β14 0.18 (0.26) 0.00 (0.04) 0.00 (0.04) 0.00 (0.04) 0.00 (0.08)
β15 0.00 (0.14) 0.00 (0.01) 0.00 (0.02) 0.00 (0.03) 0.00 (0.03)
β16 0.29 (0.23) 0.00 (0.01) 0.00 (0.03) 0.00 (0.01) 0.00 (0.01)
β17 0.30 (0.24) 0.00 (0.03) 0.00 (0.04) 0.00 (0.06) 0.00 (0.09)
β18 0.22 (0.16) 0.00 (0.02) 0.00 (0.02) 0.00 (0.01) 0.00 (0.01)
β19 0.22 (0.20) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.01)
β20 0.44 (0.18) 0.00 (0.04) 0.00 (0.01) 0.00 (0.01) 0.00 (0.00)

Predictor Method
kqpcor.shr kqpcor.emp enet ridge lasso

β1 1.66 (0.80) 1.74 (0.78) 2.11 (0.23) 2.28 (0.15) 0.02 (0.10)
β2 0.87 (0.62) 1.29 (0.63) 1.88 (0.34) 2.24 (0.07) 0.02 (0.29)
β3 1.59 (0.60) 1.88 (0.54) 2.50 (0.38) 2.27 (0.14) 2.80 (1.12)
β4 1.16 (0.80) 1.44 (0.89) 2.01 (0.38) 2.16 (0.13) 0.34 (0.47)
β5 2.12 (0.73) 2.04 (0.67) 2.29 (0.32) 2.28 (0.12) 1.41 (1.30)
β6 0.74 (0.78) 0.65 (0.85) 1.96 (0.19) 2.03 (0.11) 0.15 (0.41)
β7 1.30 (0.93) 1.75 (0.84) 2.20 (0.22) 2.45 (0.09) 0.06 (0.85)
β8 1.29 (0.81) 1.58 (0.79) 2.39 (0.31) 2.41 (0.14) 0.09 (0.20)
β9 1.81 (0.83) 1.71 (0.85) 2.43 (0.25) 2.35 (0.12) 0.39 (0.93)
β10 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.07 (0.20) 0.00 (0.00)
β11 0.00 (0.00) 0.00 (0.00) 0.00 (0.04) 0.27 (0.20) 0.00 (0.00)
β12 0.00 (0.00) 0.00 (0.00) 0.00 (0.06) 0.19 (0.20) 0.00 (0.00)
β13 0.00 (0.00) 0.00 (0.00) 0.00 (0.07) -0.16 (0.21) 0.00 (0.00)
β14 0.00 (0.00) 0.00 (0.00) 0.00 (0.03) -0.34 (0.36) 0.00 (0.00)
β15 0.00 (0.00) 0.00 (0.00) 0.00 (0.05) 0.01 (0.29) 0.00 (0.00)
β16 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) -0.11 (0.20) 0.00 (0.00)
β17 0.00 (0.00) 0.00 (0.00) 0.00 (0.04) 0.21 (0.22) 0.00 (0.00)
β18 0.00 (0.00) 0.00 (0.00) 0.00 (0.01) 0.13 (0.21) 0.00 (0.00)
β19 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) -0.28 (0.15) 0.00 (0.00)
β20 0.00 (0.00) 0.00 (0.00) 0.00 (0.01) -0.12 (0.22) 0.00 (0.00)

Table A.6.: Medians of the predictors for the fourth simulation setting based on 50 replica-
tions.
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A. Simulations: Normal Distribution

A.5. Setting 5 and 6
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Figure A.16.: Boxplots of the prediction error on the test data set and MSE of β for the sixth
simulation setting
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A.5. Setting 5 and 6

Predictor Method
pfl pfl.kq pfl.cor pcor.shrink pcor.emp

β1 3.70 (0.43) 0.12 (1.05) 3.82 (0.61) 3.40 (0.68) 3.78 (0.53)
β2 1.07 (0.29) 0.03 (0.19) 0.44 (0.28) 0.69 (0.34) 0.80 (0.28)
β3 0.10 (0.27) 0.00 (0.04) 0.00 (0.01) 0.00 (0.02) 0.00 (0.03)
β4 0.51 (0.22) 0.00 (0.05) 0.00 (0.05) 0.00 (0.04) 0.00 (0.03)
β5 0.39 (0.14) 0.00 (0.04) 0.00 (0.07) 0.00 (0.04) 0.00 (0.04)
β6 8.93 (0.34) 5.56 (5.01) 9.25 (0.56) 9.41 (0.33) 9.36 (0.25)
β7 0.07 (0.23) 0.00 (0.05) 0.00 (0.00) 0.00 (0.01) 0.00 (0.00)
β8 9.19 (0.58) 12.43 (5.22) 9.56 (0.99) 9.84 (0.67) 9.84 (0.66)
β9 1.51 (0.22) 0.63 (0.52) 1.03 (0.48) 1.09 (0.46) 1.03 (0.34)
β10 0.10 (0.26) 0.00 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
β11 0.01 (0.15) 0.00 (0.04) 0.00 (0.00) 0.00 (0.01) 0.00 (0.01)
β12 0.02 (0.24) 0.00 (0.01) 0.00 (0.10) 0.00 (0.09) 0.00 (0.06)
β13 0.01 (0.20) 0.00 (0.01) 0.00 (0.00) 0.00 (0.03) 0.00 (0.02)
β14 3.77 (0.47) 1.27 (1.52) 3.81 (0.74) 4.18 (0.91) 4.13 (0.37)
β15 8.39 (0.85) 0.38 (0.80) 6.73 (1.22) 8.42 (1.69) 8.04 (1.65)
β16 0.96 (0.27) 0.75 (0.39) 0.40 (0.20) 0.61 (0.24) 0.63 (0.17)
β17 0.10 (0.18) 0.00 (0.06) 0.00 (0.05) 0.00 (0.07) 0.00 (0.02)
β18 0.00 (0.16) 0.00 (0.04) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
β19 4.09 (0.39) 0.90 (1.06) 3.80 (0.81) 3.58 (0.84) 4.12 (0.57)
β20 0.01 (0.24) 0.00 (0.03) 0.00 (0.02) 0.00 (0.00) 0.00 (0.01)

Predictor Method
kqpcor.shr kqpcor.emp enet ridge lasso

β1 2.46 (1.29) 3.71 (1.07) 3.51 (0.46) 4.39 (0.19) 0.19 (0.71)
β2 0.47 (0.32) 0.62 (0.37) 0.48 (0.35) 1.63 (0.22) 0.00 (0.01)
β3 0.00 (0.00) 0.00 (0.00) 0.00 (0.01) 0.37 (0.38) 0.00 (0.00)
β4 0.00 (0.00) 0.00 (0.00) 0.00 (0.02) 0.14 (0.35) 0.00 (0.00)
β5 0.00 (0.00) 0.00 (0.00) 0.00 (0.02) 0.49 (0.29) 0.00 (0.00)
β6 9.30 (1.26) 9.29 (0.76) 9.26 (0.48) 9.36 (0.27) 6.62 (3.05)
β7 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.02 (0.22) 0.00 (0.00)
β8 9.90 (1.63) 10.04 (1.24) 10.05 (0.76) 9.06 (0.20) 11.30 (3.53)
β9 0.68 (0.43) 0.90 (0.42) 1.12 (0.53) 1.82 (0.21) 0.02 (0.75)
β10 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.16 (0.27) 0.00 (0.00)
β11 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) -0.09 (0.47) 0.00 (0.00)
β12 0.00 (0.00) 0.00 (0.00) 0.00 (0.07) 0.37 (0.25) 0.00 (0.01)
β13 0.00 (0.00) 0.00 (0.00) 0.00 (0.01) -0.12 (0.35) 0.00 (0.00)
β14 3.73 (1.04) 4.12 (0.41) 3.69 (0.82) 4.40 (0.24) 0.68 (2.48)
β15 0.14 (2.65) 3.90 (3.16) 8.83 (0.73) 8.96 (0.19) 3.82 (1.77)
β16 0.69 (0.34) 1.08 (0.31) 0.66 (0.24) 1.74 (0.16) 0.02 (0.16)
β17 0.00 (0.00) 0.00 (0.00) 0.00 (0.02) 0.05 (0.45) 0.00 (0.01)
β18 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.10 (0.28) 0.00 (0.00)
β19 2.85 (0.98) 3.80 (0.90) 3.90 (0.51) 4.31 (0.15) 0.30 (1.01)
β20 0.00 (0.00) 0.00 (0.01) 0.00 (0.00) -0.09 (0.23) 0.00 (0.00)

Table A.7.: Medians of the predictors for the sixth simulation setting based on 50 replications.
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A. Simulations: Normal Distribution

Predictor Method
pfl pfl.kq pfl.cor pcor.shrink pcor.emp

β1 3.74 (0.41) 1.30 (1.64) 4.06 (0.30) 3.66 (0.44) 3.80 (0.29)
β2 3.81 (0.34) 0.74 (0.55) 4.14 (0.26) 3.74 (0.45) 4.00 (0.25)
β3 4.29 (0.42) 6.60 (3.11) 4.40 (0.29) 4.30 (0.40) 4.32 (0.20)
β4 1.33 (0.31) 0.41 (0.24) 1.08 (0.35) 0.91 (0.29) 0.88 (0.29)
β5 1.50 (0.20) 1.35 (0.60) 1.09 (0.29) 1.12 (0.24) 1.19 (0.22)
β6 1.03 (0.25) 0.57 (0.27) 1.00 (0.24) 0.85 (0.19) 0.93 (0.25)
β7 8.93 (0.75) 6.26 (3.68) 9.30 (0.26) 9.23 (0.37) 9.19 (0.19)
β8 8.89 (0.66) 3.69 (3.94) 9.09 (0.33) 9.08 (0.38) 9.12 (0.26)
β9 9.11 (0.60) 0.90 (1.38) 9.56 (0.31) 9.51 (0.50) 9.31 (0.34)
β10 0.00 (0.16) 0.00 (0.10) 0.00 (0.00) 0.00 (0.01) 0.00 (0.00)
β11 0.00 (0.13) 0.00 (0.12) 0.00 (0.02) 0.00 (0.02) 0.00 (0.01)
β12 0.00 (0.21) 0.01 (0.19) 0.00 (0.07) 0.00 (0.04) 0.00 (0.02)
β13 0.00 (0.02) 0.00 (0.06) 0.00 (0.03) 0.00 (0.04) 0.00 (0.04)
β14 0.00 (0.16) 0.00 (0.17) 0.00 (0.05) 0.00 (0.05) 0.00 (0.06)
β15 0.00 (0.05) 0.00 (0.04) 0.00 (0.03) 0.00 (0.03) 0.00 (0.03)
β16 0.12 (0.26) 0.00 (0.14) 0.00 (0.02) 0.00 (0.02) 0.00 (0.02)
β17 0.00 (0.16) 0.01 (0.17) 0.00 (0.06) 0.00 (0.03) 0.00 (0.04)
β18 0.03 (0.11) 0.00 (0.17) 0.00 (0.04) 0.00 (0.02) 0.00 (0.02)
β19 0.00 (0.06) 0.00 (0.07) 0.00 (0.01) 0.00 (0.00) 0.00 (0.01)
β20 0.00 (0.16) 0.00 (0.16) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Predictor Method
kqpcor.shr kqpcor.emp enet ridge lasso

β1 4.26 (0.43) 3.96 (0.63) 3.88 (0.45) 4.49 (0.24) 0.37 (0.50)
β2 3.42 (0.56) 3.36 (0.87) 3.61 (0.56) 4.37 (0.25) 0.40 (1.01)
β3 4.31 (0.36) 4.40 (0.37) 4.59 (0.47) 4.40 (0.22) 6.22 (2.09)
β4 0.55 (0.30) 0.60 (0.37) 0.67 (0.41) 1.60 (0.19) 0.01 (0.13)
β5 1.36 (0.37) 1.05 (0.45) 1.00 (0.34) 1.76 (0.16) 0.81 (0.39)
β6 0.76 (0.25) 0.60 (0.31) 0.76 (0.22) 1.56 (0.17) 0.03 (0.14)
β7 9.03 (0.92) 9.28 (1.07) 9.25 (0.50) 9.02 (0.13) 4.98 (3.57)
β8 8.97 (0.66) 9.06 (1.96) 9.04 (0.48) 8.87 (0.25) 6.56 (2.14)
β9 8.89 (0.67) 9.13 (1.39) 9.47 (0.81) 8.99 (0.18) 7.25 (3.11)
β10 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) -0.01 (0.24) 0.00 (0.00)
β11 0.00 (0.00) 0.00 (0.00) 0.00 (0.02) 0.28 (0.27) 0.00 (0.00)
β12 0.00 (0.00) 0.00 (0.00) 0.00 (0.01) 0.34 (0.30) 0.00 (0.00)
β13 0.00 (0.00) 0.00 (0.00) 0.00 (0.02) -0.34 (0.32) 0.00 (0.00)
β14 0.00 (0.00) 0.00 (0.00) 0.00 (0.01) -0.48 (0.53) 0.00 (0.00)
β15 0.00 (0.00) 0.00 (0.00) 0.00 (0.04) 0.01 (0.36) 0.00 (0.01)
β16 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.03 (0.29) 0.00 (0.00)
β17 0.00 (0.00) 0.00 (0.00) 0.00 (0.01) 0.40 (0.39) 0.00 (0.00)
β18 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.39 (0.28) 0.00 (0.00)
β19 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) -0.42 (0.15) 0.00 (0.00)
β20 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) -0.03 (0.25) 0.00 (0.00)

Table A.8.: Medians of the predictors for the fifth simulation setting based on 50 replications.
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A.6. Setting 7

A.6. Setting 7

PFL PFL.kq PFL.cor pcor.shr pcor.emp kqpc.shr kqpc.emp EN Ridge Lasso

0
10

0
20

0
30

0

M
S

E
 o

f b
et

a

PFL PFL.kq PFL.cor pcor.shr pcor.emp kqpc.shr kqpc.emp EN Ridge Lasso

25
0

35
0

45
0

P
E

 o
n 

te
st

 d
at

a 
se

t

Figure A.17.: Boxplots of the prediction error on the test data set and MSE of β for the
seventh simulation setting and correlation ρ = 0.5
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A. Simulations: Normal Distribution
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Figure A.18.: Boxplots of the predictors for the seventh simulation setting and correlation
ρ = 0.5
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A.6. Setting 7
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Figure A.19.: Boxplots of the predictors for the seventh simulation setting and correlation
ρ = 0.5
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A. Simulations: Normal Distribution

Predictor Method
pfl pfl.kq pfl.cor pcor.shrink pcor.emp

β1 0.87 (0.41) 0.62 (0.36) 0.65 (0.48) 0.68 (0.44) 0.68 (0.36)
β2 1.08 (0.69) 0.52 (0.34) 0.89 (0.49) 0.78 (0.57) 0.64 (0.52)
β3 1.27 (0.45) 0.76 (0.37) 0.99 (0.50) 1.01 (0.47) 1.16 (0.25)
β4 1.07 (0.42) 1.15 (0.44) 0.97 (0.31) 0.59 (0.44) 0.70 (0.33)
β5 1.14 (0.30) 1.20 (0.50) 1.22 (0.39) 1.17 (0.36) 1.09 (0.25)
β6 8.37 (0.26) 8.42 (0.40) 8.46 (0.28) 8.59 (0.33) 8.72 (0.31)
β7 8.57 (0.48) 8.08 (0.37) 8.66 (0.44) 8.55 (0.40) 8.52 (0.42)
β8 8.22 (0.42) 8.12 (0.46) 8.04 (0.46) 8.25 (0.37) 8.41 (0.44)
β9 8.23 (0.46) 8.10 (0.35) 8.15 (0.48) 8.30 (0.39) 8.36 (0.47)
β10 7.70 (0.56) 7.82 (0.62) 7.81 (0.50) 7.77 (0.31) 7.75 (0.31)
β11 0.86 (0.46) 0.61 (0.29) 0.69 (0.33) 0.55 (0.35) 0.63 (0.32)
β12 0.94 (0.34) 0.78 (0.58) 0.69 (0.38) 1.21 (0.42) 1.10 (0.38)
β13 0.71 (0.34) 0.75 (0.30) 0.61 (0.34) 0.29 (0.25) 0.56 (0.27)
β14 0.37 (0.47) 0.73 (0.55) 0.16 (0.46) 0.23 (0.33) 0.23 (0.31)
β15 1.14 (0.46) 0.56 (0.43) 1.19 (0.31) 1.21 (0.29) 1.03 (0.27)
β16 8.92 (0.27) 8.52 (0.25) 9.06 (0.27) 9.43 (0.36) 9.25 (0.44)
β17 8.05 (0.33) 8.22 (0.53) 7.97 (0.38) 8.19 (0.35) 8.29 (0.38)
β18 9.13 (0.61) 9.15 (0.25) 9.17 (0.59) 9.22 (0.52) 9.13 (0.59)
β19 8.93 (0.36) 8.92 (0.21) 9.46 (0.44) 9.25 (0.50) 9.14 (0.47)
β20 8.29 (0.35) 8.58 (0.47) 8.62 (0.34) 8.19 (0.38) 8.36 (0.35)

Predictor Method
kqpcor.shr kqpcor.emp enet ridge lasso

β1 1.12 (0.43) 0.96 (0.35) 0.33 (0.35) 1.35 (0.36) 0.00 (0.05)
β2 0.06 (0.21) 0.00 (0.20) 0.72 (0.52) 1.95 (0.38) 0.04 (0.07)
β3 1.49 (0.31) 1.20 (0.34) 0.88 (0.35) 1.89 (0.43) 0.03 (0.08)
β4 0.58 (0.53) 0.41 (0.48) 0.85 (0.31) 2.03 (0.40) 0.01 (0.13)
β5 1.30 (0.54) 1.01 (0.36) 1.12 (0.39) 1.95 (0.61) 0.20 (0.15)
β6 8.51 (0.36) 8.90 (0.35) 8.51 (0.40) 8.36 (0.45) 8.65 (0.56)
β7 8.42 (0.29) 8.44 (0.31) 8.42 (0.53) 8.52 (0.51) 8.93 (0.62)
β8 8.12 (0.47) 8.36 (0.42) 8.39 (0.54) 8.12 (0.53) 9.33 (0.61)
β9 8.57 (0.31) 8.32 (0.35) 7.95 (0.56) 8.02 (0.28) 8.91 (0.65)
β10 7.64 (0.43) 7.61 (0.41) 7.74 (0.33) 7.55 (0.37) 7.90 (0.52)
β11 0.88 (0.37) 0.56 (0.30) 0.37 (0.17) 1.21 (0.32) 0.00 (0.01)
β12 0.58 (0.54) 0.68 (0.45) 0.57 (0.46) 1.68 (0.39) 0.01 (0.07)
β13 0.49 (0.37) 0.54 (0.33) 0.32 (0.26) 1.04 (0.36) 0.03 (0.06)
β14 0.45 (0.39) 0.31 (0.43) 0.16 (0.19) 1.30 (0.31) 0.01 (0.06)
β15 1.12 (0.61) 1.07 (0.52) 0.83 (0.33) 1.74 (0.34) 0.00 (0.04)
β16 9.04 (0.25) 8.95 (0.29) 9.14 (0.37) 8.65 (0.29) 9.55 (0.46)
β17 8.41 (0.24) 8.45 (0.29) 8.14 (0.33) 8.05 (0.47) 8.20 (0.49)
β18 8.88 (0.46) 9.09 (0.54) 9.28 (0.71) 8.92 (0.58) 9.84 (0.72)
β19 8.99 (0.35) 9.51 (0.37) 9.16 (0.49) 8.91 (0.30) 10.32 (0.60)
β20 8.27 (0.40) 8.42 (0.46) 8.45 (0.49) 8.21 (0.41) 8.84 (0.53)

Table A.9.: Medians of the predictors for the seventh simulation setting and correlation
ρ = 0.5 based on 50 replications.
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A.6. Setting 7

PFL PFL.kq PFL.cor pcor.shr pcor.emp kqpc.shr kqpc.emp EN Ridge Lasso
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Figure A.20.: Boxplots of the prediction error on the test data set and MSE of β for the
seventh simulation setting and correlation ρ = 0.9
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A. Simulations: Normal Distribution

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

−
5

0
5

10
15

number of variable

co
ef

fic
ie

nt
 v

al
ue

PFL

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

−
5

0
5

10
15

number of variable

co
ef

fic
ie

nt
 v

al
ue

PFL.kq

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

−
5

0
5

10
15

number of variable

co
ef

fic
ie

nt
 v

al
ue

PFL.cor

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

−
5

0
5

10
15

number of variable

co
ef

fic
ie

nt
 v

al
ue

pcor.shrink

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

−
5

0
5

10
15

number of variable

co
ef

fic
ie

nt
 v

al
ue

pcor.emp

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

−
5

0
5

10
15

number of variable

co
ef

fic
ie

nt
 v

al
ue

kqpcor.shrink

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

−
5

0
5

10
15

number of variable

co
ef

fic
ie

nt
 v

al
ue

kqpcor.emp

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

−
5

0
5

10
15

number of variable

co
ef

fic
ie

nt
 v

al
ue

enet

Figure A.21.: Boxplots of the predictors for the seventh simulation setting and correlation
ρ = 0.9
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A.6. Setting 7
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Figure A.22.: Boxplots of the predictors for the seventh simulation setting and correlation
ρ = 0.9
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A. Simulations: Normal Distribution

Predictor Method
pfl pfl.kq pfl.cor pcor.shrink pcor.emp

β1 4.76 (0.12) 4.67 (0.11) 4.77 (0.19) 4.64 (0.28) 4.76 (0.26)
β2 4.24 (0.45) 4.48 (0.22) 4.49 (0.45) 4.04 (0.44) 3.79 (0.51)
β3 4.62 (0.17) 4.67 (0.12) 4.78 (0.10) 4.51 (0.24) 4.35 (0.38)
β4 4.46 (0.16) 4.44 (0.15) 4.61 (0.15) 4.43 (0.18) 4.37 (0.24)
β5 4.67 (0.08) 4.67 (0.08) 4.68 (0.10) 4.73 (0.15) 4.70 (0.13)
β6 5.11 (0.08) 4.99 (0.15) 5.03 (0.07) 5.06 (0.15) 5.09 (0.18)
β7 4.95 (0.15) 4.89 (0.10) 4.96 (0.12) 5.07 (0.15) 4.99 (0.16)
β8 5.14 (0.07) 5.07 (0.13) 5.20 (0.17) 5.26 (0.15) 5.25 (0.29)
β9 5.10 (0.09) 5.09 (0.12) 5.08 (0.17) 5.30 (0.20) 5.43 (0.27)
β10 5.14 (0.26) 5.17 (0.26) 5.12 (0.21) 5.14 (0.24) 5.16 (0.26)
β11 4.67 (0.25) 4.38 (0.23) 4.72 (0.12) 4.46 (0.29) 4.20 (0.34)
β12 4.82 (0.17) 4.69 (0.19) 4.87 (0.11) 4.69 (0.25) 4.68 (0.27)
β13 4.72 (0.26) 4.62 (0.26) 4.71 (0.17) 4.66 (0.41) 4.57 (0.51)
β14 4.66 (0.14) 4.69 (0.12) 4.73 (0.11) 4.49 (0.30) 4.59 (0.24)
β15 4.72 (0.12) 4.70 (0.16) 4.77 (0.11) 4.68 (0.24) 4.61 (0.29)
β16 5.17 (0.12) 5.07 (0.18) 5.16 (0.15) 5.21 (0.13) 5.15 (0.18)
β17 5.10 (0.16) 5.01 (0.09) 5.08 (0.13) 5.31 (0.18) 5.34 (0.18)
β18 5.09 (0.18) 5.03 (0.15) 5.09 (0.17) 5.18 (0.31) 5.23 (0.25)
β19 5.11 (0.11) 5.11 (0.25) 5.07 (0.12) 5.14 (0.16) 5.32 (0.14)
β20 5.64 (0.39) 5.35 (0.21) 5.73 (0.35) 5.63 (0.35) 5.84 (0.34)

Predictor Method
kqpcor.shr kqpcor.emp enet ridge lasso

β1 4.54 (0.40) 4.62 (0.44) 3.74 (0.57) 3.93 (0.55) 0.01 (0.47)
β2 4.32 (0.36) 3.93 (0.49) 2.25 (0.50) 3.15 (0.50) 0.00 (0.04)
β3 4.51 (0.20) 4.31 (0.32) 3.05 (0.31) 3.39 (0.24) 0.00 (0.06)
β4 4.38 (0.32) 4.38 (0.36) 3.30 (0.33) 3.59 (0.37) 0.10 (0.25)
β5 4.84 (0.14) 4.76 (0.23) 3.79 (0.39) 4.11 (0.44) 0.09 (0.62)
β6 5.20 (0.18) 5.15 (0.19) 5.21 (0.61) 5.33 (0.43) 4.62 (1.95)
β7 5.07 (0.20) 5.16 (0.23) 5.56 (0.45) 5.78 (0.37) 4.77 (1.58)
β8 5.27 (0.16) 5.47 (0.29) 6.48 (0.47) 6.33 (0.27) 8.48 (1.27)
β9 5.42 (0.24) 5.62 (0.29) 6.17 (0.19) 6.14 (0.25) 7.43 (0.98)
β10 5.16 (0.28) 5.19 (0.16) 6.08 (0.29) 6.13 (0.29) 6.52 (1.40)
β11 4.32 (0.31) 4.29 (0.35) 3.16 (0.50) 3.35 (0.47) 0.00 (0.01)
β12 4.70 (0.19) 4.63 (0.27) 3.39 (0.47) 3.85 (0.38) 0.00 (0.25)
β13 4.66 (0.30) 4.42 (0.52) 3.16 (0.80) 3.96 (0.65) 0.03 (0.37)
β14 4.59 (0.22) 4.52 (0.30) 3.59 (0.45) 3.79 (0.34) 0.02 (0.12)
β15 4.71 (0.16) 4.68 (0.30) 3.59 (0.29) 4.11 (0.23) 0.77 (0.48)
β16 5.59 (0.22) 5.41 (0.35) 6.18 (0.40) 6.14 (0.39) 8.22 (1.22)
β17 5.34 (0.28) 5.37 (0.16) 5.87 (0.25) 5.97 (0.22) 6.19 (1.34)
β18 5.45 (0.31) 5.56 (0.30) 6.77 (0.50) 6.63 (0.43) 8.12 (2.02)
β19 5.34 (0.27) 5.49 (0.28) 6.38 (0.32) 6.33 (0.30) 6.63 (1.04)
β20 5.75 (0.41) 6.10 (0.38) 6.87 (0.36) 6.87 (0.26) 11.05 (1.23)

Table A.10.: Medians of the predictors for the seventh simulation setting and correlation
ρ = 0.9 based on 50 replications.
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B. Simulations: Binomial Distribution

B.1. Setting 1
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Figure B.1.: Boxplots of the pearson statistic on the test data set and MSE of β for the first
simulation setting and correlation ρ = 0.9
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B. Simulations: Binomial Distribution
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Figure B.2.: Boxplots of the predictors for the first simulation setting and correlation ρ = 0.9
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B.2. Setting 2

B.2. Setting 2
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Figure B.3.: Boxplots of the pearson statistic on the test data set and MSE of β for the second
simulation setting and correlation ρ = 0.5
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B. Simulations: Binomial Distribution
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Figure B.4.: Boxplots of the predictors for the second simulation setting and correlation
ρ = 0.5
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B.2. Setting 2
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Figure B.5.: Boxplots of the pearson statistic on the test data set and MSE of β for the second
simulation setting and correlation ρ = 0.9
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B. Simulations: Binomial Distribution
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Figure B.6.: Boxplots of the predictors for the second simulation setting and correlation
ρ = 0.9
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B.3. Setting 3

B.3. Setting 3
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Figure B.7.: Boxplots of the pearson statistic on the test data set and MSE of β for the third
simulation setting and correlation ρ = 0.5
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B. Simulations: Binomial Distribution
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Figure B.8.: Boxplots of the predictors for the third simulation setting and correlation ρ = 0.5
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B.3. Setting 3
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Figure B.9.: Boxplots of the predictors for the third simulation setting and correlation ρ = 0.5
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B. Simulations: Binomial Distribution
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Figure B.10.: Boxplots of the pearson statistic on the test data set and MSE of β for the third
simulation setting and correlation ρ = 0.9
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B.3. Setting 3
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Figure B.11.: Boxplots of the predictors for the third simulation setting and correlation
ρ = 0.9
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B. Simulations: Binomial Distribution
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Figure B.12.: Boxplots of the predictors for the third simulation setting and correlation
ρ = 0.9

118



B.4. Setting 4

B.4. Setting 4

PFL PFL.ml PFL.cor pcor.shr pcor.emp mlpc.shr mlpc.emp EN Ridge Lasso

0
1

2
3

4
5

6

M
S

E
 o

f b
et

a

PFL PFL.ml PFL.cor pcor.shr pcor.emp mlpc.shr mlpc.emp EN Ridge Lasso

25
0

35
0

45
0

55
0

P
ea

rs
on

 S
ta

tis
tic

Figure B.13.: Boxplots of the pearson statistic on the test data set and MSE of β for the
fourth simulation setting
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B. Simulations: Binomial Distribution
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Figure B.14.: Boxplots of the predictors for the fourth simulation setting
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Figure B.15.: Boxplots of the predictors for the fourth simulation setting
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C. Simulations: Poisson Distribution

C.1. Setting 1
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Figure C.1.: Boxplots of the pearson statistic on the test data set and MSE of β for the first
simulation setting and correlation ρ = 0.5
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C. Simulations: Poisson Distribution
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Figure C.2.: Boxplots of the predictors for the first simulation setting and correlation ρ = 0.5
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C.1. Setting 1
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Figure C.3.: Boxplots of the pearson statistic on the test data set and MSE of β for the first
simulation setting and correlation ρ = 0.9
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C. Simulations: Poisson Distribution
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Figure C.4.: Boxplots of the predictors for the first simulation setting and correlation ρ = 0.9
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C.2. Setting 2
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Figure C.5.: Boxplots of the pearson statistic on the test data set and MSE of β for the second
simulation setting and correlation ρ = 0.5
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C. Simulations: Poisson Distribution
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Figure C.6.: Boxplots of the predictors for the second simulation setting and correlation
ρ = 0.5
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C.2. Setting 2
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Figure C.7.: Boxplots of the pearson statistic on the test data set and MSE of β for the second
simulation setting and correlation ρ = 0.9
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C. Simulations: Poisson Distribution
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Figure C.8.: Boxplots of the predictors for the second simulation setting and correlation
ρ = 0.9
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Figure C.9.: Boxplots of the pearson statistic on the test data set and MSE of β for the third
simulation setting and correlation ρ = 0.5
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C. Simulations: Poisson Distribution
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Figure C.10.: Boxplots of the predictors for the third simulation setting and correlation
ρ = 0.5
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Figure C.11.: Boxplots of the predictors for the third simulation setting and correlation
ρ = 0.5
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C. Simulations: Poisson Distribution
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Figure C.12.: Boxplots of the pearson statistic on the test data set and MSE of β for the third
simulation setting and correlation ρ = 0.9
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Figure C.13.: Boxplots of the predictors for the third simulation setting and correlation
ρ = 0.9
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C. Simulations: Poisson Distribution
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Figure C.14.: Boxplots of the predictors for the third simulation setting and correlation
ρ = 0.9
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C.4. Setting 4
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Figure C.15.: Boxplots of the pearson statistic on the test data set and MSE of β for the
fourth simulation setting
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C. Simulations: Poisson Distribution
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Figure C.16.: Boxplots of the predictors for the fourth simulation setting
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C.4. Setting 4
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Figure C.17.: Boxplots of the predictors for the fourth simulation setting
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C. Simulations: Poisson Distribution

C.5. Setting 5
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Figure C.18.: Boxplots of the pearson statistic on the test data set and MSE of β for the fifth
simulation setting
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C.5. Setting 5
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Figure C.19.: Boxplots of the predictors for the fifth simulation setting

141



1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

−
0.

5
0.

0
0.

5
1.

0

number of variable

co
ef

fic
ie

nt
 v

al
ue

ridge

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

−
0.

5
0.

0
0.

5
1.

0

number of variable

co
ef

fic
ie

nt
 v

al
ue

lasso

Figure C.20.: Boxplots of the predictors for the fifth simulation setting
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