- 1 Analysis of mitochondrial membrane potential in neuronal subcompartments using microfluidic
- 2 devices
- 3
- 4 Simone Wanderoy^{1,2,*}, Alina Rühmkorf^{1,2,*}, Angelika B. Harbauer^{2,3,4,#}
- ⁵ ¹Technical University of Munich, Germany, TUM Medical Graduate Center, Munich, Germany
- 6 ²Max Planck Institute of Neurobiology, Martinsried, Germany
- ⁷ ³Technical University of Munich, TUM School of Medicine, Institute of Neuronal Cell Biology,
- 8 Munich, Germany
- ⁹ ⁴Munich Cluster for Systems Neurology, Munich, Germany
- 10 [#]Corresponding author: Angelika Harbauer, <u>angelika.harbauer@bi.mpg.de</u>
- 11 *Contributed equally, should be considered as co-1st authors.
- 12
- 13 Email addresses of coauthors:
- 14 Simone Wanderoy (simone.wanderoy@bi.mpg.de)
- 15 Alina Rühmkorf (alina.ruehmkorf@bi.mpg.de)
- 16

19

17 Keywords:

18 Axon, mitochondria, microfluidics, neurodegeneration

20 Summary

- 21 This article describes the method for seeding and staining neuronal mitochondria in microfluidic
- 22 chambers. The fluidic pressure gradient in these chambers allows the selective treatment of
- 23 mitochondria in axons to analyze their properties in response to pharmacological challenges
- 24 without affecting the cell body compartment.
- 25

26 Abstract

- 27 Mitochondrial dysfunction is a common phenotype in many neurodegenerative diseases. Given
- the elaborate architecture and extreme length of some axons, it is not surprising that
- 29 mitochondria in axons can experience different environments compared to their cell body
- 30 counterparts. Interestingly, dysfunction of axonal mitochondria often precedes effects on the
- cell body. In order to model axonal mitochondrial dysfunction *in vitro*, microfluidic devices
- 32 allow treatment of axonal mitochondria without affecting the somal mitochondria. The fluidic
- pressure gradient in these chambers prevents diffusion of molecules against the gradient, thus
- 34 allowing for analysis of mitochondrial properties in response to local pharmacological
- 35 challenges within axons. Here, we describe the seeding of dissociated hippocampal neurons in
- 36 microfluidic devices, staining with a membrane-potential sensitive dye, and treatment with a
- 37 mitochondrial toxin as well as the subsequent microscopic analysis. This versatile method to
- 38 study axonal biology can be applied to many pharmacological perturbations and imaging
- readouts and is suitable for several neuronal subtypes.
- 40

41 Introduction

- 42 Mitochondria are the main suppliers of ATP (adenosine triphosphate) in neurons. As neuronal
- 43 health is intimately linked to mitochondrial function, it is not surprising that dysfunctional
- 44 regulation of these organelles has been associated with the onset of various neurodegenerative

45	diseases including Parkinson's disease ¹ . Furthermore, mitochondrial intoxication has				
46	successfully been used to model Parkinsonian symptoms in animals ² . In both animal models				
47	and the human disease, the demise of neurons starts at the distal parts ^{3,4} , hinting that axonal				
48	mitochondria might be more susceptible to insults. However, the biology of mitochondria				
49	specifically in axons is not well understood due to the difficulties associated with targeted				
50	treatment and analysis of axonal mitochondria without simultaneous disturbance of cell body				
51	processes.				
52	Recent advances in culturing techniques of dissociated neurons in vitro now allow the fluidic				
53	separation of axons and cell bodies through microfluidic devices ⁵ . As depicted in figure 1, these				
54	devices feature four access wells (a/h and c/i), with two channels connecting each pair (d and				
55	f). The large channels are connected with each other by a series of 450 μm long microchannels				
56	(e). Intentional differences in the fill levels between the two chambers create a fluid pressure				
57	gradient (Fig. 1B) that prevents diffusion of small molecules from the channel with lower fluid				
58	level to the other side (Fig. 1C illustrated with Trypan blue dye).				
59	We recently used microfluidic devices to study the requirement for local translation in axonal				
60	mitophagy, the selective removal of damaged mitochondria ⁶ . Presented here are the different				
61	steps that allowed us to induce local mitochondrial damage through selective treatment of				
62	axons using t	he mitochondrial complex III inhibitor Antimycin A.			
63					
64	Protocol				
65					
66	1. Preparatio	on of microfluidic devices			
67	1.1.	Coat one 6-well glass bottom tissue culture plate with a final concentration of 20			
68		μg/mL Poly-D-Lysine and 3.4 μg/mL Laminin in PBS (phosphate-buffered saline).			
69					
70	1.2.	Incubate overnight in the dark at room temperature.			
71					
72		NOTE: Coating can also be performed at 37 °C for 1-2 hours.			
73					
74		NOTE: Choice of coating depends on the cell type used.			
75					
76	1.3.	Bring the 6-well plate to the sterile hood.			
77					
/8	1.4.	Wash 2 times with sterile ddH ₂ O.			
79 00		NOTE De net week with ealt containing huffers such as DDC as solt smoothle will			
80		NOTE: Do not wash with sait containing buffers such as PBS, as sait crystals will			
81		interfere with seal formation.			
82	1 Г	Allow the plate to dryin a tilted position for 2 5 min			
55 م	1.5.	Anow the plate to dry in a three position for 3-5 min.			
04 0⊑	16	Pomovo ovcoss water by vacuum suction or pinatting			
85 02	1.0.	Remove excess water by vacuum suction of pipeting.			
80 87	17	Soak the microfluidic chamber in 80% ethanol			
07	1./.				

88		
89	1.8.	Allow the microfluidic chamber to dry for 3-5 min in a tilted position.
90		
91	1.9.	Remove excess ethanol by vacuum, suction or pipetting.
92		
93	1.10.	When completely dry, place the microfluidic chamber in the center of the well.
94		
95		NOTE: The formation of the seal can be observed as a change in reflective
96		properties upon exclusion of air from the interface between the plate and the
97		silicone device.
98		
99		NOTE: Both the plate and microfluidic chamber need to be completely dry
100		before assembly to create a good seal. However, drying time should be
101		minimized as much as possible to ensure proper adherence of the cells. We
102		therefore visually inspect the wells and chambers for remaining droplets of
103		liquid. If no droplets are visible immediately assemble the chambers.
104	4 4 4	Construction the uniquefluidic characteristic hands as and unique success as stick in
105	1.11.	Gently tap the microfiuldic chamber at its borders and microgroove section in
106		the middle for proper attachment to the glass plate.
107	2. Seeding an	d maintaining of neurons.
108	2.1.	Collect the desired number of dissociated hippocampal neurons per chamber in
109		a 1.5 mL reaction tube. We usually seed 1.5x10 ⁵ neurons per device for imaging-
110		based applications.
111	2.2	
112	2.2.	Centrifuge neurons at 1000 xg for 4 min.
113	2.2	Discound the sum superstant and users and the wellst in 0 wheel of D27 Neurobased
114	2.3.	modia
115		neula.
117	2.4	Pipet the cell solution into the entrance of the channel (h in Fig. 1A)
118	2.7.	
119	2.5.	Tap on the back of the plate to assist flow through the channel.
120	2.5.	
121		NOTE: Tapping can be done quite forcefully without worry that the seal will
122		break.
123		
124	2.6.	Aspirate any remaining cell suspension at the exit of the channel (labelled g in
125		Fig. 1A) to decrease number of cells outside the channel.
126		
127	2.7.	Incubate the microfluidic chamber with cells for 15-20 min at 37 °C and 5% CO ₂ .
128		
	2.0	Fill FO what f P27 Neuropean modia in the ten even of well (a)

130			
131		2.9.	Tap on the back of the plate to assist flow through the channel.
132			
133		2.10.	Fill wells on the soma side (a and h) with 150 μL B27-Neurobasal media each,
134			creating a tension bubble on top. The volume of the bubble is about 20 μ l.
135			NOTE: Creation of a tension bubble is not necessary, but it provides a clear visual
136			of the higher volume on the soma side.
137			
138		2.11.	Fill both wells of the axonal side (c and i) with 100 μ L B27-Neurobasal media
139			each.
140			
141			NOTE: To promote axonal growth through the microgrooves, it is recommended
142			that the wells on the soma side contain more media than the wells on the axon
143			side. However, axons will by chance grow through the microgooves without
144			volume differences.
145			
146		2.12.	Incubate the microfluidic chamber at 37 °C and 5% CO ₂ for 7-8 days.
147			<u> </u>
148			NOTE: Growth of axons into the axonal chamber can usually be observed starting
149			at <i>day in vitro</i> (DIV) 5. Longer culturing times are possible if more mature
150			cultures are desired.
151			
152		2.13.	Feed neurons every 2-3 days by removing medium from the two upper wells (a
152 153		2.13.	Feed neurons every 2-3 days by removing medium from the two upper wells (a and c) and replacing it with fresh B27-Neurobasal medium until a tension bubble
152 153 154		2.13.	Feed neurons every 2-3 days by removing medium from the two upper wells (a and c) and replacing it with fresh B27-Neurobasal medium until a tension bubble is formed.
152 153 154	2 6	2.13.	Feed neurons every 2-3 days by removing medium from the two upper wells (a and c) and replacing it with fresh B27-Neurobasal medium until a tension bubble is formed.
152 153 154 155	3. S	2.13. Staining w	Feed neurons every 2-3 days by removing medium from the two upper wells (a and c) and replacing it with fresh B27-Neurobasal medium until a tension bubble is formed. vith mitochondrial membrane potential sensitive dye
152 153 154 155 156	3. S	2.13. Staining w	Feed neurons every 2-3 days by removing medium from the two upper wells (a and c) and replacing it with fresh B27-Neurobasal medium until a tension bubble is formed. vith mitochondrial membrane potential sensitive dye
152 153 154 155 156 157	3. S	2.13. Staining w 3.1.	Feed neurons every 2-3 days by removing medium from the two upper wells (a and c) and replacing it with fresh B27-Neurobasal medium until a tension bubble is formed. vith mitochondrial membrane potential sensitive dye At DIV7-8, assess that the axons have grown through the microgrooves and extend into the axonal compartment underneath a light microgroop
152 153 154 155 156 157 158	3. S	2.13. Staining w 3.1.	 Feed neurons every 2-3 days by removing medium from the two upper wells (a and c) and replacing it with fresh B27-Neurobasal medium until a tension bubble is formed. with mitochondrial membrane potential sensitive dye At DIV7-8, assess that the axons have grown through the microgrooves and extend into the axonal compartment underneath a light microscope.
152 153 154 155 156 157 158 159 160	3. S	2.13. Staining v 3.1.	Feed neurons every 2-3 days by removing medium from the two upper wells (a and c) and replacing it with fresh B27-Neurobasal medium until a tension bubble is formed. vith mitochondrial membrane potential sensitive dye At DIV7-8, assess that the axons have grown through the microgrooves and extend into the axonal compartment underneath a light microscope.
152 153 154 155 156 157 158 159 160 161	3. S	2.13. Staining w 3.1.	 Feed neurons every 2-3 days by removing medium from the two upper wells (a and c) and replacing it with fresh B27-Neurobasal medium until a tension bubble is formed. with mitochondrial membrane potential sensitive dye At DIV7-8, assess that the axons have grown through the microgrooves and extend into the axonal compartment underneath a light microscope. NOTE: Different DIV stages are also possible depending on the desired age.
152 153 154 155 156 157 158 159 160 161 162	3. S	2.13. Staining w 3.1.	Feed neurons every 2-3 days by removing medium from the two upper wells (a and c) and replacing it with fresh B27-Neurobasal medium until a tension bubble is formed. vith mitochondrial membrane potential sensitive dye At DIV7-8, assess that the axons have grown through the microgrooves and extend into the axonal compartment underneath a light microscope. NOTE: Different DIV stages are also possible depending on the desired age.
152 153 154 155 156 157 158 159 160 161 162 162	3. S	2.13. Staining w 3.1. 3.2.	 Feed neurons every 2-3 days by removing medium from the two upper wells (a and c) and replacing it with fresh B27-Neurobasal medium until a tension bubble is formed. with mitochondrial membrane potential sensitive dye At DIV7-8, assess that the axons have grown through the microgrooves and extend into the axonal compartment underneath a light microscope. NOTE: Different DIV stages are also possible depending on the desired age. Perform 2 washes with pre-warmed imaging medium (37 °C) by removing the B27-Neurobasal medium from all wells and adding about 100 ul of the imaging
152 153 154 155 156 157 158 159 160 161 162 163 164	3. S	2.13. Staining w 3.1. 3.2.	 Feed neurons every 2-3 days by removing medium from the two upper wells (a and c) and replacing it with fresh B27-Neurobasal medium until a tension bubble is formed. with mitochondrial membrane potential sensitive dye At DIV7-8, assess that the axons have grown through the microgrooves and extend into the axonal compartment underneath a light microscope. NOTE: Different DIV stages are also possible depending on the desired age. Perform 2 washes with pre-warmed imaging medium (37 °C) by removing the B27-Neurobasal medium from all wells and adding about 100 µl of the imaging medium to the top wells of both the axonal and some channels (a and c) and let
152 153 154 155 156 157 158 159 160 161 162 163 164 165	3. S	2.13. Staining w 3.1. 3.2.	 Feed neurons every 2-3 days by removing medium from the two upper wells (a and c) and replacing it with fresh B27-Neurobasal medium until a tension bubble is formed. with mitochondrial membrane potential sensitive dye At DIV7-8, assess that the axons have grown through the microgrooves and extend into the axonal compartment underneath a light microscope. NOTE: Different DIV stages are also possible depending on the desired age. Perform 2 washes with pre-warmed imaging medium (37 °C) by removing the B27-Neurobasal medium from all wells and adding about 100 μl of the imaging medium to the top wells of both the axonal and soma channels (a and c) and let the medium flow through to the lower wells (b and i).
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166	3. S	2.13. Staining w 3.1. 3.2.	 Feed neurons every 2-3 days by removing medium from the two upper wells (a and c) and replacing it with fresh B27-Neurobasal medium until a tension bubble is formed. with mitochondrial membrane potential sensitive dye At DIV7-8, assess that the axons have grown through the microgrooves and extend into the axonal compartment underneath a light microscope. NOTE: Different DIV stages are also possible depending on the desired age. Perform 2 washes with pre-warmed imaging medium (37 °C) by removing the B27-Neurobasal medium from all wells and adding about 100 µl of the imaging medium to the top wells of both the axonal and soma channels (a and c) and let the medium flow through to the lower wells (h and i). Remove the medium from the lower wells as any leftover medium in the top wells.
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167	3. S	2.13. Staining w 3.1. 3.2.	 Feed neurons every 2-3 days by removing medium from the two upper wells (a and c) and replacing it with fresh B27-Neurobasal medium until a tension bubble is formed. with mitochondrial membrane potential sensitive dye At DIV7-8, assess that the axons have grown through the microgrooves and extend into the axonal compartment underneath a light microscope. NOTE: Different DIV stages are also possible depending on the desired age. Perform 2 washes with pre-warmed imaging medium (37 °C) by removing the B27-Neurobasal medium from all wells and adding about 100 μl of the imaging medium to the top wells of both the axonal and soma channels (a and c) and let the medium flow through to the lower wells (h and i). Remove the medium from the lower wells as well as any leftover medium in the top wells, and repeat with fresh medium leaving the wells empty at the end of the wash
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168	3. S	2.13. Staining w 3.1. 3.2.	 Feed neurons every 2-3 days by removing medium from the two upper wells (a and c) and replacing it with fresh B27-Neurobasal medium until a tension bubble is formed. with mitochondrial membrane potential sensitive dye At DIV7-8, assess that the axons have grown through the microgrooves and extend into the axonal compartment underneath a light microscope. NOTE: Different DIV stages are also possible depending on the desired age. Perform 2 washes with pre-warmed imaging medium (37 °C) by removing the B27-Neurobasal medium from all wells and adding about 100 µl of the imaging medium to the top wells of both the axonal and soma channels (a and c) and let the medium flow through to the lower wells (h and i). Remove the medium from the lower wells as any leftover medium in the top wells, and repeat with fresh medium, leaving the wells empty at the end of the wash.
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169	3. S	2.13. Staining w 3.1. 3.2.	 Feed neurons every 2-3 days by removing medium from the two upper wells (a and c) and replacing it with fresh B27-Neurobasal medium until a tension bubble is formed. with mitochondrial membrane potential sensitive dye At DIV7-8, assess that the axons have grown through the microgrooves and extend into the axonal compartment underneath a light microscope. NOTE: Different DIV stages are also possible depending on the desired age. Perform 2 washes with pre-warmed imaging medium (37 °C) by removing the B27-Neurobasal medium from all wells and adding about 100 µl of the imaging medium to the top wells of both the axonal and soma channels (a and c) and let the medium flow through to the lower wells (h and i). Remove the medium from the lower wells as well as any leftover medium in the top wells, and repeat with fresh medium, leaving the wells empty at the end of the wash.
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170	3. S	2.13. Staining w 3.1. 3.2.	 Feed neurons every 2-3 days by removing medium from the two upper wells (a and c) and replacing it with fresh B27-Neurobasal medium until a tension bubble is formed. with mitochondrial membrane potential sensitive dye At DIV7-8, assess that the axons have grown through the microgrooves and extend into the axonal compartment underneath a light microscope. NOTE: Different DIV stages are also possible depending on the desired age. Perform 2 washes with pre-warmed imaging medium (37 °C) by removing the B27-Neurobasal medium from all wells and adding about 100 µl of the imaging medium to the top wells of both the axonal and soma channels (a and c) and let the medium flow through to the lower wells (h and i). Remove the medium from the lower wells as well as any leftover medium in the top wells, and repeat with fresh medium, leaving the wells empty at the end of the wash. NOTE: Due to the high capillary force in the channels (d and f) there will be remaining wash medium in the channels which should not he removed to a series of the series of th
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170	3. S	2.13. Staining w 3.1. 3.2.	Feed neurons every 2-3 days by removing medium from the two upper wells (a and c) and replacing it with fresh B27-Neurobasal medium until a tension bubble is formed. With mitochondrial membrane potential sensitive dye At DIV7-8, assess that the axons have grown through the microgrooves and extend into the axonal compartment underneath a light microscope. NOTE: Different DIV stages are also possible depending on the desired age. Perform 2 washes with pre-warmed imaging medium (37 °C) by removing the B27-Neurobasal medium from all wells and adding about 100 µl of the imaging medium to the top wells of both the axonal and soma channels (a and c) and let the medium flow through to the lower wells (h and i). Remove the medium from the lower wells as well as any leftover medium in the top wells, and repeat with fresh medium, leaving the wells empty at the end of the wash. NOTE: Due to the high capillary force in the channels (d and f) there will be remaining wash medium in the channels which should not be removed to provent the powrage from draing
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171	3. S	2.13. Staining w 3.1. 3.2.	 Feed neurons every 2-3 days by removing medium from the two upper wells (a and c) and replacing it with fresh B27-Neurobasal medium until a tension bubble is formed. with mitochondrial membrane potential sensitive dye At DIV7-8, assess that the axons have grown through the microgrooves and extend into the axonal compartment underneath a light microscope. NOTE: Different DIV stages are also possible depending on the desired age. Perform 2 washes with pre-warmed imaging medium (37 °C) by removing the B27-Neurobasal medium from all wells and adding about 100 µl of the imaging medium to the top wells of both the axonal and soma channels (a and c) and let the medium flow through to the lower wells (h and i). Remove the medium from the lower wells as well as any leftover medium in the top wells, and repeat with fresh medium, leaving the wells empty at the end of the wash. NOTE: Due to the high capillary force in the channels (d and f) there will be remaining wash medium in the channels which should not be removed to prevent the neurons from drying.

173 174		NOTE: Any phenol-red free imaging medium can be used here, as for instance Hibernate E. If the microscope is not set up with a CO ₂ supply, ensure that the
175		imaging medium uses an alternative buffering system to carbonate/ CO_2 (E.g.
176		nhosnhate)
177		phosphate).
178	3.3.	Dilute a 1 mM tetramethylrodamine ethyl ester (TMRE, red) stock to 5 nM in
179		imaging medium.
180		
181		NOTE: Do not exceed 1% DMSO in the final dilution to avoid toxicity.
182		
183	3.4.	Add 100 μ L of the 5 nM TMRE dilution to both the somatic and axonal top wells
184		(a and c) and let the medium flow through both the somatic- and axonal
185		compartments until there is an equal volume in all wells. Fill up with TMRE-
186		containing medium.
187		
188	3.5.	Place the neurons back into a controlled environment chamber (37 °C and 5%
189		CO ₂) for 25 min.
190		
191	3.6.	Perform 2 washes with pre-warmed imaging medium (37 °C) as described
192		before. On the last wash, fill up with 100 μ L in each well and create a tension
193		bubble of medium on the somatic wells (a and c).
194		
195		
196	4. Live-cell in	naging
197		
198	NOTE: still im	nages shown were acquired on a spinning disk confocal, using a 40X NA 1.25
199	immersion of	biective. 200 ms exposure time and 10% laser power for the red channel and 500
200	ms exposure	time for brightfield were chosen. However, also regular confocal or widefield
201	inverted mic	roscopes can be used to study TMRE intensity.
202		
203	4.1.	Image the cells with an inverted microscope.
204		
205	4.2.	Ensure that the microscope is equipped with a stage incubator to maintain the
206		neuronal culture at 37 °C throughout the experiment
207		
208	43	Select a region of interest in the somatic compartment, and follow it through the
200		microgrooves into the axonal compartment. Ensure that the microgrooves
205		imaged matches those in the somatic as well as the avonal compartment (for
210		easier baseline and post-treatment comparison)
211		cusici buscine una post treatment companson).
212	ΔΔ	Capture fluorescence images using excitation at 561 nm and emission at 625 nm
213	7.7.	for red fluorescence signal
217		
215	15	Acquire the images
210	ч.э.	Acquire the integes.

217			
218	4.6.	To induce mitochondrial depolarization, add 20 μM Antimycin A in imaging	
219		medium to the axonal compartment only. To ensure a volume difference	
220		between the soma and axonal chambers, check the presence of a tension bubble	
221		on the somatic side (equals volume > 110 μ l). Remove all imaging medium from	
222		the lower well of axonal side (i), except for the medium inside the channel (f).	
223		Add 160 μ L 20 μ M Antimycin A to the top axonal well (c) and let it flow through	
224		the channel until there is an equal volume in both axonal wells (Volume in axonal	
225		wells roughly 80µl per well).	
226			
227		NOTE: Make sure that the volume in the axonal wells are smaller than in the	
228		somatic wells to ensure proper fluid pressure. We recommend a difference of at	
229		least 10 μ l (10% of the well volume), but also higher differences are possible.	
230			
231	4.7.	Incubate neurons in the controlled environment chamber (37 °C) for 20-30 min.	
232			
233	4.8.	Repeat imaging as described above. Make sure that you image the same	
234		positions (easily identified by the microgrooves) as during baseline acquisition.	
235			
236	Representativ	ve Results	
237	Primary hippocampal neurons were grown in microfluidic devices for 7-8 days before		
238	mitochondria were stained with the membrane sensitive dye TMRE for 25 min in both channels.		
239	As shown in figure 2A, this yielded a homogenous staining of mitochondria on both sides of the		
240	microgrooves, yet was not sufficient to equilibrate the staining into the middle of the		
241	microgrooves. Upon addition of Antimycin A to the axonal side, somal mitochondria retained		
242	the TMRE signal (Fig. 2B and Video 1), whereas TMRE fluorescence was lost from axonal		
243	mitochondria	(Fig. 2C and Video 1).	
244			
245	Figure and vic	leo legends	

ø 21 mm

246 247 Figure 1: Microfluidic devices allow the fluidic isolation of axons. (A) Schematic of microfluidic device used in this experiment. The silicone disk (diameter 21 mm) fits easily into a 6 well plate. 248 a) Well on soma side, b) Entrance of channel on soma side, c) Well on axon side, d) Channel on 249 250 soma side, e) Microgrooves, f) Channel on axon side, g) Exit of channel on soma side, h) Well on soma side, i) Well on axon side. (B) Schematic detailing how the different fluid levels create a 251 fluidic pressure gradient across the microchannels. (C) Demonstration of fluidic isolation by 252

253 addition of Trypan blue to one side of the chamber. Note that due to the fluidic pressure

gradient the blue dye does not equilibrate across the microchannels. 254

255

Figure 2: Selective treatment of axons depolarizes axonal but not cell body mitochondria. (A) 256

Representative micrograph presenting an overview of the effectivity of TMRE staining in 257

- 258 microfluidic devices. Scale bar 100 μm. (B-C) Representative micrograph showing the same area
- 259 $\,$ before and after addition of 20 μM Antimycin A (AA) in the cell body and the axonal
- 260 compartment, respectively. Scale bar: 10 μ m.
- 261

262 Video 1: Effect of Antimycin A treatment on the mitochondrial membrane potential in axons

and cell bodies. Live cell imaging of the loss of TMRE fluorescence upon addition of Antimycin

- A, imaged on an EVOS M5000 widefield microscope.
- 265

266 Discussion

- 267 Here, we describe a method to seed and culture dissociated hippocampal neurons in a
- 268 microfluidic device in order to separately treat axonal mitochondria. We are showcasing the
- 269 utility of this approach with the membrane sensitive dye TMRE and the complex III inhibitor
- 270 Antimycin A (as previously demonstrated⁷), but this method can be easily adapted to other
- 271 mitochondrial dyes or genetically encoded sensors of mitochondrial functions that allow local,
- 272 microscopy based readouts⁸. Other neuronal cell types can also be grown in microfluidic
- 273 chambers, such as primary cortical neurons⁹ or iPSC-derived motorneurons¹⁰, making this
- 274 platform a versatile tool to study mitochondrial function in neurodegeneration in the neuronal
- cell type of interest. The assembly of microfluidic devices is a crucial step to achieve an efficient
- seal and is most easily explained by watching an experienced researcher perform the assembly.
- 277 The downstream labelling and treatment procedure described here are meant to only be
- exemplary and may be adjusted to fit the protocols currently established in the respective labs,
- 279 while maintaining the fluidic pressure gradient.
- 280 The seeding technique we describe here differs from published protocols and the
- 281 manufacturer's description as we skip the suggested washes of the assembled device and
- rather directly seed the dissociated neurons into the dry chamber (Step 2). We have found that
- this reduces the number of neurons needed, as it increases the density of neurons within
- channel **e** and limits the spread of neurons into the wells far away from the microchannels. The
- dry seeding is aided by tapping of the bottom of the plate (Step 2.5), which may or may not be
- 286 necessary depending on the force applied previously when assembling the device. There is
- some variability to the tightness of the seal due to differences in force applied during assembly
- that may lead to restricted growth through the microgrooves. Also, remaining moisture can
 disturb the seal formation and allow axonal growth or even cell migration underneath the
- device. Both problems can easily be spotted prior to staining (compare step 3.1), leading to the
- 291 exclusion of faulty chambers from the experiment.
- 292

293 Disclosures

- 294 The authors declare no competing interests.
- 295296 Acknowledgments
- 297 This study was supported by the German Research Foundation (HA 7728/2-1 and EXC2145
- 298 Project ID 390857198) and the Max Planck Society.
- 299
- 300 References

- Murali Mahadevan, H., Hashemiaghdam, A., Ashrafi, G. & Harbauer, A. B. Mitochondria
 in Neuronal Health: From Energy Metabolism to Parkinson's Disease. *Adv. Biol.* 5,
 2100663 (2021).
- Dauer, W. & Przedborski, S. Parkinson's disease: mechanisms and models. *Neuron* **39**,
 889–909 (2003).
- Moratalla, R. *et al.* Differential vulnerability of primate caudate-putamen and striosomematrix dopamine systems to the neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine. *Proc. Natl. Acad. Sci. U. S. A.* **89**, 3859–3863 (1992).
- Cheng, H.-C., Ulane, C. M. & Burke, R. E. Clinical progression in Parkinson disease and the neurobiology of axons. *Ann. Neurol.* 67, 715–725 (2010).
- 3115.Taylor, A. M. *et al.* A microfluidic culture platform for CNS axonal injury, regeneration312and transport. *Nat. Methods* 2, 599–605 (2005).
- 3136.Harbauer, A. B. *et al.* Neuronal mitochondria transport Pink1 mRNA via synaptojanin 2 to314support local mitophagy. *Neuron* (2022). doi:10.1016/j.neuron.2022.01.035
- Ashrafi, G., Schlehe, J. S., LaVoie, M. J. & Schwarz, T. L. Mitophagy of damaged
 mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. *J. Cell Biol.* 206, 655–70 (2014).
- Harbauer, A. B., Schneider, A. & Wohlleber, D. Analysis of Mitochondria by Single Organelle Resolution. *Annu. Rev. Anal. Chem. (Palo Alto. Calif).* 1–16 (2022).
 doi:10.1146/annurev-anchem-061020-111722
- 3219.Taylor, A. M. *et al.* Axonal mRNA in uninjured and regenerating cortical mammalian322axons. J. Neurosci. **29**, 4697–707 (2009).
- Altman, T. *et al.* Axonal TDP-43 condensates drive neuromuscular junction disruption
 through inhibition of local synthesis of nuclear encoded mitochondrial proteins. *Nat. Commun.* 12, 6914 (2021).

326