
Neuroimmune cardiovascular
interfaces in atherosclerosis

Sarajo K. Mohanta1,2*, Changjun Yin1,2,3, Christian Weber1,2,4 and
Andreas J. R. Habenicht1,2

1Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany,
2German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany,
3Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou,
Guangdong, China, 4Munich Cluster for Systems Neurology (SyNergy), Munich, Germany

Two pairs of biological systems acting over long distances have recently been
defined as major participants in the regulation of physiological and pathological
tissue reactions: i) the nervous and vascular systems form various blood-brain
barriers and control axon growth and angiogenesis; and ii) the nervous and
immune systems emerge as key players to direct immune responses and
maintain blood vessel integrity. The two pairs have been explored by investigators
in relatively independent research areas giving rise to the concepts of the rapidly
expanding topics of the neurovascular link and neuroimmunology, respectively. Our
recent studies on atherosclerosis led us to consider a more inclusive approach by
conceptualizing and combining principles of the neurovascular link and
neuroimmunology: we propose that the nervous system, the immune system and
the cardiovascular system undergo complex crosstalks in tripartite rather than
bipartite interactions to form neuroimmune cardiovascular interfaces (NICIs).
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The neurovascular link

Reviewing interactions between the nervous system and the cardiovascular system,
Carmeliet and Tessier-Lavigne recently pointed out the significance of observations made
by the Belgian anatomist Andreas Vesalius in 1543 for our current views of interactions between
the nervous and cardiovascular systems (Carmeliet and Tessier-Lavigne, 2005). Indeed, the
studies by Vesalius turn out to be highly relevant for our current understanding of the common
mechanisms underlying nerve and blood vessel development. He was the first to point to the
striking macroanatomical proximity of the peripheral nervous system and the vascular system.
Moreover, recent research identified a multitude of cardiovascular-nervous system interactions
leading to discoveries of countless functionally relevant mediators released from either tissue and
acting on the other. Likewise, basic research into the evolution of neurogenesis, immune system
development and angiogenesis in small animals (Zacchigna et al., 2008) from nematode worms
(Caenorhabditis elegans) to fruit flies (Drosophila melanogaster) to zebra fish (Danio rerio) have
expanded current notions regarding the functionality of the relationships of three systemically
acting tissues: the nervous system, the immune system and the cardiovascular system.Whereas C.
elegans have developed a well-organized nervous system consisting of 302 stereotyped neurons (of
a total of 959 somatic cells), they lack a cardiovascular system. However, they have acquired an
emerging primitive innate immune system consisting of sessile muscle cells that are capable of
phagocytosis of danger-signaling macromolecules including infectious organisms. Of note, this
nematode innate immune system is regulated by neuronal inputs (Liu and Sun, 2021). Next in the
phylogenetic tree of invertebratemulticellular organisms considered here, are fruit flies which own
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a more advanced and well-developed nervous system
(~100,000 neurons) and an emerging innate non-sessile circulating
immune system in their haemolymph which can be regarded as a
primitive circulatory system. Finally, zebrafish feature all three systems
at advanced stages of development including a well-developed regularly
beating heart (Jopling et al., 2010). In particular, the zebrafish turned out
to be an important model for human heart development and a series of
heart diseases including aorta calcification (Singh et al., 2019).
Furthermore, the zebrafish allows to examine heart development
with a speed and information not achievable even in mouse models.
Indeed, zebrafish allow to study neural-cardiovascular connections to
define the role of every single nerve from the heart and the
cardiovascular system (Vedder et al., 2020). Fishman et al. pioneered
the zebrafish as a model, generated multiple genetically altered fish and
applied them to human disease using powerful genetic screens (Lee
et al., 1994; Weinstein et al., 1995; Stainier et al., 1996; Fouquet et al.,
1997; Childs et al., 2002). When taken together, these data revealed that
the nervous system appeared first during evolution of multiple species
followed by the immune system and the cardiovascular system (Tam
andWatts, 2010; Brunet et al., 2014). Recent progress in understanding
the neurovascular link in the central nervous system and in the
peripheral nervous system, respectively, expands our perceptions of
the functional implications in physiology (Walchli et al., 2015).
Moreover, the relevance of multi-tissue interactions of the three
tissues to understand disease pathogeneses as varied as
atherosclerosis, Alzheimer′s Disease (Yin et al., 2019) and Diabetes
Mellitus (Malheiro et al., 2021) become increasingly apparent at a
rapid pace.

Neuroimmunology

Parallel to the field of the neurovascular link, a pair of two further
systemically interacting biological systems, i.e., the nervous and
immune systems, burgeoned during the last decades giving rise to
the ever growing - and indeed exploding - field of neuroimmunology.
Key growth and survival signals including mediators of neuron
neogenesis, axon growth, synaptogenesis, target innervation, nerve
growth factor-dependent neuron survival among others and multiple
mediators of blood vessel morphogenesis derived from both the
nervous and the immune systems have been identified (Glebova
and Ginty, 2005). Many, if not all, of these mediators also turn out
to participate in diseases as varied as cancer, autoimmune diseases,
multiple chronic inflammatory diseases, degenerative and
inflammatory brain diseases, bacterial infectious diseases and
peripheral nervous system-associated diseases (Andersson and
Tracey, 2012; Chiu et al., 2012; Olofsson et al., 2012; Steinman,
2012; Tracey, 2012; Magnon et al., 2013; Han et al., 2015; Hanoun
et al., 2015; McMahon et al., 2015; Talbot et al., 2016; Chu et al., 2020;
Cserep et al., 2020; Udit et al., 2022). As a result of rather recent
studies, neuroimmunology has now reached the realm of neuronal
control by distinct brain nuclei and indeed neuron subtypes to regulate
peripheral immune responses during physiology and pathophysiology
(Tracey, 2012; Magnon et al., 2013). In addition to identifying afferent
sensory nervous system-brain axes, regulatory efferent brain-
peripheral organ projections are being elucidated (Weinstein et al.,
1995; Andersson and Tracey, 2012; Steinman, 2012; Walchli et al.,
2015). A striking recent example of this emerging area of
neuroimmunology has been the regulation of humoral immune

responses in the spleen by distinct cortico-releasing hormone-
expressing neurons in the central amygdala and the parabrachial
nucleus that instruct the splenic nerve which in turn regulates
plasma cell abundance (i.e., B cell immunity) (Zhang et al., 2020).
These studies indicate that we are on the cusp of better understanding
the dominant roles of the brain in regulating fundamental biological
systems in the periphery and the brain itself (already apparent in
nematodes as outlined above) including phenomena as diverse as
thermoregulation (Morrison and Nakamura, 2019), emotions and
empathy (Gehrlach et al., 2019; Zych and Gogolla, 2021) and gut
inflammation (Koren et al., 2021; Brea and Veiga-Fernandes, 2022). It
becomes apparent that these advances include previously unknown
phenomena whose molecular underpinnings had escaped any level of
comprehension in the past: We would emphasize the work of
Anderson and Adolphs who recently pointed to the possibility that
even insects express emotions that they termed emotion primitives by
citing Darwin′s comment “Even insects express anger, terror, jealousy
and love, by their stridulation” (Anderson and Adolphs, 2014). Indeed,
a key brain area termed the insular cortex has recently been identified
as a maintenance and integration structure for fear and empathy in
mice (Gogolla, 2017; Klein et al., 2021). When taken together,
neuroimmunology is now identifying new brain-controlled
peripheral biological systems of major significance in physiology
and disease. The vascular immune crosstalk has been extensively
described elsewhere (Yin et al., 2017; Klein et al., 2021; Brea and
Veiga-Fernandes, 2022) and is not the focus of this mini-review.

Long distance talk of three companions
in atherosclerosis

Early studies of our group observed that the majority of
immune cells in late stage atherosclerosis (Libby et al., 2011)
accumulated in the lamina adventitia, i.e. the connective tissue
coat of arteries, rather than in intima plaques. Some of the immune
cell aggregates had a large B cell component particularly in areas of
heavily diseased artery segments. To our initial surprise, these
aggregates resembled tertiary lymphoid organs that had previously
reported in distinct types of cancer, autoimmune diseases and chronic
unresolvable inflammatory diseases (Brea and Veiga-Fernandes, 2022).
Following a series of imaging and functional experiments, we termed
these atherosclerosis-associated aggregates artery tertiary lymphoid
organs (ATLOs) (Grabner et al., 2009; Yin et al., 2017). We phenotyped
ATLOs and found that they harbor multiple B cell subtypes including
germinal center B cells, B1 cells in activated B cell follicles, both short-lived
and long-lived plasma cells in separate niches and also separate T cell areas
in addition to innate immune cells (Srikakulapu et al., 2016). Subsequent
in vitro studies revealed that stimulation of the lymphotoxin β receptor on
arterial smooth muscle cells changed their phenotype to resemble cells that
had been termed lymphoid organizer cells as they expressed the
lymphorganogenic chemokines CXCL13 and CCL19 (Mohanta et al.,
2022; Hu et al., 2019). These in vitro data together with the observation
that arterial media smooth muscle cells adjacent to atherosclerotic plaques
in vivo showed strong CXCL13 expression led us to generate transgenic
mice with a selective deletion of the lymphotoxin β receptor in the smooth
muscle cells. In aged hyperlipidemic smooth muscle cell-specific
lymphotoxin β receptor-deletion mice, the extent of atherosclerosis
burden was higher than in their hyperlipidemic counterparts. These
data indicated that ATLOs may affect atherosclerosis progression (Hu
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et al., 2015). Meanwhile, Akhavanpoor et al. (2018) observed ATLO
formation in human atherosclerotic coronary arteries: They reported
that all patients with myocardial infarction showed ATLOs stage-III in
their coronary artery adventitia that we had previously defined as large
T/B cell aggregates containing follicular dendritic cells in germinal centers.
More recently, we isolated ATLO and plaque T cells, analyzed them using a
pairing approach of single cell RNA sequencing (scRNA-seq) with single
cell T cell receptor sequencing and observed clonal expansion of CD4, T
regulatory and CD8 T cells. These data showed the power of scRNA-seq
approaches to understand the mechanisms of atherosclerosis (Wang et al.,
2022; Zhang et al., 2022).

In parallel studies, we searched for molecular cues of a poorly
understood form of dementia, i.e., vascular dementia, that had
previously be linked to Alzheimer′s disease: Distinct brain areas
including the choroid plexus and areas heavily burdened by
Alzheimer plaques in mouse and human brains were examined
in parallel with murine and human atherosclerotic plaques.
Interestingly, the classical complement component C1q was
found to form high-affinity complexes with Apolipoprotein E
and inhibition of the C1q-mediated inflammatory pathway using
siRNA treatment in mice reduced both atherosclerosis and
Alzheimer plaque (intermediate) burdens (Yin et al., 2019).
Using laser capture microdissection-based whole genome-wide
transcript profiling, we observed a major and dominant
interferon signature in the choroid plexus that was dependent
on the transgenic expression of the Apolipoprotein E4 isoform
in transgenic knock-in mice maintained on a Western type diet
indicating that the genetics of key regulatory genes in
atherosclerosis progression deserve attention. These findings
directly associated Apolipoprotein E and its isoforms with major
brain diseases in which neuroimmune responses play major roles
(Yin et al., 2019). As the adventitia forms the major conduit for the
nervous system to reach distant targets (as Vesalius noted, see
above) in hyperlipidemic mice during aging (Moos et al., 2005;
Mohanta et al., 2014), we hypothesized that atherosclerosis-specific
adventitia segments may interact with the nervous system.

All these studies raised the possibility that ATLOs may be a
model to study how the atherosclerotic arterial wall may directly
crosstalk with the peripheral nervous system. Using a multitude of
imaging methods including tissue clearing, we recently observed
that the components of the peripheral nervous system in the artery
adventitia adjacent to atherosclerotic plaques underwent marked
restructuring (Mohanta et al., 2022; Sun et al., 2022).
Atherosclerosis-triggered restructuring included axon outgrowth,
formation of junction-like synaptic connections between immune
cells and axons and formation of growth cones among others
(Figure 1). Moreover, surgical removal of the sympathetic celiac
ganglia in the abdominal portion of the aorta in the aged mice
attenuated the burden of atherosclerosis in this segment (Mohanta
et al., 2022). These morphological and functional studies led us to
propose that the diseased arterial wall directly crosstalks to both the
immune and the nervous system in tripartite rather than
bidirectional interactions. In addition to the adventitia NICI
depicted below, other changes were noticed in murine and
human atherosclerosis including inflammatory infiltrates around
peripheral nervous system ganglia and nerves. We therefore
suggest that the tripartite tissue interaction supports the
existence of a until now underappreciated disease paradigm
(Mohanta et al., 2022).

Future perspectives

Future work should be directed towards a more detailed
understanding of the morphology and function of the adventitia
and other peripheral nervous system NICIs. These studies would
characterize the axon tips in the adventitia of diseased artery
segments using quantitative electron microscopy and
morphologically delineate the neuroimmune junctions.
Moreover, a more complete functional characterization of the
sensory nervous system including the pain receptors/nociceptors
on atherosclerosis progression may yield new information on the
adventitia NICI when scRNA-seq approaches are employed
(Wang, 2023). We also propose to interrogate the NICI
hypothesis in diseases other than atherosclerosis including
cancer, rheumatoid arthritis and autoimmune diseases that are
associated with TLOs.
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FIGURE 1
Choreography of an adventitia NICI in advanced murine
atherosclerosis. Recent studies into a possible innervation of the
adventitia by the axons of the peripheral nervous system revealed that
both the sensory and the sympathetic nervous systems undergo
marked restructuring in artery segments afflicted with atherosclerosis in
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adjacent to plaques in multiple territories of the arterial tree [adopted
from (Mohanta et al., 2022)].
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