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Abstract

Assumptions are made about the genetic model of single nucleotide polymorphisms (SNPs)

when choosing a traditional genetic encoding: additive, dominant, and recessive. Further-

more, SNPs across the genome are unlikely to demonstrate identical genetic models. How-

ever, running SNP-SNP interaction analyses with every combination of encodings raises

the multiple testing burden. Here, we present a novel and flexible encoding for genetic inter-

actions, the elastic data-driven genetic encoding (EDGE), in which SNPs are assigned a

heterozygous value based on the genetic model they demonstrate in a dataset prior to inter-

action testing. We assessed the power of EDGE to detect genetic interactions using 29 com-

binations of simulated genetic models and found it outperformed the traditional encoding

methods across 10%, 30%, and 50% minor allele frequencies (MAFs). Further, EDGE main-

tained a low false-positive rate, while additive and dominant encodings demonstrated infla-

tion. We evaluated EDGE and the traditional encodings with genetic data from the

Electronic Medical Records and Genomics (eMERGE) Network for five phenotypes: age-

related macular degeneration (AMD), age-related cataract, glaucoma, type 2 diabetes
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(T2D), and resistant hypertension. A multi-encoding genome-wide association study

(GWAS) for each phenotype was performed using the traditional encodings, and the top

results of the multi-encoding GWAS were considered for SNP-SNP interaction using the tra-

ditional encodings and EDGE. EDGE identified a novel SNP-SNP interaction for age-related

cataract that no other method identified: rs7787286 (MAF: 0.041; intergenic region of chro-

mosome 7)–rs4695885 (MAF: 0.34; intergenic region of chromosome 4) with a Bonferroni

LRT p of 0.018. A SNP-SNP interaction was found in data from the UK Biobank within 25 kb

of these SNPs using the recessive encoding: rs60374751 (MAF: 0.030) and rs6843594

(MAF: 0.34) (Bonferroni LRT p: 0.026). We recommend using EDGE to flexibly detect inter-

actions between SNPs exhibiting diverse action.

Author summary

Although traditional genetic encodings are widely implemented in genetics research, includ-

ing in genome-wide association studies (GWAS) and epistasis, each method makes assump-

tions that may not reflect the underlying etiology. Here, we introduce a novel encoding

method that estimates and assigns an individualized data-driven encoding for each single

nucleotide polymorphism (SNP): the elastic data-driven genetic encoding (EDGE). With

simulations, we demonstrate that this novel method is more accurate and robust than tradi-

tional encoding methods in estimating heterozygous genotype values, reducing the type I

error, and detecting SNP-SNP interactions. We further applied the traditional encodings and

EDGE to biomedical data from the Electronic Medical Records and Genomics (eMERGE)

Network for five phenotypes, and EDGE identified a novel interaction for age-related cata-

ract not detected by traditional methods, which replicated in data from the UK Biobank.

EDGE provides an alternative approach to understanding and modeling diverse SNP models

and is recommended for studying complex genetics in common human phenotypes.

Introduction

Choosing between traditional methods for encoding single nucleotide polymorphisms (SNPs)

in association studies, including additive, dominant, and recessive, requires making an

assumption about the manner in which the coded risk allele acts. In accordance with Mendel’s

patterns of inheritance [1], given referent allele, A, and alternate (or coded risk) allele, a, all

encodings assume that the AA (homozygous referent) genotype incurs no risk and aa (homo-

zygous alternate) genotype bears full risk. As has been described previously [2–4], the assumed

heterozygous (Aa) risk, however, varies according to the chosen encoding method. For each

encoding, the assumed risk accrued by one copy of the alternate allele (Aa) in relation to two

copies (aa) varies: Aa is coded to bear 0%, 50%, or 100% the risk of aa for recessive, additive,

and dominant encodings, respectively. Codominant encoding is a dummy encoding method

which allows Aa and/or aa to bear full risk. However, heterozygous risk could, in actuality, lie

anywhere between 0% to 100% of the risk of a homozygous alternate genotype (for some

examples of possible underlying genetic models, see Table 1). Additionally, choosing only one

of these encodings is restrictive, as SNPs across the genome are unlikely to demonstrate identi-

cal genetic models. Testing all encodings increases the computational and multiple testing bur-

den, thereby limiting the ability to identify true signals. This issue becomes more complicated
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when dealing with epistasis (genetic interactions): testing all combinations of encodings for

every SNP in a SNP-SNP interaction pair raises the multiple test burden and false negative

rate. Here, we grapple with a limitation to studying epistasis: that genetic association tests are

performed using genotype encoding methods that rely on assumptions about genetics that

may not be reflected in the data, and thus, many genetic interactions likely remain elusive [4].

Since the advent of genome-wide association studies (GWAS) in 2005 [5], the human genetics

community has widely adopted SNPs as a popular marker for genetic association studies [2].

Early GWAS involved comparisons of allele frequencies between cases and controls [5–7], and

in 2006 the first GWAS to employ genotype encoding was published by Arking et al., [8] using

the additive, dominant, and recessive encodings. Following these studies many GWAS were per-

formed using at least two of these three encodings [9–15], and in 2007, Bierut et al. published the

first GWAS to use the additive encoding alone [16]. By 2008, use of the additive encoding alone

was becoming commonplace for GWAS [2,3,17,18] with some researchers in the field arguing

for methods that explore nonadditive encodings since [2,3,19]. The epistasis research commu-

nity has largely adopted an additive encoding framework as well over the years. While some

early studies of SNP-SNP interactions, assessed multiple genetic models [20–24], the shift to

additive-only SNP encoding for regression-based epistasis occurred in 2008 [25–27]. Given the

focus on the additive encoding for GWAS and epistasis research over the last decade, the work

presented in this paper aims to 1) present a novel encoding that is flexible to detect SNPs with a

nonadditive allelic architecture, 2) find evidence of SNPs that may act beyond an additive genetic

model, 3) evaluate the different genetic encodings in the context of epistasis, and 4) identify

novel SNP-SNP interactions associated with complex disease.

In this study, we introduce an alternative to the current paradigm: the elastic data-driven

genetic encoding (EDGE), a method to flexibly assign each SNP with a unique heterozygous

encoding prior to interaction analysis. We compared power and type I error of the current

paradigm methodologies to EDGE with a simulation study. EDGE and the traditional encod-

ings were applied to five disease phenotypes in the Electronic Medical Record and Genomics

(eMERGE) Network [28,29]: age-related macular degeneration (AMD), age-related cataract,

glaucoma, type 2 diabetes (T2D), and resistant hypertension and significant SNP-SNP interac-

tion models were considered for replication in data from the UK Biobank [30]. Results demon-

strate the benefit of investigating epistasis with methods beyond the additive encoding. We

offer EDGE as a novel, flexible encoding method with the potential to identify elusive genetic

interactions underlying complex diseases.

Results

EDGE accurately encodes SNPs according to simulated genetic models

Like traditional encodings, EDGE encodes the homozygous referent and homozygous alter-

nate genotypes as 0 and 1, respectively. For additive, dominant, and recessive encodings, a

Table 1. Examples of possible proportional genotype risk underlying genetic loci.

Biological Action Homozygous Referent

AA
Heterozygous

Aa
Homozygous Alternate

aa
Recessive (REC) 0% 0% 100%

Sub-Additive (SUB) 0% 25% 100%

Additive (ADD) 0% 50% 100%

Super-Additive (SUP) 0% 75% 100%

Dominant (DOM) 0% 100% 100%

https://doi.org/10.1371/journal.pgen.1009534.t001
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predetermined heterozygous value is assigned (Table 2). In contrast, EDGE assigns a flexible

heterozygous value (α) based on the genetic model each individual SNP demonstrates in the

dataset (Table 2). For example, if SNP A’s underlying genetic model is additive, the heterozy-

gous genotype bears 50% the risk of homozygous alternate genotype (Table 1), and EDGE will

assign the heterozygous genotype as 0.5. If SNP B demonstrates a sub-additive underlying

model, the heterozygous genotype incurs 25% the risk of the homozygous alternate genotype,

and the EDGE-derived alpha will be assigned as 0.25. In the case of SNP B, the heterozygous

risk does not fall within the traditional encoding methods that are listed in Table 2. EDGE also

can detect cases in which SNP C’s heterozygous genotype bears more risk than the homozy-

gous alternate genotype, where the underlying model is over-dominant (α> 1) or in which

SNP D’s heterozygous genotype bears less risk than the homozygous referent genotype (under-

recessive; α< 0). Encoding detection and assignment occurs prior to interaction analysis,

allowing for an encoding that reflects the underlying model of each unique SNP. EDGE is

available for download in PLATO software [31] on the Ritchie Lab website https://ritchielab.

org/plato.

The mechanisms of the EDGE method are described in the following steps:

1. Logistic or linear regression is run using a codominant (dummy) encoding with no inter-

cept (so mean-centered trait; Y-E [Y] or prob (Y = 1)–pop prevalence). Note: if covariates

are included in the analysis for adjustment, they are also included in the regression model

and that, for consistency, we code the minor allele as the risk (alternate) allele.

Y ¼ bHetSNPHet þ bHASNPHA ð1Þ

2. Using the beta values from the heterozygous genotype (Het) and homozygous alternate

genotype (HA) dummy encodings, a weighted value (α) for the heterozygous genotype is

calculated, whereby the α corresponds to the risk of the heterozygous genotype relative to

homozygous alternate genotype when homozygous alternate risk is scaled to 1.

a ¼ bHet=bHA ð2Þ

3. These EDGE genotype encodings (homozygous referent = 0, heterozygous = α, homozy-

gous alternate = 1) are then used for SNP-SNP interaction analysis. A common approach

for genetic interaction is performing a likelihood ratio test (LRT) between a full and

reduced model: Y = β0 + β1SNP1 + β2SNP2 + β3SNP1×SNP2 (full) and Y = β0 + β1SNP1 +

β2SNP2 (reduced). A significant LRT p-value indicates that including the interaction term

(β3 of the full model) significantly improves model fit when compared to a model

Table 2. Recessive, additive, dominant, codominant and EDGE encoding schemes, scaled between 0 and 1.

Encoding Homozygous Referent

AA
Heterozygous

Aa
Homozygous Alternate

aa

Traditional

Recessive 0 0 1

Additive 0 0.50 1

Dominant 0 1 1

Codominant

0 1 0

0 0 1

EDGE 0 α 1

https://doi.org/10.1371/journal.pgen.1009534.t002
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containing only the main effects of the two SNPs (β1 and β2). It has been previously shown

that if the encoding of SNP1 and SNP2 does not sufficiently represent the marginal effects

of SNP1 and SNP2 in the full model, the full regression model will force some of the trait

variance to be explained by the interaction term (even if in truth there is no interaction

effect at all) [32]. Any overfitting that could be at play by employing EDGE parameter α is

accounted for in the main effects of the models. Our expectation of low inflation was vali-

dated in the conserved false positive rates demonstrated by EDGE in the simulation studies

further described below. Thus, the EDGE encoding reduces the false positive interaction

terms because it maximizes the information from the data to code marginal effects in the

optimal manner.

To ensure that EDGE assigns the expected heterozygous genotype value across different

types of underlying genetic models, we simulated main effect SNPs with the following genetic

models using the Biallelic Model Simulator (BAMS) (for a description of BAMS, see Methods

and S1 Text; further information and download available at https://www.hall-lab.org): reces-

sive (REC), sub-additive (SUB), additive (ADD), super-additive (SUP), and dominant (DOM)

(1,000 simulated datasets for each model type) across varying minor allele frequencies (MAFs)

(S1 Fig). Here, heterozygous genotypes are simulated to have 0% (REC), 25% (SUB), 50%

(ADD), 75% (SUP), and 100% (DOM) the risk of homozygous alternate genotypes (see

Table 1). Fig 1 displays the distribution of the alpha values for each SNP model type at simu-

lated 30% MAF. For every model, the density peaks correspond to the simulated genetic model

(REC�0, SUB�0.25, ADD�0.5, SUP�0.75, and DOM�1), demonstrating that EDGE effec-

tively assigns alpha values reflecting the simulated genetic model. Of note, a large portion

(approximately half) of simulated recessive SNPs were assigned an alpha value between -0.5

and -0.001 and similarly, for simulated dominant SNPs, approximately half were assigned an

alpha between 1.001 and 1.5. This is important to consider when natural SNPs are assigned

alpha values below 0 or above than 1: while this could indicate a SNP’s action is under-reces-

sive or over-dominant, if the value is close to 0 or 1, the SNP’s model may still be in the reces-

sive or dominant range, respectively. When considering density peaks across MAFs, we

observed variation in peak density across the allele frequencies (S1 Fig) with increased density

at the expected alpha values for higher MAFs and greater variability for lower MAF (15% MAF

or lower). One exception to this trend was for the simulated recessive acting SNPs, which

showed the highest density for SNPs simulated with 5% MAF. Additionally, we observed dif-

ferences in which simulated models showed the highest peak density at different MAFs. For

example, as seen in Fig 1, at 30% MAF, the highest peak density was observed for simulated

sub-additive SNPs. For MAF of 45%, EDGE assigned an alpha with the highest peak density

for SNPs simulated with an additive model, and as described previously, recessive SNPs

showed high peak density at 0 alpha with 5% MAF (S1 Fig). These results indicate that, while

SNPs were assigned alpha values by EDGE that were consistent with the simulated model

across all REC, SUB, ADD, SUP, and DOM models, EDGE performed most optimally at

assigning an alpha value for SNPs whose simulated heterozygous risk relative to homozygous

alternate is close in value to the MAF of the SNP.

The additive encoding demonstrates inflation of type I error

To assess type I error, two categories of main effect SNP-SNP models were simulated: One-

SNP Main Effect and Two-SNP Main Effect. For One-SNP Main Effect models, only one SNP

exhibited a main effect while the other did not have an effect on the phenotype. The main

effect SNPs were simulated with ADD, DOM, REC, SUB, and SUP genetic models. An addi-

tional genetic model was included, the heterozygous (HET) model, in which heterozygous

PLOS GENETICS EDGE identifies novel genetic interactions
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genotypes were simulated to have full risk relative to both homozygous genotypes, which had

0 risk. For Two-SNP Main Effect models, two SNPs with main effects were simulated with no

interaction effect. We simulated all pairwise combinations between REC, SUB, ADD, SUP,

DOM, and HET. Null samples with no main or interaction effects were also simulated. We

simulated 1,000 datasets for each SNP-SNP model to calculate a false positive rate (FPR) as the

percentage of the 1000 datasets with a likelihood ratio test (LRT) p-value < 0.05 per model

using the additive, dominant, recessive, codominant, and EDGE encodings. FPR for the simu-

lated main effect models represents the frequency at which the encoding identified a signifi-

cant interaction term when no simulated interaction existed. As shown in Fig 2 with MAF of

30% as an example, all of the encodings demonstrated a FPR near 5% for the null data. For the

main effect models, the majority of encodings showed conserved FPR. A deviation from this

Sub-Additive

Additive

Super-Additive

Dominant

Recessive

Fig 1. Distribution of the estimated heterozygous action (α). Single SNP simulations were performed with five distinct underlying models:

recessive (red), sub-additive (yellow), additive (green), super-additive (blue), and dominant (purple). All SNPs shown in this figure were

simulated with a 30% MAF. 1,000 datasets for each SNP model were generated and the distribution of the alpha parameter was plotted. Along

the x-axis is the EDGE assigned alpha value for simulated SNPs of each genetic model and along the y-axis is the density.

https://doi.org/10.1371/journal.pgen.1009534.g001
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was seen for the additive encoding, where inflation was observed, including the scenarios

under which: 1) both SNPs exhibit a main effect with a simulated dominant genetic model

(FPRffi16%); 2) one SNP exhibits a main effect with a simulated heterozygous model

(FPRffi11%), and 3) SNP1 exhibits a main effect with a simulated dominant model and SNP2

exhibits a main effect with a simulated heterozygous model (FPRffi9%). According to Bradley’s

liberal criteria [32], the estimated type I error should fall within the interval (0.025, 0.075).

This is the case for the majority of encoding schemes except for additive encoding, which con-

firms the observation by Mahachie et al [32].

To compare the average false positive rate for the encodings among type I error datasets

including the main effect and null datasets across 10%, 30%, and 50% MAF, we standardized

signal to noise ratios. Fig 3 depicts the type I error at standardized, increasing signal to noise

ratios using the different encodings. Each of the models from Fig 2 across the varying MAFs

were averaged (solid lines in Fig 3). We observed low average type I error for the codominant

Fig 2. Type I error in simulated main effect and null data. Power to detect two-SNP (above the top solid horizontal

line) and One-SNP (below top solid line) main effect simulations are displayed. Null model simulations are shown

below the bottom solid horizontal line. The dashed horizontal line separates models involving HET SNPs (below

dashed line) from non-HET SNPs (above the dashed lines) because the homozygous genotypes in HET SNPs were

simulated to have 0 risk relative to the heterozygous genotype, while the homozygous alternate genotypes for all other

SNPs were simulated to have full risk comparted to heterozygotes. Main Effect Only models and null data were

simulated (1,000 datasets each) and LRT p-values were calculated using additive (red circle), dominant (yellow square),

recessive (green diamond), codominant (blue triangle), and EDGE (purple inverted triangle) encodings to identify the

percentage of time each encoding identified a significant interaction when there was none (false positive rate). The red

vertical line marks a 5% false positive rate and the dashed black lines mark where the estimated type I error should fall

within according to Bradley’s liberal criteria [32]. All SNPs in this figure were simulated with a 30% minor allele

frequency.

https://doi.org/10.1371/journal.pgen.1009534.g002
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encoding and EDGE (following the 5% FPR level) as well as the recessive encoding (below the

5% level at high signal to noise ratios). However, at a higher signal to noise ratios, we again

observed inflation of type I error for the additive and dominant encodings. Further inspection

of each model’s maximum type I error (dashed lines in Fig 3) at high signal to noise ratios

revealed exceedingly high type I error for additive and dominant encodings.

Power to detect interaction varies widely across genetic encoding and SNP

model types

Once EDGE demonstrated accuracy at encoding individual SNPs based on the simulated genetic

model and low type I error, we evaluated EDGE’s power to detect SNP-SNP interaction models

compared to the traditional encoding methods. We simulated 29 SNP-SNP interactions with no

main effect. The first type of simulated SNP-SNP interaction models involved SNPs with com-

prehensive pairwise combinations of underlying genetic models: ADD, DOM, REC, SUB, SUP,

and HET. Additionally, we evaluated simulated interactions using genotype-based interaction

models that include penetrance functions (e.g., XOR, Hyperbolic) and scenarios in which only

one of the 9 interaction penetrance cells confers risk while the other 8 demonstrate no risk (e.g.,

Homozygous Referent-Homozygous Referent–HR-HR). Power calculations for all 29 SNP-SNP

interaction models using each of the encodings as the percentage of simulated datasets (out of

Fig 3. Average and maximum type I error across all main effect and null simulated datasets. Average false positive rates (solid lines) and the false positive

rate for the maximum inflated model (dashed lines) were calculated for standardized signal to noise ratios. Values are plotted at increasing signal to noise ratios

for each encoding: additive (red), dominant (yellow), recessive (green), codominant (blue), and EDGE (purple). The black line denotes a 5% false positive rate.

https://doi.org/10.1371/journal.pgen.1009534.g003
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1,000) with an LRT p-value< 0.05. As an example, Fig 4 shows each encoding’s power to detect

the 29 interacting models we simulated, where MAF for both SNPs was 30%. Results demon-

strated that additive, dominant, and recessive encodings outperformed the other encodings for

the interaction models for which they are designed: ADDxADD, DOMxDOM, and RECxREC,

respectively. EDGE showed over 80% power for every model in which at least one traditional

encoding had over 80% power. The power to detect different models varied widely. For models

in which one or two SNPs had an underlying REC model, no encoding identified signal with

80% or more power. Conversely, models including SNP(s) with DOM or SUP action demon-

strated consistently high power across encodings. The recessive encoding demonstrated consis-

tently low power and did not exceed 80% power for any model.

EDGE demonstrates robust power compared to additive, dominant,

recessive and codominant encodings

The power for an encoding to detect a given interaction model varies depending on the type of

underlying genetic model (Fig 4). To assess average power for each encoding across the interact-

ing models with consistency, signal to noise ratio was standardized across the different models.

We compared the average power of each encoding across all traditional interacting models from

Fig 4 and at increasing signal to noise ratios (10%, 30%, and 50% MAF). At 30% MAF (Fig 5),

EDGE demonstrated the highest average power across traditional models with increasing signal

to noise ratio; the codominant encoding showed comparable power to EDGE until the signal to

noise reached a threshold at which increasing numbers of models diverged, reducing power; addi-

tive and dominant encodings demonstrated diminished power compared to EDGE; and recessive

encoding showed low power to detect models even at high signal to noise ratio levels. Increasing

the MAF to 50% resulted in greater average power for EDGE, codominant, and recessive, and

reduced average power for dominant and additive when compared to 30% MAF. At 10% MAF,

high average power for EDGE, additive, and dominant encodings was observed, while codomi-

nant and recessive showed exceedingly low power due to model non-convergence. Similar pat-

terns were observed for the genotype-based models (Fig 6). However, the codominant encoding

only demonstrated reduced average power for the datasets simulated with 10% MAF, and addi-

tive, dominant, and EDGE showed diminished power at 50% MAF as compared to Fig 5.

Allele frequency and sample size influence power to detect models across

all encodings

To test the impact of allele frequency, sample size, baseline risk, and case-control ratio on power, we

performed a parameter test whereby all 29 interacting models were simulated with combinations of

variation in each of the four parameters. We used ANOVA to test for significant effects of each

parameter on the encodings’ power to detect these simulated models. As shown in Fig 7, minor

allele frequency and sample size demonstrated a significant effect on power for a large number of

models for each encoding, while case-control ratio and baseline risk affected very few models. The

differences observed across varying MAFs and sample sizes revealed similar trends: with increasing

MAF and sample size, the power for each encoding to detect the interaction signal increased.

EDGE assigns heterozygous values that are consistent with traditional

encoding methods across five phenotypes

We applied EDGE to biomedical data from the Electronic Medical Records and Genomics

(eMERGE) Network using age-related macular degeneration (AMD), age-related cataract,

glaucoma, type 2 diabetes (T2D), and resistant hypertension.
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Fig 4. Results of power analysis across 29 simulated SNP-SNP interaction models. Power was calculated as the percentage of simulated models (out of

1,000 datasets for each model) for which the encoding detected an interaction signal at LRT p-value< 0.05: additive (red circle), dominant (yellow

square), recessive (green diamond), codominant (blue triangle), and EDGE (purple inverted triangle). Twenty-nine SNP-SNP interaction models were
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To see how EDGE-derived alpha values corresponded to traditional encoding main effect

results, four GWAS were performed for each of the phenotypes (a multi-encoding GWAS),

one for each traditional encoding: additive, dominant, recessive, and codominant. While

genome-wide significant results were only found for T2D and AMD, all five phenotypes dem-

onstrated similar patterns when the results of their five GWAS were plotted along the x-axis by

each SNP’s EDGE-derived heterozygous alpha value (Figs 8 and S2): For SNPs assigned an

alpha value near 0, which indicates an underlying recessive genetic model, the recessive encod-

ing tended to demonstrate the lowest p-values. Additive encoding predominated for SNPs

with an alpha near 0.5 (indicating SNPs with an underlying additive model). Dominant encod-

ing produced the lowest p-values for SNPs with an alpha near 1 (indicating SNPs with a domi-

nant genetic model).

For T2D, 10 SNPs were identified at the genome-wide significance level (5×10−8) for at

least one traditional encoding (Fig 8A and Sheets A-D in S1 Table). Six SNPs were significant

for three out of the four traditional encodings, including the top three, and no SNP was

genome-wide significant for all four encodings. rs4132670 (alpha: 0.68; MAF: 0.40; intron,

transcription factor 7 like 2 (TCF7L2)) was the T2D top result with the additive encoding

simulated. Above the solid horizontal line are interaction models with comprehensive two-SNP combinations between SNPs with REC, SUB, ADD, SUP,

and DOM action (between the solid and dotted line are models including SNPs with HET action). Below the solid horizontal line are genotype-based

interaction models. The blue and red vertical lines marks 5% and 80% power, respectively.

https://doi.org/10.1371/journal.pgen.1009534.g004

Fig 5. Average power for standardized signal to noise ratio across all pairwise interaction models at 10%, 30% and 50% MAF. Average power of each encoding

was calculated for standardized signal to noise ratios and plotted by increasing signal to noise ratios for the pairwise model SNP-SNP interaction models using each

encoding: additive (red), dominant (yellow), recessive (green), codominant (blue), and EDGE (purple).

https://doi.org/10.1371/journal.pgen.1009534.g005
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(Bonferroni p: 1.82×10−13) followed by codominant encoding (Bonferroni p: 1.96x10-13) and

dominant encoding (Bonferroni p: 1.26x10-13). It was not significant using the recessive

encoding. rs12255372 (alpha: 0.53; MAF: 0.28; intron, transcription factor 7 like 2 (TCF7L2))
demonstrated the same order of significance for the encodings as rs4132670 (1.45×10−10,

1.50×10−10, and 2.29×10−8 for additive, codominant, and dominant Bonferroni adjusted p-val-

ues, respectively), and was also not genome-wide significant using the recessive encoding. The

third top SNP result, rs2308953 (alpha: 0.13; MAF: 0.084; intron, RAD1 checkpoint DNA exo-
nuclease (RAD1)), demonstrated the lowest p-value with the codominant encoding (Bonfer-

roni p: 1.06x10-5) followed by the recessive encoding (Bonferroni p: 3.39x10-4) and additive

(Bonferroni p: 9.93x10-4) and was not genome-wide significant using the dominant encoding.

Eighteen SNPs were genome-wide significant for association with AMD using at least one

of the traditional encoding methods (Fig 9 and Sheets A-D in S2 Table). Six SNPs were identi-

fied as genome-wide significant for all four traditional methods. The top result was for

rs10801558 (alpha: 0.54; MAF: 0.41; intron, complement factor H (CFH)) using the codominant

encoding (Bonferroni p: 8.21x10-32), followed by additive encoding (Bonferroni p: 2.07x10-31),

dominant encoding (Bonferroni p: 5.41x10-26), and recessive encoding (Bonferroni p: 2.73x10-

13). Three other SNPs in the CFH gene demonstrated genome-wide significance across all tra-

ditional encodings: rs399469 (alpha: 0.51; MAF: 0.46), rs10733086 (alpha: 0.50; MAF: 0.43;),

and rs380390 (alpha: 0.50; MAF: 0.43;). Another top SNP was genome-wide significant for all

four encodings, rs3750846 (alpha: 0.40; MAF: 0.23; age-related maculopathy susceptibility 2

Fig 6. Average power for standardized signal to noise ratio across all genotype-based interaction models at 10%, 30% and 50% MAF. Average power was

calculated for standardized increasing signal to noise ratios and plotted at increasing signal to noise ratios for the genotype-based SNP-SNP interaction models using

each encoding: additive (red), dominant (yellow), recessive (green), codominant (blue), and EDGE (purple).

https://doi.org/10.1371/journal.pgen.1009534.g006
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(ARMS2)), with Bonferroni p: 5.76x10-20 for additive, Bonferroni p: 2.47x10-19 for codomi-

nant, Bonferroni p: 3.61x10-14 for dominant, and Bonferroni p: 1.44x10-9 for recessive.

rs12042442 (alpha: 0.020, MAF: 0.15; intron of assembly factor for spindle microtubules
(ASPM)) was genome-wide significant using the codominant encoding (Bonferroni p: 0.0035).

This SNP was not genome-wide significant using the additive, recessive, and dominant encod-

ings. No results from the multi-encoding GWAS for age related cataract (Sheets A-D in S3

Table), resistant hypertension (Sheets A-D in S4 Table), and glaucoma (Sheets A-D in S5

Table) met a genome-wide significance threshold.

To visualize the concordance of results between each pair of encodings for the multi-encod-

ing GWAS for T2D and AMD, we generated pairwise scatterplots (Fig 9). Similar trends were

seen for both phenotypes: we observed high concordance for -log10 p-values between codomi-

nant and additive, codominant and dominant, and additive and dominant (though for AMD

additive and codominant encodings had higher -log10 p-values for some of the top SNPs com-

pared to dominant). Recessive consistently showed lowered concordance with results from the

other three encodings.

Genetic interaction analysis of eMERGE results vary by phenotype and

genetic encoding

After performing the multi-encoding GWAS for the five phenotypes, the results were used as a

main effect filter for SNP-SNP interactions analysis. SNP-SNP interactions were assessed

Fig 7. Significance of each parameter on power. ANOVA tests were performed to determine the impact of parameters MAF, sample size, baseline (penetrance), and

case-control ratio on power for each interaction model for the additive (red), dominant (yellow), recessive (green), codominant (blue), and EDGE (purple) encodings.

https://doi.org/10.1371/journal.pgen.1009534.g007
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using the five encodings: additive, dominant, recessive, codominant, and EDGE by computing

an LRT p-value (see Methods).

One SNP-SNP interaction model demonstrated a significant LRT p-value for T2D when

adjusting for the number of tests: rs117537110 (alpha: 0.35; MAF: 0.45; intron, protein phos-
phatase 1 regulatory subunit 18 (PPP1R18))–rs4149477 (alpha: -0.055; MAF: 0.48; intron, tyro-
sylprotein sulfotransferase 2 (TPST2)) using the recessive encoding (Bonferroni adjusted LRT

p: 0.00051; 5,671 SNP-SNP models tested; r2: 0.00015) (Fig 10 and Sheets A-E in S6 Table).

Although it did not meet Bonferroni significance, EDGE identified this interaction with the

next lowest p-value compared to the other methods (unadjusted LRT p: 8.91× 10−5). To deter-

mine if the SNP-SNP interaction models replicated in a separate dataset, we used data from

the UK Biobank (UKB). Interaction replication analysis of these SNP pairs in UKB yielded no

significant results for any encoding. We further evaluated potential replication of SNPs within

a 50kb region of the original SNPs, and no significant epistasis models were identified for any

encoding in this region-based replication analysis after multiple test correction.

For age-related cataract, one SNP-SNP interaction met a Bonferroni corrected significance

threshold, rs7787286 (alpha: -0.037; MAF: 0.041; intergenic region of chromosome 7)–

rs4695885 (alpha: 0.62; MAF: 0.34; intergenic region of chromosome 4), and this was found

using EDGE (Bonferroni LRT p: 0.018; 9,591 SNP-SNP models tested; r2: 0.00056) (Fig 11 and

Sheets A-E in S7 Table). Interaction between these two SNPs was not replicated in UKB,

where the MAFs were 0.030 and 0.34 for rs7787286 and rs4695885, respectively. The recessive

encoding identified signal in a region-based interaction replication in UKB between SNPs

  A    B

Fig 8. Manhattan plot of results from a multi-encoding GWAS for T2D (A) and AMD (B). GWAS were performed using the additive (red circle), dominant (yellow

square), recessive (green diamond) and codominant (blue triangle) encodings for A) 358,569 SNPs and 20,341samples (7,101 cases and 13,240 controls, 53% female) for

type 2 diabetes and B) 311,161 SNPs and 13,153 samples (961 cases and 4,129, 56% female) for AMD. SNPs with EDGE-derived alpha values between 0 and 1 were

sorted by the alpha value along the x-axis. Along the y-axis is the–log10 of the uncorrected p-value. The black line denotes the genome-wide significance threshold

(5×10−8).

https://doi.org/10.1371/journal.pgen.1009534.g008
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rs60374751 (MAF: 0.030 and alpha: -0.65; 17,434 bp from rs7787286) and rs6843594 (MAF:

0.34 and alpha: -0.54; 24,084 bp from rs4695885) (Bonferroni LRT p: 0.026; r2: 0.00000033)

(Sheets A-E in S8 Table).

One SNP-SNP model met a corrected significance threshold for resistant hypertension

using the dominant encoding: rs3801888 (alpha: 0.028; MAF: 0.28) in sorting nexin 10
(SNX10) and rs2858808 (alpha: -1.39; MAF: 0.28) (Bonferroni adjusted LRT p: 0.047; 10,296

SNP-SNP models tested; r2: 0.00037) (Fig 12 and Sheets A-E in S9 Table). The resistant hyper-

tension phenotype was not available in UKB for replication. We tested an interaction between

these SNPs for hypertension in UKB due to its relation to the resistant hypertension phenotype

and availability in the dataset. A significant interaction was found between rs3801888 (MAF:

0.27 and alpha: 1.097) and rs2858808 (MAF: 0.30 and alpha: 0.23) in UKB using the recessive

encoding (LRT p: 0.025; r2: 0.0000021) (Sheets A-E in S10 Table).

In the AMD interaction analysis, two SNP-SNP interaction models were significant when

adjusting for the number of tests run (4,278 SNP-SNP models tested) (Fig 13 and Sheets A-E

in S11 Table). The top SNP-SNP model for this phenotype was rs2336502 (alpha: 0.39; MAF:

0.33; pseudogene LOC100996886)–rs6695321 (alpha: 0.52; MAF: 0.36; intron, CFH), which

was identified by the additive encoding (Bonferroni LRT p: 4.3×10−12), EDGE encoding (Bon-

ferroni LRT p: 6.9×10−12), codominant encoding (Bonferroni LRT p: 6.8×10−10), dominant

encoding (Bonferroni LRT p: 3.2×10−8), and recessive encoding (Bonferroni LRT p: 0.026) (r2:

0.0030). Another significant interaction model also included rs2336502, which was identified

as interacting with rs5993 (alpha: 0.28; MAF: 0.26; intron, coagulation factor XIII B chain
(F13B)) using the additive encoding (Bonferroni LRT p: 0.021) and EDGE (Bonferroni LRT p:

0.047) (r2: 0.00010). In the UKB replication, the interaction between rs2336502 (alpha: 0.55;

MAF: 0.31) and rs6695321 (alpha: 0.52; MAF: 0.38) was significant (Sheets A-E in S12 Table)

Fig 9. Pairwise comparisons of the -log10 p-values for the multi-encoding GWAS of (A) T2D and (B) AMD. For each SNP, we plotted the -log10 p-values for

pairwise combination of encodings in six scatterplots for (A) T2D and (B) AMD compared to the identity line (1:1 line) such that pairs of encodings having p-values

that fall closer to the line are more concordant.

https://doi.org/10.1371/journal.pgen.1009534.g009
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for the additive (LRT p: 1.7×10−4), codominant (LRT p: 0.0021), dominant (LRT p: 2.4×10−4),

and EDGE (LRT p: 1.2×10−4) encodings (r2: 0.000047). Replication interaction for SNPs

rs2336502 and rs5993 (alpha: 0.60; MAF: 0.16) was significant for the dominant encoding

(LRT p: 0.016; r2: 0.040). There were no interaction results that met a Bonferroni corrected

LRT p-value threshold for the interaction analysis of glaucoma.

Discussion

For over a decade, the additive model has been the most common method for encoding SNPs

in regression-based epistasis. In this paper, we aimed to introduce a novel encoding that is flex-

ible to detect SNPs with nonadditive allelic architecture, evaluate the different genetic encod-

ings in the context of epistasis, find evidence that some SNPs may demonstrate a nonadditive

model, and identify novel SNP-SNP interactions associated with complex disease.

The elastic data-driven genetic encoding (EDGE) is a novel, robust alternative to the tradi-

tional methods for encoding genotypes. EDGE assigns a heterozygous genotype with a unique

value based on each SNP’s heterozygous risk relative to its homozygous alternate risk. EDGE

accurately assigned heterozygous values to simulated SNPs based on their unique underlying

genetic models, and maintained low type I error. However, the additive and dominant encod-

ings demonstrated inflation. Therefore, a portion of results published using the additive model

for epistasis could be false positives. Specifically, our results indicate that the additive encoding

can falsely identify SNPs that exhibit main effect dominant action as having an interaction that

predicts the outcome above and beyond the main effects when there is no interaction effect.

We applied EDGE to simulated epistasis models and compared its performance to the tra-

ditional methods. As expected, additive, dominant, and recessive encodings demonstrated

power to detect the types of models for which they were designed. Despite their success in

these scenarios, the methods varied widely in their power to detect other model types. Con-

versely, EDGE demonstrated robust power across numerous types of models and was among

the highest for average power with every minor allele frequency tested. Additionally, when

compared to the codominant encoding, EDGE retained sufficient power for situations in

which the codominant encoding lost power (30% and 10% MAF and high signal to noise

ratios). These findings suggest that EDGE is a flexible method to detect epistasis signal for

SNPs when the genetic model is unknown.

The multi-encoding GWAS results of data from the eMERGE Network for T2D, AMD,

age-related cataract, resistant hypertension, and glaucoma revealed similar patterns across the

phenotypes when sorted by the EDGE-derived heterozygous alpha value: the encodings dem-

onstrating the top p-values for SNPs tended to corroborate the alpha value that EDGE

assigned. Top results changed depending on the encoding employed for this main effect analy-

sis. The top three SNPs in the results of the multi-encoding T2D GWAS were not identified by

all traditional encoding methods. Two of these SNPs (rs4132670 and rs12255372) are intronic

variants in TCF7L2 and have both been previously identified for association with type 2 diabe-

tes [33] as well as body mass index [34] and retinopathy [33]. Both of these SNPs had alpha

Fig 10. Interaction plot of the top results from the main effect filtered SNP-SNP interaction analysis for T2D. The top 50 SNPs from the

multi-encoding T2D GWAS for each traditional encoding were considered for a pairwise SNP-SNP interaction analysis using additive (red),

dominant (green), recessive (blue), codominant (yellow) and EDGE (purple) encoding methods. Track one displays the EDGE-derived

heterozygous alpha value of SNP 1, track 2 displays the alpha value for SNP 2, and track 3 displays the–log10 of the unadjusted LRT p-value of

each SNP-SNP interaction model. Vertical blue lines denote a 0 alpha value (indicative of recessive genetic model), vertical red lines denote a 0.5

alpha value (indicative of additive genetic model), vertical green lines denote an alpha value of 1 (indicative of dominant genetic model). Note

that some of the SNPs demonstrated alpha values outside the 0–1 range, indicative of under-recessive (α< 0) and over-dominant (α> 1)

genetic models. The vertical black line denotes the Bonferroni significance threshold for this analysis (5,671 SNP-SNP models tested).

https://doi.org/10.1371/journal.pgen.1009534.g010
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Fig 11. Interaction plot of the top results from the main effect filtered SNP-SNP interaction analysis for age-related cataract in the eMERGE Network. The top 50

SNPs from the multi-encoding cataract GWAS in the eMERGE Network were considered for a pairwise SNP-SNP interaction analysis using additive (red), dominant

(green), recessive (blue), codominant (yellow) and EDGE (purple) encoding methods. Track one displays the EDGE-derived heterozygous alpha value of SNP 1, track 2
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values between 0.5 and 0.75 (0.68 for rs4132670 and 0.53 for rs12255372), indicating an under-

lying model between additive and super-additive for both, and they were genome-wide signifi-

cant using additive, codominant, and dominant encodings but not recessive. Another top SNP

for T2D, rs2308953, in RAD1, was assigned an alpha of 0.13, indicating an underlying recessive

model. This SNP demonstrated genome-wide significance for the codominant, recessive, and

additive encodings, but was not significant using the dominant encoding. To the authors’

knowledge, this is the first association between T2D and this SNP as well as this gene.

In contrast to the results from the T2D GWAS, the multi-encoding GWAS for AMD had

more consistency in results across the encodings. Of the 18 SNPs with a genome-wide signifi-

cant hit from at least one encoding, 6 were identified by all of the traditional methods. Four of

these SNPs are in the CFH gene, a gene with a well-documented link to AMD [5,35–38] and

each of these SNPs were assigned alpha values between 0.50 and 0.54, indicating an additive

genetic model. One SNP, rs12042442, in the intron of ASPM, was assigned an alpha value of

0.020, reflective of a sub-additive genetic model, and was only significant using the codomi-

nant encoding. This SNP has no known previous associations, while other SNPs in ASPM have

been reported to be associated with AMD [20] and end-stage coagulation [39].

Genetic interaction analyses in eMERGE yielded significant results for four of the five phe-

notypes. In T2D, one SNP-SNP interaction between rs117537110 (alpha: -0.055) and

rs4149477 (alpha: 0.35) met the Bonferroni-corrected significance criterion using the recessive

encoding, while no other encodings identified a statistically significant result. Considering the

low power that the recessive encoding demonstrated in our simulation results, it is notable

that recessive was the only encoding to identify a significant interaction for this phenotype.

Yet, the EDGE-derived alpha with which each SNP was assigned indicate recessive and sub-

additive underlying genetic models, which may explain why the recessive encoding was able to

identify an interaction between these two SNPs, and our simulation power simulations dem-

onstrated that each traditional encoding outperform other encodings when the model involved

one or more SNPs they were designed to detect. These SNPs and the genes in which they

reside, TPST2 and PPP1R18, have no previously demonstrated associations with T2D, perhaps

because the recessive encoding is not the typical method of choice for genetic associations and

interaction analysis. These SNPs did not replicate in data from the UKB for any encoding in

both the exact SNP-SNP interaction or a region-based interaction replication analyses.

One SNP-SNP interaction model, rs3801888 (alpha: 0.028; SNX10) and rs2858808 (alpha:

-1.39; STARD13), was identified by the dominant encoding for resistant hypertension. The

SNPs were assigned alpha values indicative of recessive and under-recessive genetic models.

This result offers an opportunity for further investigation as this type of biological interaction

model was not assessed in the simulation experiments. Future work will be needed to ensure

that no inflation of interaction p-value is observed using the dominant encoding for two main

effect SNPs with these underlying models. While the resistant hypertension phenotype was not

available in UKB, hypertension was, and the recessive encoding identified an interaction

between these SNPs associated with hypertension. In UKB, rs3801888 was assigned an alpha of

1.097, indicative of a dominant genetic model for its association with hypertension, and

rs2858808 was assigned an alpha of 0.23, indicating a sub-additive encoding. Though we do

not consider this to be a replication because these are distinct phenotypes, the results indicate

displays the alpha value for SNP 2, and track 3 displays the–log10 of the unadjusted LRT p-value of each SNP-SNP interaction model. Vertical blue lines denote a 0 alpha

value (indicative of recessive genetic model), vertical red lines denote a 0.5 alpha value (indicative of additive genetic model), vertical green lines denote an alpha value of 1

(indicative of dominant genetic model). Note that some of the SNPs demonstrated alpha values outside the 0–1 range, indicative of under-recessive (α< 0) and over-

dominant (α> 1) genetic models. The vertical black line denotes the Bonferroni significance threshold for this analysis (9,591 SNP-SNP models tested).

https://doi.org/10.1371/journal.pgen.1009534.g011
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Fig 12. Interaction plot of the top results from the main effect filtered SNP-SNP interaction analysis for resistant hypertension. The top 50 SNPs

from the multi-encoding resistant hypertension GWAS were considered for a pairwise SNP-SNP interaction analysis using additive (red), dominant

(green), recessive (blue), codominant (yellow) and EDGE (purple) encoding methods. Track one displays the EDGE-derived heterozygous alpha value

of SNP 1, track 2 displays the alpha value for SNP 2, and track 3 displays the–log10 of the unadjusted LRT p-value of each SNP-SNP interaction model.

Vertical blue lines denote a 0 alpha value (indicative of recessive genetic model), vertical red lines denote a 0.5 alpha value (indicative of additive genetic

model), vertical green lines denote an alpha value of 1 (indicative of dominant genetic model). Note that some of the SNPs demonstrated alpha values

outside the 0–1 range, indicative of under-recessive (α< 0) and over-dominant (α> 1) genetic models. The vertical black line denotes the Bonferroni

significance threshold for this analysis (10,296 SNP-SNP models tested).

https://doi.org/10.1371/journal.pgen.1009534.g012
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Fig 13. Interaction plot of the top results from the main effect filtered SNP-SNP interaction analysis for AMD. The top 50 SNPs from the multi-encoding AMD

GWAS were considered for a pairwise SNP-SNP interaction analysis using additive (red), dominant (green), recessive (blue), codominant (yellow) and EDGE (purple)
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a potential similarity in the genetic mechanisms involved in these two related phenotypes, and

the difference of alpha assignments for the SNPs may indicate a complex interrelationship

between the two phenotypes that warrants further study.

Using EDGE, one SNP-SNP interaction model involving two intergenic SNPs, rs7787286

(alpha: -0.037) and rs4695885 (alpha: 0.62), was identified as significant for association with

age-related cataract. Each SNP demonstrated unique alpha values: one indicative of a reces-

sive/under-recessive genetic model, while the other SNP’s indicated an additive genetic model.

The ability of EDGE to identify these interacting SNPs demonstrates the flexibility of the

method to identify interactions between SNPs with different underlying genetic models.

rs4695885 has demonstrated an association with age-related cataract from a previous GWAS

[40], but the result did not reach genome-wide significance in the previous study. rs7787286

has no known previous associations. Though an interaction between these exact SNPs was not

found for any encoding in UKB, the recessive encoding identified signal in the region-based

interaction in UKB between SNPs rs60374751 (alpha: -0.65; 17,434 bp from rs7787286) and

rs6843594 (alpha: -0.54; 24,084 bp from rs4695885). Notably, these SNPs’ alpha values are dif-

ferent from the original SNPs. As previously described, our simulation results show that the

encoding that has the best power is the one designed for the genetic model demonstrated by

the SNPs in the interaction model, and both of these SNPs appear to have a recessive/under-

recessive genetic model, according to EDGE. While EDGE first identified this interaction in

eMERGE, the recessive encoding likely had higher power to detect an interaction between

these SNPs in UKB. This is the first known association for both SNPs identified in UKB.

Two SNP-SNP models were significant for AMD and both included rs2336502 in a pseudo-

gene region LOC100996886 with an alpha of 0.39 (indicating a genetic model between sub-

additive and additive) with no known previous associations. This SNP was found to interact

with rs6695321 in the intron of CFH with an alpha of 0.52 (indicating an additive genetic

model) and was identified by all five encoding methods. As previously discussed, CFH has

well-established associations with AMD, and rs6695321 has previous association with AMD as

well [41]. The other SNP found to interact with rs2336502 (using EDGE and the additive

encodings) was rs5993 (alpha: 0.28, indicating sub-additive genetic model; F13B), and while

F13B has previous association with AMD [20] this SNP has no known previous associations.

In the UKB replication, the interaction between rs2336502 (alpha: 0.55) and rs6695321 (alpha:

0.52) was significant for all encodings except recessive. Replication interaction for rs2336502

and rs5993 (alpha: 0.60) was significant for the dominant encoding. With the exception of

rs5993, the alpha values were fairly consistent for the SNPs in the two datasets.

The results of the simulation study and epistasis analysis in data from the eMERGE Net-

work and UK Biobank indicate that there are examples of SNPs with a nonadditive genetic

model, which demonstrates the need for encoding methods beyond additive, including EDGE.

Some limitations in EDGE and the current study are worth noting, however. An important

consideration of EDGE is the influence of minor allele frequency on the assignment of the esti-

mated heterozygous value. Despite this effect, EDGE did maintain high average power across

simulated interaction models and conserved type I error. As such, we thought it possible that

EDGE may be able to detect interaction between SNPs with lower MAF than 5% and did not

apply a MAF QC filter. Given the significant interaction for cataract involving rs7787286

encoding methods. Track one displays the EDGE-derived heterozygous alpha value of SNP 1, track 2 displays the alpha value for SNP 2, and track 3 displays the–log10 of

the unadjusted LRT p-value of each SNP-SNP interaction model. Vertical blue lines denote a 0 alpha value (indicative of recessive genetic model), vertical red lines denote

a 0.5 alpha value (indicative of additive genetic model), vertical green lines denote an alpha value of 1 (indicative of dominant genetic model). Note that some of the SNPs

demonstrated alpha values outside the 0–1 range, indicative of under-recessive (α< 0) and over-dominant (α> 1) genetic models. The vertical black line denotes the

Bonferroni significance threshold for this analysis (4,278 SNP-SNP models tested).

https://doi.org/10.1371/journal.pgen.1009534.g013
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(MAF: 0.041), we see EDGE as a potential method for exploring low frequency variants for

epistasis. Future work will focus on evaluating EDGE with low frequency variant simulations

and applying it to low frequency variants in natural data. An additional limitation is that our

study design focused on 2 SNP interactions. This was an important first step, but the complex-

ity of biology may involve epistasis between many more loci, which needs to be considered.

Finally, it is important to note that, as with other genetic association studies, SNPs found to be

significant in this study may be tagging functional variation and not directly related to the phe-

notypes we evaluated.

Future research will involve investigating EDGE’s power to detect simulated interactions in

the presence of main effect(s). This scenario is likely reflective of biological cases in which pure

epistasis is not at play. Questions also remain regarding the consistency of EDGE-derived het-

erozygous assignment across different datasets and populations. We had the opportunity to

explore this for the SNPs in the epistasis models we selected for replication, which showed that

most of these SNPs had similar alpha assignments in the different datasets, but this will be

explored for genome-wide SNPs in future work. Applications of EDGE to gene-environment

interactions are in development, including key areas that need to be explored in the context of

the exposome, including: 1) how the alpha value may vary across different environmental

exposure contexts and 2) the impact of exposure variable type (i.e., categorical versus continu-

ous) on the ability to detect EDGE encoded SNP x environment interactions. Finally, future

work will involve extending EDGE to machine learning interaction methodologies, which will

involve rigorous assessment and comparison to methods including multifactor dimensionality

reduction (MDR) [42], neural networks [43,44], random forests [45], learning classifier sys-

tems [46], and Bayesian Networks [47].

We demonstrated the utility of our novel encoding method at flexibly assigning a genetic

model to individual loci, identifying interactions between SNPs with diverse genetic models,

and uncovering examples of nonadditive allelic architecture associated with complex disease.

With the development of EDGE, we offer a method that determines an individualized SNP

encoding. Applying EDGE to SNP data for epistasis research will allow discovery of SNP-SNP

models that have been undetected because their genetic model is nonadditive.

Methods

Simulated datasets

To assess the ability of EDGE to accurately assign heterozygous genotype values and identify

SNP-SNP interactions across different genetic models with high power and low type I error,

we developed the Biallelic Model Simulator (available at https://www.hall-lab.org/). This script

generates two independent, biallelic SNPs in Hardy-Weinberg equilibrium according to given

minor allele frequencies (for a further description of the simulation method, see S1 Text).

To evaluate multiple scenarios for epistasis to occur between a pair of SNPs [48], we simu-

lated interactions with no main effect between SNP1 and SNP2 across pairwise combinations

of underlying genetic models, including all two-way combinations between the following

models: additive (ADD), dominant (DOM), recessive (REC), sub-additive (SUB), super-addi-

tive (SUP), and heterozygous (HET), referred to as “pairwise SNP-SNP” interaction models.

Here, heterozygous genotypes are simulated to have half (ADD), the same (DOM), zero

(REC), 25% (SUB), and 75% (SUP) the risk of homozygous alternate genotypes. Heterozygous

genotypes for HET SNPs were simulated to have full risk relative to both homozygous geno-

types. Additionally, we evaluated simulated interactions using genotype-base interaction mod-

els that include penetrance functions (e.g., XOR, Hyperbolic) and scenarios in which only one

of the 9 interaction penetrance cells confers risk while the other 8 demonstrate no risk (e.g.,
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Homozygous Referent-Homozygous Referent–HR-HR) (Table 3 lists all genotype-based mod-

els). To assess the impact of the aforementioned parameters, we performed a parameter test by

simulating all models with every combination of the following: MAF: 0.05, 0.1, 0.3, 0.5; sample

size: 2,000, 10,000, and 20,000; case-control ratio: 1:1 (balanced), 1:3, and 3:1 (unbalanced),

and baseline risk.

To test for type I error, 1,000 null signal datasets were simulated for each combination of

the parameters described above. In addition, to assess inflation driven by the encoding when

models demonstrate main effects without interaction signal, we simulated datasets under two

scenarios. The first involved simulating two SNPs, both exhibiting a main effect but having no

interaction effect (“Two-SNP Main Effect”). The second involved simulating two SNPs in

which only one SNP exhibited a main effect and with no interaction effect (“One-SNP Main

Effect”). For the Two-SNP Main Effect models, underlying biological model combinations

between REC, SUB, ADD, SUP, DOM, and HET were simulated. For the One-SNP Main

Effect models, we simulated datasets allowing for only one SNP to exhibit the above biological

models.

eMERGE datasets

Genome-wide genotyping was performed on approximately 55,000 samples (397 of Asian

ancestry, 11,109 of African ancestry, 40,243 of European ancestry, 108 of Native American

ancestry, and 3,167 of unknown ancestry) across the eMERGE II study sites at the Broad Insti-

tute and at the Center for Inherited Disease Research (CIDR) using the Illumina 660W-Quad

or 1M-Duo BeadChips. In eMERGE, genetic data is imputed to 1000 genomes reference panel

(March 2012 release). Imputation was performed on datasets separated by site and platform

using IMPUTE2 on the phased genotyped data (SHAPEIT2 was used for phasing). The follow-

ing sites were included for analysis: Geisinger (AMD, Glaucoma, RH, T2D), Group Health

(AMD, Cataract, Glaucoma, RH, T2D), Marshfield (AMD, Cataract, Glaucoma, RH, T2D),

Mayo (AMD, Cataract, Glaucoma, RH, T2D), Mount Sinai (RH, T2D), Northwestern (AMD,

Glaucoma, RH, T2D), Vanderbilt (AMD, Cataract, Glaucoma, RH, T2D). Data were cleaned

using the eMERGE QC pipeline developed by the eMERGE Genomics Working Group [28].

Table 3. Genotype-based simulated models.

HR-HR HR-HET HR-HA HET-HET HET-HA HA-HA XOR Hyp RHyp

AABB 1 0 0 0 0 0 1 0 1

AABb 0 1 0 0 0 0 0 0.5 0.5

AAbb 0 0 1 0 0 0 1 1 0

AaBB 0 0 0 0 0 0 0 0.5 0.5

AaBb 0 0 0 1 0 0 1 0.5 0.5

Aabb 0 0 0 0 1 0 0 0.5 0.5

aaBB 0 0 0 0 0 0 1 1 0

aaBb 0 0 0 0 0 0 0 0.5 0.5

aabb 0 0 0 0 0 1 1 0 1

HR: Homozygous Referent

HET: Heterozygous

HA: Homozygous Alternate

XOR: XOR Model

Hyp: Hyperbolic Model

RHyp: Hyperbolic Model

https://doi.org/10.1371/journal.pgen.1009534.t003
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This process includes evaluation of sample and marker call rate, sex mismatch, duplicate and

HapMap concordance, batch effects, Hardy-Weinberg equilibrium, sample relatedness, and

population stratification. For all phenotypes, QC filters with 99% marker and sample call rates

were applied. SNPs were LD pruned using an r-square threshold of 0.7.

For the T2D phenotype, there were 20,341 total samples (7,101 cases and 13,240 controls,

53% female), and following QC and LD pruning, 358,569 SNPs were available for analysis. The

age-related cataract analysis included 6,815 total samples (5,104 cases and 1,711 controls, 56%

females) and 333,898 post-QC SNPs. For glaucoma, 5,090 total samples (961 cases and 4,129

controls, 56% female) and 348,329 post-QC SNPs were considered. AMD included 13,153

total samples (2,167 cases and 10,986 controls, 54% female) and 311,161 post-QC SNPs.

Finally, for resistant hypertension, 3,706 total samples (2,830 cases and 876 controls, 58%

female) and 368,528 post-QC SNPs were included for analysis.

Replication datasets

Candidate replication SNP-SNP interaction analyses were performed on data from the UK

Biobank (UKB) [30]. The UK Biobank contains genetic and phenotypic data on approximately

500,000 individuals. For genotypic quality, we removed 35,785 poor quality samples deter-

mined to be outliers for heterozygosity and/or missing rate as well as individuals found to be

related based on a Pi-hat of 0.25. Originally genotyped to 96 million variants, we excluded vari-

ants that had an imputation info score less than 0.3 and pruned the data at an r-square thresh-

old of 0.7. Additionally, we retained only individuals of European ancestry as inferred by UKB

due to the skew in sample size of this ancestry group compared to others in UKB.

The PheWAS R package [49] was used to determine ICD-9 and ICD-10 based phecode phe-

notypes. The following phecodes were used in analysis: 362.2 degeneration of macula and pos-

terior pole of retina (AMD), 366 cataract, and 401.1 essential hypertension, and 250.2 type 2

diabetes. Note that data was not available for resistant hypertension; however, hypertension

was considered in UKB to explore potential similarities of epistatic signal across the two

related phenotypes. A subject was considered a case for the phecode if they had one instance of

an ICD code mapping to that phecode and a control if they had 0 instances of an ICD code

mapping to that phecode and did not meet the exclusion criteria as defined in the PheWAS R

package. The resulting datasets included 1,992 with AMD (286,169 controls), 16,574 with age-

related cataract (264,905 controls), 16,621 with T2D (276,718 controls), and 70,089 with hyper-

tension (219,326 controls) in UKB. If the exact SNP-SNP interaction did not replicate in UKB

(as was the case for T2D and age-related cataract), we performed a region-based SNP-SNP

interaction analysis, whereby interactions were considered between SNPs within a 50kb win-

dow upstream and downstream of the original SNP-SNP interaction models to allow for dif-

ferences in LD structure and MAF across the datasets. To control for multiple tests in the

region-based replication analyses, we applied a Bonferroni adjustment for the number of

SNP-SNP models.

Statistical analyses

For all simulated and eMERGE datasets, regression modelling was performed using PLATO

software [31], which employs EDGE, additive, dominant, recessive, and dominant encodings

with user specification. Multi-encoding GWAS: In the eMERGE dataset, we performed four

GWAS for each phenotype: each GWAS employing one of the traditional encodings (i.e., addi-

tive-encoded GWAS, dominant-encoded GWAS, recessive-encoded GWAS, and codominant-

encoded GWAS) using logistic regression. We created pairwise scatterplots of the -log10 p-val-

ues from the results of each of the four traditional genetic encodings, additive, codominant,
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dominant, and recessive, to better visualize how concordant the p-values were across these

encodings for the AMD and T2D phenotypes.

Interaction analysis: For both simulated and natural data, to determine the significance of a

SNP-SNP interaction model above and beyond the main effects of both SNPs combined, we

performed a likelihood ratio test (LRT) between the full (Y = β0 + β1SNP1 + β2SNP2 +

β3SNP1×SNP2) and reduced (Y = β0 + β1SNP1 + β2SNP2) models and derived an LRT p-value

using each of the five encodings separately: additive, dominant, recessive, codominant, and

EDGE. Select covariates were included in the regression models as well, as described below. In

order to reduce computational and multiple testing burden in the eMERGE interaction analy-

sis, a main effect filter was applied. So as to ensure that SNPs with diverse underlying genetic

models were selected, the top 50 SNPs from each encoding were selected for subsequent inter-

action analysis. We chose this approach over a specified significance threshold so as not to bias

any one encoding type if one encoding yielded more results from each multi-encoding GWAS.

Pairwise combinations of interactions were tested between SNPs within the union of the top

50 most significant SNPs, and SNP-SNP LRT tests were performed with additive, dominant,

recessive, codominant, and EDGE encodings separately.

Covariate adjustment. In eMERGE, for all phenotypes, regression models were tested while

adjusting for sex, decade of birth, eMERGE site, genotyping platform, and BMI. To adjust for

population stratification, PCA analysis was performed using Eigenstrat [50] and we included

as covariates the first 6 (T2D and glaucoma), 3 (cataract and AMD), and 10 (resistant hyper-

tension) principal components (number of principal components included as covariates varied

across phenotypes due to differences in the amount of variance explained by principal compo-

nents for each individual phenotype).

Testing the impact of parameters on power. To test the impact of allele frequency, sample

size, penetrance, and case-control ratio on power, we performed a parameter test. All 29 inter-

acting models were simulated with comprehensive combinations of each of the four parame-

ters. After compiling all power results from simulated datasets of our parameter sweep, we

performed ANOVA tests of the power by model for each encoding to identify effects of each

parameter on power for every genetic model type.

Replication analyses

For replication analyses in UKB, we extracted SNP-SNP interaction models found to be signif-

icant in eMERGE for AMD, T2D, age-related cataract, and hypertension phenotypes. PLATO

software was used to run logistic regression for each of these models, again considering each of

the additive, codominant, dominant, recessive, and EDGE encodings separately. Each model

was adjusted for age, sex, BMI, and principal components (first 10 UKB-generated PCs).
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(SNP’s rs#), Var1_Pos (chromosome:base pair), Var1_MAF (SNP’s minor allele frequency),

Num_nonMissing (sample size), Num_Cases (number of cases), N_Iter (number of itera-

tions), Converged (model convergence; yes:1, no:0), Raw_LRT_pval (unadjusted likelihood

ratio test p-value), Var1_Pval (SNP p-value), Var1_beta (SNP beta value), Overall_LRT_Pval

(Likelihood ratio test p-value), Overall_Pval_adj_Bonferroni (Bonferroni adjusted SNP p-

value), Overall_Pval_adj_FDR (FDR adjusted SNP p-value).

(XLSX)

S2 Table. Results from AMD multi-encoding with additive (A), dominant (B), recessive

(C), codominant (D), as well as the alpha value for each SNP (categ_weight) (E). Var1_ID

(SNP’s rs#), Var1_Pos (chromosome:base pair), Var1_MAF (SNP’s minor allele frequency),

Num_nonMissing (sample size), Num_Cases (number of cases), N_Iter (number of itera-

tions), Converged (model convergence; yes:1, no:0), Raw_LRT_pval (unadjusted likelihood

ratio test p-value), Var1_Pval (SNP p-value), Var1_beta (SNP beta value), Overall_LRT_Pval

(Likelihood ratio test p-value), Overall_Pval_adj_Bonferroni (Bonferroni adjusted SNP p-

value), Overall_Pval_adj_FDR (FDR adjusted SNP p-value).

(XLSX)

S3 Table. Results from cataract multi-encoding with additive (A), dominant (B), recessive

(C), codominant (D), as well as the alpha value for each SNP (categ_weight) (E). Var1_ID

(SNP’s rs#), Var1_Pos (chromosome:base pair), Var1_MAF (SNP’s minor allele frequency),

Num_nonMissing (sample size), Num_Cases (number of cases), N_Iter (number of itera-

tions), Converged (model convergence; yes:1, no:0), Raw_LRT_pval (unadjusted likelihood

ratio test p-value), Var1_Pval (SNP p-value), Var1_beta (SNP beta value), Overall_LRT_Pval

(Likelihood ratio test p-value), Overall_Pval_adj_Bonferroni (Bonferroni adjusted SNP p-

value), Overall_Pval_adj_FDR (FDR adjusted SNP p-value).

(XLSX)

S4 Table. Results from resistant hypertension multi-encoding with additive (A), dominant

(B), recessive (C), codominant (D), as well as the alpha value for each SNP (categ_weight)

(E). Var1_ID (SNP’s rs#), Var1_Pos (chromosome:base pair), Var1_MAF (SNP’s minor allele

frequency), Num_nonMissing (sample size), Num_Cases (number of cases), N_Iter (number

of iterations), Converged (model convergence; yes:1, no:0), Raw_LRT_pval (unadjusted likeli-

hood ratio test p-value), Var1_Pval (SNP p-value), Var1_beta (SNP beta value), Over-

all_LRT_Pval (Likelihood ratio test p-value), Overall_Pval_adj_Bonferroni (Bonferroni

adjusted SNP p-value), Overall_Pval_adj_FDR (FDR adjusted SNP p-value).

(XLSX)

S5 Table. Results from glaucoma multi-encoding with additive (A), dominant (B), reces-

sive (C), codominant (D), as well as the alpha value for each SNP (categ_weight) (E).

Var1_ID (SNP’s rs#), Var1_Pos (chromosome:base pair), Var1_MAF (SNP’s minor allele fre-

quency), Num_nonMissing (sample size), Num_Cases (number of cases), N_Iter (number of

iterations), Converged (model convergence; yes:1, no:0), Raw_LRT_pval (unadjusted likeli-

hood ratio test p-value), Var1_Pval (SNP p-value), Var1_beta (SNP beta value), Over-

all_LRT_Pval (Likelihood ratio test p-value), Overall_Pval_adj_Bonferroni (Bonferroni

adjusted SNP p-value), Overall_Pval_adj_FDR (FDR adjusted SNP p-value).

(XLSX)

S6 Table. Results from SNP-SNP interactions for T2D in eMERGE with additive (A),

dominant (B), recessive (C), codominant (D), and EDGE (E) encodings. Var1_ID (SNP 1

rs#), Var1_Pos (SNP 1 chromosome:base pair), Var1_MAF (SNP 1 minor allele frequency),
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Var1_ID (SNP’s rs#), Var2_Pos (SNP 2 chromosome:base pair), Var2_MAF (SNP 2 minor

allele frequency), Num_nonMissing (sample size), Num_Cases (number of cases), N_Iter

(number of iterations), Converged (model convergence; yes:1, no:0), Raw_LRT_pval (unad-

justed likelihood ratio test p-value), Red_Var1_Pval (SNP 1 p-value in reduced model), Red_-

Var1_beta (SNP 1 beta value in reduced model), Red_Var1_SE (SNP 1 standard error in

reduced model), Red_Var2_Pval (SNP 2 p-value in reduced model), Red_Var2_beta (SNP 2

beta value in reduced model), Red_Var2_SE (SNP 2 standard error in reduced model), Full_-

Var1_Pval (SNP 1 p-value in full model), Full_Var1_beta (SNP 1 beta value in full model),

Full_Var1_SE (SNP 1 standard error in full model), Full_Var2_Pval (SNP 2 p-value in full

model), Full_Var2_beta (SNP 2 beta value in full model), Full_Var2_SE (SNP 2 standard error

in full model), Full_Var1_Var2_Pval (p-value of interaction between SNP1 and SNP2 in full

model), Full_Var1_Var2_beta (beta value of interaction between SNP1 and SNP2 in full

model), Full_Var1_Var2_SE (standard error of interaction between SNP1 and SNP2 in full

model), Red_model_Pval (reduced model p-value), Full_model_Pval (full model p-value),

Overall_LRT_Pval (Likelihood ratio test p-value), Overall_Pval_adj_Bonferroni (Bonferroni

adjusted LRT p-value), Overall_Pval_adj_FDR (FDR adjusted LRT p-value).

(XLSX)

S7 Table. Results from SNP-SNP interactions for cataract in eMERGE with additive (A),

dominant (B), recessive (C), codominant (D), and EDGE (E) encodings. Var1_ID (SNP 1

rs#), Var1_Pos (SNP 1 chromosome:base pair), Var1_MAF (SNP 1 minor allele frequency),

Var1_ID (SNP’s rs#), Var2_Pos (SNP 2 chromosome:base pair), Var2_MAF (SNP 2 minor

allele frequency), Num_nonMissing (sample size), Num_Cases (number of cases), N_Iter

(number of iterations), Converged (model convergence; yes:1, no:0), Raw_LRT_pval (unad-

justed likelihood ratio test p-value), Red_Var1_Pval (SNP 1 p-value in reduced model), Red_-

Var1_beta (SNP 1 beta value in reduced model), Red_Var1_SE (SNP 1 standard error in

reduced model), Red_Var2_Pval (SNP 2 p-value in reduced model), Red_Var2_beta (SNP 2

beta value in reduced model), Red_Var2_SE (SNP 2 standard error in reduced model), Full_-

Var1_Pval (SNP 1 p-value in full model), Full_Var1_beta (SNP 1 beta value in full model),

Full_Var1_SE (SNP 1 standard error in full model), Full_Var2_Pval (SNP 2 p-value in full

model), Full_Var2_beta (SNP 2 beta value in full model), Full_Var2_SE (SNP 2 standard error

in full model), Full_Var1_Var2_Pval (p-value of interaction between SNP1 and SNP2 in full

model), Full_Var1_Var2_beta (beta value of interaction between SNP1 and SNP2 in full

model), Full_Var1_Var2_SE (standard error of interaction between SNP1 and SNP2 in full

model), Red_model_Pval (reduced model p-value), Full_model_Pval (full model p-value),

Overall_LRT_Pval (Likelihood ratio test p-value), Overall_Pval_adj_Bonferroni (Bonferroni

adjusted LRT p-value), Overall_Pval_adj_FDR (FDR adjusted LRT p-value).

(XLSX)

S8 Table. Results from SNP-SNP interactions for cataract in UKB with additive (A), domi-

nant (B), recessive (C), codominant (D), and EDGE (E) encodings. Var1_ID (SNP 1 rs#),

Var1_Pos (SNP 1 chromosome:base pair), Var1_MAF (SNP 1 minor allele frequency),

Var1_ID (SNP’s rs#), Var2_Pos (SNP 2 chromosome:base pair), Var2_MAF (SNP 2 minor

allele frequency), Num_nonMissing (sample size), Num_Cases (number of cases), N_Iter

(number of iterations), Converged (model convergence; yes:1, no:0), Raw_LRT_pval (unad-

justed likelihood ratio test p-value), Red_Var1_Pval (SNP 1 p-value in reduced model), Red_-

Var1_beta (SNP 1 beta value in reduced model), Red_Var1_SE (SNP 1 standard error in

reduced model), Red_Var2_Pval (SNP 2 p-value in reduced model), Red_Var2_beta (SNP 2

beta value in reduced model), Red_Var2_SE (SNP 2 standard error in reduced model), Full_-

Var1_Pval (SNP 1 p-value in full model), Full_Var1_beta (SNP 1 beta value in full model),
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Full_Var1_SE (SNP 1 standard error in full model), Full_Var2_Pval (SNP 2 p-value in full

model), Full_Var2_beta (SNP 2 beta value in full model), Full_Var2_SE (SNP 2 standard error

in full model), Full_Var1_Var2_Pval (p-value of interaction between SNP1 and SNP2 in full

model), Full_Var1_Var2_beta (beta value of interaction between SNP1 and SNP2 in full

model), Full_Var1_Var2_SE (standard error of interaction between SNP1 and SNP2 in full

model), Red_model_Pval (reduced model p-value), Full_model_Pval (full model p-value),

Overall_LRT_Pval (Likelihood ratio test p-value), Overall_Pval_adj_Bonferroni (Bonferroni

adjusted LRT p-value), Overall_Pval_adj_FDR (FDR adjusted LRT p-value).

(XLSX)

S9 Table. Results from SNP-SNP interactions for resistant hypertension in eMERGE with

additive (A), dominant (B), recessive (C), codominant (D), and EDGE (E) encodings.

Var1_ID (SNP 1 rs#), Var1_Pos (SNP 1 chromosome:base pair), Var1_MAF (SNP 1 minor

allele frequency), Var1_ID (SNP’s rs#), Var2_Pos (SNP 2 chromosome:base pair), Var2_MAF

(SNP 2 minor allele frequency), Num_nonMissing (sample size), Num_Cases (number of

cases), N_Iter (number of iterations), Converged (model convergence; yes:1, no:0), Raw_-

LRT_pval (unadjusted likelihood ratio test p-value), Red_Var1_Pval (SNP 1 p-value in

reduced model), Red_Var1_beta (SNP 1 beta value in reduced model), Red_Var1_SE (SNP 1

standard error in reduced model), Red_Var2_Pval (SNP 2 p-value in reduced model), Red_-

Var2_beta (SNP 2 beta value in reduced model), Red_Var2_SE (SNP 2 standard error in

reduced model), Full_Var1_Pval (SNP 1 p-value in full model), Full_Var1_beta (SNP 1 beta

value in full model), Full_Var1_SE (SNP 1 standard error in full model), Full_Var2_Pval (SNP

2 p-value in full model), Full_Var2_beta (SNP 2 beta value in full model), Full_Var2_SE (SNP

2 standard error in full model), Full_Var1_Var2_Pval (p-value of interaction between SNP1

and SNP2 in full model), Full_Var1_Var2_beta (beta value of interaction between SNP1 and

SNP2 in full model), Full_Var1_Var2_SE (standard error of interaction between SNP1 and

SNP2 in full model), Red_model_Pval (reduced model p-value), Full_model_Pval (full model

p-value), Overall_LRT_Pval (Likelihood ratio test p-value), Overall_Pval_adj_Bonferroni

(Bonferroni adjusted LRT p-value), Overall_Pval_adj_FDR (FDR adjusted LRT p-value).

(XLSX)

S10 Table. Results from SNP-SNP interactions for hypertension in UKB with additive (A),

dominant (B), recessive (C), codominant (D), and EDGE (E) encodings. Var1_ID (SNP 1

rs#), Var1_Pos (SNP 1 chromosome:base pair), Var1_MAF (SNP 1 minor allele frequency),

Var1_ID (SNP’s rs#), Var2_Pos (SNP 2 chromosome:base pair), Var2_MAF (SNP 2 minor

allele frequency), Num_nonMissing (sample size), Num_Cases (number of cases), N_Iter

(number of iterations), Converged (model convergence; yes:1, no:0), Raw_LRT_pval (unad-

justed likelihood ratio test p-value), Red_Var1_Pval (SNP 1 p-value in reduced model), Red_-

Var1_beta (SNP 1 beta value in reduced model), Red_Var1_SE (SNP 1 standard error in

reduced model), Red_Var2_Pval (SNP 2 p-value in reduced model), Red_Var2_beta (SNP 2

beta value in reduced model), Red_Var2_SE (SNP 2 standard error in reduced model), Full_-

Var1_Pval (SNP 1 p-value in full model), Full_Var1_beta (SNP 1 beta value in full model),

Full_Var1_SE (SNP 1 standard error in full model), Full_Var2_Pval (SNP 2 p-value in full

model), Full_Var2_beta (SNP 2 beta value in full model), Full_Var2_SE (SNP 2 standard error

in full model), Full_Var1_Var2_Pval (p-value of interaction between SNP1 and SNP2 in full

model), Full_Var1_Var2_beta (beta value of interaction between SNP1 and SNP2 in full

model), Full_Var1_Var2_SE (standard error of interaction between SNP1 and SNP2 in full

model), Red_model_Pval (reduced model p-value), Full_model_Pval (full model p-value),

Overall_LRT_Pval (Likelihood ratio test p-value), Overall_Pval_adj_Bonferroni (Bonferroni
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adjusted LRT p-value), Overall_Pval_adj_FDR (FDR adjusted LRT p-value).

(XLSX)

S11 Table. Results from SNP-SNP interactions for AMD in eMERGE with additive (A),

dominant (B), recessive (C), codominant (D), and EDGE (E) encodings. Var1_ID (SNP 1

rs#), Var1_Pos (SNP 1 chromosome:base pair), Var1_MAF (SNP 1 minor allele frequency),

Var1_ID (SNP’s rs#), Var2_Pos (SNP 2 chromosome:base pair), Var2_MAF (SNP 2 minor

allele frequency), Num_nonMissing (sample size), Num_Cases (number of cases), N_Iter

(number of iterations), Converged (model convergence; yes:1, no:0), Raw_LRT_pval (unad-

justed likelihood ratio test p-value), Red_Var1_Pval (SNP 1 p-value in reduced model), Red_-

Var1_beta (SNP 1 beta value in reduced model), Red_Var1_SE (SNP 1 standard error in

reduced model), Red_Var2_Pval (SNP 2 p-value in reduced model), Red_Var2_beta (SNP 2

beta value in reduced model), Red_Var2_SE (SNP 2 standard error in reduced model), Full_-

Var1_Pval (SNP 1 p-value in full model), Full_Var1_beta (SNP 1 beta value in full model),

Full_Var1_SE (SNP 1 standard error in full model), Full_Var2_Pval (SNP 2 p-value in full

model), Full_Var2_beta (SNP 2 beta value in full model), Full_Var2_SE (SNP 2 standard error

in full model), Full_Var1_Var2_Pval (p-value of interaction between SNP1 and SNP2 in full

model), Full_Var1_Var2_beta (beta value of interaction between SNP1 and SNP2 in full

model), Full_Var1_Var2_SE (standard error of interaction between SNP1 and SNP2 in full

model), Red_model_Pval (reduced model p-value), Full_model_Pval (full model p-value),

Overall_LRT_Pval (Likelihood ratio test p-value), Overall_Pval_adj_Bonferroni (Bonferroni

adjusted LRT p-value), Overall_Pval_adj_FDR (FDR adjusted LRT p-value).

(XLSX)

S12 Table. Results from SNP-SNP interactions for AMD in UKB with additive (A), domi-

nant (B), recessive (C), codominant (D), and EDGE (E) encodings. Var1_ID (SNP 1 rs#),

Var1_Pos (SNP 1 chromosome:base pair), Var1_MAF (SNP 1 minor allele frequency),

Var1_ID (SNP’s rs#), Var2_Pos (SNP 2 chromosome:base pair), Var2_MAF (SNP 2 minor

allele frequency), Num_nonMissing (sample size), Num_Cases (number of cases), N_Iter

(number of iterations), Converged (model convergence; yes:1, no:0), Raw_LRT_pval (unad-

justed likelihood ratio test p-value), Red_Var1_Pval (SNP 1 p-value in reduced model), Red_-

Var1_beta (SNP 1 beta value in reduced model), Red_Var1_SE (SNP 1 standard error in

reduced model), Red_Var2_Pval (SNP 2 p-value in reduced model), Red_Var2_beta (SNP 2

beta value in reduced model), Red_Var2_SE (SNP 2 standard error in reduced model), Full_-

Var1_Pval (SNP 1 p-value in full model), Full_Var1_beta (SNP 1 beta value in full model),

Full_Var1_SE (SNP 1 standard error in full model), Full_Var2_Pval (SNP 2 p-value in full

model), Full_Var2_beta (SNP 2 beta value in full model), Full_Var2_SE (SNP 2 standard error

in full model), Full_Var1_Var2_Pval (p-value of interaction between SNP1 and SNP2 in full

model), Full_Var1_Var2_beta (beta value of interaction between SNP1 and SNP2 in full

model), Full_Var1_Var2_SE (standard error of interaction between SNP1 and SNP2 in full

model), Red_model_Pval (reduced model p-value), Full_model_Pval (full model p-value),

Overall_LRT_Pval (Likelihood ratio test p-value), Overall_Pval_adj_Bonferroni (Bonferroni

adjusted LRT p-value), Overall_Pval_adj_FDR (FDR adjusted LRT p-value).

(XLSX)
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