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Abstract

Data integration methods are used to obtain a unified summary of multiple datasets. For

multi-modal data, we propose a computational workflow to jointly analyze datasets from cell

lines. The workflow comprises a novel probabilistic data integration method, named

POPLS-DA, for multi-omics data.

The workflow is motivated by a study on synucleinopathies where transcriptomics, prote-

omics, and drug screening data are measured in affected LUHMES cell lines and controls.

The aim is to highlight potentially druggable pathways and genes involved in synucleinopa-

thies. First, POPLS-DA is used to prioritize genes and proteins that best distinguish cases

and controls. For these genes, an integrated interaction network is constructed where the

drug screen data is incorporated to highlight druggable genes and pathways in the network.

Finally, functional enrichment analyses are performed to identify clusters of synaptic and

lysosome-related genes and proteins targeted by the protective drugs. POPLS-DA is com-

pared to other single- and multi-omics approaches.

We found that HSPA5, a member of the heat shock protein 70 family, was one of the

most targeted genes by the validated drugs, in particular by AT1-blockers. HSPA5 and AT1-

blockers have been previously linked to α-synuclein pathology and Parkinson’s disease,

showing the relevance of our findings.

Our computational workflow identified new directions for therapeutic targets for synuclei-

nopathies. POPLS-DA provided a larger interpretable gene set than other single- and multi-

omic approaches. An implementation based on R and markdown is freely available online.

Author summary

We present a computational workflow that combines the analysis of different types of data

measured in cell line studies with non-overlapping samples. We apply the workflow to

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011809 January 31, 2024 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: el Bouhaddani S, Höllerhage M, Uh H-W,
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measurements of gene expression, protein abundances, and a screening of a wide range of

FDA-approved drugs. These different types of data are obtained from LUHMES brain

cells and jointly analyzed to discover new treatment options in synucleinopathies, such as

Parkinson’s disease. Our workflow includes a new probabilistic method, named POPLS-

DA. POPLS-DA combines the analysis of the genes and proteins to pinpoint a set of rele-

vant genes and proteins that can distinguish affected and non-affected cells. Compared to

other approaches, POPLS-DA found a larger set of genes relevant to the disease. Further,

we constructed a network that connects the relevant genes and proteins that interact with

each other. We incorporate the drug screening data to highlight which part of the network

is relevant to the disease and druggable. Through additional analysis of the functionality,

we discovered that the genes and proteins that are targeted by protective drugs share rele-

vant properties, namely they are synaptic and lysosome-related genes. Notably, we found

that specific types of drugs, namely AT1-blockers such as Telmisartan, are protective and

target the network of relevant genes and proteins. These drugs are approved by the FDA

and readily available to further investigate their potential in treating synucleinopathies.

We further found that a gene named HSPA5, a member of the heat shock protein 70 fam-

ily, is highly targeted by the protective drugs. This gene has been linked to Parkinson’s dis-

ease in previous scientific literature. Our computational workflow and the

implementation in R and markdown are freely available online.

This is a PLOS Computational Biology Methods paper.

Introduction

Nowadays, studies often include measurements of several omics datasets as well as other types

of data. Particularly cell line studies can generate datasets such as genomics, transcriptomics,

and proteomics in a reproducible and standardized experimental system. Experiments using

cell lines have also been set up to measure the efficacy of FDA-approved drugs in rare diseases

and identify potentially viable treatments. How to summarize and visualize these different

datasets is an ongoing research topic. A joint analysis of all data is most efficient but also chal-

lenging since it might need a model describing the relationship between the datasets. Another

way is to integrate datasets by using functional information about the top features of the data-

sets. This paper is motivated by a cell line study with proteomics, transcriptomics, and drug

compound screening data. These data have been analyzed separately, but this did not yield an

overarching overview of involved genes. New computational tools are needed to obtain such

an overview of relationships between the omics data, and their interplay with drugs in the con-

text of MSA. Here, we present a workflow to analyze the omics data jointly and integrate these

with the drug compounds screening data using functional information.

A common approach to analyzing multiple omics data is to take the intersection of signifi-

cant results of single dataset analyses. For such analyses, univariate t-tests or multivariate

regression-based approaches are typically used [1]. For regression approaches, meta-analysis

can also be used to combine results of single omics data analysis [2]. More advanced

approaches involve converting the measurements per omics dataset to ranks and aggregating

these ranks to a consensus list of top ranked features [3], or jointly modeling all multi-omics

data using, e.g., MINT [4]. MINT is an adaptation of partial least squares discriminant analysis

(PLS-DA) [5] to a multi-group approach. This method treats the omics datasets as subgroups
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proteome data are published (https://doi.org/10.

3389/fneur.2022.787059) and can be found at:

Sequencing data at NCBI GEO, accession no:

GSE191302 (https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE191302); Proteomics data

at PRIDE, accession no: PXD028322 (https://www.

ebi.ac.uk/pride/archive/projects/PXD028322). The

raw FDA drug validation screening data are

available upon request at the System Administrator

of the Dept. of Neurology, MH Hannover

(neurologie.sekretariat@mh-hannover.de). The

aggregated drug validation data used in the

workflow is given in the manuscript (Table 1).
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[8810001412], Niedersächsisches Ministerium für

Wissenschaft und Kunst [ZN3440.TP]: REBIRTH

Forschungszentrum für translationale regenerative

Medizin, VolkswagenStiftung (Niedersächsisches
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with respect to the total sample size and estimates linear combinations of features that maxi-

mally discriminate between cases and controls across all subgroups. An advantage of single

dataset modeling is that it is less affected by heterogeneity across omics data, while the joint

modeling approach MINT does not take into account this heterogeneity. It has been shown

that modeling omics-specific variation might yield better results when analyzing heteroge-

neous datasets [6, 7]. Since transcriptomics and proteomics data are different (e.g. technical

platform and scale), including data-specific components in the model is expected to be benefi-

cial. We, therefore, propose a new approach, probabilistic OPLS-DA (POPLS-DA), which is

an adaption of PO2PLS [8] for the analysis of heterogeneous multi-omics data from overlap-

ping samples, to non-overlapping cell lines.

Concerning drug screen data, results are often integrated by identifying gene targets of vali-

dated drugs from databases and intersecting these with differentially expressed genes from

other experiments [9]. In this paper, we will use a similar approach. Specifically, gene targets of

significant drug compounds are integrated into the functional network of the top POPLS-DA

genes using a ‘direct neighbor’ approach, where POPLS-DA genes that interact with the drug

targets are highlighted.

In our motivating study, transcriptomic and proteomic data are measured in LUHMES

cells. LUHMES cells are derived from human embryonic dopaminergic cells [10] and are used

to investigate the neurobiological processes underlying neurodegeneration, specifically synu-

cleinopathies. Synucleinopathies are neurodegenerative disorders where a pathological aggre-

gation of α-synuclein is present. The most common synucleinopathy is Parkinson’s disease

(PD) and multiple system atrophy (MSA). It is assumed that aggregated forms of α-synuclein

are toxic, leading to cell death and neurodegeneration. Integrative multi-omics approaches can

provide insights into the biological processes, molecular functions, and interactions underly-

ing the diseases. The transcriptomics and proteomics data were measured in cells overexpres-

sing α-synuclein or GFP as a control [1]. Furthermore, to investigate whether existing drugs

can be the basis for a novel therapy against α-synuclein-induced cell death, LUHMES cells

were used to screen 1600 FDA-approved drugs. The primary screening was performed in trip-

licates in two different concentrations (3 μM and 10 μM) and revealed 53 drugs that reduced

cell death in LUHMES cells overexpressing α-synuclein in at least one of the screening runs

[11]. Here, we propose to integrate the drug compound screening data with the top features

from the omics data analysis by using functional information on the genes targeted by the

drugs and the interactome. Thus we aim to perform an integrated analysis of the three datasets

to obtain a holistic overview of gene deregulation in α-synuclein overexpressing cells and to

obtain a unified list of the most relevant features (genes and drug compounds) [12]. Note that

such a list can comprise features that were not found with single dataset analyses, because of a

lack of statistical evidence when analyzed separately.

Our contribution is firstly a novel data integration workflow comprising a joint analysis of

the omics data and an integration approach using functional information to combine the top

omic features and the drug compound screening results. Secondly, a new probabilistic method

named POPLS-DA for joint analysis of omics datasets in cell lines is developed. Thirdly appli-

cation of the workflow including POPLS-DA to transcriptomics, proteomics, and drug com-

pound screening datasets in LUMES cell lines. We perform dose-response testing of all 53

compounds to validate the protective efficacy of the drug compounds. Then, we analyze the

three datasets using our novel integrated computational workflow. We apply POPLS-DA to

integrate the two omics datasets and identify relevant genes and proteins that distinguished

the two experimental conditions (α-synuclein versus control protein overexpression). Based

on these genes and proteins, a protein-protein interaction (PPI) network was constructed and

the genes/proteins that are targeted by the drugs were identified. This approach highlighted
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genes in the network that are associated with α-synuclein overexpression and targeted by vali-

dated drugs, and therefore are potential targets for a novel therapy for synucleinopathies.

Results

We first present the results of the drug screen validation. Next, we show the results of our

computational workflow (depicted in Fig 1) applied to the multi-omics and drug screening

data from the LUHMES cells. Enrichment analyses are presented. Finally, we compare our

novel multi-omic integration approach POPLS-DA with existing single- and multi-omics inte-

gration approaches.

Fig 1. Workflow of the multi-omics integration approach. (1) To link the two datasets, the transcripts and proteins

were mapped to their Entrez identifier, referred to as genes/proteins. (2) To identify the relevant genes/proteins that

discriminate between the two experimental groups (α-synuclein overexpression vs. control), POPLS-DA was applied. (3)

The prioritized genes/proteins were integrated with the FDA-approved drug screening data using a direct neighbor

approach. As an illustration, in the figure under “Direct Neighbor approach” are two drug target genes (green circles),

which are neighbors of genes identified in (2) (blue circles). (4) Bioinformatics analyses: interactome, GO, and DisGeNet

[13] enrichment analyses analyses. Protein-protein interaction networks were built using String-DB [14] where each

node is a gene. The genes that were direct neighbors of a drug target were highlighted with a green halo, where its color

intensity is proportional to the number of direct neighbors. Abbreviations: aSyn: α-synuclein, GO: gene ontology, FDA:

Food and Drug Administration.

https://doi.org/10.1371/journal.pcbi.1011809.g001
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Validation of the protective efficacy of the FDA-approved drugs

Previously, we identified 53 FDA-approved drugs as being protective against αSyn-induced

toxicity in a primary drug screening [11]. Now, using a dose-response analysis, 41 of these 53

compounds were validated as being protective. The maximum effective concentrations

appeared to range from 2.5 μM to 80 μM.

POPLS-DA integration of transcriptome and proteome data

For the integrated analysis of the pre-processed transcriptomics and proteomics datasets, we

used POPLS-DA. For each dataset, we used two joint components representing the relation-

ship between the two datasets and two data-specific components. The number of components

was determined by a scree plot of the eigenvalues of the row-wise concatenated datasets (S1

Supporting information). Based on a scree plot of the squared effect sizes per gene (given by

the squared elements of Wβ), presented in Fig 2, 200 genes/proteins were retained for further

analysis. A list of all genes/proteins and their weights are shown in S1 Supporting information.

Of the total variance in the transcriptomics and proteomics data, 21 and 18 percent, respec-

tively, were explained by the integrative parts. Omics-specific variation accounted for around

27 percent of the total variation. The selected relevant genes/proteins appeared to be able to

distinguish between the two experimental groups (Fig 2 and S1 Supporting information). We

performed 400 permutations (see S1 Supporting information) of the experimental group labels

to test the null hypothesis of no relation between the experimental groups and the genes/pro-

teins. We found that, under the null hypothesis, the probability of achieving the same discrimi-

nation (100% accuracy) as observed in the data was 0.0025 (one in 400 permutations).

Integrated interaction network based on multi-omics and drug data

Fig 3 shows the integrated interaction network constructed using String-DB. Enlarged copies

of these figures are available in S1 Supporting information. The network had significantly

more interactions than expected from an arbitrary subset of 200 genes. The network enrich-

ment p-value was smaller than 10−15. From the 41 drugs that were validated to reduce α-synu-

clein-induced toxicity [11], we found 27 targeting at least one gene in the integrated

interaction network. The efficacy of the maximal effective dose of each of these compounds is

shown in Table 1.

Fig 2. Selection of relevant genes/proteins and their ability to discriminate. The left panel shows the sorted squared

effect size per gene given by the squared elements of Wβ. The 200 relevant genes/proteins correspond to the ‘elbow’,

which is visually determined and approximately where the curve crosses the green vertical line. The right panel shows

boxplots of score predictions based on the selected 200 relevant genes/proteins. A positive resp. negative prediction on

the y-axis corresponds to a case resp. control. The dots, representing individual samples, are added with a horizontal

‘jitter’ to reduce overlap. The transcriptomics and proteomics samples are colored orange and blue, respectively.

Abbreviations: aSyn: α-synuclein case group, mRNA: transcriptome, Prot: proteome.

https://doi.org/10.1371/journal.pcbi.1011809.g002
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The HMGCR, NQO1, HSPA5, and YBX1 genes were most targeted by the validated drugs,

namely by 20, 18, 17, and 17 drugs, respectively.

Table 1 shows for each compound the number of direct neighbors it targets in the network.

Dexibuprofen, a non-steroidal anti-inflammatory drug (NSAID), targets the highest number

of direct neighbors (N = 60), followed by Imatinib (N = 47), which acts on the tyrosine kinase

enzyme and is involved in apoptosis. The most effective compound was Telmisartan with an

Fig 3. String-DB and clustering analyses of the top 200 genes/proteins. Figures are numbered from left to right, from

top to bottom. Enlarged copies of these figures are available in S1 Supporting information. In panel (a), a network of

interactions between the top 200 genes/proteins (estimated with POPLS-DA) was constructed using String-DB. Each

node is a gene, and a connection between genes indicates evidence for a biologically plausible link. Text mining was

excluded as an evidence source, and a medium confidence threshold was used. For genes that were (indirectly) targeted

by a drug compound, a green ‘halo’ is drawn. The intensity of the green color is proportional to the number of drug

compounds for which the gene was an (indirect) target. In panel (b), the interaction network from (a) was clustered

using the MCL clustering algorithm from the String-DB website. The edges between the clusters are removed for visual

aid. In panel (c), an interaction network is shown for a druggable subset of the top 200 genes/proteins, consisting of 116

genes that were (indirectly) targeted by an FDA-approved drug compound. In panel (d), an interaction network of the

top genes in the “Parkinson’s disease” DisGeNet term was constructed using String-DB. Text mining as evidence was

included here.

https://doi.org/10.1371/journal.pcbi.1011809.g003

PLOS COMPUTATIONAL BIOLOGY Statistical integration of multi-omics and drug screening data from cell lines

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011809 January 31, 2024 6 / 20

https://doi.org/10.1371/journal.pcbi.1011809.g003
https://doi.org/10.1371/journal.pcbi.1011809


improvement of the cell survival of α-synuclein-overexpressing cells by 33.16% at a concentra-

tion of 5 μM, followed by Risperidone which improved cell survival by 28.58% at 10 μM.

The network was split into sub-clusters using the MCL clustering algorithm on the inte-

grated interaction network, see Fig 3. Several clusters consist of genes that are involved in neu-

rogenerative disorders. The largest cluster is a highly connected hub of 22 genes, primarily

ribosomal. Ribosomal proteins have been reported to mediate neurodegeneration in PD [15].

Another cluster of five genes includes the top two genes, MTHFD2 and CBS. Overexpression

of the CBS (cystathionine-beta-synthase) gene was protective in a PD toxin model in rats [16].

The network also contains clusters with genes involved in neurological development, e.g.

TFRC (transferrin receptor), and neuronal adhesion and growth, e.g. TNC (tenascin C). Fur-

ther, four genes encoding intermediate filaments, such as NES (nestin), are clustered together.

They are primarily responsible for cell adhesion [17]. Furthermore, a cluster of three genes

from the solute carrier family was found (SLC3A2, SLC7A5, and SLC7A6). These genes may

play a role in the transport across the blood-brain barrier.

Table 1. FDA-approved drugs protective against α-synuclein-induced toxicity with direct neighbors of the top 200 genes. For each drug, the number of direct interac-

tors is shown. The most effective concentration is the concentration at which each compound had the strongest protective effect. Cell survival is expressed as a percentage

compared to αSyn-overexpressing cells that were treated with DMSO as control at the maximum effective concentration. P-Values of testing the dose-response were calcu-

lated with an ANOVA with Dunnett’s post-hoc test for multiple comparisons.

Drug name Direct neighbors Most effective concentration Cell survival P-value

Dexibuprofen 60 80 μM 118.29% <0.0001

Imatinib 47 20 μM 126.04% <0.0001

Amiodarone 44 80 mM 108.05% 0.002

Risperidone 41 10 μM 128.58% <0.0001

Bepridil 36 80 μM 115.89% <0.0001

Astemizole 26 1.25 μM 106.49% 0.02

Telmisartan 24 5 μM 133.16% <0.0001

Amlodipine 21 10 μM 116.42% <0.0001

Benazepril 18 80 μM 117.96% <0.0001

Repserpine 18 80 μM 107.64% 0.01

Dipyridamole 16 40 μM 118.09% <0.0001

Trifluopromazine 16 40 μM 114.30% <0.0001

Nefazodone 15 40 μM 115.08% <0.0001

Trimipramine 15 20 μM 125.54% <0.0001

Flunarizine 14 20 μM 104.38% 0.03

Quinacrine 13 5 μM 119.07% 0.008

Pentoxyverine 10 1.25 μM 109.69% 0.002

Dicyclomine 8 20 μM 120.15% <0.0001

Doxazosin 8 40 μM 116.12% <0.0001

Ajmaline 7 20 μM 108.94% <0.0001

Ifenprodil 7 2.5 μM 116.74% 0.0003

Lomerizine 7 80 μM 110.35% <0.0001

Pentamidine 6 2.5 μM 119.86% 0.003

Guanfacine 5 5 μM 117.01% <0.0001

Dyclonine 4 5 μM 125.69% <0.0001

Tropisetron 3 20 μM 131.63% <0.0001

Clemastine 1 10 μM 117.52% 0.0004

https://doi.org/10.1371/journal.pcbi.1011809.t001
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Enrichment analyses of relevant genes and proteins

In Table 2, the most significant pathways enriched in the top 200 genes are shown. The GO

terms that contained “extracellular” and “cytoplasm” were the most significant. Genes with

these annotations are involved in vesicular transport and signaling [18]. Nine of the ten terms

were from the “cellular compound” GO category.

Table 3 shows the five diseases for which the most significant enrichment was found in the

top 200 genes. The second term was “Parkinson’s disease” and contained 48 genes. Fig 3 shows

the PPI network for genes/proteins in this disease term. Note that the HSPA5 gene, which was

one of the most targeted by the FDA drug compounds, is within this network.

Finally, enrichment analyses were performed for the subset of 116 genes/proteins that were

direct neighbors of genes targeted by at least one of the drugs. Fig 3 shows the protein-protein

interaction network for this subset. The corresponding network enrichment p-value was

smaller than 10−10. Also, the most significant GO terms agreed with the GO analysis of the

total set of 200 genes/proteins (S1 Supporting information).

Comparison of POPLS-DA with other omics integration approaches

Integrative multi-omics MINT, the single omics multivariate LASSO penalized regression and

the single omics univariate t-testing are used as alternative approaches to analyzing the

Table 2. Gene ontology enrichment analysis of the top 200 genes. Out of 1732 genes/proteins, the 200 genes/proteins

with the highest weight (estimated using POPLS-DA) were used to perform GO enrichment analysis. All three GO

ontologies were considered: cellular compound (CC), biological process (BP), and molecular function (MF). For each

term, a p-value was computed using Fisher’s exact test with the whole genome as background and corrected for multi-

ple testing. The ten most significant terms are shown, ranked by their GO enrichment false discovery rate (FDR)

adjusted p-value. The column “Genes in set” shows how many of the top 200 genes/proteins were annotated with the

respective term.

Term Ontology Genes in set FDR

cytoplasm CC 178 1.28e-19

extracellular exosome CC 71 4.67e-17

extracellular vesicle CC 71 5.51e-16

extracellular organelle CC 71 5.51e-16

intracellular anatomical structure CC 190 7.62e-12

cell junction CC 61 7.62e-12

vesicle CC 88 2.30e-11

extracellular space CC 81 7.09e-11

protein binding CC 179 7.65e-11

cytosol MF 100 1.48e-10

https://doi.org/10.1371/journal.pcbi.1011809.t002

Table 3. Top five disease enrichment clusters based on DisGeNet. The top 200 relevant genes/proteins were analyzed

using DisGeNet, a disease-gene database. The BEFREE database was used. For each term, a p-value was calculated

using a Fisher exact test and FDR adjusted. The terms are ranked by this adjusted p-value.

Term Genes in set FDR

Neoplasms 142 2.84e-07

Parkinson’s Disease 48 1.94e-06

Carcinogenesis 100 3.36e-06

Malignant neoplasm of prostate 75 2.54e-05

Neoplasm Metastasis 98 2.89e-05

https://doi.org/10.1371/journal.pcbi.1011809.t003
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transcriptomics and proteomics data. For comparison, MINT and POPLS-DA are also applied

to the single omics datasets individually.

Just as POPLS-DA, these approaches yielded high accuracies, namely all had a training

accuracy of one. The permutation results showed that, except for LASSO, all methods had at

most 4 instances where the accuracy was 1. Specifically, MINT and t-test approaches had 1 and

4 out of 400 instances of perfect accuracy, respectively. For LASSO, all 400 permutation

instances yielded an accuracy of 1. POPLS-DA had perfect accuracy in 1 out of 400

permutations.

The results of the DisGeNet Parkinson’s disease and MSA (PD+MSA) enrichment analyses

of the obtained gene sets from the different methods are given in Table 4. The single-omics

results are based on the transcriptomics and proteomics data individually, taking the 2292

overlapping genes and proteins.

POPLS-DA and MINT yielded significant enrichment of the obtained gene sets from single

omic analyses as well as the integrative analysis. Enrichment of the gene set obtained from t-

tests on proteomic data was also significant. None of the other single-omics approaches yielded

a gene set significantly enriched for PD+MSA. For POPLS-DA on transcriptomics and proteo-

mics data individually, we found 41 and 42 proteins in the PD+MSA gene set, respectively.

The intersection of these gene sets with the 48 genes and proteins from the original integrative

POPLS-DA multi-omics approach was 19 resp. 29 proteins.

Discussion

In this study, we proposed a computational workflow to integrate omics and drug screen data

from cell lines. A novel method, POPLS-DA, for the analysis of multiple omics datasets in

non-overlapping cell lines was developed. The workflow is illustrated by jointly analyzing

multi-omics and drug screening data from LUHMES cells overexpressing α-synuclein and

those overexpressing GFP as a control protein. Transcriptomics and proteomics data were first

integrated with POPLS-DA. We found 200 relevant genes/proteins based on an elbow plot of

the squared effect size of each gene (Fig 2). These genes/proteins appeared to perfectly discrim-

inate between the two experimental groups.

Table 4. Comparison of PD+MSA enrichment for single- and multi-omics approaches. For multi-omics (POPLS-DA and MINT) and single-omics (LASSO and t-test)

approaches, the selected genes are tested for DisGeNet Parkinson’s disease and MSA enrichment. The FDR-corrected enrichment p-value is given in the second column.

In the third column, the number of genes within the PD+MSA gene set out of the total number of selected genes is given. POPLS-DA and MINT were applied integratively

(in bold italics) and individually to transcriptomics and proteomics data. The LASSO and t-test approaches were applied to transcriptomics and proteomics individually.

Then, the selected genes and proteins were intersected (in italics).

Approach Enrichment p-value Genes in PD+MSA

POPLS-DA transcriptomics 2.15e-2 41/200

proteomics 8.85e-3 42/200

integrative 2.41e-5 48/200

MINT transcriptomics 8.85e-3 42/200

proteomics 2.15e-2 41/200

integrative 1.38e-3 44/200

LASSO transcriptomics 1.00 31/200

proteomics 1.00 31/200

intersection 1.00 17/116

t-test transcriptomics 1.00 4/21

proteomics 4.26e-4 17/44

intersection 1.00 0/2

https://doi.org/10.1371/journal.pcbi.1011809.t004
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Using a dose-response approach, 41 FDA-approved drugs were validated to be protective

against α-synuclein-induced toxicity. An integrated interaction network was constructed

based on the 200 relevant genes/proteins by identifying direct neighbors of the 41 drugs in the

network. Interactome analyses revealed several genes and pathways linked to PD, the most

common synucleinopathy.

The drugs that targeted the highest number of direct neighbors were Dexibuprofen and

Imatinib. Both drugs were previously found to lower the risk of PD in epidemiological studies

[19, 20]. Interestingly, independent of the screening, we previously investigated the neuropro-

tective potential of imatinib as a macroautophagy-stimulating drug. Despite the protective

effect, imatinib in our model led to a reduction of the expression of the dopaminergic markers

tyrosine hydroxylase (TH) and dopamine transport (DAT) [21]. Therefore, further investiga-

tion would be necessary before using this drug in PD patients. However, other drugs we identi-

fied could be readily investigated in PD. Telmisartan, an AT1-blocker that is used for arterial

hypertension, was the most effective drug with an improvement of cell survival by >30% at a

comparably low concentration of 5μM. Since there are no major restrictions in PD other than

a blood-pressure-lowering effect, Telmisartan could be a promising candidate for neuropro-

tective therapy. Similarly, Benazepril, an ACE inhibitor and blood-pressure-lowering drug,

could be investigated with similar caution. Interestingly, AT1-blockers and ACE inhibitors

have been shown to reduce the risk of falls in PD, and this association was not related to blood

pressure [22]. Furthermore, the use of AT1-blockers and ACE inhibitors as potential neuro-

protective drugs was previously discussed, because these drugs were protective in PD animal

models, most likely due to an anti-oxidative effect [23]. In line with that, our data further

emphasize that it would be promising to further investigate AT1-blockers and ACE-inhibitors

in PD.

Other drugs, including Risperidone and Trifluopromazine, are antipsychotic drugs with an

anti-dopaminergic effect. Though validated to be protective, they can lead to drug-induced

parkinsonism [24] and are contraindicated in PD. Also, Flunarizine, a drug used in migraine

prophylaxis can lead to drug-induced parkinsonism [25, 26].

The genes that were targeted by the majority of the drugs were HMGCR, NQO1, HSPA5,

and YBX1. Note that HMGCR (3-Hydroxy-3-Methylglutaryl-CoA reductase) is the main target

of statins. NQO1 (NAD(P)H quinone dehydrogenase 1) has multiple functions and has been

linked to Alzheimer’s disease [27]. The HSPA5 gene (heat shock protein family A (Hsp70)

member 5) encodes a heat shock protein of the HSP70 family. It is found to be involved in

maintaining the correct folding behavior of proteins [28]. HSPA5, also known as glucose-regu-

lated protein 78 (GRP78), is located on the membrane of the endoplasmic reticulum and is

essential for the unfolded protein response [29]. Furthermore, it was previously shown that

overexpression of this protein reduced α-synuclein toxicity to dopaminergic cells in a rat PD

model [30]. Interestingly, a previous study showed that GRP78 levels were reduced in the tem-

poral cortex and cingulate gyrus of PD patients compared to healthy controls but markedly

increased in PD patients with dementia and patients with dementia with Lewy bodies [31]. In

line with that, our data that show an interaction of drugs that protect against α-Syn with this

protein support that GRP78 plays an important role in α-Syn toxicity and deliver further evi-

dence that GRP78 could be a promising target for neuroprotective therapies of PD. The YBX1
gene (Y-box binding protein 1) is a cold shock domain protein, predominantly localized to

neurons and essential for brain development [32]. Furthermore, several clusters were observed

in the network involving ribosomal proteins and intermediate filaments. Enrichment analyses

identified several terms involving “extracellular” and “vesicles”.

Using DisGeNet, the second most significantly enriched disease term was “Parkinson’s dis-

ease”, with 48 genes from our list of relevant genes/proteins. The other disease terms involved
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neoplasms and carcinogenesis. Note that previous studies suggested shared molecular mecha-

nisms between PD and cancer [33–35].

In a previous study on these data [1], the authors identified significant deregulation of syn-

aptic proteins, in particular, STXBP1, STX1B, SYT1, and FYN. In our POPLS-DA integration,

we found three of these genes: STXBP1, SYT1, and FYN, ranked 16, 18, and 72, respectively.

We identified two additional synaptic genes in the top 200, namely STX12, encoding syntaxin-

12, as well as SYT11, encoding synaptotagmin-11. Single nucleotide polymorphisms in SYT11
have been linked to PD in a previously performed GWAS [36]. Furthermore, a previous study

showed that synaptotagmin-11 plays a role in Parkin-related parkinsonism. Additionally, it

was previously reported that lysosome-related proteins, SCARB2, CTSB, and SMPD1, were dif-

ferentially regulated upon overexpression of α-synuclein in LUHMES cells [1]. From our top

genes/proteins, 22 were annotated with the lysosome GO term. Among these 22 genes are the

previously found SCARB2 at position 7 in our top genes/proteins, as well as SLC7A5 and

SLC3A2 at positions 5 and 6, respectively. The authors pointed to lysosome membrane protein

2 expression (encoded by SCARB2) as a therapeutic target to increase lysosomal glucocerebro-

sidase activity to promote α-synuclein clearance. Note that one of our clusters in Fig 3 consists

of genes encoding lysosome-related proteins (i.e., SCARB2, AP2A2, ATP6V1C1, IGF2R, and

TFRC) that are also direct neighbors of the FDA-approved drugs.

The POPLS-DA gene set was more significantly enriched for Parkinson’s and MSA (PD

+MSA) disease terms (p = 2.41e-5) than other single- and multi-omic approaches. Also, the

discrimination between cases and controls was statistically significant, with 1 out of 400 per-

mutations yielding the same accuracy of 1 as in the data set. Applying POPLS-DA to transcrip-

tomics and proteomics data individually also provided a significant enrichment of PD+MSA

terms, but less significant (p = 8.85e-3) resp. (p = 2.15e-2). In addition, the overlap with the

selected genes from the integrative POPLS-DA approach was only 19 resp. 29 genes. Even

though POPLS-DA applied to each dataset individually yielded a significant enrichment, an

integrative approach appeared to result in a more interpretable set of genes compared to only

proteomics data. Since the proteomic measurements were found to be noisier than the tran-

scriptomic measurements, more proteomic samples were measured, which might be an expla-

nation for more significant results in the proteomic dataset. On the other hand, with the

integrative approaches, including transcriptomics data was clearly beneficial for the overall

results.

The data used in this study were acquired from a human (LUHMES) cell line, where each

dataset was measured in a different sample. Most data integration methods require multiple

datasets measured in the same samples to calculate correlations across omics datasets from

which joint components can be derived. These methods are sometimes referred to as horizon-

tal integration approaches, where the data are laid out next to each other with the samples

across the rows. In the present paper, we proposed a framework for vertical integration, where

different groups of samples (representing different omics data) are laid down below each other

with the same (type of) variables across the columns. An assumption here is that the effect of

each variable has the same direction across the omics data. For example, the mRNA and pro-

tein with the same gene ID are assumed to be over- or underexpressed simultaneously. This

assumption can be enforced by applying a sign correction to each variable. Since POPLS-DA

components are linear combinations, the sign can be reverted after estimation to ensure a cor-

rect interpretation of the effect direction if desired. Currently, POPLS-DA is restricted to the

case that no missing variables are present across each group of samples.

Several databases are available with information on the interaction between genes and

other molecular variables (interactomes) [37]. We chose String-DB since it was found to per-

form well concerning disease prediction [38]. However, they also showed that other databases
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might comprise complementary information. Currently, to the best of our knowledge, no

method can utilize all information across different interactomes. Information bias is another

unsolved problem when using these databases: less studied diseases have less coverage in these

databases [39]. Since synucleinopathies are less common and less studied (compared to, e.g.,

neoplasms), the bioinformatics interpretation of our results is likely to be biased towards well-

studied diseases. Indeed, in DisGeNet, PD has only 2078 annotated genes, while neoplasms

have more than 10000 genes. This could explain why our enrichment analysis based on DisGe-

Net (Table 3) showed many genes annotated with “neoplasms”.

The POPLS-DA method can integrate more than two datasets to distinguish between

experimental conditions in cell lines if the variables in these datasets can be mapped to the

same unit, i.e. genes. For example, SNPs from a GWAS study can be integrated by mapping

them to genes. Here, the distance of a SNP to a gene or its transcription factor binding site [40]

can be used. For methylation, CpG sites are commonly mapped to genes based on their dis-

tance to a transcription start site [41]. Since, typically, multiple SNPs and CpG sites are

mapped to the same gene, an aggregation step is needed to obtain one measurement per gene.

For example, the first principal component of the SNPs or CpG sites corresponding to a gene

can be taken as the final aggregated measurement.

The data from the FDA-approved drugs were integrated and projected onto the interaction

network of the 200 relevant genes obtained from the transcriptomics and proteomics data

analyses. An alternative approach is to simultaneously analyze the transcriptomics and proteo-

mics data together with data on the validated compounds, i.e. drug-augmented data integra-

tion. It has been shown that including such information via penalties into data integration

analysis yields robust results [42]. Such a joint model can pinpoint genes that can discriminate

the two groups while targeted by the compounds, improving the clinical relevance of the list of

top genes.

Conclusion

We validated 41 FDA-approved drugs to be protective against α-synuclein-induced toxicity in

dose-response analyses. We applied a novel data integration approach to combine these drug

data with experimental multi-omics data. Our novel omics integration POPLS-DA identified a

set of 200 relevant genes/proteins that discriminated between samples overexpressing α-synu-

clein and controls, as well as validated drugs targeting these genes/proteins. The set of 200

genes was found to be significantly enriched for PD and MSA genes. Also, this enrichment

was larger than the enrichment of gene sets obtained using other single- and multi-omics

approaches. Some of the drugs (e.g. an ACE inhibitor and an AT1 blocker) could be readily

investigated in PD patients. These findings can potentially be used to develop therapeutic tar-

gets for Parkinson’s disease, multiple system atrophy, and other synucleinopathies.

Materials and methods

Processing samples and measuring data

We describe the screening of 1600 FDA-approved drugs and the acquisition of proteome and

transcriptome data in brief. Details are available elsewhere [1, 11].

FDA-approved drug compound validation. For the dose-response testing, LUHMES

cells were plated in flasks coated with poly-L-lysine (0.1 mg/ml) and fibronectin (5 μg/ml)

in growth medium (DMEM/F12 with 1% N2 supplement and 0.04 μl/ml basic fibroblast

growth factor). After 24h, the medium was changed to differentiation medium (DMEM/

F12 with 1% N2-supplement, 1 μg/ml tetracycline, 0.49 μg/ml N6,2’-O-dibutyryladenosine

3’,5’-cyclic monophosphate, 2 ng/ml glial-derived neurotrophic factor). After another 24
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hours, the cells were transduced with adenoviral vectors leading to overexpression of

human wild-type α-synuclein. On the day after transduction, viral vectors were washed

away, and the cells were replated on 384-well multi-well plates and treated with the differ-

ent drugs solved in dimethyl sulfoxide. For validation, compounds were tested in concen-

trations between 0.6 nM to 20 μM. Compounds that were not protective or did not reach a

protective plateau were further tested in higher concentrations up to 80 μM. The dose-

response data were analyzed using an ANOVA with Dunnett’s post hoc test to correct for

multiple comparisons with GraphPad Prism version 9.4 for Windows 64-bit (GraphPad

Software, San Diego, CA, USA). Fig 4 shows a schematic overview and results of the dose-

response testing.

Transcriptome and proteome data acquisition and processing. For the transcriptome

and proteome data, cells were plated directly in differentiation medium and transduced with

adenoviral vectors leading to overexpression of either human wild-type α-synuclein or GFP,

respectively. After 24 hours, the remaining viral vectors were removed. Samples were collected

four days after transduction. Transcriptome data were measured with Illumina HumanHT-

12_V3 bead chips (Illumina, San Diego, CA, USA). Proteome data were measured by liquid

chromatography-mass spectrometry (LC-MS/MS). The transcription probes were filtered

based on the Illumina detection p-value, where probes were removed when all samples had a

p-value above 0.05. A variance filter was applied where probes were removed if the inter-quan-

tile range (IQR) of a probe did not exceed the 0.5-th quantile of all IQRs. Probes that could not

be mapped to an Entrez identifier were removed.

After pre-processing and filtering, the transcriptomics and proteomics datasets contained

15660 transcription probes and 2577 proteins that could be mapped to Entrez identifiers. Of

these identifiers, 2292 were present in both datasets. We excluded the SNCA measurements

from the data analysis.

For the transcriptomics data, we analyzed three samples from LUHMES cells overexpres-

sing α-synuclein, and three samples from LUHMES cells expressing GFP as a control protein.

For proteomics, the numbers were equal to nine. We determined the sign of the t-statistic of

each mRNA and protein separately with respect to the case-control grouping. When the sign

of the corresponding protein’s t-statistic differed from that of the mRNA, the measurements

for that protein were multiplied by minus one. This adjustment ensures that the difference in

means between cases and controls had a consistent sign across all omics data. The measure-

ments for both datasets were scaled to have zero mean and unit variance.

Computational workflow for multi-modal data

Our workflow for integrated analysis is depicted in Fig 1. To summarize, the workflow begins

with preprocessing the multi-omics data into a data matrix where variables are mapped to the

same nomenclature. We then propose a joint model, POPLS-DA, to analyze the multi-omics

data in terms of the experimental groups.

Next, we prioritize the most relevant genes based on POPLS-DA and integrate them with

validated drugs using a ‘direct neighbor’ approach. This step involves identifying drugs that

significantly reduce the toxicity of α-synuclein aggregation and retrieving the list of genes tar-

geted by these drugs from DrugBank. We then add their direct neighbors in the String-DB

database to the gene lists for each compound.

Finally, we construct an integrated gene-gene interaction network based on the relevant

genes and perform functional enrichment analysis. The network is built with String-DB, and

the nodes are colored according to the number of compounds targeting each gene. We use the

Markov cluster algorithm to identify sub-clusters of genes/proteins. Gene ontology pathway
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Fig 4. Workflow of FDA-approved drug screening and dose-response validation. 1,600 FDA-approved drugs were

screened in two different concentrations (3 μM, 10 μM) in three runs each in an αSyn toxicity cell model. 53

compounds were identified as being protective in at least one run (A). Timeline of dose-response testing (B). In the

first round, concentrations from 0.6 nM to 20 μM of each compound were investigated. 36 compounds could be

confirmed as being protective. Of these, 20 already reached their maximal protective potential and were selected not to
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and disease enrichment analyses are performed using the goana function from the limma
package in R and DisGeNet, respectively.

POPLS-DA model for multi-omics cell line data. For the joint analysis of the transcrip-

tomics and proteomics datasets, a novel statistical data integration method, probabilistic

orthogonal partial least squares discriminant analysis (POPLS-DA) is developed. Details can

be found in S1 Supporting information.

Let xk be a random vector of size p for k = 1, . . ., K. In our data example, k = 1, 2 represents

the 2292 transcriptomics and proteomics data, respectively. Similarly, let yk be a univariate

random variable underlying the outcome. In our data example, yk are the two experimental

conditions (one for cells overexpressing α-synuclein, and zero for the controls) for k = 1, 2. In

the POPLS-DA model, the group status and omics data are linked via latent variables uk of size

r, with r much smaller than the data dimensions. These latent variables represent joint parts of

the two omics datasets that are correlated with the group status. To model omics variables that

contribute to the variation in the omics dataset but do not play a role in distinguishing between

the two experimental groups, specific components vk were added to the model. Residual varia-

tion is modeled by noise terms ek and �k. All random variables are assumed to be zero-mean

normally distributed. The mathematical model for POPLS-DA can be written as

xk ¼ ukWT þ vkPT
t þ ek; yk ¼ ukbþ �k; k ¼ 1; . . . ;K: ð1Þ

The matrix W contains the joint loadings, and the matrices Pk contain the specific loadings for

each gene in each component. The vector β contains the regression coefficients of yk on the

joint components uk. The vector Wβ represents effect sizes for the association of each variable

with the outcome.

The observed datasets are assumed to consist of Nk i.i.d. samples from the POPLS-DA

model (1), with k = 1, . . ., K. Note that the sample size per k is allowed to differ. Based on these

data, the parameters of POPLS-DA are estimated with memory-efficient maximum likelihood.

Technical details are given in S1 Supporting information.

The numbers of components here are denoted by rk, respectively. The number of joint and

specific components, r and rk, have to be specified and can be based on scree plots [43] of the

eigenvalues of the datasets. To select a set of relevant genes/proteins, the obtained effect sizes

Wβ are ranked and plotted. The elbow criterion [43] is used to determine the threshold

between relevant and irrelevant genes/proteins.

Computational workflow for integrating multi-omics and drug screening data. Based

on the POPLS-DA model (1) for multiple omics datasets, we propose a computational proce-

dure for integration and analysis of cell line data. First, the multi-omics data are analyzed with

POPLS-DA to prioritize genes that discriminate cases from controls. The relevant genes/pro-

teins identified by POPLS-DA are further analyzed using several databases on protein-protein

interactions (PPI), drug targets, gene ontology, and gene-disease association.

To construct an integrated interaction network of the relevant genes/proteins, we employed

the String-DB [14] website and the STRINGdb package in R [44]. The network was based on

curated, computational, and experimental data sources, text mining was excluded. A medium

evidence threshold (0.4) was used to define an interaction (edge in the network).

be tested in a higher concentration. The remaining 16 compounds were tested again in concentrations between 2.4 and

80 μM. All of these were confirmed as being protective in at least one concentration. Of the 17 compounds that were

not protective in the first round of dose-response testing, 8 were already toxic and considered not protective. The

remaining 9 were tested again in concentration from 2.4 to 80 μM. 5 of these compounds were protective in higher

concentrations. In total, 41 could be confirmed as protective against αSyn induced toxicity (C).

https://doi.org/10.1371/journal.pcbi.1011809.g004
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To integrate the FDA-approved drug screening data with the obtained integrated interac-

tion network, we first identified drugs that significantly reduced the toxicity of α-synuclein

aggregation. We implemented an automated R procedure using DrugBank [45] to retrieve the

list of genes targeted by these drugs. Using the string_db$get_neighbors function,

the direct neighbors of these targeted genes in the String-DB database were added to the gene

lists for each compound. Then, the number of compounds targeting each gene in the α-Syn-

PPI network was determined. Nodes (genes and proteins) in the network were colored accord-

ing to this number using the “payload” function on the String-DB website.

To identify sub-clusters of genes/proteins in the integrated interaction network, the Markov

cluster algorithm (MCL) [46] on the String-DB website was used. The inflation parameter was

set to two.

Finally, gene ontology (GO) pathway and disease enrichment analyses were performed. For

GO, the goana function from the limma package [47] in R was used, with the whole human

genome as background. For disease enrichment analysis, DisGeNet [13], a disease-gene associ-

ation database implemented in the disgenet2r R package, was used. Here, the “BEFREE”

text mining database was used for the disease-gene enrichment score as it contains more anno-

tations regarding MSA and PD.

Our computational workflow, including POPLS-DA, is available as an R markdown file

automating most of the tasks detailed above. After the datasets are loaded into memory, the

file can be executed and an html file is generated with results and visualizations. The workflow

is available on github.com/selbouhaddani/MultiOmicsCompWorkflow.

Comparing POPLS-DA with competing multi- and single-omic approaches. Integra-

tive (MINT), multivariate single-omics (LASSO), and univariate single omics methods (t-

test) were considered as alternative approaches to analyzing the transcriptomics and proteo-

mics data. For comparison, POPLS-DA and MINT were also applied to single transcrip-

tomics and proteomics data individually taking the 2292 overlapping genes and proteins. For

the single omics approaches, results were integrated by taking the intersection of the

obtained single omic gene lists. For each method, the obtained gene lists were evaluated in

terms of prediction accuracy and enrichment by the DisGeNet Parkinson’s disease and MSA

(PD+MSA) gene set.

For MINT, we used the mint.splsda function from the mixOmics R package [48] and

set keepx, the number of variables to retain, to 200. For LASSO, we used the glmnet func-

tion from the eponymous R package [49] using the binomial family of distribution and

alpha set to one. We set the penalty parameter such that 200 genes resp. proteins are

retained. For the t-test, we used the t.test function in R to test for a difference of means

between the two experimental groups per gene and protein separately. Here, we selected only

the genes and proteins that were significant after FDR correction using the p.adjust
function.

To assess whether the selected genes can be used to reliably discriminate the two experi-

mental groups, we permuted the group labels and applied each approach. The selected genes

were then used to classify the (permuted) group label and calculate whether the accuracy was

1. POPLS-DA, MINT, and LASSO are able to directly estimate class labels for each sample. For

the t-test, we fitted a linear discriminant analysis with the significant genes or proteins as pre-

dictors. If no genes or proteins were significant, the accuracy was set to zero. The number of

permutations was set to 400.

To test for significant enrichment among the selected variables, we used a hypergeometric

test comparing the ratio of PD+MSA genes among the selected variables to the default DisGe-

Net background genome. The resulting p-value was FDR corrected with respect to the number

of DisGeNet terms.
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Supporting information

S1 Supporting information. Supplementary materials for POPLS-DA and data analysis.

The mathematical details and proofs for POPLS-DA are given, as well as additional results and

figures for the data analysis.

(PDF)
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ing-Duistermaat.
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Resources: Matthias Höllerhage, Claudia Moebius, Marc Bickle, Günter Höglinger.
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