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Abstract 

Oligodendrocytes generate multiple layers of myelin membrane around axons of the central 

nervous system to enable fast and efficient nerve conduction. Until recently, saltatory nerve 

conduction was considered the only purpose of myelin, but it is now clear that myelin has 

more functions. In fact, myelinating oligodendrocytes are embedded in a vast network of 

interconnected glial and neuronal cells, and increasing evidence supports an active role of 

oligodendrocytes within this assembly, for example by providing metabolic support to 

neurons, by regulating ion and water homeostasis and by adapting to activity-dependent 

neuronal signals. The molecular complexity governing these interactions requires an in-

depth molecular understanding of how oligodendrocytes and axons interact and how they 

generate, maintain and remodel their myelin sheaths. This review deals with the biology of 

myelin, the expanded relationship of myelin with its underlying axons and the neighboring 

cells, and its disturbances in various diseases such as multiple sclerosis, acute disseminated 

encephalomyelitis and neuromyelitis optica spectrum disorders. Furthermore, we will 

highlight how specific interactions between astrocytes, oligodendrocytes and microglia 

contribute to demyelination in hereditary white matter pathologies. 

 

Introduction 

In 1854 Rudolf Virchow coined the term ‘myelin’ from the Greek word for marrow (‘myelos’) to 

describe the structure particularly abundant in the core of the brain (70). He speculated that 

myelin was secreted by neurons and acted as an insulating mass. A century later, the histological 

stainings by Pio Del Rio Hortega and Wilder Penfield suggested that myelin is not of neuronal 

origin, but is formed by oligodendrocytes. Using silver carbonate stainings, they were able to 

visualize oligodendrocytes with their thin processes connected to myelin sheaths. These stainings 

showed that oligodendrocytes are enriched in the white matter but are also found in the grey 

matter, and are mostly localized intrafascicularly, sometimes also perineuronally or 

perivascularly. Oligodendrocytes generate up to 80 different myelin sheaths on various axons to 

promote rapid saltatory conduction by concentrating voltage-dependent sodium channels at the 

nodes of Ranvier (693). The prevailing view since the discovery of this mechanism in 1949 has 

been that the only function of myelin is to enable maximum conduction velocity and to reduce 

axonal energy consumption (269). However, there are now a number of recent observations 
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challenging this notion. Increasing evidence supports a role for activity-dependent, plastic 

changes in myelin-forming oligodendrocytes that influence neuronal circuit function (181, 190, 

417). Furthermore, evidence is accumulating that oligodendroglia provide metabolic support to 

neurons via their myelin sheaths (197, 344). These new developments are not only expanding our 

knowledge of myelin in normal physiology, but also of its role in the pathology of various 

neurological and psychiatric diseases. This notion of a broader interaction between 

oligodendrocytes and neurons requires an in-depth molecular understanding of how 

oligodendrocytes and axons interact and how they generate, maintain and remodel their myelin 

sheaths. In the present review, we will discuss the structure, composition, formation and function 

of myelin in normal development, and its disturbances in various diseases. We will focus in 

particular on myelin architecture and its underlying biology and pathology, but will not cover 

how oligodendrocyte progenitor cells (OPCs) are specified or how they migrate, proliferate and 

differentiate into myelinating cells. For a discussion on oligodendrocyte biology, we refer to 

previous reviews on the various aspects of this topic (157, 158, 167, 168, 211, 351, 407, 519, 

535, 609, 662). 

 

Myelin structure 

Most of what we know about myelin ultrastructure is based on electron microscopy 

studies that illustrate its multilayered stack with its characteristic periodic structure of alternating 

electron-dense and light layers, the so-called major dense line and the intraperiod line. The major 

dense line represents the closely condensed cytoplasmic surfaces, whereas the interperiod line 

consists of the tightly apposed outer membranes (7, 546). The compaction between the 

membranes in each of these layers results in a periodicity of about 12 nm. At the edges of each 

myelin segment, individual myelin lamellae attach to the axon as cytoplasm-containing terminal 

loops. In a typical myelin sheath, the paranodal domain is about 4 µm long, which allows the 

apposition of up to 40 loops (248). The 10 to 15 µm-long domain adjacent to the paranode is 

called the juxtaparanode. In between the paranodes of two neighbouring myelin sheaths is the 0.8 

to 1.1 µm wide nodal region. The axon is usually constricted in the nodal region, and this 

diameter reduction is more marked in larger fibers (247). The constriction starts at the paranodes 

where the axon diameter is reduced to ~30-50% of its internodal value. In particular, nodes of 

large fibers are completely covered by astrocytic processes (61, 98, 247, 249, 500) which are 

embedded in a granular material mostly composed of extracellular matrix. Ultrastructural 
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analysis of large nodes shows that perinodal astrocytic processes form microvilli-like processes 

that contact to the outer paranodal loops of the oligodendrocytes. 

In chemically fixed samples, the paranodal axoglial junctions, which are similar to 

invertebrate septate junctions, are characterized by intercellular ‘transverse bands’ that anchor the 

paranodal loops tightly to the axon (47, 256). The ‘radial component’, a further feature of myelin 

observed by electron microscopy, appears on cross section as radially oriented, linear thickenings 

of the intraperiod line extending across the myelin sheath (468). These nearly parallel strands of 

autotypic tight junctions (formed between membrane lamellae of the same cell) are arranged both 

through the stack of membranes and in the planes of the membranes parallel to the fiber axis, 

mostly in the region between the inner and outer tongue (220).  

These tight seals of myelin with their apposing lamellae are crucial for the insulating 

properties of myelin, preventing current leakage and allowing for efficient and fast nerve 

conduction. The downside of such a tight arrangement is the difficulty of maintaining molecular 

exchange within the myelin sheath and its associated axon. Thus, pathways enabling molecular 

transport are necessary. These non-compacted regions comprise the outer and inner, periaxonal 

tongues of myelin membranes and the paranodal loops (62, 206, 576). Since electron microscopic 

studies performed on chemically fixed and dehydrated tissue often lead to shrinkage and collapse 

of intracellular spaces, cytoplasmic regions have been difficult to detect in the thin myelin 

sheaths of the CNS. However, using high-pressure freezing electron microscopy to enhance 

tissue architecture or by dye injections, cytoplasmic channels can be seen. 3-D reconstructions of 

cytoplasmic spaces reveal an extensive network of interconnected cytoplasmic pockets (~1.9 

pockets per 10µm sheath length) (652). Together with the paranodal loops, these cytoplasmic 

channels provide the means to distribute molecules or organelles such as peroxisomes and 

lysosomes through the internode (521). During development, when these channels are 

particularly abundant, they have a crucial function in enabling myelin growth by connecting the 

oligodendroglial cell body, the major site of membrane biosynthesis, with the innermost layer of 

myelin, which is in direct contact with the axon (581). In the adult nervous system, they may also 

provide a functional connection between the oligodendrocyte and the periaxonal space, allowing 

the distribution of glial metabolites to the axonal compartment. 

For very small molecules (<1kDa) such as cyclic nucleotide, vitamins and ions, there are 

other possible routes across the myelin sheath. Freeze-fracture replicas of myelinated axons have 

shown abundant intramembrane particles in the external leaflet of the juxtaparanodal membrane 
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of the axon and the innermost myelin layer as well as between the myelin lamellae at the 

paranodes (406, 600, 601). Subsequent work has shown that these structures represent gap 

junctions composed of connexins (4, 290, 425, 440, 448, 549). These gap junctions form a radial 

pathway that shorten transport through the myelin sheath by up to 1000-fold compared to the 

circumferential route following the non-compacted areas within myelin. The gap junctions not 

only couple the periaxonal space with myelin, but also connect to a vast network of 

interconnected glial cells, the so-called panglial syncytium (507). Astrocytes, the most abundant 

cell of the panglial syncytium, are coupled to oligodendrocytes at the cell body and at the 

paranodes where gap junctions directly link the outer layer of the myelin sheath with an 

astrocytic process. Astrocytes are also extensively connected to each other, thereby pervading the 

entire brain parenchyma including the perivascular space at the blood brain barrier (79, 96). 

Furthermore, gap junctions are formed between astrocytes and ependymal, cells providing a 

drainage pathway into the ventricles (508). This system joins the periaxonal space to a highly 

interconnected system of glial cells to provide widespread osmotic and ionic homeostatic 

regulation of the axon-myelin unit. There is also a second route for small molecules into the 

periaxonal space. Although paranodal axoglial junctions form an efficient diffusion barrier for 

most molecules, they leave small triangular junctional clefts near the axonal surface where 

paranodal membranes curve away from each other and into which small molecules can diffuse 

into the internodal periaxonal space (405).  

 

Myelin composition 

Proteins 

Major dense line 

A striking feature of membrane compaction is the generation of a uniform, 3 nm wide, 

electron-dense compartment between two lipid bilayers, into which only few other proteins 

intermix. This unique structure is stabilized by a variety of adhesion mechanisms, of which 

myelin basic protein (MBP) is essential for the compaction of the two adjacent cytoplasmic 

membrane surfaces into the major dense line of myelin (511, 524, 525). MBP is an intrinsically 

unstructured polypeptide chain, however, upon association with membranes, MBP adopts both α-

helical and β-sheet structures (237). The interaction of MBP with the membrane is mainly based 

on electrostatic forces between the basic residues of MBP and the negatively charged headgroups 

of the inner leaflet lipids, phosphatidylserine and phosphatidylinositol-(4,5)-bisphosphate (423, 



6 
 

433). By binding to the cytosolic membrane surfaces, opposite charges are neutralised, allowing 

other forces, such as hydrogen bonding and hydrophobic factors to be unmasked. Membrane 

binding switches the properties of MBP, thereby promoting self-interaction into a tightly packed 

protein phase that occupies the major dense line and binds the cytoplasmic surfaces of the 

bilayers tightly together (6, 498). Such a phase transition from a soluble to a polymerized pool of 

molecules is frequently observed for many structurally disordered proteins, in particular those 

engaged in RNA binding (34).  

 

Intraperiod line 

In contrast to the compaction of the cytosolic surfaces, the mechanisms that mediate the 

close interaction of myelin lamellae at their external surfaces are less well understood. 

Interactions of plasma membranes over long distances are rarely observed in nature as they are, 

in general, prevented by repulsive forces generated by thermal undulation and glycocalyx 

components on the cell surface (541). The proteolipid protein (PLP) together with its splice 

isoform DM20 is the most abundant transmembrane protein in CNS myelin and an ideal 

candidate for the tight apposition of membrane sheaths via its hydrophilic extracellular domains 

(67, 310, 431). Although abnormally compacted myelin is often seen in aldehyde-fixed tissue 

from mice lacking PLP and DM20, this is not the case when using high-pressure freezing 

electron microscopy, indicating that myelin is physically unstable during processing for 

conventional electron microscopic analysis (32). Even if these studies suggest a possible function 

of PLP in myelin adhesion and stability, the major phenotype observed in mice lacking PLP and 

DM20 is axonal degeneration and swelling (333). Related molecules such as the PLP homolog, 

glycoprotein M6B, or the structurally related tetraspanins or claudins may compensate the 

adhesive function of PLP (122, 146, 665). Another possibility is that loss of repulsive forces from 

the external surface of myelin is sufficient to uncover the weak generic interactions necessary for 

membrane compaction (32). The reason why oligodendrocytes use weaker forces for the 

apposition of their extracellular membrane surfaces, as compared to the cytoplasmic leaflets, 

might lie in the way myelin is formed. During myelin wrapping, the external membrane surfaces 

of myelin need to glide along each other, and this is only possible if the membranes are of low 

adhesiveness.   

  

Radial component 
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The radial component is a network of interlamellar tight junctions composed of claudin-

11 that connect the outer leaflets of the myelin lamellae (220, 420). Mice lacking claudin-11 

suffer from mild tremors, gait abnormalities, motor defects, and electrophysiological 

abnormalities, including a 50% decrease in conduction velocity in small diameter axons (220). 

These abnormalities do not arise from disruption of myelin or axonal architecture, but from the 

changes in the barrier function of myelin (152, 154). Tight junctions potentiate the insulative 

properties of myelin, in particular of small caliber axons, reducing current flow through myelin 

and allowing for efficient saltatory nerve conduction. 

 

Cytoplasmic regions  

When MBP is bound to two adjacent cytoplasmic membrane surfaces, it drives membrane 

zippering at the cytoplasmic surfaces of the myelin bilayer. The zippering results not only in the 

extrusion of cytosol, but also in the formation of a narrow and dense protein phase that limits the 

entry of most proteins into the myelin sheaths (7).  To maintain functional cytoplasm-rich 

compartments within myelin, there must be mechanisms to oppose MBP-mediated membrane 

compaction. 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP1) is such a factor, as CNP1-

deficient mice have a lower number of cytoplasmic channels within their myelin sheaths (582) 

(FIGURE 1). CNP1 directly associates with the actin cytoskeleton, forming a firm structure that 

is able to antagonize the adhesive forces exerted by polymerizing MBP molecules (141, 582). It 

is possible that CNP1 together with the actin cytoskeleton forms struts that keep the cytoplasmic 

leaflets at a sufficient distance to prevent membrane compaction. Cytoplasmic channels may be 

required to support efficient diffusion of metabolites and allow motor-driven transport of 

vesicular cargo within myelin. Cytoplasmic channels may also be necessary for the transport of 

trophic molecules to the periaxonal space to maintain functional axon-glial units. This model 

concurs with the finding that CNP1-deficient mice exhibit progressive axonal pathology with 

axonal swellings and spheroid formation (333). CNP1-deficient mice have also disrupted 

paranodes and swollen inner tongues, often containing amorphous granular material, 

microtubules and, occasionally, mitochondria and autophagic vacuoles, possibly as a 

consequence of a traffic jam (165, 506). By reducing MBP levels cytoplasmic channels are 

restored in in CNP1-deficient mice and axonal pathology is reduced in large caliber axons (582).  

 

Gap junctions 
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Gap junctions are composed of connexins, a family of integral membrane proteins 

composed of four transmembrane domains joined by two extracellular loops (4). Six connexins 

oligomerize into a hemichannel, and two hemichannels on apposing cell membranes form the gap 

junctions, permeable to diffusion of ions and small molecules (typically less than 1kDa). 

Paranodal homotypic gap junctions are composed of a single connexin protein (‘homotypic gap 

junction’), whereas oligodendrocyte/astrocyte gap junctions are composed of different connexin 

proteins forming ‘heterotypic gap junctions’. Oligodendrocytes express Cx32, Cx47, and Cx29, 

whereas astrocytes mainly contain Cx30 and Cx43. Cx32 is localized to oligodendrocyte cell 

bodies, to the abaxonal membrane, and at the paranodes, where it forms Cx32/Cx32 channels (15, 

290, 309, 388, 443). Oligodendrocyte/astrocyte gap junctions are mainly composed of 

Cx47/Cx43 and Cx32/Cx30 channels, of which Cx47/Cx43 channels are largely localized 

adjacent to oligodendrocyte somata, whereas the Cx32/Cx30 channels are mainly found on the 

outer layer of myelin sheaths. Cx29 hemichannels are localized at the internode, along the 

adaxonal membrane of small myelinated fibers (8, 14). These gap junctions enable metabolic 

transport, spatial buffering, and electrical coupling between the cells. Disturbances of gap 

junction coupling lead to various forms of leukodystrophies and may also be involved in the 

pathogenesis of neuromyelitis optica (364). 

 

Axon-glial junction 

The paranodal axon-glial junction attaches the myelin sheaths at each end of the myelin 

segment to the axon. A single junction is an extremely large structure with an area occupying up 

to 150 µm2 (533). The main function of the junction is to provide electrical insulation by 

restricting current flow beneath the myelin sheath. To do so, the junction fixes the paranodal 

membrane close to the axon, leading to the formation of a barrier separating the nodes from the 

internodal axon. However, the barrier that is formed is not absolutely tight. There are small 

junctional gaps between the paranodal loops which can be used for the diffusion of ions, nutrients 

and other metabolites in between the axon and the myelin sheaths (405). These gaps are so 

narrow, and the junctions so long, that short-circuiting of nodal action potential currents is 

efficiently restricted, while slow diffusion of metabolites to the internodal axon is permitted. The 

junction consists of a tripartite complex of cell adhesion molecules, composed of contactin-

associated protein (Caspr) and contactin-1 at the axonal and neurofascin (NF155) at the glial side 

(57, 72, 113, 214, 504). The lateral organization of these complexes into larger protein arrays 
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leads to the appearance of electron-dense transverse bands when visualized by electron 

microscopy. These complexes are further interconnected through the attachment to a 

submembranous layer of cytoskeletal scaffolding proteins (456). These are ankyrinG at the glial 

side and the scaffolding proteins 4.1B, αII spectrin and βII spectrin at the axonal side of the 

paranode (18, 111, 257, 445, 696). The subcortical axonal cytoskeleton is composed of repeating 

ring-like arrangement of short actin filaments (135, 683). These actin filaments are capped at 

their barbed ends by α-adducin and connected longitudinally by spectrin tetramers. This 

arrangement results in the formation of quasi-1D lattice structures with a periodicity of ~180 to 

190 nm. Super resolution microscopy of myelinated sciatic nerve fibers has shown that many of 

the nodal and paranodal components such as ankyrinG, Caspr, NF168 and voltage-gated sodium 

channel associate with these ring-like actin structures (134, 136). Such a structural arrangement 

of the cell adhesion to several layers of cytoskeleton components is a common theme in domain 

organization at the axon-glial interface and is also seen at the juxtaparanode. 

One important function of the paranodal axon-glial junction is to segregate the voltage-

gated sodium channel at the nodes from the Kv1 K+ channels consisting of Kv1.1, Kv1.2, Kv1.4, 

and KVβ2 subunits at the juxtaparanodes (503). The localization of Kv1 channels depends also 

on the interaction with axonal Caspr2 and glial TAG-1 (also known as contactin-2). Caspr2 and 

TAG-1 most likely form a diffusion trap that in turn forms ‘sticky spots’ which result in the 

clustering and the immobilization of Kv1 channels at the juxtaparanodes (481, 629). The 

association of Kv1 with ADAM22 and with PSD95 and PSD93 via its PDZ-binding motive may 

serve as an additional mechanism involved in the clustering and/or stabilizing of the channels at 

the juxtaparanode (261, 444). 

 

Axon-glial internodal domain 

The internodal region of the myelinated axon is also organized into a specialized domain. 

In addition to the paranodal staining, an internodal strand of Caspr extends into the internodal 

domain, contacting the inner lamellae of the myelin sheath. Unlike axons in the PNS, there is no 

internodal strand of Kv1.1, Kv1.2, Kvβ2 and Caspr2 in the CNS (23). While Caspr is confined to 

a thin band of the internodal region only in contact with the tip of the inner tongue of myelin, 

myelin-associated glycoprotein (Mag) localizes around the entire circumference of the adaxonal 

myelin membrane (497). Mag interacts with specific neuronal gangliosides, such as GT1b and 

GD1a (127, 299, 558, 685). High pressure freezing electron microscopy has revealed an axon–
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myelin spacing of ~ 10 nm (581). This periaxonal diameter matches exactly with the crystal 

structures of the Mag-full ectodomain (495). Whereas monomeric Mag could span 

intermembrane distances of ∼16 nm, the cis dimerization of Mag brings the cytosolic regions into 

close proximity and restricts the periaxonal diameter to 10 nm. The dimerization of Mag may also 

trigger downstream signaling cascades. Mag-induced signaling involves various kinases such as 

fyn tyrosine kinase in oligodendrocytes and Cdk5 and ERK1/2 in axons (138, 241, 636). Whereas 

fyn activation occurs by the association to its cytoplasmic domain, it is not known how the 

extracellular domain of Mag communicates the signal to the axoplasma. Mag-induced Cdk5 and 

ERK1/2 activation, in turn, induces the phosphorylation of neurofilaments and microtubule-

associated proteins, thereby contributing to the maturation of the axonal cytoskeleton and to the 

thickening of the axon diameter. Consequently, Mag-deficient mice exhibit reduced 

neurofilament phosphorylation and axonal caliber, possibly leading to progressive axonal loss in 

aged animals (689). Surprisingly, myelin ultrastructure is relatively normal, with only subtle 

abnormalities such as redundant hypermyelinations (418, 636). Whether Mag contributes to the 

selection of axons for the initiation of myelination is not known, but it is possible that it acts 

together with immunoglobulin cell adhesion molecules (Cadm) (i.e., Cadm3/Necl1/SynCAM1 

and Cadm4/Necl4/SynCAM4) that have also been found to localize to the myelin–axon 

internodal interface (382, 591).  

Yet another stabilizing structure of the axon-myelin unit are filamentous scaffolds in the 

innermost layer of myelin that extend longitudinally along the internode. These filaments are 

composed of distinct septin monomers (Sept2/Sept4/Setpt7/Sept8) and are associated with the 

adaptor protein anillin (461). Lack of septins causes myelin focally to detach from the axon and 

to form outfoldings.   

 

Lipids 

Intermolecular cohesions between lipid molecules play a major role in the generation of 

myelin (7, 123, 441, 557). Myelin contains high levels of saturated, long chain fatty acids and is 

enriched in glycosphingolipids (~20% molar percentage of total lipids) and cholesterol (~40% of 

molar percentage of total lipids) (557). Galactosylceramides and sulfatides with long chain fatty 

acid moieties, in particular 24:0 and 24:1 fatty acids, are the most typical myelin lipids. Long 

chain fatty acids are also observed in other lipid classes. The high proportion of saturated, long-

chain fatty acids influences membrane structure such as membrane thickness and the packing 
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density of lipids within myelin. The role of long chain fatty acids in ceramides has been analysed 

by targeting ceramide synthase 2 gene (CerS2), one of six members of the ceramide synthase 

gene family. CerS2 null mice have reduced levels of galactosylceramides and sulfatides with very 

long chain fatty acyl chains (C22:0-C24:0). However, they form relatively normal myelin with 

mild structural defects, such as focal detachments of myelin lamellae (271, 473).  

Mice that lack the UDP-galactose:ceramide galactosyltransferase (CGT) do not synthesize 

galactosylceramide and sulfatide and develop severe neurological deficits a few weeks after birth 

(69, 125, 161). Myelin is formed, but its thickness is reduced, redundant myelin outfoldings are 

observed, and the paranodes are disorganized with the loops facing away from the axon. 

A similar paranodal phenotype is found in mice lacking cerebroside sulfotransferase 

(CST), an enzyme required to generate sulfatides (260). CGT- and CST-null mice express axonal 

paranodal Caspr and Contactin-1, but lack glial paranodal NF155 (551). Since total cellular 

NF155 levels are unaltered in these mice, it is likely that sulfatides are required to cross-link 

and/or to stabilize NF155 at the paranodes.  

Another class of myelin-enriched lipids are ethanolamine plasmalogens. Plasmalogens 

contain a vinyl ether linkage at the sn-1 position and an ester linkage at the sn-2 position. The sn-

2 acyl chain is oriented perpendicularly, favouring a closer alignment of both acyl chains in 

plasmalogens. In addition, the lack of carbonyl oxygen at the sn-1 position increases the 

hydrophilicity and results in stronger intermolecular hydrogen bonding between the headgroups 

(557). Thus, plasmalogens may increase the packing density and as a consequence the stability of 

myelin. However, mice deficient in PEX7, a receptor for a class of peroxisomal matrix enzymes, 

or deficient in the peroxisomal dihydroxyacetonephosphate acyltransferase gene (DAPAT), the 

key enzyme involved in plasmalogen biogenesis, produce relatively normal myelin, although 

with an unaltered lipid composition, again pointing to compensatory mechanisms (82, 528).  

Due to its unique structural properties, cholesterol is one of the few lipid classes that 

cannot be replaced by other lipids. However, after oligodendrocyte-specific deletion of squalene 

synthase, catalyzing the first committing step of cholesterol biosynthesis, myelination is still 

possible, but is severely delayed (543). Surprisingly, these mutant oligodendrocytes are able to 

take up cholesterol from extracellular sources and to initiate myelination. In squalene synthase-

deficient oligodendrocytes the rate of myelination is slower, but some myelin sheaths are formed 

with almost normal morphology. Even under physiological conditions oligodendrocytes receive a 
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substantial fraction of cholesterol from astrocytes, and this pathway is likely to be upregulated 

when oligodendrocytes are unable to synthesize it by themselves (102).  

Taking these studies together, it is clear that myelin structure is particularly insensitive to 

perturbations of individual lipids (but also proteins), and has a strong capacity to maintain its 

specific organization. The reason may be that lipids behave and act as collectives. Thus, after 

deleting the synthesis of one lipid class the synthesis of structurally related lipids increases and 

takes over function. How oligodendrocytes sense the lack of one component and adjust the 

synthesis of another structurally related molecule is one of the unsolved mysteries.  

 

Myelin function  

Action potential propagation 

 A hallmark of myelinated fibers is saltatory nerve conduction, which enables faster and 

more efficient propagation of signals as compared to unmyelinated axons of the same diameter 

(522). To allow for saltatory conduction, the myelin sheath must be tightly sealed to the axon to 

prevent current leakage below the myelin sheath. Not surprisingly, mice lacking the essential 

components of the paranodal axon-glial junction such as Caspr, contactin-1 and NF155, develop 

severe neurological phenotypes that lead to death within a few weeks after birth (57, 72, 566). 

Notably, the neurological phenotype is much more severe as compared to MBP-deficient shiverer 

mice. Shiverer mice form less myelin and the myelin that is formed consists of loosely 

compacted myelin lamellae with only up four wraps of unstable myelin (525, 581). Some of the 

basic structural elements of myelin such as the radial component and the axo-glial junctions are 

still present in shiverer myelin (532), but most of the axonal surface lack myelin entirely. Thus, 

the non-insulated nerve fibers in shiverer mice may still be able to propagate action potential, 

albeit in an immature continuous manner, whereas mice lacking paranodal junctions suffer from 

conduction blocks caused by current leakage. A major function of the paranodal junction is to 

separate voltage-gated sodium and potassium channels. This spatial segregation of conductance is 

of vital importance for the isolation of the potassium-sensitive nodes from exposure to high 

potassium levels. Potassium levels beyond 4 to 5 mM cause repetitive depolarization, and further 

increases can lead to conduction blocks due to an inactivation of the sodium channels (507). To 

avoid this, the outward potassium current is confined to the juxtaparanodal and internodal 

membrane. Since the number of axonal potassium leak channels and sodium/potassium ATPase 

may not be sufficiently high to handle the increased potassium load in the periaxonal space, one 
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important function of myelin is potassium siphoning (45). This may occur by potassium leak 

channels such as Kir4.1 and/or gap junctions in the innermost layer of the myelin sheath (335). 

Oligodendrocyte-specific deletion of Kir4.1 leads to slower clearance of extracellular K+ and 

delayed recovery of axons from repetitive stimulation, as well as spontaneous seizures (335, 

554). Because oligodendrocytes express Cx29 – which lacks coupling partners – at the paranodal 

loop, it is also possible that Cx29 functionally couples with the axonal expressed Kv1 channels 

that localize to the same area (507). Within the cytoplasmic areas of the paranodal loops and/or 

the inner myelin tongue, potassium must be rapidly transferred out of the myelin sheath (389). 

This can be achieved by Cx32/Cx32 channels linking the cytoplasmic spaces of the paranodal 

loops to each other, providing a shortcut to the outermost myelin lamellae on to which astrocytes 

connect using another set of gap junctions (348). Depending on the distance of the coupled 

astrocytes to the drainage system, these intercellular fluxes of water and potassium may either be 

directly transferred to the astrocyte endfeet or travel through another layer of astrocytes using 

astrocyte-to-astrocyte gap junctions. Efflux of potassium and water occurs from the astrocytes 

endfeet at the glia limitans into the circulation or at the meninges into the cerebrospinal fluid. 

Potassium efflux is likely mediated by Kir4.1 and water by aquaporin-4 channels at the endfeet 

(96). Electrical voltage and osmotic gradients are thought to be the driving forces for water and 

potassium siphoning (507). Following an action potential, the periaxonal space depolarizes to as 

high as +75 mV, whereas the negative membrane potential of astrocyte endfeet of -85 mV 

provides a potential difference of +160 mV which may drive the potassium from the periaxonal 

space, through the myelin sheath and into astrocytes (139, 140). In addition, the high potassium 

concentration of 20-100 mM at the periaxonal space as compared to 2 mM in the capillary lumen 

may provide an osmotic driving force.  

 

Metabolic coupling 

The formation of tight barriers and compacted layers of insulating membrane are needed 

to prevent ion leakage, but this arrangement comes at a price. The axonal surface becomes 

disconnected from the extracellular, nutrient-rich environment, and as a consequence, the axon 

must work together with the myelin sheath to obtain vital metabolites. This dependency of axons 

on oligodendrocytes to meet metabolic demand has led to the idea of their metabolic coupling.  

The built-in system of cytoplasmic channels that run through the myelin sheath and connect the 

oligodendrocyte soma to the innermost layer of the myelin sheath is a necessary structural 
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requirement for myelin to function as a metabolic supporter of neurons. The concept that glial 

cells contribute to neuronal metabolism was initially proposed for astrocytes and led to the 

astrocyte-neuron lactate shuttle hypothesis (295, 464). However, astrocytes contact neurons 

mainly at the cell body, synapses and nodes, but not along the length of the axon. Axons are 

covered by myelin, and space at the nodes is limited; therefore, it does not appear feasible that 

nodes harbor all essential surface molecules that are required for uptake of nutrients and 

metabolites from the extracellular environment. Instead, it is more likely that metabolic uptake 

occurs in part via myelinating oligodendrocytes (475, 537) (FIGURE 2). The capacity of 

oligodendrocytes to generate high levels of lactate was demonstrated in conditional Cox10 

(protoheme IX farnesyltransferase) mutant mice, in which oxidative phosphorylation was 

specifically prevented in oligodendrocytes (197). Cox10-conditional mutants form normal 

myelin, but magnetic resonance spectroscopy reveals increased brain lactate concentrations, 

pointing to the capacity of oligodendrocytes to maintain ATP levels by glycolysis alone. 

Oligodendrocytes may not only use lactate for their own metabolism, but also to support neurons. 

Indeed, oligodendrocytes were found to express monocarboxylate transporters (MCT1) at the 

adaxonal membrane of the myelin sheath (344).  The main function of MCT1 is to co-transport 

lactate, pyruvate, and ketone bodies together with H+ ions across membranes along a 

concentration gradient. Oligodendrocyte-specific knockdown of MCT1 in organotypic slices lead 

to axonal injury, which is corrected by addition of lactate into the culture medium. In addition, 

Mct1 heterozygous aged knockout mice or mice with oligodendrocyte-specific Mct1 deletion 

develop axonal degeneration without any visible alterations of myelin. Together, this has led to 

the concept that oligodendroglial lactate (or pyruvate) is used by axons when energy levels are 

low. Oligodendrocytes appear to sense the metabolic demands of axons by NMDA receptors that 

are associated with the internodal/paranodal membrane (538). These receptors respond to axonal 

glutamate release, resulting in the incorporation of additional glucose transporters into 

oligodendrocytes and myelin to fuel glycolysis. Thus, the oligodendrocyte-lactate shuttle might 

be driven by neuronal activity, which controls production of lactate to adapt to high axonal 

energy needs. 

An alternative pathway for the transport of nutrients is through a gap junction. The pan 

glial syncytium, connecting the vasculature with glial cells via gap junctions to the axon, is 

perfectly poised to participate in supporting the metabolic demands of neurons. Since most polar 

molecules with a mass of less than about 1kDa can pass through gap junctions, many metabolites 
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including sugars, amino acids, and nucleotides can flow between the interiors of the cells. These 

metabolites can diffuse down their concentration gradient to other astrocytes within the large 

syncytium, and possibly also to oligodendrocytes and from there to neurons. The contribution of 

gap junctions to the metabolic support of neurons has been difficult to test, as these gap junctions 

also contribute to other processes such as myelination and potassium siphoning.  

Yet, another pathway in oligodendrocyte and neuron communication is through the 

exchange of exosomes/microvesicles. Oligodendrocytes produce relatively large amounts of 

microvesicles (33, 322, 628), and these vesicles have been shown be secreted in response to 

activity-dependent release of glutamate (195). Neurons are able to internalize the released 

microvesicles by endocytosis. Improving neuronal viability under conditions of cell stress 

appears to be one function of microvesicles (195). Further research will be necessary to define 

the molecules that mediate these neuroprotective effects. 

 

Myelin formation 

Axon selection 

Myelination progresses according to a relatively fixed chronological and topographic 

sequence. It starts in areas dedicated to basic homeostasis, proceeds to regions controlling more 

complex tasks, and ends in areas required for the highest intellectual functions (83, 304). Within 

a neuronal pathway, myelination often progresses in a proximal to distal direction, and within a 

brain region from a central region to the poles. Fiber systems that mediate sensory input are 

usually myelinated before the systems carrying motor output are. As a simplified general rule, 

myelination usually ascends along a hierarchical order of increasing complexity of nervous 

system functions, and axons in regions that are myelinated early are also myelinated more rapidly 

and more completely. For example, all axons in the optic nerve are myelinated, and this happens 

early and fast, whereas myelination of axons in the frontal cortex is late, slow and incomplete. 

Within the cortex, there are not only myelinated and non-myelinated axons next to each other, but 

also partially myelinated axons. Such a patchwork pattern of myelinated segments with long 

unmyelinated stretches of up to ~ 50 µm was initially observed in axons that arise from cortical 

neurons (624). A large proportion of these incompletely myelinated axons appear to be 

parvalbumin-positive basket cells (402)with myelinated segments preferentially localizing to the 

axon arbor near the cell body (402, 597).  These complex patterns raise the question of how 

oligodendrocytes select which axons and which part of the axons are to be myelinated. So far, the 
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search for factors in axons that determine whether they will be myelinated or not has been 

unsuccessful. In fact, oligodendrocytes are able to ensheath and/or wrap myelin around artificial 

glass or polymer substrates (48, 342). Such experiments have led to the concept that physical 

cues such as axon caliber size play a major role in regulating myelination (49). Axons of large 

caliber with a diameter of 1 µm or more are notably not only the first to be selected for 

myelination, but are usually also fully myelinated. In contrast, axons with a diameter of 0.2 µm or 

less are generally left completely unmyelinated. One possible explanation for size-dependent 

myelination is the inability of myelin to bend beyond a certain curvature, making wrapping of 

small calibre axons difficult. Indeed, when oligodendrocytes are cultured together with inert 

fibers of different diameters, there is a size-dependent ensheathment of fibers with a diameter of 

0.4 µm or more (342). However, in the brain there is an intermediate range of axon diameter, 

between 0.2 µm and 0.8 µm, where axons can be myelinated or not (515, 660). In addition, there 

are many tubular structures such as dendrites and glial processes that are never myelinated. 

Clearly, diameter cannot be the only factor determining which axons oligodendrocytes select for 

myelination. Oligodendrocytes constantly sample their environment using highly dynamic 

processes equipped with yet unidentified sensing molecules, which upon interaction with 

membranes either mediate retraction or - once the appropriate axon is found - stabilize contact 

(133, 266, 307). Sheath retraction is mediated by elevation of intracellular Ca2+ levels, which in 

turn activates Ca2+ dependent proteases such as calpain to mediate cytoskeleton breakdown (35, 

323). 

Most cells are covered by a shell of inhibitory cell surface molecules, forming the 

negatively charged glycocalyx that mediates electrostatic repulsion between the negatively 

charged cell surfaces, thereby preventing unspecific contact. In addition, repulsive guidance 

molecules inhibit the interaction or the outgrowth of oligodendroglial processes (574). A number 

of such inhibitory molecules such as PSA-NCAM on immature neurons (112), JAM2 on the 

somatodendritic compartment (513), Lsamp on neurons of the limbic system (565) and class 3 

semaphorins (477, 607) have been identified. How specificity is provided to this interaction 

remains an enigma. The current model, based on the combination of physical cues and loss of 

negative inhibitory factors, is likely to be only part of the answer. Repulsive molecules may 

operate together with instructive molecules to ensure that contacts are made where they should. 

However, the search for such instructive signals has been disappointing. Most factors such as 

electrical activity, glutamate release, neuregulin signalling, or interactions with extracellular 
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matrix receptors of the integrin family modulate myelination to some extent, but do not determine 

whether myelination will occur or not (54, 81, 101, 142, 151, 339, 363, 403, 656, 668). 

 

Myelin growth 

 One of the initial ideas of how myelin is generated was by neuronal secretion of lipid-

protein droplets, which would ‘crystallize out’ into myelin with its characteristic fine structure. In 

a seminal study, Betty Ben Geren showed that myelin is not axon-derived, but a continuous 

membranous extension of Schwann cells (52). She showed that the thickness of the forming 

myelin sheath is dependent on the number of concentric lamellae, and the younger the fiber, the 

smaller the number of layers. Bunge et al. observed the motion of the Schwann cell nucleus 

during myelination, and concluded that as the cell does not change its position, the inner tongue 

of the myelin membrane must be responsible for its movement underneath the growing sheath 

(95). Together, these studies established the “jelly roll or carpet crawler” model of spiral 

wrapping in the PNS.  

The connection of a Schwann cell to the myelin sheath is relatively easy to visualize by 

electron microscopy in the PNS, but the association of oligodendrocytes to myelin is difficult to 

observe in the CNS, where fine processes separate the cells from their myelin sheaths. With the 

progress of sample preparation and fixation conditions, it was eventually possible to visualize the 

outer tongue of myelin connected to an oligodendroglia process (381, 469). Using serial 

sectioning for electron microscopy, the Bunge laboratory discovered that a single 

oligodendrocyte generates multiple myelin internodes wrapped around different axons (94). To 

understand how each of these processes wraps around an axon to form myelin has been 

challenging, and has led to the proposal of various models. Some of them diverge considerably 

from the ’jelly roll or carpet crawler’ model of the PNS. One model proposes that myelin forms 

by coalescence of intracytoplasmic membranes (147), or by the fusion of glial processes from one 

or different oligodendrocytes (366). A recent study using 3-D electron microscopy came to a very 

similar conclusion (608). According to this model, myelin membrane is synthesized in the 

perikaryon and transported as tubules which eventually fuse inside of oligodendroglial processes 

where they form ‘myelin’ (608). Another study proposed that myelin wrapping is accomplished 

by the addition of new layers on top of the inner ones in a ‘croissant-like’ manner (583). 

Alternatively, myelin may twist as a coil across the axon in a corkscrew motion (‘yo-yo’ model) 

(462). This is supported by time-lapse light microscopy analysis of oligodendroglial processes 
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revealing their movement in a corkscrew-like manner around the axon, followed by focal 

expansion of these processes (272). According to these models, one single glial process encircles 

spirally the future internode, followed by the lateral growth of all layers over each other. The 

reason for the multitude of models lies in the complicated pattern a developing myelin sheath 

displays in the CNS. In the PNS, the glial membrane extends along a large portion of the axon 

before it makes one turn and moves underneath the growing sheet (93). Thus, the number of 

layers is relatively uniform at all stages of its formation.  In the CNS, in contrast, the number of 

myelin layers can vary along the length of the myelinated segment, resulting in the formation of a 

coil with an average periodicity of 5.7 to 7 µm (97, 462, 583). With 3-D electron microscopy 

techniques together with high-pressure freezing for fixation of the tissue, it is possible to 

determine the structure of the developing myelin sheath in sufficiently large volume and close to 

its native state (581). When determining myelin structure from development to maturation, a 

model arises that brings together several features of the above mentioned studies. This model 

suggests that myelin grows towards the node, wrapping the leading edge at the inner tongue 

around the axon and underneath the previously deposited membrane (FIGURE 3). Each myelin 

layer always remains in close contact with the axonal surface, thus forming the coiling helical 

pattern previously described (97, 462, 583). These lateral edges move towards the future node 

where they align and position as paranodal loops. How the layers become fixed to the axon is not 

known. One possibility is that they are attached to the axon by axo-glial adhesion molecules such 

as NF155, Caspr and contactin-1 (462, 700). However, these molecules do not seem to be 

required for myelin growth, as myelin is still generated when the axo-glial junctions are not 

formed (126, 604, 700).  

 

Contribution of myelin in node formation  

Concomitant with the further lateral extension of the myelin sheath, sodium channels start 

to cluster adjacent to the edges of lateral loops (505, 604). Further longitudinal growth of myelin 

leads to movement of such ‘heminodes’ towards each other, until ultimately two neighboring 

heminodes fuse, thereby forming a node of Ranvier. Along most axons of the CNS, sodium 

channels are positioned by direct contact to the developing myelin sheath. In most cases, the 

clustering of sodium channels follows the formation of paranodes (505). However, paranodes are 

not absolutely required for the formation of nodes. Disruption of paranodal junctions causes only 

mild perturbations to sodium channel clustering (57, 478, 619). In addition, soluble factors have 
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been described that promote sodium channel clustering in the absence of myelin deposition (192, 

292, 293). It appears that there are three distinct mechanisms at work in the formation of nodes: 

1) a glia-derived extracellular matrix complex containing proteoglycans and adhesion molecules 

such as versican, brevican and Bral1 that cluster NF186; 2) axonal cytoskeletal scaffolds 

consisting of ankyrinG-βIV spectrin that stabilize nodal sodium channels; and 3) the already 

mentioned paranodal axoglial junctions that function as barriers to restrict the position of nodal 

proteins. To arrive at this model, compound knockout mice had to be generated in which at least 

two of these overlapping mechanisms were targeted simultaneously. Mice with two mechanisms 

disrupted at once had profound disruptions in node formation as compared to mice lacking just a 

single clustering mechanism (604).  

 

Forces and signals driving myelin wrapping  

To wrap myelin around the axons, a mechanism is required to overcome the adhesive 

forces that are generated when the inner tongue crawls underneath the forming myelin sheath. 

Actin dynamics appear to play a crucial role in this process (434, 703), but these are still not 

completely understood. Strikingly, actin depolymerizing drugs (which in most cells lead to 

process retraction) promote the extension of a developing myelin sheet in culture (434, 703) and 

even in vivo (703). One possibility is that actin-depolymerizing agents enhance actin dynamics by 

supporting the iterative cycles of polymerization/depolymerization at the leading edge that drives 

its protrusion. Actin is dynamically remodeled by both polymerizing/nucleating factors (such as 

members of the Wiskott-Aldrich syndrome protein family) which regulate the Arp2/3 (Actin-

Related Proteins) complex, and depolymerizing factors (ADF/cofilin family members) which 

break down actin behind the front and free actin monomers for reassembly. Conditional ablation 

of members of the Wiskott-Aldrich syndrome or ADF/cofilin1 proteins results in profound 

defects in myelination (180, 284, 303, 434, 439). Arp2/3 has been deleted at different stages of 

myelin development (702), and its deletion at early stages of the oligodendrocyte linage impairs 

myelination as expected. Surprisingly, the conditional ablation at a later stage does not affect 

myelin growth.  One possible explanation is that actin-mediated forward propulsion at the leading 

edge is only required for ensheathment, but not for later stages of myelin wrapping, which may 

instead be driven by other forces such as hydrostatic pressure built up by MBP. Lengthening of 

the myelin sheath is controlled by the rate of Ca2+ transients (35, 323). Such Ca2+ transients may 

regulate the activity of proteins involved in cytoskeletal dynamics or in signalling such as the 
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PI3K-AKT-mTOR pathway, which is Ca2+-activated and which promotes myelin growth when 

activated in oligodendrocytes (699). 

Myelin biogenesis is associated with the synthesis of huge amounts of membrane. 

Oligodendrocytes that form myelin around small-diameter axons generate as many as 80 

internodes ranging from 20 to 200 µm in length with up to 60 different myelin layers, whereas 

oligodendrocytes that myelinate larger caliber axons have fewer processes, but longer internodes 

and thicker myelin sheaths (121, 248, 380, 422, 516). The surface area of myelin formed by one 

oligodendrocyte, estimated at 20 x 105 µm2, appears to be relatively constant between cells (474). 

Myelin synthesis occurs along the biosynthetic pathway, where myelin lipids preassemble 

together with proteolipid proteins (PLP), followed by its vesicular transport to the myelin sheath 

using motor proteins (40, 41, 573, 577, 669). Using the glycoprotein G expressed by vesicular 

stomatitis virus to follow membrane trafficking in myelin showed that newly synthesized proteins 

are delivered to the inner tongue close to the axon (581). The transport of the vesicles occurs 

through cytoplasmic channels that connect the oligodendroglial cell body with the innermost 

layer of myelin. For the lateral growth, membrane needs to be transported to the lateral 

cytoplasm-enriched loops of each myelin layer. Some of the cytoplasmic channels extend 

laterally within the myelin sheath and appear to end within myelin outfoldings (581). These 

myelin outfoldings are abundant in the growing myelin sheath, suggesting that they are a 

physiological structure and part of normal myelin development, possibly formed by not fully 

matching radial and longitudinal growth rates.  

To generate myelin, radial and longitudinal growth need to be coordinated. A variety of 

signalling systems have been identified using mouse mutants that show distinct overgrowth 

phenotypes. Mice in which phosphatidylinositol 3,4,5-triphosphate (PtdIns (3,4,5)P3) levels are 

specifically elevated by genetic disruption of Pten in oligodendrocytes have thicker myelin and 

display myelin outfoldings (210). Increase in myelin thickness occurs also when constitutively 

active AKT kinase, a downstream target of PtdIns (3,4,5)P3, is expressed in oligodendrocytes 

(188). The scaffold protein, Discs large 1 (Dlg1), has been identified as a brake on myelination in 

the PNS (130); however, in the CNS, Dlg1 enhances AKT activation and promotes myelination 

(438). Other phosphatidylinositol signal pathways are also known to regulate myelination. In 

mice, mutations of Fig4, Pikfyve or Vac14, encoding key components of the PtdIns(3,5)P2 

biosynthetic complex, lead to impaired oligodendrocyte maturation and severe hypomyelination 

(409). In addition, FAM126A - also known as hyccin - that regulates the synthesis of PtdIns(4)P, 
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is associated with hypomyelination and congenital cataract in humans (44). Apart from 

phosphoinositol signalling and the PI3K-AKT-mTOR pathway, ERK/MAPK signalling has 

emerged as a key pathway in myelin growth (198, 199, 275, 429, 634).  

There are also examples of mouse mutants that produce focal outfoldings in the absence 

of myelin thickening. For example, the deletion of Cdc42 or Rac1 in oligodendrocytes results in 

the formation of myelin outfoldings, but with reduced overall myelin thickness (622). 

Furthermore, mutants have been identified that affect radial and longitudinal growth in a 

converse manner. Conditional mouse mutants of scribble, a conserved regulator of cell polarity, 

show increased myelin thickness, but decreased longitudinal myelin extension, indicated that 

these two modes of growth are differentially regulated (283). 

 

Myelin compaction 

 Myelin membrane compaction occurs when the extracellular and cytoplasmic leaflets of 

the adjacent myelin lamellae connect so tightly that most of the water is removed and electron 

dense lines can be seen by electron microscopy. Whereas the extracellular leaflets appear to 

associate already as the first wrap is made, the generation of the major dense line occurs in most 

cases later and often only after a few wraps have been formed.  Compaction at the cytoplasmic 

surfaces starts in the outermost layers of myelin and progresses inward, moving towards the inner 

tongue (581). The spatial segregation of myelin growth and compaction is a way to protect the 

vital cytoplasm at the inner tongue. In addition, it could serve as a mechanism to generate 

hydrostatic pressure, which could be used as a force to drive membrane wrapping. It is not clear 

how the initiation of compaction is regulated. One possibility is that compaction starts at the site 

of local MBP mRNA translation. Several studies have shown that MBP mRNA is transported all 

the way down to the innermost layers close to the axon (9, 128, 340, 367, 630, 656, 668), but 

whether this is also the site where translation occurs is unknown. Compaction needs to be 

restricted to one single place within the myelin sheath to drive the zippering processes and to 

prevent the formation of cytoplasmic pockets with myelin. This is most easily achieved by 

making the initial association of the two apposing cytoplasmic leaflets rate limiting. In addition, 

spacer may be placed into the growing myelin sheath that keeps the inner leaflets of two myelin 

layers apart. CNP1 may function as such a spacer, as in its absence, myelin loses some of its 

cytoplasmic channels (581). Overexpression of CNP1, in contrast, increases the amount of 

cytoplasm within myelin (221, 690). With such a mechanism at work, the site of MBP synthesis 
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could occur at the innermost tongue, possibly regulated in part by axonal signals (656), followed 

by diffusion of MBP towards the outer layers, where the lamellae are closer together, and 

compaction is initiated. Initially, the highly positively charged MBP is attracted to the negatively 

charged cytoplasmic leaflet by electrostatic interactions, thereby starting the compaction cascade. 

When opposite charge is neutralised, hydrogen bonding and the hydrophobic forces are 

uncovered and cause MBP to fold and subsequently insert into the inner membrane leaflet. This 

most likely starts in one leaflet, leaving one end of MBP elongated where it maintains its positive 

net charge. When MBP is able to reach the apposing surface, another insertion and possible 

folding event occurs (498). After MBP is bound to the two adjacent cytoplasmic surfaces of the 

myelin bilayer, a nucleation site has been initiated which then directs additional molecules of 

MBP towards this localization where they polymerize into a dense protein network, thereby 

providing the forces for unidirectional membrane zippering (6, 7). 

 

Intrinsic and adaptive myelination 

A useful concept to explain how CNS myelination occurs is to divide it into an intrinsic 

and adaptive phase (49, 110, 181, 421). The intrinsic phase of myelination is genetically 

predefined, occurs around birth and in early childhood, and leads a chronological and 

topographically fixed sequence of myelination. Adaptive myelination, in contrast, is modified by 

experience, occurs according to the need of a neuronal network, and leads to inter-individual 

variability in myelination. The extent of adaptive myelination depends on the brain region. For 

example, there may be very little adaptive myelination in most ‘one way’ information paths 

whose task is simply to conduct as fast as possible. For example, axons in the spinal cord or the 

optic nerve are myelinated in such a way that myelin internode length and thickness as well as the 

size of the nodes are optimized for maximum conduction velocity. In contrast, axons in the cortex 

are often myelinated in two phases. The first wave occurs early in development and lays the 

groundwork, often resulting in a patchy arrangement of myelin segments along the axons. This is 

followed by a second phase that likely depends on sensory input, followed by signalling from 

neurons to oligodendrocytes. Longitudinal in vivo two-photon imaging of oligodendrocytes 

shows that myelination occurs for a long time in the mouse cerebral cortex with only half of the 

myelinated segments formed until 4 months of age (267). Continuous myelin formation occurs on 

both partially myelinated and unmyelinated axons, and the total myelin coverage along individual 

axons progresses into old age (250, 267). Since the function of myelin within such neuronal 
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networks is not only to increase conduction velocity to maximal level, but also to finely tune 

neuronal network function by synchronizing the firing pattern, more intricate mechanisms are 

required (145, 185). Neuron and glia communication is likely to be important to shape 

myelination according to the need of the neuron and its network.  

First evidence for the existence of adaptive myelination came from human magnetic resonance 

imaging studies pointing to experience-dependent changes in the white matter. Such changes 

were found upon learning new motor tasks, for example, practicing piano, playing baduk or 

juggling, and were confirmed using various other learning paradigms such as acquiring specific 

visuomotor skills or learning a new language (53, 343, 452, 556, 598). One drawback, however, 

is that experiments in humans can only be performed with magnetic resonance imaging, which so 

far lacks sequences specific for myelin. Until methods are established that enable specific 

detection of changes in myelin structure in living humans, the concept of adaptive myelination in 

humans remains speculative. In experimental animals such as rodents or zebrafish, intravital two-

photon imaging, histological or electron microscopical analyses can be applied to determine 

changes in myelin structure or patterns upon learning new tasks. Such experiments have revealed 

that voluntary exercise on running wheels (571) or motor learning on complex wheels with 

irregularly spaced rungs triggers the generation of more oligodendrocytes and new myelin 

sheaths (384, 571, 682). Likewise, fined motor training in adult rats (one paw reaching/grasping) 

results in an increase in myelin generation (547). Conversely, sensory-motor deprivation results 

in decreased myelination, and trimming of a whisker results in fewer myelinated axons in the 

barrel cortex (43, 251). Social isolation, another form of sensory-motor deprivation, leads to 

hypomyelination in the prefrontal cortex (350, 374). Collectively, these studies provide 

indisputable evidence that myelin biogenesis is influenced by experience. However, the 

underlying mechanisms that drive adaptive myelination have not yet been clarified.   

The role of neuronal activity in modifying myelination, initially described in cell culture, 

has up to now received the most attention (151). There are now a larger number of studies in 

various model systems that confirm that electrical activity promotes myelination. For example, 

stimulating somatosensory neurons in the cortex by optogenetics or pharmacogenetics increases 

OPC proliferation and myelin formation (207, 414). Since OPC are in close contact with axons, 

where they form postsynaptic sites that receive neuronal synaptic input via glutamate and GABA 

receptors (55, 143, 321, 327, 698) , they are ideally positioned to respond to neuronal firing.  

There is also evidence that electrical activity determines which axons oligodendrocytes choose 
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for myelination. Time-lapse imaging in zebrafish has shown that oligodendrocytes use their 

processes to probe the surfaces of different axons at the same time (133, 252, 320, 390).  

The growth factor Neuregulin 1 type III has been implicated in adaptive myelination. 

Neuregulin 1 and its cognate ErbB receptors are key signalling molecules in Schwann cells, (374, 

401, 616). However, in the CNS the role of Neuregulin-ErbB signalling is more subtle, where it 

appears to regulate the switch between the adaptive and intrinsic mode of myelination (363). 

In addition to neurons, astrocytes play an important role supporting myelination (306). 

There are a number of factors secreted by astrocytes that facilitate the different steps of 

myelination including OPC proliferation, differentiation and myelination. Among soluble factors 

secreted by astrocytes are platelet-derived growth factor (PDGF), basic fibroblast growth factor 

(FGF2), leukemia inhibitory factor-like protein (LIF), insulin-like growth factor 1 (IGF-1), ciliary 

neurotrophic factor (CNTF), metalloproteinase-1 (TIMP-1)  and Endothelin-1 (ET-1) (66, 202, 

236, 274, 419, 437, 520, 596, 687, 694)  

Adaptive myelination not only results in formation of new myelin sheaths, but may also 

change the shape of existing myelin. By employing an optogenetics mouse model in which the 

excitatory opsin channel rhodopsin was specifically expressed in projection neurons, it was 

possible to demonstrate myelin remodelling by neuronal activity (207). Stimulation resulted in an 

increase in myelin thickness along their cortical and subcortical projections. What are the 

physiological consequences of thicker myelin sheaths? Theoretical calculations have shown that 

axons have an optimal g-ratio of 0.6 (120). Axons in the CNS often have g-ratios higher than 0.6 

(relatively thinner myelin sheaths). The intrinsic activity of oligodendrocytes could be 

responsible for generating thin myelin, but upon increased neuronal activity, the final thickness of 

myelin could be adjusted. Interestingly, structural changes can be observed when myelin growth 

is re-stimulated in adult mice. During early development, the growing myelin sheath is 

characterized by abundant cytoplasmic channels that largely disappear in adults. However, by 

increasing PtdIns (3,4,5) P3 in oligodendrocytes, cytoplasmic channels are able to expand. This is 

likely an important structural requirement to re-initiate growth in adult mice (581).  

An important question is whether oligodendrocytes are capable of adapting myelin sheath 

formation throughout their lifetime. There is now accumulating evidence that generation of new 

oligodendrocytes - some of which generate myelination - extends well into adulthood (691). 

OPCs continue to divide at a slow rate in adult mice. The rates of cell division depend on the 

location (being slower in gray matter than in white matter) and on the age of the mice (being 
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slower in old than in young mice) (250, 267, 691). Some of these OPCs differentiate into 

oligodendrocytes, a fraction of which survives and forms myelin, even in the almost fully 

myelinated adult optic nerve. The rate of OPC division correlated with the local density of 

unmyelinated axons, suggesting that one function of adult-born OPCs is to myelinate axons de 

novo in the adult. A subpopulation of oligodendrocytes, distinguished by the selective expression 

of the breast carcinoma amplified sequence 1 (Bcas1) protein, was identified as a marker for 

oligodendrocytes in an intermediate stage of differentiation, between early progenitors and 

mature cells (175). These cells represent a population of newly generated and early 

oligodendrocytes that are transiently present during the active phase of myelination. Continuous 

generation of Bcas1+ cells was observed both in the white and grey matter of mice until at least 1 

year of age in mice. In humans Bcas1+ cells were mainly found in the first year of postnatal white 

matter development, but were also present, albeit at low levels, in the frontal human cortex into 

adulthood. These data are consistent with the birth-dating of oligodendrocytes by 14C integration, 

which showed that the number of oligodendrocytes in the white matter is established during the 

first years, whereas gray matter myelination continues at low levels in adults (688).  

The question arises as to whether this ongoing adult myelination is classified as intrinsic 

or adaptive. How much of adult myelination is inborn and determined by genetic factors intrinsic 

to the oligodendrocyte, and how much is modified by experience and environmental factors? 

Some studies indicate that there is a critical time period when oligodendrocytes are receptive to 

extrinsic influences. In mice, social isolation during early postnatal development from 3rd to 5th 

weeks after birth affected myelin sheath number, length, and thickness, while two weeks of social 

isolation after 5 weeks did not (374). Another study, in which social isolation was prolonged to 8 

weeks revealed differences in myelin formation in older animals (350).  Moreover, motor 

learning and optogenetic or pharmacogenetic stimulation of neurons enhance the formation of 

oligodendrocytes generating new myelin sheaths in adult mice.  

Such continuous generation of oligodendrocytes associated with active myelination in 

adult regions raises the intriguing prospect of continued myelin plasticity well into adulthood. A 

key question is whether myelin is truly plastic, and whether it can shrink or retract after it has 

been formed (162). Time-lapse imaging is necessary to visualize myelin remodeling. This has 

been performed in mice and the recordings provide some initial evidence for few retracting 

myelin sheaths in the cortex using intravital label-free and fluorescence optical imaging (250). 

Retractions are more frequently observed in zebrafish during early development in the 
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developing spinal cord (133), where they are regulated by high Ca2+ (35, 323). In addition, 

remodeling of mature myelin sheaths was visualized in the zebrafish by targeted ablation of 

individual sheaths from single axons (27). However, whether these myelin sheaths are made of 

several wraps of compacted myelin or only represent early stages of ensheathed axons is not 

known. Mechanistically, it is difficult to imagine how a multilayered compacted membrane can 

retract. There is very little space for enzymes or proteases that could modify MBP is in such a 

way that the multilayers stacks are loosened. Intracellular increase of Ca2+ results in rapid release 

of MBP from the cytosolic leaflets of the myelin membrane triggering myelin breakdown (663), 

but how this could be modified in a controllable fashion remains to be determined. 

  

Myelin aging 

A variety of white matter changes have been observed by magnetic resonance imaging in 

normal aging brains. White matter volume starts to decrease gradually from 50 years of age 

onwards (589). In addition, white matter lesions are frequently seen as hyperintensities on T2-

weighted magnetic resonance imaging. As the deep white matter areas lie at the ends of the 

arterial circulation, they are particularly susceptible to decreases in blood flow and oxygenation. 

In addition, some white matter areas are located in watershed zones between the anterior and 

middle cerebral arteries and the middle and posterior cerebral arteries. These anatomical features 

may explain how age-related vascular alterations contribute to the increased vulnerability of aged 

white matter to hypoperfusion (353, 430).  Electron microscopy studies performed in non-human 

primates have established that the major changes observed during normal aging are not a loss of 

neurons, but rather changes in myelinated nerve fiber morphology (467). With age, a substantial 

number of myelin sheaths exhibit degenerative changes. The most common age-related defects 

are splitting at the major dense line leading to accumulation of dense cytoplasm with vesicular 

inclusions. Another type of age-related change in myelin sheaths are ‘balloons’ (177). With light 

microscopy, these balloons appear as holes, but electron microscopy shows that they arise from 

the interperiod line of myelin, causing the myelin sheaths to bulge out. Myelin outfoldings 

containing several layers of compacted myelin lamellae are another feature often observed in 

aged brains. In addition, the number of lamellae appears to increase in some of the sheaths of the 

old brain. Multilamellar myelin fragments have also been detected in brains of old mice (250, 

542). Some of these fragments represent myelin outfoldings, while others are engulfed by 

microglia, raising the possibility that microglia actively strip off damaged myelin. There is an 
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almost two-fold increase in the number of microglia with an expanded lysosomal compartment in 

the aged brain of mice. Aged microglia accumulate autofluorescent material reminiscent of 

lipofuscin (542). Lipofuscin contains non-degradable oxidized lipids, some of which represent 

remnants of indigestible myelin. Thus, the increased burden of myelin clearance in the older 

brain may not only lead to an increase in microglia with lysosomal inclusions, but could also 

contribute to age-associated microglial dysfunction. 

 

Myelin Pathology 

As expected from its major role in mammalian nervous system physiology, myelination 

defects in humans usually have significant neurological manifestations. Diseases of myelin 

represent a large, heterogeneous group with regard to clinical characteristics, pathophysiology 

and etiology. Hereditary and acquired pathologies can be distinguished, of which inflammatory, 

infectious, toxic and metabolic are the most prevalent. 

Novel insights into molecular mechanisms governing the interactions between cellular 

populations of the nervous system have influenced the current pathophysiological thinking about 

myelin disorders. Recent advances showing the interdependence between astrocytes, 

oligodendrocytes, microglia and axons indicate that myelin dysfunction should be understood in 

the broader context of nervous system pathophysiology.  

In this section we do not intend to provide an exhaustive overview of myelin disorders, 

but will instead discuss selected pathophysiological aspects of prototypic diseases. We will focus 

on the distinct and characteristic features of myelin pathology and the specific contribution of 

different cellular populations in acquired and inherited diseases. First, we will consider the 

mechanisms of lesion formation and myelin damage in inflammatory demyelinating diseases, 

using as an example multiple sclerosis, the most frequent acquired demyelinating disease of the 

CNS the etiology of which is not completely understood. We will also discuss acute disseminated 

encephalomyelitis (ADEM) and neuromyelitis optica spectrum disorders (NMOSD), diseases 

with well-established autoimmune etiology. Furthermore, we will highlight how specific 

interactions between astrocytes, oligodendrocytes and microglia might contribute to 

demyelination in hereditary white matter pathologies (leukodystrophies). Finally, we will discuss 

the disruptive influence of a viral agent, the JC virus, in CNS homeostasis in progressive 

multifocal leukoencephalopathy (PML), a fatal disease with ever increasing prevalence in the 

context of immune suppression.  
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Research on myelin pathology must focus on a better understanding of the mechanisms leading to 

myelin degeneration and myelin removal, and on the cellular interactions involved in damage to 

the axon-oligodendrocyte-myelin unit. Understanding the interactions between cell types in the 

CNS is not only relevant for disease pathogenesis, but is equally important for lesion repair. 

 

Multiple sclerosis 

Multiple sclerosis (MS) is a chronic inflammatory disease of unknown etiology that 

occurs in all age groups but mostly manifests in young adulthood (for recent review see (514)). It 

is the most frequent human disease affecting CNS myelin. Patients may initially present with 

visual disturbances due to optic neuritis, or with sensory and motor symptoms (620). In brain 

magnetic resonance imaging (MRI), circumscribed hyperintense lesions disseminated in space 

and time, frequently adjacent to the ventricles or located juxtacortically, are characteristic of the 

disease. Gadolinium contrast enhancement indicates a disruption of the blood-brain barrier that is 

frequently associated with active immune cell recruitment (183). Symptoms initially resolve 

fairly well (relapsing-remitting MS), but in around 70% of the patients, disability tends to 

increase independent of relapses after 10-15 years of disease duration (secondary progressive 

MS). Primary progressive MS patients typically experience an insidious worsening of clinical 

disability, mostly lower limb function, from the beginning of the disease on and independent of 

relapses (355, 356). 

MS is 2.3 times more frequent in females and has a higher incidence in northern latitudes 

and populations of Northern European ancestry (24, 36). Disease susceptibility is strongly related 

to the HLA locus, and homozygosity at the HLA-DRB1*15 gene locus confers an odds ratio of 7 

to develop the disease. In addition, multiple common variants contribute to disease susceptibility, 

and multiple genome wide association studies during the last years have identified over 200 risk 

loci (36). A higher disease risk is associated with polymorphisms in genes regulating both 

adaptive and innate immunity, cytotoxic and regulatory T cell and microglia function in 

particular, such as IL2RA, IL7RA and TNFRSF1A (460, 550). However, monocygotic twins 

have a concordance rate of only 20-30%, indicating a substantial contribution of environmental 

factors to MS susceptibility. Infection with Epstein-Barr-Virus, and especially a history of 

infectious mononucleosis, low Vitamin D levels, childhood obesity and smoking have been 

related to an increased likelihood of developing the disease (51). For unknown reasons, the 

disease incidence is increasing in western countries, particularly in women (312).  
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Myelin pathology in multiple sclerosis 

MS lesion evolution frequently extends over months and years and follows a typical 

sequence of cellular events (FIGURE 4). We focus here on the pathology of myelin and 

oligodendrocyte damage and only briefly touch upon the role of inflammatory cell infiltration and 

inflammatory mediators. For this introduction into myelin pathology in MS, we start out with the 

features of the prototypic, fully demyelinated late stage lesion and then move on to earlier lesion 

stages. Cortical and neuroaxonal pathology are discussed in more detail in separate sections, as 

they demonstrate additional principles of the disease that are in part unrelated to focal myelin 

pathology. The immediate repair response seen in the glial cell compartment is similarly 

discussed in more detail in a later section.  

At autopsy, brain tissue from patients with long disease duration is most prominently 

characterized by grayish, well demarcated lesions around the lateral ventricles and in the deep 

hemispheric white matter, the cerebellar peduncles, brain stem or spinal cord that are visible to 

the naked eye. Histological sections stained for myelin, e.g. with Luxol fast blue (LFB), identify 

demyelinated lesions with very few if any residual myelin sheaths and a sharp border to the 

periplaque white matter. No evidence for myelin phagocytosis is detected in and at the edge of 

these chronic inactive demyelinated MS lesions. They are hallmarked by reduced cellularity due 

to a substantial reduction in mature oligodendrocytes, microglia, and frequently oligodendrocyte 

precursor cells (71, 235, 326, 677, 701). Signs of adaptive or innate immune activation are sparse 

or absent (193, 548, 701). Axonal reduction is variable, but may reach substantial levels of up to 

80% (396, 472, 553, 610). Glial-fibrillary acidic protein (GFAP)-positive astrocyte processes 

extend along the demyelinated axons, whereas astroglial cell bodies are small and inconspicuous 

at this lesion stage. Areas of less intense myelin staining frequently accompany the edge of 

chronic demyelinated lesions and depict remyelinated lesion areas, as evidenced by electron 

microscopy (465, 488, 605). Chronic inactive demyelinated lesions represent an end stage of 

lesion formation without ongoing myelin destruction and inflammation, comparable to a scar 

with only partial recovery.  

By contrast, chronic active and smoldering or slowly expanding MS lesions are 

characterized by a rim of activated, in part foamy phagocytes surrounding an otherwise chronic 

demyelinated lesion (489) (FIGURE 4 and 5). At the lesion rim, a variable degree of myelin 

degradation reflected by LFB or myelin protein-positive degradation products in phagocytes is 
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observed (325). Acute axonal transport disturbances visualized by immunohistochemistry for 

amyloid precursor protein (APP) further support the concept of ongoing disease activity at these 

lesion edges (179, 193). Scattered parenchymal T cells frequently accompany smoldering lesion 

activity (193), and deposition of fibrinogen supports low-grade blood-brain barrier damage (341). 

The opsonin C3d generated by complement activation is observed in close association with 

degraded myelin, axons, activated microglia, and microglia nodules (400, 489). Magnetic 

resonance imaging (MRI) studies visualizing iron-laden macrophages/activated microglia at the 

lesion edge confirm lesion expansion over time (5, 137). Chronic active lesions do not regularly 

contain areas of remyelination, but nevertheless may show an activation and expansion of 

premyelinating and early myelinating oligodendrocytes (175). Smoldering lesions are rare in the 

acute or relapsing-remitting phase of the disease, but represent a stable lesion phenotype 

encompassing 15-20% of lesions in primary and secondary progressive MS patients in a cohort of 

120 patients (194). Chronic active and smoldering lesions represent foci of non-remitting, 

ongoing disease activity that may involve an imbalance of counter-regulatory anti-inflammatory 

mechanisms in the perilesional and normal-appearing white matter (695). It is yet unclear what 

determines whether an MS lesion remyelinates successfully, turns into an inactive chronic 

demyelinated lesion or continues with variable degrees of ongoing demyelinating activity.  

Active demyelinating lesions show a dense infiltration of foamy macrophages throughout 

the lesion area (FIGURE 4). Here, macrophages take up ultrastructurally normal myelin sheaths 

(487). Macrophages may contain myelin degradation products throughout the lesion, but 

frequently display radial lesion expansion with more recent myelin phagocytosis at the lesion 

edge (42). This frequently coincides with the detection of MRP14, a pro-inflammatory S100-

related protein that is specifically expressed by myeloid cells recently recruited from the blood 

(87, 704). The active lesion rim correlates well with ring enhancement on MRI (84, 182, 360). 

The concept of radial lesion expansion is further supported by recent MRI data demonstrating 

initial contrast enhancement in the lesion center that later localizes to the lesion periphery (5). A 

mild to moderate, perivascularly accentuated lymphocyte infiltrate accompanies the dense 

macrophage infiltration (242). In the majority of cases, only few B and plasma cells are found 

(42, 193, 368). Active demyelinating MS lesions are characterized by a near-normal density of 

oligodendrocytes and a slight reduction of OPC (88, 132, 326, 451). Mature oligodendrocytes 

expressing Nogo-A, p25/TPPP or MOG are regularly found amidst myelin phagocytosing 

macrophages (FIGURE 5). This is in stark contrast to early NMO lesions in which 
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oligodendrocyte and OPC densities are markedly reduced (86, 358, 492, 679). In the periplaque 

white matter immediately adjacent to the expanding lesion rim, few oligodendrocytes with 

condensed nuclei and sparse myelin fragments are frequently observed (131, 242, 451, 492) 

(FIGURE 6). Here, beyond the area of the most intense myelin phagocytosis, early MS lesions 

may show reduced immunoreactivity for MAG and CNP compared to the major myelin proteins 

PLP and MBP (277, 357, 359, 378).  

Although the initiating insult leading to oligodendrocyte death and myelin damage has not 

yet been identified, it is generally agreed that a prephagocytic or initial lesion stage precedes 

full-blown myelin phagocytosis (FIGURE 4). Initial lesions in patients dying acutely from MS 

were reported to contain abundant oligodendrocytes with condensed nuclei but did not regularly 

show the typical features of apoptosis (39, 242, 492, 594). Immunoreactivity for activated 

caspase 3 was often lacking, indicating alternative cell death pathways (357, 655). Myelin in 

these initial, prephagocytic areas may appear pale on LFB histochemistry, in part smudgy and 

edematous (39, 242, 378). Microglia activation but not overt myelin phagocytosis is seen at this 

stage of lesion evolution (144, 203, 548). It is currently a matter of discussion whether different 

pathological aspects of early MS lesions indicate interindividual disease heterogeneity or reflect 

stages of lesion formation (38, 76, 602). The concept of an initial lesion characterized by subtle 

oligodendrocyte and myelin pathology preceding active demyelination may correspond to the so-

called pre-lesions described in MR imaging and MR spectroscopy that within weeks to months 

will evolve into gadolinium-enhancing typical MS lesions (176, 184, 378, 527, 615).  

 

Cortical demyelination 

Predilection sites of demyelinated lesions in MS include the optic nerves, brain stem, 

spinal cord, subcortical and periventricular white matter as well as the superficial cortical layers 

(63, 471). Band-like subpial cortical demyelination is specific for MS and not found in patients 

suffering from other inflammatory or neoplastic conditions, underlining the specificity to MS of 

the mechanisms involved (186). In contrast, subpial demyelinated lesions are only rarely 

observed in the spinal cord, where white matter abuts the subarachnoid space. However, grey 

matter lesions in the cord are more frequent than white matter lesions (472). Thus, the grey 

matter microenvironment specifically favors the local generation of demyelinated lesions. The 

cellular and molecular factors predisposing to preferential lesion development in MS have not yet 

been defined. They may include the proximity to the cerebrospinal fluid, facilitated antigen 



32 
 

presentation in the meninges, increased vascular permeability and high antigen density, among 

others (212, 234, 329, 330, 369, 555). Meningeal lymphocyte infiltrations were reported to 

correlate with the extent of cortical demyelination (262). Also, the severity of axonal loss in the 

spinal cord and neuronal loss in upper cortical layers associate with the extent of meningeal 

adaptive inflammation, highlighting the role of adaptive inflammation for the disease process (20, 

119, 370).  

 

Remyelination 

In contrast to the rather limited capacity for neuroaxonal regeneration, myelin repair is 

well established in the human CNS. Our recently expanded understanding of the axon-myelin 

unit highlights the importance of functional myelin and oligodendrocytes for axonal metabolic 

support (197, 344, 538). At the beginning of the last century, Otto Marburg (1906) already 

interpreted well delineated, thinly myelinated white matter areas in patients with MS to be signs 

of myelin repair and termed them “shadow plaques” (Marburg 2006). This was later confirmed 

by electron microscopic studies (465, 605). Remyelinated axons with thin myelin sheaths and 

short internodes were not only observed in established lesions, but also in the earliest stages of 

demyelination amidst phagocytosing macrophages (486). On the light microscopic level, 

contiguous areas of successful remyelination, either throughout a lesion or at the edge of a mostly 

chronic lesion, appear as sharply delineated areas of pale LFB histochemistry, reflecting thinner 

myelin sheaths (37, 336, 484). Of note, pre-phagocytic initial lesions also may present with 

myelin pallor; however, in contrast to these, successfully remyelinated lesion areas show no 

oligodendrocyte death, myelin damage, or edema (39, 459).  

Post mortem studies of large hemispheric brain sections of patients with MS showed a 

correlation between disease duration and age with remyelinated plaque area. However, inter-

individual heterogeneity in the extent of remyelination was high, and no association with the 

clinical disease course could be established (459). Similarly, in a detailed analysis of MS lesion 

types at autopsy that were correlated with disease duration and disease phenotype, shadow 

plaques represented a quite stable proportion - 15 to 20% - among relapsing-remitting, secondary 

as well as primary progressive patients (194). However, other studies found that remyelination is 

most efficient in early demyelinating lesions, and declines thereafter (213, 451).  

In early demyelinating lesions, oligodendrocytes are present at high density, and the 

generation of new internodes has been shown in light and electron microscopic studies (88, 326, 



33 
 

358, 451, 485), indicating efficient early stimulation of lesion repair. However, no evidence of 

efficiently remyelinated lesions was found in patients dying rapidly after disease onset (194, 

459), which points to the transience of newly formed myelin sheaths at this stage of disease. In 

line with the vulnerability of newly formed myelin, demyelinated lesions are frequently 

superimposed on already remyelinated plaque areas (75, 485). In a large autopsy study in 

progressive MS patients, active demyelination correlated with a reduction in remyelination 

efficacy (75), again suggesting that the demyelinating disease process efficiently counteracts 

lesion repair. More extensive remyelination in later disease stages and after longer disease 

duration, as demonstrated by Patrikios et al., may thus indicate a close interplay of remyelination 

with the underlying disease activity and inflammation in general, both of which are known to 

subside with increasing disease duration (193). In agreement with the notion that the ability to 

remyelinate may not be restricted to early stages of lesion formation, pre-myelinating and 

actively myelinating oligodendrocytes can be visualized around chronic MS lesions (109, 175) 

(FIGURE 7). 

However, even if myelin repair is well documented during the disease, the major lesion 

type found at autopsy is the chronic demyelinated plaque (194). OPCs are detected, albeit in 

small numbers, also in chronic lesions (326, 676, 677). So far, it is not well understood why 

remyelination fails in these lesions, an issue that was reviewed in detail recently (191). Repeated 

bouts of demyelination may lead to a substantial reduction in OPCs (485, 530). Furthermore, 

OPC differentiation may be inhibited by an unfavorable lesion microenvironment, culminating in 

increased activity of Notch and canonical WNT signaling (174, 658). An imbalanced expression 

of the chemorepellent semaphorin 3A and the chemoattractant semaphorin 3F may also 

contribute to insufficient recruitment of OPCs to demyelinated lesions (71). 

Interestingly, remyelination efficacy at least in part depends on lesion location. In contrast 

to periventricular lesions, deep white matter lesions and cortical lesions show more thorough and 

more extensive remyelination (11, 213, 392). Increased survival of OPCs or a more favorable 

lesion microenvironment, i.e. less inflammation, less gliosis, and less astrocytic expression of 

hyaluronic acid, CD44 and versican, have been proposed (31, 108). However, despite this strong 

regenerative response, remyelination eventually also fails in the cortex (530). The extra- and 

intracellular deposition of fibrinogen in the cortex of patients with progressive MS may 

contribute through an activation of bone morphogenetic protein (BMP) signaling in OPCs (470, 

686).  
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Apart from disease-related factors, repeated insults to the myelin-oligodendrocyte-axonal 

unit, altered signaling in OPCs (89, 166) as well as an age-related decrease in repair capacity may 

contribute to the observed lack of efficient remyelination in MS (191). 

A targeted therapeutic approach aimed specifically at modulating the repair-inhibiting 

lesion microenvironment in MS is currently being tested in clinical trials. Leucine-rich repeat and 

Ig-containing Nogo receptor interacting protein-1 (LINGO-1) is expressed on oligodendrocytes 

and neurons, and forms part of the Nogo-66/p75NTR complex. LINGO-1 is a negative regulator 

of oligodendrocyte differentiation and remyelination which may involve modulation of 

cytoplasmic gelsolin activation (398, 564). LINGO-1 antagonism was found to enhance 

remyelination in several experimental models of the disease (397, 399), and the results of phase 2 

clinical trials in patients with a first unilateral optic neuritis (99) and MS (387) prompt cautious 

optimism.  

High-throughput chemical screening approaches have been used to identify small 

molecules that stimulate OPC proliferation and differentiation (153, 216, 263, 334, 385, 386, 

426). Recently, a study revealed that a wide range of these pro-myelinating small molecules do 

not function through their canonical targets, but instead by inhibiting enzymes within the 

cholesterol biosynthesis pathway, leading to the accumulation of the 8,9-unsaturated sterol, 

which by unknown mechanisms promotes OPC differentiation (264). Among the most effective 

compounds for promoting oligodendrocyte differentiation that has emerged from such cell-based 

screens is clemastine. Clemastine has already been tested in a first small, randomised controlled 

trial, which revealed some efficacy in improving the latency in visual-evoked potential in patients 

with chronic demyelinating injury (222). To track the regenerative potential of drugs, an 

important task will be to identify imaging outcomes for clinical trials of remyelination in MS. 

Recent advances in MRI and positron emission tomography (PET) imaging show promising 

results and may allow the detection of remyelination in situ in patients with MS (5, 64).  

Another approach to improve remyelination is to target the innate immune system, as the 

activity of microglia/macrophages is an important regulator of oligodendrocyte proliferation and 

differentiation. Upon injury, microglia/macrophages can be polarized to distinct functional 

phenotypes, of which the anti-inflammatory polarized microglia/macrophages secrete the pro-

regenerative activin-A, which enhances differentiation of oligodendrocytes (408). After 

microglia/macrophages have performed their immunological functions and pro-regenerative tasks 

within the lesion, it is important that inflammation resolves. However, myelin debris clearance is 
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impaired in aged phagocytes (567), leading to retention of microglia/macrophages within lesions 

(105). These aged microglia/macrophages accumulate excessive amounts of cholesterol-rich 

myelin debris, which overwhelms the efflux capacity of phagocytes and induces a maladaptive 

immune response that impedes tissue regeneration (105).  

The clinical relevance of oligodendrocyte protection and efficient remyelination in MS is 

based on the concept that a functional oligodendrocyte-myelin-axonal unit provides metabolic 

support and physical protection to the axon. Axonal density is higher in remyelinated as opposed 

to chronic demyelinated plaques, suggesting that timely remyelination may protect from further 

axonal loss (319, 559). Alternatively, repeated demyelination of the same tissue area might also 

explain more severe tissue damage, including axonal loss, in some persistently demyelinated 

lesions. Recently [11C]PIB PET myelin imaging established criteria for MS patients with high 

and low propensity to remyelinate and demonstrated an inverse relationship of remyelination 

efficiency and clinical disability (65). However, it should be noted that axonal loss in MS is not 

restricted to focal demyelinated lesions (150, 472, 580), and axonal loss in the normal-appearing 

white matter does not correlate with focal demyelinated lesions (150, 172), adding to the 

complexity of understanding the molecular relationship between lack of myelin and axonal 

degeneration in MS A more thorough understanding of a potentially widespread disturbance of 

oligodendrocyte-myelin-axon interactions in MS, which is not limited to focal demyelinated 

plaques, will further aid in designing rational neuroprotective and pro-remyelinating therapies.   

 

Neuroaxonal damage and disease progression 

Apart from the striking and obvious focal myelin pathology, MS is characterized by 

neuroaxonal damage that accumulates over the years and occurs at least in part independently of 

focal demyelinated lesions (150, 173), thus placing it near to neurodegenerative disorders (631). 

Pathological studies in patients with late-stage disease indicate a substantial loss of axons 

reaching up to 80% in the spinal cord and other brain regions, aggravated by focal lesions, but not 

entirely explained by them (172, 200, 472). Similarly, neuronal loss that occurs to a relatively 

minor degree – compared to classical neurodegeneration - in many brain regions, including the 

cerebral and cerebellar cortex, hippocampus, spinal cord and deep grey matter especially the 

thalamus, ranges between 20 to 30% in most studies. It is not closely associated with focal 

demyelination (106, 124, 370, 457, 654). In addition, the substrates of neuronal connectivity, pre-

synaptic boutons and post-synaptic structures, are reduced in most brain regions studied so far, 
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which seems equally independent of focal demyelination (42, 457, 653, 661). With regard to the 

pronounced reduction in dendritic spines observed in the cerebral cortex of demyelinated as well 

as normal-appearing cortex of patients with MS, animal models suggest that reductions in spine 

density may reflect the impact of inflammatory cytokines on neurons (287, 324, 376). However, 

in experimental models of cortical autoimmune inflammatory demyelination, spine density 

recovers within a short period of time (287). In contrast, in progressive disease, reductions in 

synaptic density are substantial, notwithstanding a still observable synaptic reorganization (42). 

In line with the pronounced microscopic pathology in the grey matter, rates of grey matter 

atrophy detected by MRI are, on a group level, the best predictor for disease progression (187). 

Most recently, deep grey matter atrophy has been linked to the accumulation of disability, and 

regional grey matter atrophy may spread with disease evolution (29, 170, 171). 

Continuous low-grade inflammatory activity and long-lasting disease duration may 

contribute to the dysfunction and loss of neural structures in the human disease (553). Along this 

line, a disruption of axonal energy supply is currently considered to contribute to axonal demise. 

Mitochondrial dysfunction, most likely aggravated by inflammation, may lead to a state of 

“virtual hypoxia”, a dysfunction of ion channels, ionic imbalance, axonal transport disturbance 

and ultimately necrosis (372, 632). In human tissue, mitochondrial DNA deletions and 

cytochrome C oxidase (COX)-negative neurons were observed in the cortex of patients with 

long-standing disease, supporting the hypothesis of a failure to allocate sufficient energy to the 

neuroaxonal compartment in chronic disease (103, 371). However, in experimental models, the 

local inflammatory milieu including oxidative damage does not lead to mitochondrial dysfunction 

and a lack of local energy supply (436, 585), hinting towards a more complex pathophysiology in 

the human disease. The concept of an insidious, slowly progressive neuroaxonal dysfunction is 

well in line with the progressive deterioration of clinical symptoms that is characteristically 

observed in MS, but not in a phenotypically similar autoimmune disease, neuromyelitis optica, 

despite its more destructive lesion pathology (672). Thus, the chronic intrathecal inflammatory 

process inherent to MS may induce a vicious circle of neuroaxonal energy deficits that is 

aggravated by the focal loss of myelin and oligodendrocytes, which further reduces the 

availability of metabolic substrates (404). 

The above-mentioned chronic active and smoldering lesions that are characteristic of 

progressive MS and not readily seen in other disease conditions have yet to be reproduced in 
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experimental models. They reflect ongoing, low-grade disease activity and contribute to 

progressive neuroaxonal damage (193).  

Data from MRI as well as pathology support the concept of MS as a “whole brain 

disease” and indicate that apart from the conspicuous focal demyelinated lesions, disease-specific 

changes may occur in the so-called normal-appearing white matter (13, 173, 196, 329). In 

addition to tissue alterations occurring around focal demyelinated lesions and along white matter 

tracts, indicative of Wallerian degeneration (163, 579, 580), diffuse abnormalities in the normal-

appearing white matter include (416) scattered T lymphocyte infiltrates, microglia activation in 

part in the form of microglial nodules, APP-positive axonal profiles, and reactive astrogliosis. 

These evidence a disease process not solely restricted to or emanating from focal demyelinated 

lesions (13, 329, 560). Recent work identified swelling of myelinated axons in MS patients with 

little focal cerebral demyelination in the pathologically - but not radiologically - normal-

appearing white matter as a pathological feature independent of demyelination. This finding 

underlines the close - but not yet fully understood - interplay between axons and 

myelin/oligodendrocytes in the disease (633).  

 

Acute disseminated encephalomyelitis (ADEM) 

In contrast to MS, ADEM is a clinicopathological entity that shows demyelination limited 

to the perivenous tissue and lacks the progressive neurodegeneration typical of MS. This points at 

fundamentally different disease mechanisms in the two entities and underlines the relevance of 

CNS-intrinsic factors for MS pathogenesis, most likely the long-term exposure of a foreign (or 

altered self) antigen. A closer understanding of the mechanisms of myelin damage in ADEM is 

thus instrumental to develop testable concepts of MS lesion pathogenesis. 

Clinically, ADEM is characterized by the sudden onset of multifocal neurological 

symptoms, frequently accompanied by encephalopathy and usually characterized by rapid 

recovery (692). Children and young adults are typically affected (for review see (480, 618)). MRI 

typically shows large, ill-defined lesions on T2-weighted MRI, frequently involving more than 

one brain lobe as well as the brain stem and spinal cord. Contrast enhancement is frequently seen, 

though usually not in all lesions (692) (for review see (239)). Severe brain edema may develop 

and worsen the otherwise generally favorable prognosis (148, 230, 240, 313). Pathologically, 

ADEM is characterized by multiple, strictly perivenular demyelinated sleeves, often occurring 

focally accentuated in specific brain regions. If multiple neighboring vessels are affected by 
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demyelination, coalescence may occur, but large, confluent lesions typical for MS should detract 

from a diagnosis of ADEM (258, 491, 692). In small biopsy samples, however, perivascular 

demyelinated sleeves in MS may be confounded with ADEM (692). The perivascular 

inflammatory infiltrate in ADEM consists of T cells, foamy macrophages, and - at least in early 

lesion stages - granulocytes, including eosinophils (240, 510, 692). Deposits of immunoglobulins 

and activated complement components may also be found (332). In contrast to MS, perivascular 

demyelination in ADEM is characterized by a similar stage of lesion evolution in all 

demyelinated lesions (148, 692). ADEM frequently occurs after exposure to antigens, e.g. 

through an upper respiratory or gastrointestinal infection or after immunization. This supports the 

hypothesis that molecular mimicry is crucial to the pathogenesis of the disease (672). 

Correspondingly, experimental models induced by immunization with myelin antigens, leading to 

perivascularly accentuated brain and spinal cord inflammation, are frequently considered more as 

models for ADEM than for MS (362, 523); for review see (337, 592, 599).  

 

Mechanisms of myelin pathology in ADEM 

The mechanism of demyelination in ADEM very likely involves antibody reactivities 

against myelin proteins (442). Accordingly, about 40% of pediatric patients with ADEM and 

about 20% of adult patients show serum antibodies against myelin oligodendrocyte glycoprotein 

(MOG) (80, 331, 442); for review see Ramanathan, Dale and Brilot (502). MOG antibody disease 

has recently been identified as a distinct demyelinating disease entity with a range of clinical 

presentations, including ADEM, optic neuritis, and transverse myelitis (229, 280, 288). Also, part 

of the patients clinically classified as NMOSD may present with anti-MOG instead of anti-AQP4 

antibodies (281, 308, 494). Recently, anti-MOG serum antibodies derived from patients with 

relapsing optic neuritis produced perivenous and subpial demyelination when injected into T cell-

transferred rodents (590).  

Mechanisms of myelin destruction in ADEM most likely involve a T cell-mediated 

opening of the blood brain barrier and antibody-mediated myelin destruction (FIGURE 6). 

Antibody-dependent phagocytosis, complement-dependent myelin lysis, and antibody-mediated 

cellular cytotoxicity (ADCC) may play a role (466, 590). Importantly, apart from the classic 

monophasic disease with a mostly favorable outcome, multiphasic and recurrent disease variants 

also exist – particularly in MOG-positive patients – whose underlying immune mechanisms still 

must be elucidated (268, 352). In children, a positive MOG-antibody serostatus predicts a 
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reduced risk of developing MS (228, 300). In summary, antibody-mediated demyelination in 

ADEM leads to a clinically fulminant, mostly self-limiting disorder with demyelination that is 

spatially limited to the perivenous CNS tissue. Although axonal damage is substantial during 

acute demyelination in ADEM, no progressive neuroaxonal degeneration is found in the disease. 

 

Neuromyelitis optica spectrum disorders (NMOSD) with anti-AQP4 serum autoantibodies 

Neuromyelitis optica spectrum disorders with anti-AQP4 antibodies are primary 

astrocytopathic diseases with secondary oligodendrocyte and myelin damage (458). Apart from 

classic neuromyelitis optica (NMO), a number of clinical syndromes have been attributed to 

AQP4 serum autoantibodies (671). NMO is characterized by a predominant affection of optic 

nerves and spinal cord leading to blindness and paralysis (for review see (664)). Due to clinical 

and pathological similarities, NMO has long been considered a variant of multiple sclerosis until 

NMO-Ig was identified as a disease-specific serum autoantibody (347). NMO-Ig was later found 

to target aquaporin-4 (AQP4), the main water channel of the CNS expressed at high density on 

astrocytic foot processes abutting the brain capillaries (346). Expression is not restricted to the 

CNS but also found in other organs, such as the kidney, lungs and placenta (for review see 

(424)). The high antigen density in grey matter regions such as the central spinal cord and the 

dorsal medulla may render these areas particularly vulnerable to lesion formation (531). The 

pathogenic potential of anti-AQP4 antibodies was demonstrated by transferring purified serum 

antibodies from NMO patients into experimental models (74, 305). Similarly, human 

recombinant monoclonal anti-AQP4 antibodies from NMO patients, injected intravenously or 

intracerebrally, were shown to reproduce most of the pathological features of NMO lesions (679). 

Apart from pericapillary astrocytes, astrocytes at the external glial limiting membrane, 

ependymal cells, and choroid plexus epithelial cells all express AQP4 in the CNS. Anti-AQP4 

antibody-mediated cell damage to these barrier sites facilitates further entry of pathogenic 

antibodies into the cerebrospinal fluid and the CNS parenchyma, triggering the formation of 

periventricular and subpial lesions (226). The circumventricular organs, CNS areas without the 

protection of the blood-brain barrier such as the dorsal medulla, are also predilection sites for 

lesion formation (412, 531). In patients with NMO, autoantibodies against glucose-regulated 

protein 78 (GRP78) were recently detected that bind to their target on brain endothelial cells and 

contribute to the disruption of the BBB, thus facilitating entry of astrocyte-damaging anti-AQP4 

antibodies (568). In line with the highest antigen expression and in contrast to MS, the frequently 
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longitudinally extensive lesions in the spinal cord typically involve the central grey matter (427, 

490). Patients with NMO recuperate less well from disease attacks compared with MS patients, 

but the slowly progressive accumulation of disability, typical for later MS stages, is not seen in 

NMO (282, 672).  

 

Lesion pathology and pathogenesis of myelin damage in neuromyelitis optica 

Recently formed NMO lesions are characterized by massive astrocyte loss and some 

residual astrocytes with features of cell damage and death, i.e. condensed cytoplasm, fragmented 

processes, and nuclear condensation, mostly located at the lesion edge (413, 458). 

Characteristically, the reduction in AQP4 immunoreactivity in lesion areas exceeds that observed 

for glial fibrillary acidic protein (GFAP), indicating a downregulation and/or internalization of 

AQP4 in a proportion of astrocytes (253, 255, 410, 411, 413, 531). Oligodendrocytes and OPC 

are strikingly reduced in early NMO lesions (86, 679). Apoptotic and in part activated caspase-3 

positive oligodendrocytes are a frequent finding in newly formed, astrocyte-depleted lesions 

(413, 458) (FIGURE 6). Aside from abundant foamy macrophages, some T cells and occasional 

B and plasma cells, and depending on the lesion stage, also scattered neutrophilic and 

eosinophilic granulocytes can be observed (86, 361, 410, 413, 458, 531). Perivascular deposition 

of IgG, IgM and the C9neo antigen identifies perivascular astrocyte processes as primary targets 

of the antibody-mediated immune attack (361, 458, 531). In relation to the timing and intensity of 

the immune attack as well as the prevailing immune effector mechanisms, different pathological 

patterns can be observed in patients with anti-AQP4 autoimmunity (413). Besides antibody and 

complement-mediated astrocyte lysis, antibody-dependent cellular cytotoxicity (ADCC) executed 

by granulocytes or NK cells may play a role (476, 509, 540, 679, 697). Independent of antibody-

triggered immune effector mechanisms, direct effects of anti-AQP4 antibody binding to its target 

may lead to channel dysfunction, internalization and downregulation, contributing to tissue 

damage and edema (255). In addition, AQP4 forms a macromolecular complex with the 

excitatory amino acid transporter EAAT2, and downregulation of EAAT2 accompanies antibody-

binding to AQP4, thus leading to a reduction in glutamate scavenging in the lesions (254).  

The mechanisms involved in rapid oligodendrocyte depletion after astrocyte death have 

not yet been fully elucidated; experimental models suggest excitotoxicity (377), and bystander 

deposition of activated complement components on oligodendrocytes (627). In line with the 

pronounced toxicity to oligodendrocytes observed in early NMO lesions, LFB staining for myelin 
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phospholipids is only reduced, but not completely absent (74, 410, 413, 458). Intramyelinic 

edema is distinct (255, 458). Concomitantly, immunoreactivity for compact myelin proteins such 

as MBP and PLP may still be seen in degenerating, vacuolized myelin while macrophages initiate 

myelin resorption (86, 458). In contrast, immunoreactivity for non-compact myelin proteins such 

as MAG and CNP is substantially reduced in early lesions, corresponding to secondary myelin 

degeneration after oligodendrocyte demise (2, 86, 277, 413). Similar to what can be observed in 

patients, electron microscopic studies in a model of focal NMO showed an early vacuolization of 

the inner tongue of the myelin sheath and ensuing MBP degradation (663). Experimental models 

based on the intracerebral injection of recombinant human anti-AQP4 antibodies with 

complement reproduce the sequence of astrocyte, oligodendrocyte and myelin loss observed in 

the human disease (539, 679). The near complete astrocyte and oligodendrocyte depletion in 

early NMO lesions apparently does not support oligodendrocyte regeneration and myelin repair. 

Although uni- and bipolar GFAP-positive cells, reflecting astrocyte repopulation, are regularly 

found in NMO lesions, evidence for oligodendrocyte replenishment and remyelination is scarce 

(458). By contrast, Schwann cell remyelination of CNS axons may be extensive in NMO lesions 

(226, 270, 276). Early NMO lesions are characterized by a preservation of axons but acute axonal 

transport disturbance may be observed in experimental lesions as well (244, 410, 413, 458, 679). 

However, in the chronic disease stage, axonal loss and spinal cord atrophy are frequently severe, 

exceeding that observed in MS (276, 375). Noteworthy, whereas NMO is characterized by a 

stepwise, attack-related accumulation of disability, the gradual disease progression frequently 

seen in MS is not observed (282, 672). In summary, demyelination in NMO is instigated by an 

immune-attack against the astrocyte, a cell that is on first glance unrelated to the axon-myelin 

unit, thus serving as a paradigmatic disease to highlight the interdependence and close physical 

interaction between glial cells in the CNS.  

 

Leukodystrophies 

Although inflammatory demyelinating diseases are most prevalent, much of the 

fundamental insights into primary oligodendrocyte/myelin pathology and the role of other CNS-

intrinsic cell populations in myelin disease has emerged from the study of inherited white matter 

disorders collectively referred to as leukodystrophies. Depending on classification criteria, more 

than 90 diseases are recognized, and with the advent of next-generation sequencing an increasing 

number of entities is being defined (645, 651). 
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Reflecting the diversity of the underlying genetic alterations, leukodystrophies exhibit 

variable age of onset, radiological presentation and clinical course. Although leukodystrophies 

have been understood as genetic defects leading to hypomyelination or demyelination, only few 

of the affected genes are oligodendrocyte-specific (651). Novel classification systems thus put 

forward the primary involvement of any cell population in the white matter by classifying myelin 

disorders in primary oligodendrocyte/myelin defects; astrocytopathies; leuko-axonopathies; 

microgliopathies; and leukovasculopathies (639) (FIGURE 8). 

The shift of classification systems towards pathophysiology highlights the complex 

cellular interdependencies of the CNS and their contributions to disease development. For 

instance, the role of the glial syncytium in myelin pathology is underscored by mutations in genes 

coding for astrocytic or oligodendroglial connexins (Cx) in which loss of function of the 

astrocytic Cx43 in oculodentodigital dysplasia (ODDD) or the oligodendroglial Cx47 in 

Pelizaeus Merzbacher-like disease (PMLD) are associated with myelin loss (3). Also, mutations 

leading to functional defects in glial cell adhesion molecule (GlialCAM), megalencephalic 

leukoencephalopathy with subcortical cysts-1 (MLC1) and the chloride voltage-gated channel 2 

(CLCN2), all proteins related to ion and water homeostasis of astrocytes, are associated with 

megalencephalic leukoencephalopathy with subcortical cysts (MLC) a disease causing white 

matter swelling and myelin vacuolation (638). Surprisingly, mutations in primarily microglial 

genes such as the colony stimulating factor 1 receptor (CSF1R) in hereditary diffuse 

leukoencephalopathy with spheroids (HDLS), or the triggering receptor expressed on myeloid 

cells-2 (TREM2) and its adaptor protein TYROBP in Nasu Hakola disease lead to late-onset 

demyelination through mechanisms that are not yet fully understood (499, 611) (FIGURE 8). 

In the following section we will discuss pathophysiological aspects of leukodystrophies 

based on exemplary diseases with primary oligodendrocyte, astrocyte and microglial defects. For 

a general overview and discussion of specific disease groups the reader is referred to recent 

reviews (114, 315, 639). 

 

Mutations in oligodendrocyte and myelin-related genes  

Mutations in genes enriched in oligodendrocytes can manifest pathologically as diseases 

associated with hypomyelination, dys-/demyelination or myelin swelling (639). Affected genes 

are functionally heterogeneous, ranging from genes coding for proteins with structural function to 

enzymes involved in specific metabolic pathways. Prominent examples are PLP1, Cx47 (GJC2) 
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and the lysosomal enzyme, Arylsulfatase A (ASA), which will be discussed in the following 

section. 

 

Mutations in the myelin membrane protein PLP/DM20  

Pelizaeus Merzbacher Disease/X-linked severe spastic paraplegia 2 (SPG2)  

Pelizaeus Merzbacher disease (PMD) and X-linked severe spastic paraplegia 2 (SPG2) are 

inherited myelin disorders caused by mutations in the PLP1 gene, coding for the structural 

myelin protein PLP and its splice variant DM20. The most common genetic alteration in PMD is 

PLP1 duplication, which occurs in about 60–70% of the patients followed by missense or point 

mutations (15–20%), insertions, and deletions (625).  

As expected from its abundant expression in the CNS and its role in the apposition of 

myelin sheaths, defects in PLP show a strong genotype-phenotype correlation. In general, PLP 

duplications cause classical PMD, which manifests in the first five years of life, while missense 

mutations result in a severe variant with connatal onset. Deletions and null mutations give rise to 

SPG2 and null PMD syndrome, milder clinical forms with later age of onset (114, 639). The 

specific genetic defects lead to different pathophysiological mechanisms with considerable 

overlap in the presentation of these different disorders is observed (435). Patients with classic 

PMD show hypomyelination in the cerebral and cerebellar white matter with relative preservation 

of the grey matter (238, 561). Ultrastructurally, myelin sheaths display swellings, constriction 

and abnormal foldings; occasionally abnormally thick myelinated fibers are seen (338).  

A striking histological feature is the almost complete absence of mature oligodendrocytes 

due to increased cell death (314, 570), possibly as a result of gain-of-toxic function caused by 

PLP. Indeed, in PLP over-expressing transgenic mice, dys-/demyelination is observed and 

disease severity correlates with the amount of PLP expressed (19, 289, 512). Why abnormal 

levels of PLP cause cell death is unknown, but altered ratios of myelin membrane components 

might lead to a build-up of toxic material within the cell. Accumulation of PLP and associated 

lipids occur in oligodendrocyte cell body where abnormal lysosomes and autophagic vacuoles are 

observed (46, 73, 294, 572). Contrary to point mutations (see below), PLP duplication does not 

lead to prominent ER accumulation. Therefore, activation of the unfolded protein response 

(UPR), a cellular adaptive response to stress triggered by ER sequestration of proteins that may 

lead to apoptosis (245, 349), seems to play a less important role in oligodendrocyte death in PLP 

duplication. However, both activation and inhibition of stress responses in human iPSC-derived 
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oligodendrocytes harboring PLP duplications can lead to prolonged cellular stress relief, allowing 

the reestablishment of normal oligodendrocyte morphology (435).  

PLP null mutations are also associated with hypomyelination, but myelin loss is less severe 

compared to patients with PLP duplication. When evaluated with histochemical methods,  diffuse 

myelin loss with preservation of U-fibers can be observed, yet when immunohistochemistry for 

myelin proteins such as MBP is used, the white matter seems to be well myelinated (201, 570). 

Ultrastructural analysis reveals a great variation in the degree of myelination of individual fibers, 

with areas showing normal myelin interspersed with thinly myelinated fibers and myelin 

dissolution (338). However, in spite of the overall relative normal appearance of myelin, axonal 

swellings and Wallerian degeneration are frequently observed (201, 570). Similar findings have 

been reported in PLP-null mice in which myelin ultrastructure is well preserved, but axonal 

degeneration is prominent (225). As with other white matter pathologies, these results highlight 

the pivotal role of proper myelin function in securing axonal survival (reviewed in (50, 432)).    

Finally, several point mutations in PLP1 have been described that also lead to 

demyelination and oligodendrocyte loss. However, variable clinical phenotypes associate with 

specific mutations and range from mild to severe connatal forms (100, 265). In mouse models 

harboring PMD-related mutations, abnormal PLP structure and apoptosis of fully differentiated 

MBP-expressing oligodendrocytes were observed (219). In culture, truncated or misfolded PLP 

forms failed to be transported to the plasma membrane, showed accumulation in the ER/Golgi 

and associated with oligodendrocyte death (155, 218, 219, 588, 606). Expression of mutant PLP 

in culture systems led to the expression of stress markers and in particular the nuclear expression 

of CHOP, an effector protein of the ER stress response associated with apoptosis (588). 

Moreover, CHOP localization to the oligodendrocyte nucleus was also demonstrated in human 

PMD (588). 

 

Mutations in the oligodendrocyte-specific Connexin Cx47 

Pelizaeus Merzbacher-like Disease (PMLD) 

Highlighting the important role of gap junctional communication in myelin maintenance 

and development, mutations in the GJC2 gene, encoding the oligodendrocyte-specific Cx47 (309, 

388) (see Section on Connexins) lead to a demyelinating disease referred to as Pelizaeus-

Merzbacher–like disease (PMLD) (243, 635).  
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Several recessive mutations in the coding and promoter regions of GJC2 have been 

described and include frameshift, nonsense and missense mutations (90, 129, 217, 243, 635, 657). 

Clinically, PMLD patients show a rather homogeneous phenotype with early onset (243) (90, 

243, 635), while in patients with mutations in promoter regions, the clinical manifestations are 

more variable (3). MRI changes suggestive of abnormal myelination are observed in the cerebral 

white matter with relative sparing of corticospinal tracts (545, 635, 674). The cerebellar white 

matter may be affected, whereas the basal ganglia appear normal in the majority of patients (44).  

The relatively narrow clinical phenotype and the recessive inheritance suggest a loss of 

Cx47 function in PMLD (3). When expressed in culture, Cx47 with PMDL associated mutations 

is unable to form functional oligodendrocyte/oligodendrocyte or oligodendrocyte/astrocyte gap 

junctions (156, 449, 450). In contrast to PLP-null mutants, Cx47 knock-out mice show prominent 

myelin vacuolation with large vacuoles surrounded by few layers of compact myelin (388, 443). 

No overt demyelination is observed, probably owing to a compensatory effect of Cx32. In 

Cx47/Cx32 double knock-out mice, however, dys- and demyelination with oligodendrocyte 

apoptosis and axonal damage occur (388, 443). Altogether, these observations suggest that 

demyelination in PMLD is likely the result of loss of function of gap junctional communication 

in mature oligodendrocytes, oligodendrocyte apoptosis and impaired myelin development and 

maintenance, which seems less redundant in humans than in mice.  

 

Defects in lipid metabolism  

Metachromatic leukodystrophy 

Several leukodystrophies have been described, in which the causing mutation affects 

genes related to lipid metabolism. Probably one of the best studied examples is metachromatic 

leukodystrophy (MLD), an autosomal recessive leukodystrophy caused by mutations in the ARSA 

gene, which encodes for the lysosomal protein arylsulfatase A (ASA), or in the PSAP gene 

encoding for prosaposin B, an activator of ASA (107, 649). ASA plays a crucial role in the 

metabolism of sulfatides, lipids enriched in myelin, but also present in astrocytes, neurons and 

peripheral organs (164). Therefore, defects in sulfatide degradation result in intra-lysosomal 

accumulation of lipids in the CNS and PNS as well as in visceral organs such as gallbladder, 

liver, pancreas, intestines and kidney (164). 

The age of onset and severity correlate with residual enzyme activity. Disease 

manifestation occurs when activity drops below ~10-15% of normal levels (208). Homozygosity 
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and compound heterozygosity for alleles that do not allow synthesis of functional enzyme result 

in the severe early-childhood form with age of onset before 3 years and rapid psychomotor 

regression leading to weakness, areflexia and death (209, 649). In the juvenile form, patients have 

residual enzymatic activity and therefore progress slower, but eventually also decline (208). 

Finally, in the adult variant, with onset after the age of 16 years, enzyme levels are higher, and 

neurological deficits with cognitive and behavioral changes and neuropathy occur later (208, 

328). 

Diffuse myelin loss with regions of myelin sparing, so called radiating stripes, is found in 

the cerebral white matter (115, 578, 646, 650). The disease is characterized histologically by 

metachromatically stained granules, which are found within neurons, glial cells and macrophages 

and also outside of cells (316, 646). Axonal destruction is severe. The main ultrastructural 

features in demyelinated areas are accumulation of myelin degradation products within 

phagocytes. In MLD, demyelination is thought to be the direct consequence of lipid accumulation 

leading to oligodendrocyte death followed by myelin destruction (209, 316). However, at the 

lesion borders in the subcortical white matter, myelin sheaths display milder abnormalities with 

dissociation of myelin lamellae and dysjunction from the axolemma (224, 227). The 

pathophysiological contribution of such subtle myelin abnormalities and widespread metabolic 

alteration involving axonal dysfunction is unclear. 

 

Mutations affecting microglia  

Hereditary diffuse leukoencephalopathy with spheroids (HDLS) and Nasu Hakola disease 

Microglia are the resident macrophages of the CNS, yet besides their role in immune 

surveillance, they have a wide range of developmental and homeostatic functions. For instance, 

microglia guide the construction, maturation and function of neuronal networks. Also, they 

interact directly with the periphery and react to specific signals influencing the CNS 

microenvironment (reviewed in (302, 493, 617)). Microglial may also play a role in myelin 

homeostasis and development, which has become evident with the discovery of hereditary 

demyelinating diseases caused by mutations in microglial genes such as hereditary diffuse 

leukoencephalopathy with spheroids (HDLS) and Nasu Hakola disease (NHD).  

In both diseases, the affected genes are key regulators of macrophage/microglial 

activation and inflammatory pathways. In HDLS, mutations lead to defective kinase activity of 

the colony-stimulating factor 1 receptor (CSF1R), which is required for macrophage/microglia 



47 
 

differentiation, maintenance, and activation (10, 117, 365, 499, 501, 593, 659). NHD is caused by 

loss of function mutations in either of two interacting molecules, the extracellular receptor 

TREM-2) and its intracellular interaction partner DNAX-activating protein of molecular mass 

12kDa (DAP12) also known as TYRO protein kinase-binding protein (TYROBP) (311, 454, 

455). Trem2/DAP12 plays an important role in microglia polarization as receptor activation 

allows microglia to convert from a homeostatic to an activated state (298, 318).  

Both diseases have a similar clinical presentation with onset in the fourth or fifth decade 

of life and psychiatric alterations followed by neurological symptoms and death (58, 453, 593). 

Changes suggestive of progressive demyelination and axonal damage are observed and occur 

initially in the frontal lobe (58, 603). Demyelination and axonal loss, with a particular regional 

distribution also involving brainstem and cerebellum are a common feature in all patients (30, 

526, 642). Numerous axonal swellings and spheroids, often with accompanying myelin 

vacuolization, are found in demyelinated areas and occasionally in the gray matter. These 

changes are accompanied by widespread astrogliosis (17, 28, 30, 453, 526, 642). Interestingly, 

tau-positive neurites were observed in in the cortex of both HDLS and NHD (453, 526).  

The exact mechanisms linking microglial dysfunction and demyelination are unclear. 

However, in HDLS there is evidence that axonal damage precedes demyelination (16, 603). Late 

disease onset, extensive axonal damage and expression of CSF1R in neurons and neural 

progenitor cells (NPCs) suggest that demyelination might arise as a consequence of primary 

neuro-axonal damage and microglia dysfunction (10, 117, 365, 501, 659). Nonetheless, CNS 

abnormalities such as ventricle dilation, cortical atrophy, reduced microglial colonization and 

reduced density of NPCs, mature neurons and oligodendrocytes in CSF1R knock-out and older 

haploinsufficent Csf1r+/- mice point towards an important developmental component (116, 169, 

428). However, conditional deletion of CSF1R in NPCs did not show cortical atrophy, or 

microglia or oligodendrocyte reduction, suggesting that CSFR1 deficiency in microglia 

contributes to disease manifestation (116, 169, 428). The notion that white matter pathology can 

arise from a primary microglial phenotype is further supported by NHD, since TREM2 and 

DAP12 are primarily (perhaps exclusively) expressed in microglia in the CNS (59, 621). Whether 

microglia dysfunction can directly trigger demyelination and oligodendrocyte death is unclear. A 

direct interaction between myelin and microglia has been demonstrated in the process of age-

related myelin clearance, where microglia actively strips off damaged myelin (542). Also, OPC 

homeostasis appears to depend on microglia function (233), as treatment with the microglia-
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depleting compound, CSF1-R inhibitor BLZ945, was associated with a significantly reduced 

number of OPCs (233). The exact molecular pathways by which microglia sustain OPC survival 

is not clear, but soluble growth factors or mitogens such as IGF-1 may be involved (233, 246, 

259). In addition, in a toxic demyelination model, TREM2-deficient mice failed to expand the 

number of microglia, leading to impaired myelin clearance and persistent demyelination (104, 

482), suggesting that impairment of microglial function additionally contributes to lesion 

progression in NHD.  

 

Mutations in primarily astrocytic genes 

Vanishing white matter disease (VWM) and Alexander disease 

Astrocyte physiology is traditionally associated with homeostasis, for example by 

maintaining blood-brain barrier integrity and modulating synaptic activity through regulation of 

extracellular neurotransmitter and ion concentrations (584). However, during the last decade it 

has become clear that astrocytes serve more specialized roles in physiological as well as 

pathological situations (463, 584). Astrocytes are known to modulate synaptic plasticity, 

formation and maturation and to contribute to functional regeneration after injury. Moreover, 

astrocytes show variable and often disease-specific contributions in neuropathology ranging from 

protective effects to pathologic modifications leading to the release of neurotoxic factors and 

exacerbation of tissue damage (463). 

Little is known about the role of astrocytes in oligodendrocyte/myelin pathology, 

development and maintenance, yet myelin disorders in which the causal mutations affect 

primarily astrocytic function suggest a tight interaction between these two cellular populations.  

Alexander disease is an autosomal dominant disorder caused by mutations in the glial 

fibrillary acidic protein (GFAP) gene, an intermediate filament protein that is expressed 

predominantly in astrocytes. Although GFAP expression is found in other cell types, symptoms 

are restricted to the CNS (77, 78). Based on clinical presentation and radiological findings, 

Alexander disease has been classified as Type I with early onset and predominantly frontal 

leukoencephalopathy (496) and Type II with later, variable age of onset and predominant 

posterior fossa and spinal cord localization (393, 496). The histopathological hallmark of 

Alexander disease is the presence of astrocytic cytoplasmic inclusions (12), usually known as 

Rosenthal fibers, owing to their first description by Rosenthal in an old glial scar (534, 673). 

Rosenthal fibers arise as a consequence of GFAP overexpression and consist of GFAP associated 
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to other proteins such as cyclin D2, the filament binding protein plectin and the small heat shock 

proteins alphaB-crystallin and Hsp27, among others (279, 286, 587).  

Demyelination is usually severe in early onset forms and can be mild or even absent in 

late onset pathology. In the former, oligodendrocytes are severely reduced and macrophages are 

usually not increased in areas of demyelination. Moreover, macrophages do not contain myelin 

degradation products, suggesting a defect in myelin formation, rather than active demyelination. 

On the other hand, in childhood- and adult-onset cases, when demyelination is present, lipid-

laden macrophages can be found (68, 483, 626). 

Current concepts regarding the pathogenesis of Alexander disease suggest a gain-of-toxic 

function of GFAP. GFAP overexpressing mice, carrying a human GFAP (hGFAP) transgene 

under the control of its own promoter, showed markedly hypertrophic astrocytes containing 

Rosenthal fibers. Moreover, the life span of the animals inversely correlated with GFAP dosage, 

suggesting that GFAP overexpression exerts a primary pathological effect (394). Nevertheless, 

transgenic mice expressing the Alexander disease-associated GFAP-R76H and -R236H mutations 

also developed Rosenthal fibers and elevated levels of total GFAP but the animals had a normal 

life span without behavioral abnormalities (231). Mutant monomers assemble to form aberrant 

large oligomers that inhibit the proteasome system (612). In addition, GFAP accumulation has 

been shown to alter cytoskeletal dynamics (118), increase autophagy (613, 614), and interfere 

with glutamate/potassium buffering, calcium signaling and gap-junctional coupling (544, 586, 

623) as well as reducing cell proliferation and promoting apoptosis (118). 

Although astrocytic dysfunction can partly explain select clinical features of Alexander 

disease, the exact mechanisms linking astrocyte dysfunction to demyelination remain elusive. 

Olabarria and Goldman propose three mechanisms that might contribute to demyelination. First, 

the increased expression of CXCL10 in astrocytes in Alexander disease (232, 446, 447) may 

exert direct effects on oligodendrocytes or influence the immune reaction promoting 

demyelination (446). Second, the loss of gap junctional communication and the resulting 

alterations in the buffering capacity of astrocytes may lead to intramyelinic edema (586, 623). 

Finally, extracellular deposition of hyaluronan, a protein that is produced by astrocytes and 

accumulates in the extracellular space in other demyelinating diseases, might inhibit OPC 

differentiation (60, 92). 
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Recently, a mechanism independent of astrocytic dysfunction has been proposed. As 

GFAP is also expressed in neural progenitor cells, mutated or increased GFAP levels may also 

interfere with cellular development and OPC differentiation (215). 

Another leukodystrophy where astrocytes have been widely implicated is vanishing white 

matter disease (VWM), a recessively inherited disorder caused by mutations in any of the five 

subunits of eukaryotic translation initiation factor 2B, eIF2B (345, 641). The eIF2B protein plays 

a central role as regulator of translation initiation, specifically for RNA/ribosome assembly, and 

modulates the overall rate of protein synthesis (1). There are several VWM-associated eIF2B 

mutations, the majority of which consist of missense mutations (91) leading to loss of eIF2B 

complex structure and reduction of complex activity (1). The lack of reported homozygous 

nonsense or frameshift mutations indicates that eIFB2 is essential for survival (91, 643). 

Clinical presentation ranges from fatal pre- and neonatal variants to the rapidly 

progressive classical form, with onset in early childhood (643), to milder phenotypes with onset 

in adolescence or middle age (189, 640, 643, 644). The classical form of VWM is characterized 

by progressive neurological deterioration in which episodes of febrile infection and even mild 

head trauma might result in unexplained coma and prompt severe and rapid progression (552, 

637). In later onset disease, the initial clinical presentation often consists of dementia, seizures, 

psychiatric or motor symptoms (643). 

Typically, the entire cerebral white matter shows hyperintense T2-weighted signals in 

MRI that develop into cystic lesions (637, 640). Cystic degeneration is less complete in late-onset 

forms and in the cerebellum (643). Histologically, myelin is severely reduced and shows 

extensive vacuolation and cystic changes in particular in frontotemporal regions (21, 85, 637, 

640). Axonal density is variable in demyelinated areas with mild vacuolation, but clearly reduced 

in areas with cystic degeneration. Astrocytes show a characteristic dysmorphy with coarse, blunt 

cell processes (85, 643).  

Within cavitated areas and in their immediate vicinity, cellularity is reduced with marked 

oligodendrocyte loss (85). In areas with relative tissue preservation, an increase in 

oligodendrocyte density is observed. These so-called “foamy” oligodendrocytes show 

characteristic enlarged nuclei and abundant granular cytoplasm, (529, 637, 640, 647, 678).  

Surviving oligodendrocytes in lesion areas as well as in areas of ongoing demyelination 

express proliferative as well as pro- and anti-apoptotic markers (85, 647), the co-expression of 

which might promote cell death (647). Also, nuclear changes characteristic of apoptosis suggest 
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that demyelination might ultimately be a consequence of oligodendrocyte loss (85). eIF2b is 

ubiquitously expressed and abnormal eIF2b subunits may also have a direct effect on 

oligodendrocyte survival. In fact, increased levels of phosphorylated PERK, p-eIF2α, ATF4 and 

CHOP in VWM oligodendrocytes (646, 648) could be the result of an adaptive response to eIF2b 

mutations (291, 349).  

Abnormal oligodendrocyte function and demise may hence occur, at least partly, as a 

direct consequence of defective eIF2b, yet developmental abnormalities may also be at play. In a 

transgenic mouse model harboring the R132H mutation of eIF2b, an increased OPC density, 

myelin abnormalities and an increased amount of small-diameter axons with low myelin content 

were observed (205). Increased OPC numbers could occur as a consequence of maturation 

failure, which might in part be mediated by astrocyte dysfunction. In mutant astrocyte/mutant 

OPC co-culture systems, defective eIF2B led to a maturational arrest of OPCs which could be 

rescued by co-culture of mutant OPCs with wild-type astrocytes, indicating a direct role for 

astrocytes in OPC maturation (159). 

It remains unclear why mutations in a ubiquitously expressed principal regulator of 

protein synthesis manifests primarily as a neurological disease affecting glia. It has been 

speculated that glial cells show a relatively low constitutive eIF2B activity as compared to other 

cells and are therefore particularly vulnerable to further reductions in its activity (643). Also, the 

increased stress response observed in VWM could prove especially harmful to glial cells (643). 

Finally, eIF2B might have yet unidentified functions especially relevant for glial cell physiology 

(1). Altogether, myelin pathology in VWM may occur as a consequence of defective OPC 

maturation, likely mediated by astrocyte dysfunction, and of demyelination due in part to 

oligodendrocyte death, as a direct effect of abnormal eIF2b. It is plausible that the aberrant 

astrocytic function may also lead to osmotic and metabolic imbalances further contributing to 

lesion progression.  

 

Viral infection leading to demyelination  

Progressive multifocal leukoencephalopathy 

Demyelination represents a hallmark of several viral CNS infections in humans and other 

mammals. The mechanisms often involve oligodendrocyte apoptosis and/or lysis as well as 

disruption of the intracellular machinery responsible for myelin biosynthesis.  
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One of the best studied examples is progressive multifocal leukoencephalopathy (PML), a 

usually fatal demyelinating disease caused by CNS infection with the double stranded DNA 

polyomavirus JC. Latent infection with JC virus (JCV) is highly prevalent in humans, while lytic 

CNS infection is almost exclusively found in the context of immunosuppression (373). 

Demyelination is typically multifocal, confluent and located in the cerebral hemispheres 

(25, 56, 296, 297, 518). Oligodendrocytes show enlarged, nuclei and astrocytes frequently 

demonstrate bizarre nuclear morphology suggestive of neoplasia (25, 518). Cortical lesions are a 

common finding in PML autopsies with reported frequencies ranging from 57-100% (415, 681). 

PML is one of the few CNS pathologies besides MS where cortical demyelination has been 

recognized as a prominent feature (415).  

In accordance with the association between PML and immunosuppression, inflammatory 

infiltration frequently is sparse in PML lesions and consists mostly of CD8 T-lymphocytes, with 

only few B cells (680). Interestingly, an increase in B cells, plasma cells and T cells with a CD8 

predominance has been reported in the context of the PML-associated immune reconstitution 

inflammatory syndrome (PML-IRIS), where PML becomes clinically apparent or worsens with 

the recovery of the immune system, mostly in MS patients treated with natalizumab and in HIV 

patients (379, 395).  

The most widely accepted mechanism of demyelination in PML implicates 

oligodendrocyte and astrocyte infection by JCV followed by lytic oligodendrocyte death with 

local virus spread and subsequent demyelination.  

The JCV genome contains early and late transcribing portions separated by a non-coding 

control region. The early region is transcribed prior to DNA replication and consists of large, 

small and splice variants of T antigen. The late portion codes for agnoprotein and capsid proteins 

VP1, VP2 and VP3, of which VP1 represents the principal capsid component (178). 

Immunohistochemically, both VP1 and T-antigen can be observed in oligodendrocytes, 

suggesting that oligodendroglia contribute to productive viral infection (204, 223, 273, 285). 

Additionally, ultrastructural changes compatible with viral adsorption, penetration and 

intracellular transport in oligodendrocytes have been demonstrated in PML (383).  

Besides oligodendrocyte lysis, several studies suggest a prominent role for apoptosis in 

PML (391, 517, 684), which might depend on the p53 pathway (22, 595). Given the highly 

selective human tropism of JCV, and thus its inability to replicate productively in non-human 

hosts, good animal models of PML are lacking (667). Nevertheless, complex chimeric studies in 
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transgenic animals in which myelin-deficient, immunosupressed mice were engrafted with human 

glial progenitor cells showed extensive oligodendrocyte apoptosis triggered by viral T antigens. 

In this model, JCV infection induces an aberrant re-entry of oligodendrocytes in the cell cycle, 

leading to an arrest in G2 with subsequent apoptotic death (317).  

In PML lesions, oligodendrocytes and astrocytes express the apoptosis inhibitor survivin 

(479). It has been proposed that the virally induced expression of anti-apoptotic proteins allows a 

longer time period for JCV to replicate and complete its lytic cycle (149). It remains unclear 

whether these infected, longer-surviving oligodendrocytes ultimately undergo cellular lysis and 

necrotic cell death. Also, the relative contribution of specific mechanisms of oligodendrocyte 

death to the extent of demyelination and virus propagation remain unknown. 

The distribution of infected oligodendrocytes suggests that demyelination progresses 

mainly through sequential, productive JCV infection and lysis of oligodendrocytes, resulting in 

radial lesion expansion (278, 301, 415, 569, 670) (FIGURE 6). However, the radiological 

manifestations of PML indicate that lesions can also spread along white matter tracts, suggesting 

that in addition to local virus spread after lysis of infected cells, further mechanisms of local and 

distant virus propagation may exist (563). In particular, it has been proposed that virions disperse 

locally in an intracellular manner and that distant virus propagation is likely to occur 

extracellularly along white matter tracts (666). Indeed, viral particles are not only observed in the 

cytoplasm and cell processes of oligodendrocytes at the demyelinating lesion border (278, 666), 

but also at the intraperiod line between the myelin lamellae in the extracellular space (383).  

 In addition to oligodendrocytes, JCV infection of astrocytes and neurons has been 

documented (25, 223, 373, 562, 675, 681). Astrocytes are not considered to contribute 

significantly to productive infection (354), but the presence of infected astrocytes in areas 

without overt demyelination has led some authors to postulate that viral propagation might begin 

in astrocytes and then spread to neighboring oligodendrocytes (26, 317, 562). However, next to 

their potential role in virus propagation it is unknown how infected astrocytes contribute to 

demyelination. JCV-infected neurons are found in about half of the patients with lesions in the 

gray matter and only 11% in areas not associated with demyelination (160, 681), but their 

contribution to myelin pathology is unknown. 

 

Conclusion 
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In this review we have discussed our current knowledge in the biology of myelin and its 

implications for disease. We highlighted advances in our understanding of myelin formation, its 

plasticity, and the reciprocal interactions of oligodendrocytes with the axons they ensheath. 

Oligodendrocytes are embedded in a vast network of interconnected glial and neuronal cells, in 

which oligodendrocytes actively provide metabolic support to neurons, regulate ion and water 

homeostasis and adapt to activity-dependent neuronal signals (575). Novel insights into 

molecular mechanisms governing the interactions between cellular populations of the nervous 

system have influenced current pathophysiological thinking about myelin disorders. These recent 

advances showing the cellular interdependence indicate that myelin dysfunction should be 

understood in the broader context of nervous system pathophysiology. We demonstrate this by 

discussing how specific interactions between astrocytes, oligodendrocytes and microglia might 

contribute to demyelination in hereditary white matter pathologies. In addition, we summarized 

the mechanisms of lesion formation and myelin damage in inflammatory demyelinating diseases, 

taking as an example multiple sclerosis, the most frequent acquired demyelinating disease of the 

CNS, which is increasingly recognized as a ‘whole-brain’ disease. We believe that the 

interdependence of the cellular partners has the potential to explain how pathological alterations 

can expand throughout the nervous system and is also important for our understanding of how 

focal MS lesions develop over time. Also, evidence is accumulating that dysfunction of myelin is 

not restricted to neurological diseases, but affects a wide range of psychiatric disorders, including 

schizophrenia, bipolar disorder and obsessive-compulsive disorders (181). Even if much progress 

has been made and the role of myelin in health and disease is expanding, fundamental questions 

remain to be solved. Among those are: How do oligodendrocytes know which axons to 

myelinate? What is the function of myelin beyond saltatory nerve conduction? Does myelin 

contribute to neuronal plasticity? How is myelin functionally coupled to other cells? In the 

context of inflammatory myelin diseases, apart from the specific role of immune cell subsets and 

humoral factors for disease initiation and progression, the antigenic targets of the immune 

response and the specific environmental triggers of autoimmunity, the interactions between 

axons, myelin and oligodendrocytes in MS are only beginning to be appreciated. Also, the 

interactions of astrocytes and axons to support axonal conductance and lesion repair, especially in 

chronic demyelinated MS lesions, are not well understood. In addition, the role of microglia 

within the glial syncytium might be worth a deeper look.  
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While there is an expanding knowledge about the mechanisms of lesion formation in 

leukodystrophies, the mechanisms of lesion repair are largely unexplored. In the majority of 

leukodystrophies it is unknown whether, how and at which time point after lesion onset, a 

correction of the underlying genetic defect would result in effective tissue recovery and whether 

this would translate into clinical benefit. Is a functional pan-glial syncytium a pre-requisite for 

lesion repair? For instance, in diseases with primary astrocyte dysfunction or loss, it is not known 

whether astrocyte repopulation is required for remyelination, OPC survival and axonal 

maintenance. Which compensatory mechanisms make up for defective / absent astrocyte 

function? What is the role of the immune system in the repair process? Clearly, further work will 

be necessary to elucidate the mechanisms and the molecules that mediate communication in the 

glio-neuronal network in health and disease.  
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Figure Legends: 

 

Figure 1: Schematic illustration of CNS myelin structure 

Graphical illustration of myelin structure including the different domains of myelinated axons. 

MBP is essential is generating compacted myelin membrane stacks by zippering the cytoplasmic 

surfaces closely together. CNP interacts with the actin cytoskeleton and counteracts the 

polymerizing forces of MBP, thereby generating cytoplasmic channels within the myelin sheath. 

Gap junctions connect the paranodal loops of myelin at the lateral edges of myelin. Image 

adapted from (536).  

 

Figure 2: Schematic illustration of the metabolic coupling of oligodendrocytes, astrocytes 

and neurons 

Oligodendrocytes (green) take up glucose, which is metabolized to lactate and pyruvate, and 

delivered to the axons using monocarboxylate transporters (MCTs) to fuel the axon with energy. 

Neuronal activity results in the release of glutamate into the periaxonal space, where it activates 

NMDA receptors at the inner myelin membrane. This in turn triggers the translocation of glucose 

transporters (GLUT1) into the surface of the myelin sheath and/or oligodendrocytes cell body to 

increase glucose uptake and the availability of lactate/pyruvate. Astrocytes (blue) are connected 

to oligodendrocytes by gap-junctions to enable metabolite transfer between the cells. Image 

adapted from (536). 

 

Figure 3: Model of myelination in the CNS 

a) An oligodendrocyte is shown at different stages of myelination. The upper panel illustrates a 

virtually unrolled myelin sheath with the compacted areas shown in orange and the uncompacted 

areas in green. b) The corresponding cross sections are depicted below the axon. c) The 

longitudinal view of a myelinated axon is displayed at different stages of the myelination process. 

Images are adapted from (110, 581). 

 

Figure 4: Multiple sclerosis focal lesion pathology 

A continuum of phagocyte activation and demyelination characterizes multiple sclerosis lesion 

evolution thatoccurs over months to years. 
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Figure 5: Centrifugally expanding chronic active multiple sclerosis lesion  

TPPP/p25+ mature oligodendrocytes (arrowheads) amidst myelin-phagocytosing macrophages 

(arrows) at the actively demyelinating edge of a chronic active MS lesion in a 30-year old female 

with progressive MS. Note the loss of TPPP/p25+ cells in the central part of the lesion. Double 

immunohistochemistry for TPPP/p25 (brown) and myelin basic protein (blue); nuclear 

counterstain: hematoxylin. 

 

Figure 6: Mechanisms of Demyelination. Demyelination arises most frequently as a 

consequence of two non-mutually exclusive pathophysiological mechanisms: primary myelin 

(left) or oligodendrocyte damage (right). Complement/antibody-mediated diseases, primary 

axonal pathologies and structural protein defects are preferentially associated with myelin 

damage while viral infection, genetic and metabolic deficiencies negatively influence 

oligodendrocyte survival. ADEM: Acute Disseminated Encephalomyelitis; CPM: Central Pontine 

Myelinolysis; MLD: Metachromatic Leukodystrophy; NMOSD: Neuromyelitis Optica Spectrum 

Disorder; PMD: Pelizaeus-Merzbacher Disease. 

 

Figure 7: Active remyelination around a chronic multiple sclerosis lesion 

Extensive subcortical chronic demyelinated MS lesion (DM, black dotted line) in a 47-year old 

patient with progressive disease surrounded by areas of established, inactive (iaRM, blue dotted 

line) and active (aRM, green dotted line) remyelination representing “shadow plaques”. Active 

remyelination is characterized by the presence of BCAS1+ myelinating oligodendrocytes 

(arrows). Immunohistochemistry for BCAS1 in brown. The cortical ribbon is outlined in grey. 

PPWM = periplaque white matter. 

 

Figure 8: Leukodystrophies: Pathways and cellular populations involved in demyelination. 

Genetic defects primarily affecting astrocytes (As: blue), oligodendrocytes (Ol: green) or 

microglia (brown) can all manifest as hereditary demyelinating disease. Distinct molecular 

pathways leading to demyelination in selected leukodystrophies illustrate the broad spectrum of 

pathophysiological mechanisms and subcellular localization of the affected molecules (red) and 

range from imbalances in water homeostasis in megalencephalic leukoencephalopathy (MLC), 
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defects in structural proteins in Pelizaeus-Merzbacher disease (PMD) to defects in membrane 

receptors involved in microglia activation and differentiation in hereditary diffuse 

leukoencephalopathy with spheroids (HDLS) and Nasu Hakola disease, among others. 
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