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Cell diversification is at the base of increasingmulticellular
organism complexity in phylogeny achieved during ontog-
eny. However, there are also functions common to all cells,
such as cell division, cell migration, translation, endocyto-
sis, exocytosis, etc. Here we revisit the organelles involved
in such common functions, reviewing recent evidence of
unexpected differences of proteins at these organelles. For
instance, centrosomes or mitochondria differ significantly
in their protein composition in different, sometimes close-
ly related, cell types. This has relevance for development
and disease. Particularly striking is the high amount and
diversity of RNA-binding proteins at these and other
organelles, which brings us to review the evidence for
RNA at different organelles and suborganelles. We include
a discussion about (sub)organelles involved in translation,
such as the nucleolus and ribosomes, for which unexpected
cell type-specific diversity has also been reported. We pro-
pose here that the heterogeneity of these organelles and
compartments represents a novel mechanism for regulat-
ing cell diversity. One reason is that protein functions can
bemultiplied by their different contributions in distinct or-
ganelles, as also exemplified by proteinswithmoonlighting
function.The specialized organelles still performpan-cellu-
lar functions but in a cell type-specific mode, as discussed
here for centrosomes, mitochondria, vesicles, and other or-
ganelles. These can serve as regulatory hubs for the storage
and transport of specific and functionally important regula-
tors. In this way, they can control cell differentiation, plas-
ticity, and survival. We further include examples
highlighting the relevance for disease and propose to exam-
ine organelles inmanymore cell types for their possible dif-
ferences with functional relevance.

Since the early days of cell biology, researchers have
described the compartmentalization of cells as crucial for
their function. These compartments include membranous
organelles such as the nucleus, endoplasmic reticulum,
and lysosomes, as well as nonmembranous organelles
such as centrosomes in the cytoplasm or the nucleolus or
speckles in the nucleus (Alberts et al. 2014). These organ-
elles fulfill similar pan-cellular functions within cells,
such as the centrosome organizing the cytoskeleton, mi-
gration, and cell division, as well as the basal bodies of cilia
(Conduit et al. 2015). Likewise, the nucleolus orchestrates
translational processes in all cell types. However, both
these organelles differ in different cell types, with the cen-
trosome even differing by more than half of the proteome
between closely related cell types (Chang and Marshall
2017; Camargo Ortega and Götz 2022; O’Neill et al.
2022). Surprisingly, RNA-binding proteins (RBPs) are
among the top categories of proteins that have been
detected in numerous organelles and differ at the centro-
some of different cell types (O’Neill et al. 2022). Therefore,
not only does protein diversity convey distinct functional
aspects to these organelles, but specific RBPs at particular
organelles also enable the recruitment of specific mRNAs.
As a consequence, organelles differ not only in their protein
composition but also in their RNA interactors. They pro-
vide a platform for controlling RNA transport, localized
translation, RNA storage, or localized RNA degradation.
It is important to note that the levels of specific RNA
and protein interactors vary between different cells (Döhla
et al. 2022; O’Neill et al. 2022) and between locationswith-
in a single cell (Harbauer et al. 2022). For example, some
proteins can be at one localization or organelle in one cell
type and at another in another cell type. These moonlight-
ing functions of proteins discussed below contribute to
organellar heterogeneity.

Specialized organelles are able to regulate essential
cellular functions through interactions with specific
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proteins and mRNAs. This is particularly important in
complex cells with elaborate functional subcompart-
ments, such as neurons or skeletal muscle cells (Schie-
weck et al. 2021a). Here we provide examples of cell
type-specific differences in organelle composition affect-
ing development or reprogramming. This also prompts
the topic of the fate of daughter cells that can be influ-
enced by the asymmetric inheritance of factors during
cell division. Again, organellar inheritance contributes
to the establishment of differences in daughter cell fates,
as has been shown for mitochondria inheritance from
stem cells (Katajisto et al. 2015; Cheng et al. 2022; Döhla
et al. 2022).
Last, we also touch on the relevance for disease. Muta-

tions that affect protein function at a specific organelle
can cause developmental defects. Here we discuss how
organellar heterogeneity can explain why ubiquitous pro-
teins can cause organ-specific phenotypes when mutated.
This is due to their localization at specific organelles only
in certain cell types (O’Neill et al. 2022). These examples
highlight the urgent need to consider the heterogeneity of
pan-cellular organelles at both their protein and RNA lev-
els, and we call for further profiling of different cell types
in this regard. We propose the concept that organellar het-
erogeneity may serve as a means to further diversify the
function of these organelles and accordingly expand cell
diversity through a novel regulatory layer. Thismay allow
a further increase in cell diversity despite our limited gene
numbers in ontogeny and phylogeny and has important
implications for disease.
In this review, we discuss our current understanding of

organellar heterogeneity at both the protein and RNA
interactor levels. Additionally, recent findings on devel-
opmental disorders caused by malfunctioning of special-
ized organelles are highlighted. Finally, a working model
is proposed for how heterogeneity of some organelles
(namely, the membrane-less organelles) may be estab-
lished in a cell type-specific manner.

Unexpected heterogeneity of pan-cellular organelles

Here we focus on reviewing the emerging evidence for
organellar differences between cells at both the proteome
and RNA level, as much as is known in this new emerg-
ing field. We discuss this with a broad scope ranging
from proteins at one specific organelle only in specific
cell types to proteins present in many cell types but
only at a certain organelle in specific cell types. We fur-
ther touch on heterogeneity of organelles or suborga-
nelles at different locations within a single cell type;
for example, axons and dendrites in neurons. In the
next section, recent findings are highlighted, showing
noncanonical organellar interactors that imply novel
functions of these organelles.

Centrosomes

Centrosomes are well known for their role in acting as cy-
toskeleton organizing centers for the microtubule (MT)

network in migratory cells and for the mitotic spindle in
dividing cells. Moreover, it forms the basal body of cilia.
As these functions are similar inmany different cell types,
it came as a surprise when pioneering studies showed that
their composition differs hugely even between closely re-
lated cell types (O’Neill et al. 2022), such as neural stem
cells and neurons that differ by >50% of their comprehen-
sive proteome (Fig. 1A; O’Neill et al. 2022).
Notably, for individual proteins, this difference had al-

ready been shown before, such as for the protein Akna,
which is at the centrosome in differentiating neural
stem cells but not self-renewing neural stem cells
(Camargo Ortega et al. 2019), and specific isoforms of
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Figure 1. Specialization of pan-cellular organelles. (A) Centro-
somes consist of an older mother centriole and a younger daugh-
ter centriole. These centrioles are duplicated prior to stem cell
mitosis and are asymmetrically distributed to the progeny. This
has been linked to themaintenance of the stemness of the cell re-
ceiving the older mother centriole and can induce differentiation
of the daughter cells inheriting the younger centriole. To regulate
these processes, centrosomes interact with many proteins, in-
cluding RBPs, splicing factors, and RNAs. (B) Newmitochondria
are generated by fission events. These young mitochondria accu-
mulate preferentially in cells that maintain their stemness when
the mother stem cell divides. In contrast, older mitochondria are
inherited by the differentiating progeny. To maintain mitochon-
drial function, these organelles interact with RBPs and tran-
scripts encoding proteins required for mitochondrial function
and mitophagy. (C ) Vesicles serve as transport platforms for ac-
tively translated mRNAs. Therefore, RBPs such as the five-sub-
unit endosomal Rab5 and RNA/ribosome intermediary (FERRY)
complex interact with the surface of these vesicles to recruit tran-
scripts. In thisway, vesicles distributemRNAs and newly synthe-
sized proteins to maintain cellular homeostasis. (D) Ribosomes
are composed of rRNA and ribosomal proteins. The composition
of ribosomal proteins is variable. As a result, specialized ribo-
somes exist that interact with a specific subset of ribosomal pro-
teins to control the translation of specific transcripts.
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Ninein that associate with the centrosome in neural stem
cells (NSCs) versus neurons (Zhang et al. 2016). There are
also further examples from other tissues in this review
(Camargo Ortega and Götz 2022) showing that differenti-
ating cells often losemicrotubule-organizing center activ-
ity at the centrosome also in tissues other than the brain.
The centrosome consists of two centrioles (the mother
and daughter centrioles) and the pericentriolar material
that are functionally and structurally distinct (Fig. 1A;
Tischer et al. 2021). Pull-down experiments using differ-
ent bait proteins that display distinct centrosomal locali-
zations highlighted the heterogeneity of centrosomes
from NSCs and neurons. NSC-specific centrosomal pro-
teins preferentially localize to the appendages of the
mother centriole where, for example, MTs are anchored
or the membrane contact is established. In contrast, neu-
ron-specific centrosomal proteins mostly interact with
Cep63 (O’Neill et al. 2022). The latter is particularly in-
triguing, as Cep63 has so far been implicated in centriole
duplication, which is not relevant in postmitotic neurons.
Whilemuch remains to be understood about this amazing
difference in centrosome composition between neural
stem cells, neurons, and other cell types, this work
showed the fundamental importance of centrosome local-
ization of proteins regulating RNA, as the top category of
proteins with differential centrosome localization be-
tween NSCs and neurons was RNA-related (O’Neill
et al. 2022). Among themwas also an entire splicing com-
plex, comprising the splicing factor, pre-mRNA-process-
ing factor 6 (PRPF6), and its interactors, such as Acin1,
DDX23, and KIAA1429 (O’Neill et al. 2022). PRPF6 is ex-
pressed in virtually all cells of our body. However, in addi-
tion to its localization to the nuclear splicing
compartments, it localizes to the centrosome in neural
stem cells but not other cell types examined. When this
protein is mutated, delamination of differentiating neural
stem cells from the stem cell niche at the ventricle is im-
paired, causing periventricular heterotopia, with some
cells stuck at the ventricle. Interestingly, PRPF6 regulates
the splicing of Brsk2 (O’Neill et al. 2022), which encodes
the SAD-A kinase that phosphorylates microtubule-asso-
ciated proteins (MAPs) to control MT dynamics (Kishi
et al. 2005; Barnes et al. 2007), and Brsk2RNA is localized
at the centrosome (O’Neill et al. 2022). Brsk2 RNA at the
centrosome is reduced by cycloheximide but not puromy-
cin treatment, and the SAD-A protein is also present at
the centrosome (Antognolli 2024), consistent with local
translation. Most importantly, however, the periventricu-
lar heterotopia phenotype caused by the mutated PRPF6
can be rescued by supplying the correctly spliced form of
Brsk2 (O’Neill et al. 2022). These data demonstrate that
this ubiquitous splicing factor plays an organ-specific
role in the brain, correlating to its centrosomal localiza-
tion and the (local) translation of its splicing targets.

A possible causative role of MT alteration by SAD-A at
the centrosome is further supported by the crucial func-
tion of MTs at the centrosome for delamination and mi-
gration out of the ventricular stem cell niche, as shown
by the role of Akna (Camargo Ortega et al. 2019). Akna
is a novel centrosome protein (also binding MTs and

RNA) (Hoefig et al. 2021) specifically expressed in differ-
entiating neural stem cells. It is necessary and sufficient
forMTorganization at the centrosome, and reduced levels
of Akna also result in the failure of cells to leave the ven-
tricle (Camargo Ortega et al. 2019). Importantly, the key
role of Akna at the centrosomewas demonstrated by using
a truncated protein still binding MTs but no longer the
centrosome. This protein could not affect the delamina-
tion of the NSCs from the ventricle, while the full-length
protein localized to the centrosome had a strong effect on
cells leaving the ventricle (Camargo Ortega et al. 2019).
Thus, centrosomal MTOC activity mediated by cell
type-specific centrosomal localization of Akna has pro-
found functional effects on the fate of neural stem cells,
causing them to leave their niche and differentiate.

Another example of a highly cell type-specific centro-
some association of an MT binding protein is Ninein.
This protein also anchors microtubules to centrosomes,
and its loss impairs the maintenance of apical stem
cells (Wang et al. 2009, 2020; Shinohara et al. 2013). Inter-
estingly, alternative splicing in neurons causes Ninein to
relocalize from centrosomes tomicrotubules (Zhang et al.
2016). Thus, Ninein is mainly associated with centro-
somes in self-renewing neural stem cells, while Akna
takes over in differentiating neural stem cells (Camargo
Ortega andGötz 2022), highlighting the impressive degree
of specificity in protein localization at the centrosome,
even differing in subtypes of neural stem cells (Fig. 1A).
Moreover, expression of the Ninein splice variant present
normally in neurons (i.e., not at the centrosome) promotes
delamination of neural stem cells and depletes themat the
ventricle, thus showing direct functional consequences
for neural stem cell differentiation (Zhang et al. 2016).
Taken together, even in the G1 phase when both of these
proteins are localized at the centrosome, the specific com-
position of the centrosome plays important functional
roles. Given their abundance as a top GO category of
cell type-specific proteins and the crucial function of
PRPF6, the role of other centrosome-interacting RNA-
binding proteins especially should be examined further
and at the functional level.

In this regard, it is important to mention that not only
do cells express a large number of RBPs (Castello et al.
2012, 2016; Hentze et al. 2018; Caudron-Herger et al.
2019) with diverse functions (Schieweck et al. 2021b)
but these also localize to distinct places in cells. These
proteins exhibit a distinct set of mRNA interactors, there-
by defining the RNA interactome of organelles. Which
RNAs are localized at the centrosome has not yet been de-
termined in a comprehensive manner, but in a screen of
∼100 RNAs encoding centrosome proteins, only a few
were found to localize to the centrosome, including peri-
centrin (Pcnt) (Safieddine et al. 2021), demonstrating a
highly selective process in recruiting only some RNAs
to the centrosome. However, a large cell type-specific
set of RBPs has been found at the centrosome in neural
stem cells (O’Neill et al. 2022), including Staufen and
the fragile X mental retardation protein (FMRP) (O’Neill
et al. 2022). Pioneering studies have shown that Staufen
and its RNA targets are asymmetrically inherited to
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daughter cells, which define the cell fate of these cells (Li
et al. 1997; Kusek et al. 2012; Vessey et al. 2012). It
is conceivable that Staufen recruits mRNAs to the centro-
some (to the mother or daughter centriole) in neural stem
cells, which are then asymmetrically distributed to the
progeny during cell division. FMRP plays a crucial role
in inhibiting the translation of target RNAs (Chen et al.
2014) and is also required for proper neuronal develop-
ment (Gao et al. 2018; Edens et al. 2019). Interestingly,
FMRP also inhibits the recruitment ofmRNAs to the cen-
trosome inDrosophila embryos (Ryder et al. 2020). These
findings suggest that the RBP interactome determines the
centrosomal RNA composition, and future studies are
needed to address to what extent this effect is cell type-
specific.
Prior to cell division, centrosomes are duplicated, re-

sulting in two centrosomes with differently aged mother
centrioles. This process has been implicated in determin-
ing the fate of daughter cells.Most neural stem cells in the
murine cerebral cortex that inherit new daughter centri-
oles leave the ventricular stem cell niche to become differ-
entiating progenies (Fig. 1A). In contrast, neural stem cells
in the murine cerebral cortex with old mother centrioles
remain in the ventricular zone andmaintain their original
stemness (Wang et al. 2009). The mother centriole is also
crucial for forming the basal body of the primary cilium, a
shortmicrotubule-based protrusion that is essential for re-
ceiving signals. As neural stem cells have their cilium at
the apical side sticking into the ventricle filled with cere-
brospinal fluid, it can sense signals from the cerebrospinal
fluid (Lehtinen and Walsh 2011; Willaredt et al. 2013). It
has been shown that during cell division, the ciliarymem-
brane containing signal transducer proteins is endocy-
tosed and associated with the older mother centriole. As
a result, the daughter cell that inherits the older mother
centriole (the future stem cell) is able to form the primary
cilium earlier than the other daughter cell (Paridaen et al.
2013). It has been hypothesized that this process equips
one of the daughter cells with signals that maintain its
stemness. This notion is supported by the finding that
depletion of the ciliary GTPase ADP-ribosylation factor-
like protein 13b (Arl13b) reverses the apical–basal polarity
of the developing cortex, resulting in neuronal migration
toward the ventricles and mitosis at the pial surface (Hig-
ginbotham et al. 2013). Thus, several proteins localized to
the centrosome in a cell type-specific manner exhibit po-
tent effects on neural stem cell fate, influencing whether
they differentiate or remain as stem cells in their niche.

Microtubules

Themicrotubule (MT) network is a highly dynamic struc-
ture crucial for many cell functions. They are not classi-
cally considered to be organelles, but given that MTs
represent a significant fraction of the cell mass, one may
consider MTs to be nonmembranous organelles. Depend-
ing on their composition (i.e., tubulin isoforms), interac-
tion partners, and cell type, MTs assemble into different
complexes (Conde and Cáceres 2009; Gudimchuk and
Mcintosh 2021). They also associate with distinct RBPs

and transcripts encoding proteins involved in MT func-
tion, such as spindle formation (Sharp et al. 2008). For ex-
ample, theMT plus-end-interacting protein adenomatous
polyposis coli (APC), known for its role in WNT signaling
(Fang and Svitkina 2022), binds mRNAs encoding sub-
units of MTs (Preitner et al. 2014). In addition to these
transcripts, APC binds mRNAs for important develop-
mental factors such as Tbr1, Rbfox2, and Pumilio1 (Preit-
ner et al. 2014). In this context, the RBPs Rbfox2 and
Pumilio1 are of particular interest, as they regulate the ex-
pression of several messenger RNAs (mRNAs) (Jangi et al.
2014; Zhang et al. 2017). The transcripts’ binding to
APC suggests that they are transported and potentially lo-
cally translated, leading to a local enrichment of these
RBPs to regulate specific mRNAs. Future studies are nec-
essary to investigate this aspect of cytoskeleton-mediated
RBP regulation. However, recent studies have shown that
cytoskeletal elements have the ability to distribute
mRNAs and ribosomes within cells, such as cardiomyo-
cytes, due to their transcript binding capacity. Disruption
of this transport process leads to mislocalization of na-
scent proteins around the myonuclei. Therefore, the MT
network is necessary for proper RNA and translation hot-
spot localization (Denes et al. 2021; Scarborough et al.
2021).
The role of MTs in transcript distribution raises the

question of how cells select mRNAs for this process.
One possibility is the use of RBPs, such as FMRP, dis-
cussed above (Ryder et al. 2020). However, RBPs have a
broad RNA binding capacity (Schieweck et al. 2021a),
making it difficult to select transcripts for specific sub-
complexes. This suggests additional selection mecha-
nisms. Interestingly, the RNA and protein exporter
Crm1 interacts with the nuclear pore complex (NPC)
and the noncentrosomal microtubule-organizing center
in yeast (Bao et al. 2018). This finding raises the possibility
that the proximity of microtubule-organizing centers to
specific NPCs selects transcripts for MT binding and cel-
lular distribution (see below). Notably, the centrosome
also is typically close to the nucleus, and severalNPC pro-
teins localize to the centrosome duringMphase,when the
nuclear membrane is dissolved (Chatel and Fahrenkrog
2011). Conversely, some centrosomal proteins, such as
Centrin 2, can be part of the nuclear pore complex and
be involved in RNA transport (Resendes et al. 2008).
These reciprocal moonlighting functions fit the concept
of coevolution of centrosomes and nuclear structures
and further support the concept of multiplying protein
functions by their distinct localization.
AlthoughMTs and their binding proteins, such as APC,

are expressed ubiquitously, the levels of their RNA inter-
actors may vary in different subcompartments of a cell.
For example, APC binds and localizes β2B-tubulin
mRNA to axons (Shigeoka et al. 2016). It is plausible
that MT subcomplexes exist that are specialized for axo-
nal transport, while MT complexes residing in the soma
exert other functions. Furthermore, the heterogeneity of
mRNAs at MTs is supported by transcripts detected at
MTs that are expressed in a highly cell type-specific man-
ner, such as Tbr1.

Cell type-specific differences of organelles
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Nuclear pore complexes

The nucleus is the starting point for organelle-mediated
RNA inheritance. As the birthplace of RNAs, the nucleus
shapes the transcriptome of cells bymodulating transcrip-
tion (Debès et al. 2023), splicing (Furlanis et al. 2019), and
3′-UTR processing (Tushev et al. 2018). Transcripts are ex-
ported throughNPCs to providemRNAs to the translation
machinery in the cytoplasm. It has beenhypothesized that
NPCsactas a filter to select certainmRNAsoverothers for
export (Blobel 1985; Fazal et al. 2019). This selection pro-
cess appears to be driven by specialized structures on
NPCs, known as baskets, that assemble with specific
mRNAs to mark them for export (Bensidoun et al. 2022).
Although NPCs are conserved and ubiquitous organelles
in cells, theymust adapt to differences in the cellular tran-
scriptome between cell types and differentiation stages to
contribute to gene regulation. This notion is supported by
pioneering studies that show that the expression levels of
NPC components differ between cell types and tissues
(Raices and D’Angelo 2012; Kane et al. 2018). Indeed, the
differential expression ofNPCcomponents is functionally
relevant in cancercells,where their level of expressioncor-
relates with tissue-specificmalignancies (Borden 2021). In
addition, other, noncancerous tissues show that the cell
type-specific composition of NPCs matters, as the lack
of specific NPC components affects the RNA transport
only in specific tissues (Bensidoun et al. 2021). These
data demonstrate that NPC heterogeneity affects cell
function in a cell type- and tissue type-specific manner.
In addition, the interaction ofNPCswith theMTnetwork
and the centrosome may also enable these organelles to
regulate the distribution of transcripts within cells, as dis-
cussed above.

Mitochondria

Mitochondria are the other example of an organelle for
which the protein compositionhasbeen examined indiffer-
ent cell types, and indeed, profound cell type-specific differ-
ences have been observed (Fecher et al. 2019; Russo et al.
2021). Mitochondria are the metabolic hubs of cells (Shen
et al. 2022) andhence exhibit a high degree of heterogeneity
in function and shape in different cell types (Fig. 1B; Collins
et al. 2002). However, their cell type-specific protein com-
position was not known until recently, due to difficulties
in isolatingmitochondria in sufficient amounts for compre-
hensive proteome analysis from specific primary cell types.
This can be overcomeby growing only one cell type in vitro
(Russo et al. 2021) or by the newly developed mitotag ap-
proach, expressing an outer membrane protein with a GFP
tag in a cell type-specificmanner (Fecher et al. 2019). For ex-
ample, thiswork showed that astrocytes and neurons differ
by ∼20% of their proteome in vitro and in vivo (Fig. 1B;
Fecher et al. 2019; Russo et al. 2021). The cell type-specific
differences comprise mitochondrial proteins linked to the
cell type-specific metabolism, such as fatty acid oxidation
specifically in astrocytes, but also anunexpected specificity
of antioxidant proteins that are oftenmembers of the same
family (e.g., MGST); however, different members are ex-

pressed in distinct cell types, such as neurons that have
higher mitochondrial levels of Mgst3, while mitochondria
of astrocytes containmoreMgst1 (Russoet al. 2021). Impor-
tantly, this matters at the functional level, as elevating the
expression of Mgst3, but not Mgst1, promotes the genera-
tion of neurons from astrocytes (Russo et al. 2021). As the
same has been observed for several other neuron-enriched
mitochondrial proteins (Russo et al. 2021), these data dem-
onstrate that proteomeheterogeneityofmitochondriamat-
ters for the function and generation of specific cell types.

In addition to their distinct protein composition, mito-
chondria also interact with specific RBPs such as PUF3
and, ultimately, mRNAs (García-Rodríguez et al. 2007;
Fazal et al. 2019; Qin et al. 2021). As a result, translation-
ally active ribosomes have been identified on the outermi-
tochondrial membrane (OMM) (Lesnik et al. 2014; Gold
et al. 2017). An essential function of mitochondrially
localized translation is tomaintainmitochondrial homeo-
stasis (Zabezhinsky et al. 2016). For instance, the tran-
script that encodes mitochondrial aminoacyl-tRNA
synthetases, IARS2, interacts or closely associates with
mitochondria (Fig. 1B; Fazal et al. 2019). Furthermore,
translation onmitochondria is needed for controlling axo-
nalmitophagyof damagedmitochondria in neurons, a cru-
cial process in neurodegenerative diseases (Harbauer et al.
2022). The identified transcripts bound by mitochondria
encode proteins necessary for maintaining mitochondrial
homeostasis. Therefore, these interactions likely occur
in almost all cell types. However, RNA localization tomi-
tochondria has a highly specific role in the formation of
mitochondrial clusters in oocytes (Cheng et al. 2022). A pi-
oneering study identified the RBP ZAR1 as a promoter of
the assembly of the mitochondria-associated ribonucleo-
protein domain (MARDO), a prerequisite formitochondri-
al clustering in oocytes (Cheng et al. 2022). Although the
function ofmitochondrial clustering in oocytematuration
remains unknown, it has been suggested that mitochon-
dria cluster near sites that require a higher energy supply
(Cheng et al. 2022). Since RNA–mitochondria interaction
appears to be required for mitochondrial clustering, it is
tempting to speculate that RNA acts as a scaffolding mol-
ecule to promote assembly. RNA has been shown to pro-
mote biomolecular condensation (Langdon et al. 2018;
Roden and Gladfelter 2021), and RNAs can self-assemble
into higher-ordered complexes such as stress granules in
vitro (VanTreecket al. 2018). This process is inherently as-
sociatedwith phase separation (Langdon et al. 2018). It has
been demonstrated that RNA’s secondary structure (Lang-
don et al. 2018; Bevilacqua et al. 2022) and methylation
(Ries et al. 2019) facilitate its phase separation. Although
this concept has been applied only to RNA granules such
as stress granules or transport granules (RodenandGladfel-
ter 2021), it is tempting to speculate that RNA interaction
with specialized organelles might also provide a scaffold
for their assembly. Therefore, organelles might select
RNAs not only to modify their own proteome or increase
local RNA levels but also to enhance complex formation
(Van Treeck et al. 2018). Thus, mRNAs localized and
translated at the OMMmay also allow efficient assembly
of factors required for mitochondrial clustering. This
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assembly process could be driven by the optimal stoichi-
ometry of interaction partners synthesized locally at the
OMM. Such a process has been shown to exist for the as-
semblyof Septin complexes formedonmoving endosomes
in Ustilago maydis (Baumann et al. 2014). Collectively,
these studies demonstrate that the crucial cell type-specif-
ic functions of mitochondria are mediated by their prote-
ome, RBP, and RNA diversity in different cell types.
While both proteome-wide heterogeneity and its func-

tional relevance have been determined for the above or-
ganelles, we now further focus on discussing organelles
where this evidence ismore patchy and restricted to single
proteins or RNA association and their diversity with spe-
cific organelles or suborganelles.

Vesicular sorting organelles

RNA association is not unique to the organelles discussed
above but is also found at other organelles (Fig. 1C). In the
cytoplasm, transcripts are sorted by different localization
signals, most likely embedded in the 3′ UTR (Andreassi
and Riccio 2009). This leads to their assembly into free
or organelle-associated ribonucleoprotein (RNP) particles,
a process that is critically driven by phase separation
(Alberti and Dormann 2019). Depending on the function
of the encoded proteins, mRNAs are targeted to different
organelles. One of the best-characterized examples of
RNA–organelle interactions are vesicular sorting organ-
elles such as lysosomes. Lysosomes are critical hotspots
for the degradation of extracellular and intracellular pro-
teins in an acidic lumen. The position of lysosomes in
cells, such as HeLa cells, and the luminal pH are deter-
mined by the ratio of the protein interactor Rab7 and
Arl8b (Johnson et al. 2016). In addition, these organelles
interact with a variety of proteins such as themechanistic
target of rapamycin (mTOR) (Ratto et al. 2022) to sense
amino acid levels or with lysosomal and mitochondrial
biogenesis factors (Malik et al. 2023). A seminal study
showed that annexin A11 associates with the lysosomal
surface and interacts with RNA granules to enable long-
distance RNA transport (Liao et al. 2019). Although these
lysosome interaction partners are ubiquitously expressed
in almost all cells, these findings highlight the functional
heterogeneity of lysosomes. It is plausible that RNA and
protein interactors vary between compartments, given
the differences in soma and axonal as well as dendritic
transcriptomes and proteomes (Cajigas et al. 2012; Shi-
geoka et al. 2016; Biever et al. 2020), suggesting distinct ly-
sosomal interactomes. However, direct evidence for
lysosomal heterogeneity is still lacking.
Endosomes are another example of this class of organ-

elles. Endosomes serve as landing platforms for many pro-
tein andRNA interactors. One example is the five-subunit
endosomal Rab5 and RNA/ribosome intermediary (FER-
RY) complex that binds to mRNAs and the endosome via
Rab5 (Schuhmacher et al. 2023). These endosome-bound
mRNAs are translated on endosomes, as these organelles
also bind to ribosomes (Fig. 1C; Cioni et al. 2019; Schuh-
macher et al. 2023). Interestingly, transcripts found at en-
dosomes encode mitochondrial proteins (Schuhmacher

et al. 2023). As a result, the interaction between endo-
somes loaded with thesemRNAs andmitochondria is im-
portant for the function ofmitochondria in the axon (Cioni
et al. 2019). The role of endosomes in the distribution of
mRNAs is conserved from rodents to Xenopus to fungi
such as U. maydis (Higuchi et al. 2014; Cioni et al. 2019;
Schuhmacher et al. 2023). This underscores their impor-
tance in maintaining cellular homeostasis and growth.
Coupling mRNA transport to endosomes is an elegant
way to synchronize cellular resources required for growth.
Whether it is the growing tip of a fungus or the branching
point of axons in neurons, all these processes require lip-
ids, energy, and the synthesis of new proteins. Endosomes
are known to provide lipids as well as mRNAs and the
translation machinery. Hence, it is plausible that special-
ized endosomes serve as “construction platforms” to re-
model cellular environments locally.
Although these findings imply heterogeneity in endo-

some functionwithin cells, it is now important to perform
unbiased proteome analysis of endosomes in different cell
types to examine towhat extent endosomes differ in func-
tion and/or composition between cell types and stages.

Nucleoli

Nucleoli are membrane-less organelles in the nucleus,
important for translation (Lafontaine et al. 2021). Given
this pan-cellular function, so far no efforts have been
made to examine their composition in a cell type-specific
context, even though dynamic shuttling between nucleo-
lar proteins and stress granules has been described (Qin
et al. 2023). However, one protein associated with nucleo-
li in a highly cell type-specific manner has been shown to
have profound functional effects, highlighting the need to
profile this compartment as well. Tmf-regulated protein 1
(Trnp1) is enriched at the outer surface of the nucleolus in
self-renewing neural stem cells but not differentiating
neural stem cells (Esgleas et al. 2020). It regulates phase
transition and nucleolar size and function (Esgleas et al.
2020). This has profound effects on neural stem cell self-
renewal, the size of a brain region, and folding in ontogeny
and phylogeny (Stahl et al. 2013; Martínez-Martínez et al.
2016; Kliesmete et al. 2023). These observations call for
unbiased analysis of nucleolus composition, given its pro-
found role in regulating translation and cell cycle length,
key processes regulating stem cell self-renewal, differenti-
ation, and trans-differentiation (Camargo Ortega and
Götz 2022; Sonsalla et al. 2024).

Ribosomes

The examples discussed thus far impressively demon-
strate the enormous heterogeneity that exists in the pro-
tein composition, interaction partners, RNA association,
and cellular localization of pan-cellular organelles (Fig.
1D). It is interesting to note that this concept can be ap-
plied even to suborganelles, such as ribosomes. Historical-
ly, ribosomes have been regarded as molecular machines
that produce proteins upon activation. However, pioneer-
ing studies have shown that ribosomes exhibit
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heterogeneity, enabling them to selectively translate
mRNAs (Xue and Barna 2012). Ribosomal proteins play
a central role in the regulation of translation in this
context. For instance, Rpl13a, which is released from
ribosomes and binds with particular transcripts to
prevent their translation, represents one such example
(Mazumder et al. 2003). Although the extraribosomal
function of Rpl13a may be independent of ribosome het-
erogeneity, it is possible that the ribosome serves as a stor-
age site for Rpl13a to control translation inhibition. In
light of the clear evidence for local translation at the cen-
trosome (for review, see Zein-Sabatto and Lerit 2021), it is
of interest that Rpl13a localizes specifically to the centro-
somes of neurons but not neural stem cells (O’Neill et al.
2022). Notably, many more ribosomal proteins associate
with the neuronal centrosomes than with the neural
stem cell centrosomes, comprising those that inhibit or
promote translation. One example is Rps25, which is es-
sential for noncanonical, repeat-associated non-AUG
(RAN) translation of C9orf72, which results in the gener-
ation of dipeptide repeat proteins (Fig. 1D; Yamada et al.
2019). The association of these ribosomal proteins with
neuronal centrosomes implies a regulatory hub. Because
ribosomal proteins have an impact on the translation of
selective transcripts, it is conceivable that their binding
to neuronal centrosomes directs the local translation of
specific transcripts. During development, Rpl38 has
been proposed to regulate the translation of specific Hox
mRNAs by facilitating the formation of active ribosomes
on these transcripts (Fig. 1D; Kondrashov et al. 2011). Im-
portantly, this finding has been challenged by recent stud-
ies (Akirtava et al. 2022; Ivanov et al. 2022) that question a
direct regulatory role of Rpl38 in selective Hox gene ex-
pression. Notably, Rpl38 is selectively bound to NSCs
but not to neuronal centrosomes (O’Neill et al. 2022), sug-
gesting a possible role in regulating gene expression in the
daughter cells and eventually an effect on cell fate com-
mitment. These examples demonstrate how ribosomal
proteins may actively regulate the translation of specific
mRNAs. However, future experiments are clearly needed
to unravel their role in active translation control.

Ribosomal proteins can be produced and exchanged lo-
cally (Shigeoka et al. 2019; Fusco et al. 2021). Among the
∼79 ribosomal proteins, those that reside on the ribosom-
al surface are preferentially exchanged (Shigeoka et al.
2019; Fusco et al. 2021). It is thus conceivable that there
are specialized ribosomes guided by different ribosomal
protein compositions that select some mRNAs for trans-
lation. This idea is supported by the discovery that not
all ribosomal proteins are found on ribosomes. Rpl10a,
Rpl38, Rps7, and Rps25 have been identified as variable ri-
bosomal proteins, which bind to some but not all ribo-
somes (Shi et al. 2017). Furthermore, ribosomes
containing Rps25 or Rpl10a regulate the translation of dif-
ferent transcripts (Fig. 1D; Shi et al. 2017). Also, ribosome-
associated proteins (RAPs) define specialized ribosomes.
One of these RAPs is the metabolic enzyme pyruvate ki-
nase muscle (PKM). PKM is a noncanonical RNA-binding
protein that selects mRNAs for ER-localized translation
(Simsek et al. 2017). These examples illustrate the hetero-

geneous nature of ribosomes regarding their interaction
partners.

In addition to the protein composition, the rRNAcompo-
nent of ribosomes also exhibits some degree of specificity.
Although the general building blocks of ribosomes are rela-
tively conservedduring evolution, theyhaveundergone sig-
nificant changes (Xue and Barna 2012). The majority of
variation is found in the expansion segments, which are
variable regions that have tentacle-like rRNA structures.
The expansion segments are ribosome adaptations that en-
able efficient translation of specificmRNAs, includingHox
mRNAs (Leppek et al. 2020), through internal ribosome en-
try sites (IRESs). While the relevance of these IRESs in reg-
ulating mRNA translation is still under debate (Akirtava
et al. 2022), these findings suggest that ribosomes have
been adapted during evolution to efficiently translate spe-
cific transcripts. This implies another layer of ribosomal
heterogeneity between species. Besides expansion seg-
ments, ribosomes can enhance their diversity through
modifications. Ribosomes’ 2′-O position of the ribose moi-
ety is subjected to heavy methylation (Gay et al. 2022).
These modifications are crucial for translational fidelity
and activity (Jansson et al. 2021; Khoshnevis et al. 2022).
The dynamic regulation of such rRNAmethylation occurs
in a region-specific manner in brain development and af-
fects neuronal differentiation by modulating ribosome as-
sociation with FMRP (Häfner et al. 2023). Overall, these
findings reveal the direct function of ribosomes in control-
ling the translation of a specific subset of transcripts, em-
phasizing the crucial impact of ribosome heterogeneity
on cellular homeostasis and plasticity, including in
development.

Regulation of organellar heterogeneity

The results described above clearly show that pan-
cellular organelles display an enormous degree of hetero-
geneity that regulates different aspects of cellular homeo-
stasis and plasticity. This prompts the important question
of how this heterogeneity is established and controlled.
Pioneering studies have unraveled that gene expression,
post-translational modifications, and alternative splicing
can bemajor regulators of organellar interactions (Fig. 2A).

Localization of a protein to a certain organelle in a cell
type-specific manner might be a result of differential
gene expression. For example, this is the case for Akna,
which is transcriptionally up-regulated by the transcrip-
tion factor Sox4 in differentiating neural stem cells and
during epithelial–mesenchymal transition in other epi-
thelial cells and hence is found only in these at the centro-
some (Fig. 2A,B; Camargo Ortega et al. 2019). In addition,
Akna localization at the centrosome is regulated by post-
translational mechanisms such as phosphorylation
changes during mitosis, when it dissipates from the cen-
trosome like many other centrosome proteins (Fig. 2A;
Camargo Ortega and Götz 2022). This is also the likely
mechanism of localizing ubiquitous proteins present in
a single isoform, such as PRPF6, to the centrosome in
some cell types but not in others. This brings us to

Schieweck and Götz

104 GENES & DEVELOPMENT

 Cold Spring Harbor Laboratory Press on June 10, 2024 - Published by genesdev.cshlp.orgDownloaded from 

http://genesdev.cshlp.org/
http://www.cshlpress.com


differential splicing as another possibility to localize a
protein to a specific site; namely, to include specific pro-
tein domains for interaction by differential splicing.
This is the case for Ninein, which associates with the cen-
trosome in self-renewing neural stem cells but not in neu-
rons due to differential splicing (Fig. 2A,B; Zhang et al.
2016). Indeed, the expression of some splicing factors is re-
stricted to specific developmental stages (Raj and Blen-
cowe 2015; Zhang et al. 2016).
Another phenomenon to consider in this context is self-

demixing of protein and RNA complexes. It has been
shown that some proteins and RNAs have the ability to
phase-separate from their liquid environment and form dis-
tinct complexes. Originally described for RNP particles,
the purpose of self-demixing is to buffer transcriptional
and translational fluctuations in cells (Bauer et al. 2022;
Cardona et al. 2023). Importantly, some organelles also un-
dergo liquid–liquid phase separation, such as the nuclear
pore complex (Celetti et al. 2019), nucleolus (Lafontaine
et al. 2021), or centrosome (Woodruff et al. 2017), although
phase separation of the latter is still under debate (Raff
2019). Even membranous organelles such as mitochondria

rely to some degree on phase separation (Long et al. 2021).
Based on these results, it is conceivable that phase separa-
tion and self-demixing may contribute to the establish-
ment of organellar heterogeneity. In this scenario, certain
proteins and RNA have the intrinsic ability to self-demix
from the cellular cytosolic environment along with the or-
ganelles with which they interact (Fig. 2C). This allows or-
ganelles to diversify. The degree of association may be
influenced by the expression levels of these proteins and
RNAs, as has been shown for processing bodies (Cardona
et al. 2023). Thismodel could potentially explain the differ-
ences in organelle composition between various cell types
and developmental stages. Each cell type has a unique tran-
scriptome and proteome, which may result in different
RNA and protein interactors of organelles demixing and
condensing by phase transition, which could contribute
to the distinct functions of organelles in different cell types.
An important task for future studies is to elucidate the

mechanisms regulating the formation of organellar het-
erogeneity and determine which of the possibilities dis-
cussed above may be prevalent for specific organelles or
whether there is a predominant upstream regulatory pro-
cess of organellar heterogeneity. Importantly, organellar
heterogeneity may also be subject to profound remodel-
ing; for example, by the highly dynamic trafficking of pro-
teins between organelles (Qin et al. 2023). This is of
crucial relevance given the functional importance of
organellar heterogeneity.

Functions of organellar heterogeneity

Multiplying functional diversity of proteins

Beyond the specific function of an organelle in its respec-
tive cell type-specific context, organellar heterogeneity
may contribute to multiplying protein functions by re-
cruitment to different organelles. Mammals generate a
disproportionate cell diversity relative to their genome
size, which is not significantly different from that of, for
example, Caenorhabditis elegans. One way to achieve
such diversity with the same number of genes is to multi-
ply protein function by using the same proteins in differ-
ent contexts. This is nicely illustrated by moonlighting
functions of proteins that play different roles at distinct
positions in a cell (Singh and Bhalla 2020; Somma et al.
2020). For example, NPC proteins regulate import/export
to the nucleus inG1 phase and spindle assembly duringM
phase, when the nuclear membrane is dissolved
(Guglielmi et al. 2020). Likewise, many transcription fac-
tors and chromatin remodelers localize to the midbody
and play a role in adequately separating the daughter cells
after mitosis. Kinetochore proteins play a role in insulin
signaling (Singh and Bhalla 2020). Proteins with moon-
lighting functions are listed in databases such as Moon-
Prot or multitaskProtDB, which comprise close to 1000
proteins, even though many of the newly discovered pro-
teins with multiple functions, such as PRPF6, are not
yet listed there. Particularly relevant to our discussion is
that the alteration of protein localization is one of the
mechanisms contributing to evolution of multifunctional

A

B

C

Figure 2. Regulation of organellar heterogeneity. (A) Overview
of possible regulatory pathways affecting centrosome binding.
(B) Organellar heterogeneity can be regulated by changes in ex-
pression and splicing during differentiation. (C ) RBPs and RNA
have an inherent tendency to self-demix and to condense in the
cytosol. Some organelles, including centrosomes, undergo a sim-
ilar assembly process. Based on these findings, it is plausible that
the cocondensation of organelles, proteins, and RNA interactors
is responsible for the formation of specialized organelles.
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proteins (Singh and Bhalla 2020). Thus, distinct localiza-
tion of a protein in a cell may diversify its function and
specify the function of the respective organelle in a cell
type- or context-specific manner. Consequently, the
moonlighting functions of specific proteins may contrib-
ute to organellar heterogeneity.

Inheritance of heterogeneous organelles

Another function of heterogeneous organelles is their
asymmetric distribution. Cell division requires the equal
inheritance of organelles to both daughter cells. This pro-
cess is conserved across all life forms (Camus et al. 2022).
Nevertheless, some organelles show asymmetric inheri-
tance to the next generation of cells. A classic example
is oocyte mitochondrial inheritance. These organelles
are inherited through the maternal lineage (Wallace
2018). Although the contribution of paternal inheritance
has been proposed (Gyllensten et al. 1991; Luo et al.
2018), these findings have been contested by others (Pag-
namenta et al. 2021). In other cells, mitochondria are
inherited by both daughter cells, but different mitochon-
dria can be asymmetrically inherited. For example, a
stem cell often divides asymmetrically,with one daughter
cell self-renewing (i.e., remaining a stem cell) while the
other daughter cell differentiates. Intriguingly, newly pro-
duced mitochondria are inherited by the daughter cell
that remains a stem cell, and this is indeed important to
maintaining the stemness of this daughter cell (Katajisto
et al. 2015). Notably, different age groups of mitochondria
transfer unique metabolic profiles to their offspring cells
and are therefore significant determinants of cell fate
(Döhla et al. 2022). Moreover, older mitochondria may
be damaged to some extent, which matters less in the dif-
ferentiating daughters, as they can be replaced and are of-
ten short-lived, while adult stem cells often self-renew
and survive for the entire life of the organism.

Apart from mitochondria, other organelles like centro-
somes can be inherited asymmetrically, thus defining
the cellular status of the descendants (Kahneman et al.
2007). In the developing vertebrate brain, most cells that
inherit new mother centrioles leave the ventricular stem
cell niche to become differentiating progenies (Wang
et al. 2009). In contrast, cells with old mother centrioles
remain in the ventricular zone andmaintain their original
stemness. The variability of centrosomes in neural stem
cells, especially the association with RBPs (O’Neill et al.
2022), suggests that these RBPs may also be asymmetri-
cally inherited. This process could potentially prepare
cells for differentiation or the maintenance of stemness,
as has been shown for the RBP Staufen2 (Stau2). In this
case, Stau2’s uneven segregation is crucial for balancing
the maintenance of neural stem cells and differentiation
(Kusek et al. 2012). Importantly, spindles contain different
RNAs in the presence or absence of Staufen (Hassine et al.
2020), supporting the concept that RBPs that are asym-
metrically inherited bring along their specific RNAs
that can be translated quickly and influence the fate of
the daughter cell (Li et al. 1997). In this regard, it is also rel-
evant to mention the asymmetric inheritance of the basal

process of neural stem cells in the murine cortex (Shita-
mukai et al. 2011) and the specific localization of RNAs
in the basal endfeet of these processes (Pilaz et al. 2016).
As organelles are also specifically distributed in these pro-
cesses and contain different RBPs, organellar heterogene-
ity forms a platform for the distribution of cell fate
determinant proteins, RBPs, and RNAs to specify the
progeny cells. Indeed, the uneven inheritance of organ-
elles by progeny appears to be a widespread concept appli-
cable to further organelles. Seminal studies have revealed
that lysosomes are also asymmetrically distributed to
neural and hematopoietic progenies, thereby contributing
to diverse signaling pathways in daughter cells (Bohl et al.
2022; Loeffler et al. 2022). As lysosomes are ubiquitous or-
ganelles, it is tempting to speculate that these organelles
are specialized to function as signaling transducers. Their
interaction with RNA granules supports this notion (Liao
et al. 2019). Overall, these findings strongly suggest that
the asymmetric inheritance of organelles is a critical
determinant of cell fate. However, as evidence exists so
far only for some organelles in few cell types, these excit-
ing data call for much more analysis of the role of organ-
elle heterogeneity in asymmetric inheritance.

Hypothesis: organelle-specific protein translation
and folding

We suggest addressing organelle-specific protein transla-
tion and folding in the future. Asmentioned above, organ-
elles bind and transport a significant portion of the
transcriptome. At some organelles, such as mitochondria
and centrosomes, these transcripts are translated locally.
Recent data have shown that the local transcriptome
and, ultimately, the translatome differ between organelles
and the cytosol (Fazal et al. 2019). It is important to note
that transcripts influence protein synthesis through differ-
ent mechanisms (Schieweck et al. 2016). For example, the
codon usage of transcripts can influence ribosome speed—
and thus the translational output—through the corre-
sponding tRNA level (Schieweck et al. 2016; Kirchner
et al. 2017). In the case of specialized organelles, the codon
usage of the bound mRNAs might be different compared
with the cytosol. A recent study supports this idea by
demonstrating that transcripts encoding for membrane
proteins contain nonoptimal codons to regulate ribosome
speed in the process of targeting these proteins to mem-
branes (Pechmann et al. 2014). Adaptations in translation
speed may occur preferentially at specialized organelles
that bind mRNAs encoding membrane proteins, such as
mitochondria (Fazal et al. 2019) or the endoplasmic retic-
ulum (Jan et al. 2014). In addition, ribosome speed depends
on the availability of translation factors (Schieweck et al.
2023; Popper et al. 2024). A recent study showed that the
translation factor eEF1A2, which affects ribosomal speed,
binds to the actin cytoskeleton and regulates its dynamics
(Mendoza et al. 2021). In addition, specific translation ini-
tiation factors are enriched at centrosomes of neural stem
cells and others at the centrosomes of neurons (O’Neill
et al. 2022). This suggests that essential translation factors
are concentrated at specific organelles, thereby
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influencing ribosome speed. This may be particularly im-
portant during differentiation, when cells alter ribosome
speed (Popper et al. 2024). Although direct evidence is
largely lacking, it is conceivable that the ribosome speed
and translational output differ at organelles. Importantly,
ribosome speed affects cotranslational folding trajecto-
ries, which can alter the structure and specificity of pro-
teins, as has been shown for the multidrug resistance 1
(MDR1) gene (Kimchi-Sarfaty et al. 2007) or the cystic fi-
brosis transmembrane conductance regulator (CFTR)
(Kirchner et al. 2017; Rauscher et al. 2021). Given the dif-
ferences in organellar transcriptomes and translatomes, it
is conceivable that cotranslational folding is also regulat-
ed in an organelle-specific manner. It is possible that this
represents another level of organellar heterogeneity,
where local synthesis of proteins could influence their
structure and thus their specificity.

The role of organellar heterogeneity in disease

Given the important functions of organellar heterogenei-
ty, its implication in disease may not be surprising, but
the scope of its importance in this regard may well be.
One of the best-characterized organelles with a causative
link to clinically relevant diseases is the centrosome.
Many centrosome proteins have been implicated in neu-
rodevelopmental disorders (Remo et al. 2020; Farcy et al.
2023), but the organ and cell type specificity is mostly
overlooked. For example, Aspm is a ubiquitous centro-
some and spindle protein important in mitosis, and hence
it may not be surprising that its mutation has been impli-
cated in microcephaly (Passemard et al. 2016; Garrett
et al. 2020). However, it is not clear why loss of Aspm
causes no phenotype in most other organs that are like-
wise generated by dividing cells, except the germ cells
and the brain (Pulvers et al. 2010). Clearly, centrosome
heterogeneity (namely, its specific composition in cells
of different organs, tissues, and species) may well be at
the bottom of the organ specificity of this (and many oth-
er) mutations. This concept has been recently highlighted
by the mutation of the ubiquitous splicing protein PRPF6
that leads only to neurodevelopmental defects despite its
presence in all cell types. The organ-specific function of
PRPF6 at the centrosome discussed above prompts the
suggestion that organ-specific localizations of ubiquitous
proteins lead to organ-specific functions that are disturbed
only in these organs upon mutation or dysfunction of the
respective proteins (O’Neill et al. 2022). Importantly, the
centrosome proteomes of different cell types show signifi-
cant overlap with gene variants of only specific neurode-
velopmental and neuropsychiatric disorders, further
supporting the concept that the specific composition of
the centrosome affects distinct processes in a cell type-
specific manner (O’Neill et al. 2022). This concept is
also evident in ciliopathies, diseases caused by dysfunc-
tion or absence of cilia (Mill et al. 2023). While there are
common phenotypes observed in ciliopathies, there are
also mutations that result in organ- and brain-specific def-
icits (Lovera and Lüders 2021; Mill et al. 2023). For exam-

ple, deletion of the ciliary protein Arl13b reverses the
polarity of the cortical wall (Higginbotham et al. 2013).
Notably, Arl13b mutations have been found in patients
with Joubert syndrome (Caspary et al. 2007; Cantagrel
et al. 2008), a neurodevelopmental disorder characterized
by malformation of the brainstem and the absence or un-
derdevelopment of the cerebellar vermis (Brancati et al.
2010). However, it is not known why specifically these
brain regions are affected even though all cells have cilia
and all stem and progenitor cells in the brain require cilia
to perceive certain signaling pathways.
In addition to the centrosome, mutations of proteins lo-

cated at other organelles have also been implicated in or-
gan- and brain-specific disorders. For example, mutations
in Rab7a, an endosome interactor, have been found in pa-
tients with Charcot–Marie–Tooth type 2B disease (Cherry
et al. 2013), a neuropathy characterized by axonal dysfunc-
tion and degeneration. Interestingly, as endosomes serve as
hotspots for mitochondrial protein synthesis, Rab7a muta-
tion impairs axonal protein synthesis and mitochondrial
function as well as axonal viability (Cioni et al. 2019), sug-
gesting a direct link between specialized transport endo-
somes and the disease. The importance of vesicles as
transport vehicles for mRNAs is highlighted by a recent
study describingmutations found in amyloid lateral sclero-
sis patients that impair the ability of annexin A11 to link
RNA granules to moving lysosomes (Liao et al. 2019).
Another impressive example for cell type specificity of

mutations that impair ubiquitously expressed proteins is
the blood disorder Diamond–Blackfan anemia (DBA). Pa-
tients with DBA show a selective reduction of erythroid
precursors and progenitors, while all other lineages are
normally produced (Nathan et al. 1978; Ohene-abuakwa
et al. 2005). At the genetic level, DBA patients preferen-
tially have loss-of-function mutations in ribosomal pro-
tein genes (Mirabello et al. 2017). Ribosomal proteins
are expressed throughout the body, but in DBA patients
their loss of function affects only erythroid but not other
hematopoietic lineages due to impaired translational con-
trol (Khajuria et al. 2018). A similar pathomechanism has
been proposed for the 5q syndrome, a myelodysplastic
syndrome caused by haploinsufficiency of RPS14 (Narla
and Ebert 2010). Mutations in ribosome biogenesis factors
can cause various syndromes, including Shwachman–Di-
amond syndrome, X-linked dyskeratosis congenita, carti-
lage hair hypoplasia–anauxetic dysplasia (CHH-AD), and
Treacher Collins syndrome (TCS) (Narla and Ebert 2010;
Kang et al. 2021). These syndromes are characterized by
bone marrow failures and exhibit a surprising tissue spe-
cificity. These findings indicate the presence of special-
ized ribosomes that regulate translation in specific cells
or tissues and are preferentially impacted by the muta-
tions discovered in these patients. Another, not mutually
exclusive, explanation is that the quantity of ribosomes
affects certain transcripts more than others due to differ-
ences in initiation, recycling, and rescuing rates. In this
scenario, specific mRNAs, particularly poorly initiated
mRNAs, are more vulnerable to a decrease in ribosome
levels (Mills and Green 2017). This may explain the cell
and tissue selectivity of the aforementioned diseases.
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Given the above, much more research on organellar
heterogeneity is needed to tackle some of the biggest ques-
tions in pathology:Why are specific cell types particularly
vulnerable upon dysfunction of pan-cellular organelles?
This is also the case in neurodegenerative diseases for
which mitochondrial dysfunction is a common denomi-
nator, yet only specific neuronal subtypes are affected
even differentially for differentmitochondrial proteinmu-
tations. Thus, organellar heterogeneity may hold the key
to answering some of the most pressing and general ques-
tions in human health and disease.

Outlook—how to study and change organellar
heterogeneity

Given the functional and disease relevance of organellar
heterogeneity discussed above, it is of crucial importance
to characterize organellar composition of proteins and
RNAs more comprehensively, as in many cases we
know this only for one or a few cell types. The purpose
of this review is to overcome one of the biggest hurdles;
namely, the prevailing concept of the similarity of pan-
cellular organelles in different cell types. For example,
this has led to the absence of any centrosome proteomes
from neural cell types until recently (O’Neill et al.
2022), even though centrosome proteomes have been gen-
erated long ago. Excitingly, the development of human
iPSCs and robust protocols for differentiation into many
human cell types now allow the generation of sufficient
material of almost all human cell types, even for biochem-
ical approaches that require a lot of material. In addition,
organellar proteomics allow the enrichment of specific or-
ganelles in distinct fractions (Itzhak et al. 2018; Schessner
et al. 2023), theoretically enabling the observation of
shifts of proteins between organelles. However, this ap-
proaches its limits when cell types are very different. A
beautiful approach to monitor the shift of proteins be-
tween organelles even at single-cell resolution is the tag-
ging by a fluorescent protein followed by multicontent
imaging (Qin et al. 2023). Such an approach in human
iPSCs would be a fantastic resource to examine not only
pure populations of specific human cell types but also
organoids or cell mixtures to understand how cell–cell in-
teractions may affect organellar heterogeneity.

Nevertheless in vitro approaches have their limitations,
and for analysis in tissue sections spatial transcriptomics
and proteomics may be very useful, especially with im-
proved single-cell resolution. Applying these techniques
on complex-shaped cells, such as neurons, provides spatial
information on mRNA localization (Perez et al. 2021).
Similarly, the isolationof endfeet fromradial glial cells res-
ident in the developing brain allows the study of the local
transcriptome (Pilaz et al. 2016). In combination with sin-
gle-cell ribosome profiling approaches (Vaninsberghe et al.
2021; Ozadam et al. 2023) and single-cell proteomics
(Brunner et al. 2022; Mund et al. 2022), it is possible to
identify stoichiometric imbalances of organellar building
blocks that might indicate the existence of specialized or-
ganelles, as demonstrated for proteasomes (Sun et al. 2023)

or ribosomes (Shi et al. 2017). To investigate organellar
specialization, other methods are needed that provide
higher spatial resolution.Oneof thesemethods is theprox-
imity biotinylation assay. In this methodology, estab-
lished organellar interactor proteins are merged with the
peroxidase APEX to attach biotin to protein (Markmiller
et al. 2018) and RNA interactors (Fazal et al. 2019). By
using split-APEX fusion constructs (Han et al. 2019) along-
side these strategies, specific protein and RNA interactors
for the organelle can be determined. Furthermore, proxim-
ity biotinylation assays exploiting APEX and TurboID can
be used to study protein transport between organelles (Qin
et al. 2023). Apart from these methods, the separation of
fluorescently labeled single particles (Hubstenberger
et al. 2017) and, ultimately, organelles is also an effective
way to identify interactor partners in an unbiasedmanner.
In addition, advanced microscopy approaches such as
DNA-PAINT allow for multiplexed detection of proteins
within cells (Jungmann et al. 2014).

Functional assays are necessary to establish the link be-
tween the existence of specialized organelles and their
specific functions within cells. One such assay involves
transplanting organelles into recipient cells. Althoughmi-
tochondrial (Sercel et al. 2021) and centrosome (Tournier
et al. 1989) transplantations have been demonstrated, ad-
ditional efforts may be needed to ensure the reproducible
uptake into various cell types. It is worth considering that
other organelles may be amenable to this technique. Giv-
en the important functions and disease relevance of organ-
ellar heterogeneity identified only from our yet very
limited knowledge about this phenomenon, future studies
are essential to identify the protein and RNA interac-
tomes of different organelles in different cell types. This
will pave the way toward a better understanding of multi-
plying protein functions in ontogeny and phylogeny, of
how organellar functions can be further specified to serve
the needs of distinct cell types, and their relevance to cell
type- and organ-specific disease etiology.
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