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Abstract

Background and 
Aims

It is not clear how a polygenic risk score (PRS) can be best combined with guideline-recommended tools for cardiovascular 
disease (CVD) risk prediction, e.g. SCORE2.

Methods A PRS for coronary artery disease (CAD) was calculated in participants of UK Biobank (n = 432 981). Within each tenth of 
the PRS distribution, the odds ratios (ORs)—referred to as PRS-factor—for CVD (i.e. CAD or stroke) were compared 
between the entire population and subgroups representing the spectrum of clinical risk. Replication was performed in 
the combined Framingham/Atherosclerosis Risk in Communities (ARIC) populations (n = 10 757). The clinical suitability 
of a multiplicative model ‘SCORE2 × PRS-factor’ was tested by risk reclassification.

Results In subgroups with highly different clinical risks, CVD ORs were stable within each PRS tenth. SCORE2 and PRS showed no 
significant interactive effects on CVD risk, which qualified them as multiplicative factors: SCORE2 × PRS-factor = total risk. 
In UK Biobank, the multiplicative model moved 9.55% of the intermediate (n = 145 337) to high-risk group increasing the 
individuals in this category by 56.6%. Incident CVD occurred in 8.08% of individuals reclassified by the PRS-factor from inter
mediate to high risk, which was about two-fold of those remained at intermediate risk (4.08%). Likewise, the PRS-factor 
shifted 8.29% of individuals from moderate to high risk in Framingham/ARIC.

Conclusions This study demonstrates that absolute CVD risk, determined by a clinical risk score, and relative genetic risk, determined by a 
PRS, provide independent information. The two components may form a simple multiplicative model improving precision of 
guideline-recommended tools in predicting incident CVD.
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Structured Graphical Abstract

The relative genetic risk a person carried, indicated by the odds ratio – or PRS-factor – from the PRS, was constant in each tenth of
the PRS distribution, irrespective of 10-year clinical risk estimates obtained by SCORE2. A multiplicative model ‘SCORE2 x PRS-factor’
moved about 10% of individuals with intermediate risk to the high risk group. Participants reclassified by the PRS-factor had a
2-fold higher incidence of CVD than the original intermediate risk group.

The odds ratio from the PRS may be used as a multiplier (PRS-factor) to refine the absolute clinical risk estimate. Simple multiplication of 
clinically estimated risk with a PRS-factor enhances precision of risk prediction. The PRS-factor allows utilization of genetic information 
for improving precision of guideline-recommended prediction tools. 

Key Question
It is unclear how a polygenic risk score (PRS) can be best integrated into guideline-recommended prediction of cardiovascular disease 
(CVD) risk.

Key Finding

Take Home Message

SCORE2 x PRS-factor = total risk
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The left panel shows that relative risk related to polygenic disposition [1–10 tenth of the polygenic risk score (PRS) distribution] is independent of 
having a low, intermediate, or high clinical risk by SCORE2 in the UK Biobank. Thereby, the odds ratio from the PRS (relative risk) can be used as a 
genetic factor (PRS-factor) to multiply the absolute clinical risk estimate from SCORE2. If this is being done, ∼10% of the intermediate-risk group is 
being upgraded to a higher total risk (right panel). Subgroups that were genetically upgraded had incident event rates that were similar to those in the 
original high-risk groups and substantially increased the overall numbers of individuals correctly assessed to be at high risk. CVD, cardiovascular 
disease.

Keywords Cardiovascular disease • Polygenic risk score • SCORE2 • Risk prediction • Primary prevention • Prevention guidelines

Introduction
Genome-wide association studies (GWAS) have identified large numbers 
of genetic variants associated with cardiovascular disease (CVD) risk.1

Aggregated in the form of polygenic risk scores (PRS), these variants 
can be used for predicting the risk of coronary artery disease (CAD) or 
stroke.1 Indeed, individuals in the upper percentiles of such CAD-PRS 

were shown to have three times the risk for an event than the remainder 
of the population.2 Based on these findings, PRS are increasingly offered 
for individual risk assessment by commercial healthcare providers, al
though scientific societies do not recommend their use at present 
time.3,4 Some companies fuel expectations to determine risk solely on 
genetic grounds, whereas others offer concealed algorithms to determine 
the disease risk.5 In any case, wrongful interpretation of test results may 
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potentially lead to unjustified management choices, unnecessary medical 
interventions, or unnecessary expenses.

European and American guidelines recommend risk assessment 
tools based on established risk factors to provide estimates for the 
probability of experiencing a CVD event within 5 or 10 years.3,4,6 A 
broad academic consensus allows translating these estimates into 
clinical recommendations including a healthier lifestyle or eventually 
medical therapy for those individuals at very high risk.3,4,6,7 While 
such guidelines for primary prevention of CVD are based on the esti
mation of absolute clinical risk, PRS report relative genetic risk in relation 
to the average of a given population, which thus far has limited their ap
plicability. There is no recommended strategy to combine the two 
instruments.

In order to use a PRS as an adjunct to clinical risk assessment tools, 
i.e. SCORE2, the prediction tool recommended by the European 
Society of Cardiology (ESC),8 it is critical to clarify whether relative risks 
conferred by the genetic underpinnings are stable, irrespective of coex
isting risk factors or the absolute risk a person carries from a clinical 
point of view. If so, once-in-a-lifetime assessment of the PRS would 
be sufficient to determine a factor (PRS-factor) measuring relative gen
etic risk, which subsequently would allow to multiply absolute risk ob
tained by SCORE2 or other clinical risk assessment tools. We, 
therefore, tested whether such PRS-factor confers a constant relative 
risk across the spectrum of clinical risk and analysed whether applica
tion of a PRS-factor adds to the precision of risk prediction in a clinically 
meaningful way for those at intermediate risk as estimated by clinical 
risk assessment tools. The study design is shown in Supplementary 
data online, Figure S1.

Methods
UK Biobank
UK Biobank (UKB) recruited ∼500 000 volunteers aged from 40 to 69 years 
at baseline through the United Kingdom National Health Service registers 
between 2006 and 2010.9 The UKB resource contains individual-level geno
typing data and a rich variety of phenotyping and health-related data. The 
phenotype data were collected from several visits between 2006 and 
2010, initial recruitment (2006–10), follow-up visit 1 (2012–13), follow-up 
visit 2 (2014+), or follow-up visit 3 (2019+).

We defined CAD and stroke cases based on codes of the International 
Classification of Diseases (ICD 9/10) or OPCS Classification of 
Interventions and Procedures version 4 (OPCS4).10,11 Participants who 
had neither ICD/OPCS codes nor self-reported codes of CAD/stroke 
were defined as controls. Lifestyle or other risk factors affecting CAD 
risk were extracted from UKB. Total cholesterol levels were calculated 
based on the Friedewald equation.12 We adjusted lipids and systolic blood 
pressure (SBP) levels in patients taking statin or blood pressure-lowering 
medicine.13 We defined a series of risk factors including older age (≥50 
years), male sex, obesity [body mass index (BMI) ≥ 30 kg/m2], hypertension 
(SBP ≥ 140 mmHg), high cholesterol (total cholesterol > 6.18 mmol/L), 
and diabetes mellitus (types 1 and 2).

The genotyping data of UKB covers ∼96 million variants after imputation 
by referencing to the Haplotype Reference Consortium and UK10K haplo
type resource. We restricted samples to a subset of European ancestry in
dividuals. Series of quality control procedures were carried out on 
genotyping data using PLINK:14 (i) removing multi-allelic single nucleotide 
polymorphisms (SNPs), indels, and monomorphic; (ii) excluding variants 
that failed Hardy–Weinberg equilibrium test (HWE < 1e−6); (iii) removing 
variants of missing rate larger than 0.05 and imputation information smaller 
than 0.4; (iv) removing samples of missing rate large than 0.02 and kinship 
coefficient (P_HAT) larger than 0.125; and (v) excluding samples by sex dis
cordance between genotyping data and reported sex.

Framingham/Atherosclerosis Risk in 
Communities populations
The Framingham Heart (FH)15 and Atherosclerosis Risk in Communities 
(ARIC) studies16 were taken as a replication set for testing PRS-factor sta
bility. The FH and Framingham Offspring studies began in 1971 with subse
quent examinations every 3–8 years and included predominantly White 
individuals. The ARIC longitudinal study began in 1987 with the enrolment 
of adults aged 45 through 64 years. Three subsequent examinations were 
conducted approximately every 3 years until 1998.16

We applied the moderate-risk SCORE2 model to these studies from the 
USA. To be consistent with the ethnic composition of UKB, the participants 
of ARIC were limited to European Americans (80%). Only genetically inde
pendent samples were selected (PI_HAT < 0.125). Several decades of con
tinuous follow-ups resulted in a very high CVD prevalence, so that 
participants were censored at the age of 60 years resulting in a reasonable 
population-level CVD prevalence (9.43%). We first did data pre-processing 
and PRS estimation for both studies separately. The sub-study GENEVA 
ARIC (phs000090.v7.p1) and sub-study SHARe FH (phs000342.v20.p13) 
containing genotype and phenotype data were downloaded from the 
dbGAP portal. The same quality control (QC) metrics used for the UKB 
were applied to the genotype data of Framingham/ARIC population. 
Finally, 8011 participants from ARIC and 2746 from FH provided necessary 
data (see Supplementary data online, Table S1).

Clinical risk scores
Clinical risk was evaluated by SCORE2 which is widely used for predicting 
10-year risk of first-onset CVD in Europe.8 The SCORE2 features a sex- 
and region-specific risk prediction model. Key inputs include sex, age, 
SBP, non-high-density lipoprotein (nonHDL) cholesterol, and current 
smoking status. SCORE2 classifies European countries into low-, 
moderate-, high-, and very-high-risk regions, the UK being a low-risk re
gion.8 We mapped phenotype data from UKB to the reference table of a 
low-risk region in determining SCORE2-predicted risk.8 As suggested by 
SCORE2, participants were separated into three risk groups, low, inter
mediate, and high. We also studied QRISK36 to test the consistency in clin
ical risk tools. To avoid the impacts of imbalanced sample sizes of clinical risk 
categories on PRS-factor, we also performed the same analyses for the ter
tile classification of SCORE2 and QRISK3.

Polygenic risk score
The PRS, estimated by PRSice-2 (version 2.1.11),17 is a measure of accumu
lative weighted effects of risk alleles as shown in Formula (1). In this additive 
genetic model, Si is the effect size of the effective allele for SNP i and Gij 

coded as 0, 1, or 2 is the number of effective alleles for SNP i observed 
in participant j. Missing genotypes were replaced by the expected value, 
which was two times the risk allele frequency in the reference population.

PRSj =
􏽘n

i

Si × Gij. (1) 

Details of the selected variant list for calculating PRS were described 
elsewhere.2 Briefly, Khera et al.2 used GWAS summary data of CAD 
from CARDIoGRAMplusC4D (containing ∼185 000 participants) which 
did not include UKB18, to determine the effect sizes of risk alleles. Then, 
two different approaches were applied to build models of genome-wide 
PRS. One is the LDPred19 computational algorithm using different tuning 
parameters (the proportion of causal variants)—1.0, 0.3, 0.1, 0.03, 0.01, 
0.003, and 0.001. The second approach was clumping and thresholding ap
plied to a range of combinations of P-values (1.0, 0.5, 0.05, 5e−4, 5e−6, and 
5e−8) and r2 (0.2, 0.4, 0.6, and 0.8). The one with the best discriminative ac
curacy was determined based on the maximal area under the receiver op
erating characteristic curve (AUC) in the logistic regression model of PRS 
and disease adjusted by age, sex, and the first four principal components 

Integrating polygenic score into prediction of CVD                                                                                                                                        1845
D

ow
nloaded from

 https://academ
ic.oup.com

/eurheartj/article/45/20/1843/7637416 by guest on 11 June 2024

http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehae048#supplementary-data
http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehae048#supplementary-data
http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehae048#supplementary-data


of ancestry. Finally, the best model with 6.6 million SNPs was selected. We 
applied this list to compute CAD-PRS for the whole set of UKB. The logistic 
regression models were used to assess the relationship between PRS and 
CVD risk, with the adjustment for age, sex, and the first five PCs. 
By performing 10-fold cross-validations, the mean AUC was 0.732 
(SD = 0.0067) (see Supplementary data online, Figure S2).

Statistical analysis
The PRS deciles and conventional risk factors represent genetic (G) and clin
ical (C ) factors to CVD risk, respectively. As described elsewhere,20 we next 
studied how genetic and environmental factors interactively affect CVD risk 
(G × C ) using the logistic statistical model shown in Formula (2):

Y = μ + G × Ci + ε, (2) 

where Y is the binary outcome of CVD, μ represents a constant, ϵ serves as 
residual error that cannot be controlled, and i represents i-way interaction 
effects of clinical exposures on the underlying scale. The best models were 
selected by Akaike information criterion (AIC).21 All association models 
were adjusted for the first five principal components. Formula (2) was 
also applied to test for interactions between clinical risk scores of CVD 
and the CAD-PRS.

To estimate the PRS-factor, we separated participants equally into dec
iles based on the PRS distribution. The fifth and sixth tenths were merged as 
a reference group. Then, we computed relative genetic risks, namely odds 
ratios (ORs), for each PRS tenth by comparing them with the reference 
group. Besides ORs in the entire cohort, we also computed the ORs of 
CVD within each CAD-PRS tenth for participants carrying various conven
tional risk factors. As shown in Formula (3), we divided participants in each 
PRS group i exposed to risk factor j into 10 equal subgroups to calculate 
CVD ORs. In this formula, Dij is the number of CVD cases in subgroup ij 
and Hij is the number of controls in that subgroup. Within each PRS group, 
we performed analysis of variance (ANOVA) test to check differences in 
mean ORs between the entire cohort and subgroups by risk factors:

Odds ratioij =
Dij/D5/6,j

Hij/H5/6,j
. (3) 

Similar operations were applied to clinical risk categories determined by 
SCORE2/QRISK3. Within each PRS tenth, the clinical risk categories were 
further divided into five equal subgroups. Then, we calculated ORs for 

each subgroup based on Formula (3) and tested the difference in mean 
ORs between the entire cohort and clinical risk categories using ANOVA 
test. The P-values were adjusted by the false discovery rate (FDR) approach.

For the Framingham/ARIC populations, the PRSs were selected by the 
highest AUC from multiple LDpre2d models or ‘C + T’ models (see 
Supplementary data online, Table S2). Within each study, participants 
were equally split into 10 PRS groups (tenths). Then, we combined the 
PRS classification from both studies together to test the stability of 
PRS-factor. The fifth/sixth PRS tenths were taken as the reference group 
for calculating ORs. Within each PRS tenth, samples were equally separated 
into four groups. Then ANOVA test was applied to test the significance of 
the difference in mean CVD OR between the entire cohort and subgroups 
of traditional risk factors or clinical risk categories.

At last, we also constructed a new model for estimating an individual’s 
total risk by multiplying the absolute clinical risk estimated by SCORE2 or 
QRISK3 with relative genetic risk measured as PRS-factor, shown in 
Formula (4):

SCORE2 × (PRS-factor) = total risk. (4) 

We used Cox proportional hazards model for analysis of incident events 
on subset of UKB and ARIC/Framingham participants developing myocar
dial infarction or stroke after initial assessment. Values of the C-index or 
concordance index22 were compared between two risk prediction models: 
(i) CVD ∼ SCORE2 and (2) CVD ∼ SCORE2 × (PRS-factor). Net reclassifi
cation index (NRI) was also used to compare performance of the two mod
els. Both C-index and NRI were estimated as mean of 1000 bootstrapped 
samples.

Results
Study population
The study design is shown in Supplementary data online, Figure S1. 
Among 432 981 participants of UKB with genotype and phenotype 
data, we identified 27 532 CVD cases (CAD 19 617, stroke 6757, or 
both 1158) and 405 449 controls. The main characteristics are shown 
in Table 1. The CVD prevalence was significantly higher in subgroups 
exposed to traditional risk factors than the entire cohort and higher 
in men than in women, which was the same in the Framingham/ARIC 
populations (see Supplementary data online, Table S1). It markedly 
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Table 1 Cardiovascular disease prevalence by traditional risk factors and risk categories of SCORE2

Group Women n (CVD%) Men n (CVD%) Total (CVD %)

Entire 237 161 (3.72) 195 820 (9.55) 432 981 (6.36)

Age ≥ 50 181 607 (4.52) 149 447 (11.41) 331 054 (7.63)

Diabetes mellitus 13 580 (12.96) 18 569 (22.46) 32 149 (18.45)

Current smoking 20 699 (6.33) 24 094 (11.61) 44 793 (9.17)

Obesity (BMI ≥ 30 kg/m2) 55 109 (5.25) 48 326 (12.19) 103 435 (8.49)

Hypertension (SBP ≥ 140 mmHg) 94 315 (5.6) 102 499 (12.05) 196 814 (8.96)

High cholesterol (> 6.18 mmol/L) 89 672 (4.7) 66 378 (10.63) 156 050 (7.22)

SCORE2 low 103 148 (1.89) 25 504 (3.1) 128 652 (2.13)

SCORE2 intermediate 61 043 (6.15) 89 836 (8.63) 150 879 (7.63)

SCORE2 high 1347 (12.92) 25 234 (16.24) 26 581 (16.07)

CVD, cardiovascular disease prevalence is shown (in per cent); BMI, body mass index; SBP, systolic blood pressure.
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increased across the clinical risk categories determined by SCORE2, 
being 7.54-fold times higher in the high-risk as compared with the low- 
risk category (Table 1).

PRS-factor Stability relative to traditional 
risk factors
We grouped participants into tenths of the PRS, which follows a normal 
distribution, and observed that CVD prevalence in the highest tenth 
was 2.57-fold higher than in the first tenth (see Supplementary data 
online, Figure S2). Within a PRS tenth, subgroups exposed to modifiable 
and non-modifiable risk factors have higher CVD prevalence (see 
Supplementary data online, Figure S3).

We then built a genetic reference group by merging the fifth and sixth 
tenths (OR = 1), which had a CVD prevalence of 6.12% close to the 
average of the entire group (6.36%). Next, we calculated CVD ORs 
(PRS-factor) for the other eight tenths. Within each of these PRS tenths, 
we compared the ORs obtained in the entire cohort and subgroups ex
posed to various clinical risk factors. As shown in Figure 1, with an in
creasing PRS, the ORs for CVD increased exponentially in the entire 
cohort (R2 = 0.98, P = 1.4e−7), consistent with our previous findings.20

Here, we show by ANOVA test that within each of the PRS tenths, there 
was no significant difference in mean ORs (FDR > 0.05) among the en
tire cohort and subgroups exposed to various modifiable risk factors 
(Figure 1 and Supplementary data online, Table S3). Similar results 
were observed in the Framingham/ARIC populations (n = 10 757) (see 
Supplementary data online, Table S3 and Figure S4).

PRS-factor Stability relative to SCORE2 
levels
Within each SCORE2 risk category, the association between CVD 
prevalence and PRS fitted into Logit models (Figure 2), in line with 

previous observations on the entire cohort.21 The steepness of regres
sion curves between CVD prevalence and PRS tenths increased from 
the low- to high-risk SCORE2 categories (Figure 2A). However, the 
CVD ORs (PRS-factor) related to each PRS tenth as compared with 
the respective reference group (Groups 5/6) were consistent in the three 
clinical risk categories of SCORE2 (Figure 2B and Table 2), which was re
plicated in the Framingham/ARIC populations (see Supplementary data 
online, Table S4 and Figure S5). Similar findings were observed in UKB 
in clinical risk categories of QRISK3 (see Supplementary data online, 
Table S5 and Figure S6) which demonstrate the stability of ORs 
(PRS-factor) across risk categories in clinical risk estimation tools. To 
avoid an impact of unequal sample size, we also grouped individuals 
into tertiles of SCORE2 and QRISK3, showing that the ORs for CVD 
within any PRS groups were consistent irrespective of the highly variable 
clinical level of risk (see Supplementary data online, Table S6 and 
Figure S7).

Independent effects between polygenic 
risk score and SCORE2 on cardiovascular 
disease risk
We further analysed statistically the independence of genetic (G) and 
clinial (C) risk on CVD risk by studying their interactive effects. The 
two-way interactions (G × C2) with the lowest AIC revealed that all 
modifiable clinical risk factors and PRS had independent effects on 
CVD risk. Regarding the non-modifiable risk factors, i.e. age and sex, 
we revealed from the two-way interaction model statistically signifi
cant (P < 0.05) interactions for ‘PRS:Men’ (Table 3). Importantly, 
studying clinical risk categories of SCORE2, we observed no such one- 
way interaction (G × C ) with the PRS (Table 3). The same results were 
observed for clinical risk categories determined by QRISK3, as well as 
the tertile groups classified by both tools (see Supplementary data 

Figure 1 Odds ratios (PRS-factors) in the entire study population and subgroups carrying traditional risk factors. The figure shows the distribution of 
the PRS-factor, measured as mean CVD ORs, along PRS tenths in UK Biobank. The fifth/sixth groups were taken as the reference (OR = 1.0). The figure 
shows within one tenth of the PRS little (non-significant) variation between the entire set and subgroups carrying traditional risk factors. OR, odds ratio; 
CVD, cardiovascular disease; PRS, polygenic risk score
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online, Table S7). These findings suggest that the relative polygenic 
contribution is largely independent of absolute clinical risk as assessed 
by a recommended clinical score. Thus, the ORs derived from a PRS 

model can be converted into a PRS-factor which—multiplied with 
the absolute clinical risk from the score—may allow a refined estimate 
of total CVD risk.

A B

Figure 2 Cardiovascular disease prevalence and PRS-factors in the entire study and risk categories of SCORE2. (A) Cardiovascular disease prevalence 
along PRS tenths in clinical risk categories of SCORE2 (low, intermediate, and high). The distribution of CVD prevalence in SCORE2 risk categories fits 
into a Logit model with R2 > 0.9. (B) Cardiovascular disease ORs in risk categories of SCORE2 by PRS tenths; the fifth/sixth groups were taken as ref
erence (OR = 1.0). The figure shows within one tenth of the PRS little (non-significant) variation of the ORs, irrespectively of SCORE2 risk categories, 
albeit the CVD prevalence differs significantly between low- and high-risk categories (A). OR, odds ratio; CVD, cardiovascular disease; PRS, polygenic 
risk score
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Table 2 Odds ratios (PRS-factors) within polygenic risk score tenths are similar across SCORE2 risk categories

PRS 
groups

Mean CVD ORs in the 
entire cohort

Mean CVD ORs by SCORE2 risk categories 
(95% CI)

ANOVA test

(95% CI) Low Intermediate High Sum 
Sq

Mean 
Sq

F 
value

Pr(>F) FDR

1 0.63 (0.6–0.65) 0.59 (0.42–0.75) 0.65 (0.61–0.7) 0.65 (0.57–0.73) 0.02 0.01 0.41 0.75 1.00

2 0.72 (0.7–0.74) 0.75 (0.63–0.87) 0.72 (0.69–0.76) 0.76 (0.68–0.85) 0.01 0.00 0.29 0.83 1.00

3 0.79 (0.76–0.82) 0.82 (0.71–0.92) 0.79 (0.76–0.82) 0.78 (0.67–0.9) 0.00 0.00 0.12 0.95 1.00

4 0.87 (0.83–0.9) 0.77 (0.68–0.86) 0.84 (0.8–0.88) 0.9 (0.8–1) 0.05 0.02 2.23 0.13 0.37

5/6 1 1 1 1

7 1.07 (1.03–1.11) 1.15 (1.03–1.26) 1.06 (1.03–1.08) 1 (0.94–1.07) 0.05 0.02 2.75 0.08 0.35

8 1.2 (1.18–1.23) 1.26 (1.18–1.34) 1.19 (1.16–1.23) 1.18 (1.12–1.24) 0.02 0.01 1.68 0.21 0.48

9 1.37 (1.33–1.41) 1.3 (1.17–1.43) 1.42 (1.36–1.47) 1.35 (1.22–1.48) 0.03 0.01 0.87 0.48 0.86

10 1.72 (1.67–1.78) 1.72 (1.59–1.84) 1.85 (1.79–1.91) 1.57 (1.41–1.72) 0.21 0.07 4.49 0.02 0.16

The first column shows the PRS tenths of which the fifth/sixth groups were taken as the reference (OR = 1). The middle part shows CVD ORs in the entire cohort and three risk 
categories of SCORE2 within respective PRS tenths. The right part is the result of the ANOVA test (degree of freedom = 3) for the difference of OR between the entire cohort 
and SCORE2 risk categories—showing no statistical interaction. 
PRS, polygenic risk score; OR, odds ratio; CVD, cardiovascular disease; CI, confidence interval; Sum Sq, the sum of squares of total variation between the group means and the overall 
mean; Mean Sq, the mean of the sum of squares; F value, the test statistic from the F test; Pr(>F), the P-value of the F statistic; FDR, false discovery rate.
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Risk reclassification by  
‘SCORE2 × PRS-factor’
We next constructed a risk prediction model by multiplying an indivi
dual’s absolute clinical risk according to SCORE2 with the respective 
PRS-factor, ‘SCORE2 × PRS-factor’. This model was applied to 297  
201 participants free of CVD at the initial assessment. Compared 
with SCORE2 alone, ‘SCORE2 × PRS-factor’ modestly increased 
C-index by 0.9% (P = 1.6e−12) and net classification index (NRI) by 
0.063 (95% CI 0.059–0.067) as shown in Supplementary data online, 
Table S8, findings that were close to a study by Lu et al.23

Compared with the risk groups classified by SCORE2 alone, the multi
plicative model reclassified a sizeable proportion of participants (Table 4, 
Figure 3, and Supplementary data online, Table S9). The subgroups moved 
by the PRS-factor to a higher risk category had a higher CVD incidence than 
the subgroup kept in the original risk category. Vice versa, the subgroups 
with lowered risk by the PRS-factor had a lower CVD incidence than 
the original class. In detail, the PRS-factor reclassified 33.77% of high-risk 
participants into intermediate risk, who indeed had a lower CVD incidence 
(6.87%) than the original high risk category (9.13%). Since the PRS-factor 
comes with a 2.73-fold gradient of polygenic risk, we did not observe 
that a person was moved from low to high, or vice versa, from high to 
low total risk (Table 4).

From a clinical perspective, we focused on the intermediate-risk cat
egory (n = 145 337), of whom 13 886 or 9.55% were moved by the 
PRS-factor to high risk (Table 4 and Figure 3). Thereby, the number of indi
viduals considered to be at high risk increased by 56.6% as compared with 
the classification by SCORE2 alone. The incidence of CVD events in indi
viduals moved from intermediate to high risk by the PRS-factor was 8.08%, 
which was close to the incidence in the original high-risk group based on 
SCORE2 alone (9.13%) and 1.98-fold of those who remained in the 
intermediate-risk group (4.08%; n = 102 998). Similar observations were 
made for the QRISK3 model (see Supplementary data online, Table S9) 
and in the combined ARIC/Framingham populations (Figure 3). Thus, the 
PRS-factor appears to have the most clinical relevance for individuals at 
intermediate clinical risk—but at high genetic risk (PRS-factor > 1)— 
who may be considered for an intensified preventive treatment.

Discussion
Common genetic variants with small effects on CVD risk can be aggre
gated in the form of polygenic scores which have been shown to associate 
with the prevalence of CAD or stroke.1,2 It is undecided how this genetic 
information is best integrated into guideline-recommended risk predic
tion tools. Here, we show that the relative genetic risk along the distribu
tion curve of a PRS is fairly stable regardless of prevalent traditional risk 
factors or the overall absolute clinical risk a person carries. Thereby, the 
relative genetic and absolute clinical risks a person carries work independ
ently on affecting individual total CVD risk. The stability and independence 
of polygenic risk allow to generate a PRS-factor that can be easily inte
grated into established risk assessment tools and add currently unex
plored information from a given person which may inform to guideline 
recommendations.

Indeed, application of such multiplicative model improved risk predic
tion in a quantitatively and clinically relevant way. Specifically, the simple 
multiplicative model ‘SCORE2 × PRS-factor’ applied to participants at 
intermediate risk by SCORE2, who represent about half of UKB, increased 
the number of individuals to be considered at high risk by 56.6%. Individuals 
who were moved by the PRS-factor from intermediate to high risk experi
enced CVD events about twice as often as those who were grouped to 
intermediate risk based on SCORE2 alone (Structured Graphical Abstract). 
Thus, the inclusion of relative genetic risk as determined by the PRS— 
multiplying the clinical risk for a CVD event as predicted by SCORE2— 
added clinically relevant precision in selected individuals from the UKB.

The use of PRS is not recommended by current guidelines.3 Indeed, 
given the high frequency and random distribution of risk alleles, their 
number displays relatively little variability within a population, which 
is consistent with the genetic sampling theory.24 Thereby, PRS offers 
only small improvements of the AUCs for incident CVD events, 
when studied in the entire population.21,24–26 In extension of this no
tion, we show that the majority of the population has a PRS-factor close 
to 1.0 resulting in only small changes in the expected future event rates. 
However, the multiplicative effects of risk alleles result in an 
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Table 3 Interactive effects on cardiovascular disease risk between polygenic risk score and clinical risk factors/SCORE2

Interaction Beta Std. error z value Pr(>|z|)

PRS with modifiable risk factors

High cholesterol (> 6.18 mmol/L) 0.052 0.025 2.126 0.033

Hypertension (SBP ≥ 140 mmHg) 0.023 0.026 0.897 0.37

Obesity (BMI ≥ 30 kg/m2) 0.005 0.028 0.174 0.862

Diabetes mellitus −0.041 0.035 −1.152 0.249

Smoking −0.017 0.03 −0.577 0.564

PRS with non-modifiable risk factors

Men 0.111 0.025 4.422 9.78E-06

Age ≥ 50 0.037 0.025 1.468 0.142

PRS with clinical risk categories of SCORE2

SCORE2 −0.008 0.005 −1.523 0.128

The first column shows interactive items [clinical risk factors/SCORE2 (C )]. The ‘Beta’ column shows the interactive effect size with PRS tenths [genetic risk factor (G)] by applying a 
logistic regression model. ‘Pr(>|z|)’ is the statistical test of the interactive effect, which was non-significant, with the exception of male gender. 
CVD, cardiovascular disease; PRS, polygenic risk score; SBP, systolic blood pressure; BMI, body mass index.
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Table 4 Risk reclassification by ‘SCORE2 × PRS-factor’

SCORE2 vs.  
‘SCORE2 × PRS-factor’

n CVD 
incidence 

(%)a

Prevalence of risk factors (%)b

Diabetes Smoking Obesity Hypertension High 
cholesterol

Male Age ≥ 50

Original low (100%)c 127 315c 1.12c 3.65c 3.09c 20.70c 19.81c 33.22c 19.73c 66.67c

Low (89.11%)d 113 447d 0.97d 3.48d 2.82d 20.34d 18.39d 32.06d 18.59d 66.34d

Intermediate (10.89%)e 13 868e 2.32e 5.05e 5.28e 23.64e 31.42e 42.70e 29.03e 69.33e

Original intermediate (100%)c 145 337c 4.11c 8.14c 12.28c 25.94c 62.57c 48.21c 59.20c 83.48c

Low (19.58%)d 28 453d 2.29d 6.01d 7.88d 23.49d 51.6d 43.44d 50.35d 87.06d

Intermediate (70.87%)e 102 998e 4.08e 8.33e 13.07e 26.43e 64.12e 48.80e 60.99e 81.06e

High (9.55%)f 13 886f 8.08f 11.08f 15.47f 27.34f 73.58f 53.62f 64.06f 94.04f

Original high (100%)c 24 549c 9.13c 13.66c 34.64c 26.80c 91.63c 52.49c 94.80c 97.36c

Intermediate (33.77%)e 8291e 6.87e 11.95e 28.39e 25.77e 90.15e 49.91e 95.19e 98.05e

High (66.23%)f 16 258f 10.28f 14.53f 37.83f 27.32f 92.39f 53.81f 94.60f 97.01f

The data show that individuals reclassified by the PRS-factor to a higher or lower risk category had incidence rates close to those originally classified in respective risk categories. 
PRS, polygenic risk score; CVD, cardiovascular disease; PRS, polygenic risk score; CVD, cardiovascular disease. 
aIncidence rate of events in those initially free of CVD. 
bPrevalence of risk factors at initial assessment. 
c‘Original’ classification by SCORE2 only. 
dData obtained after multiplying SCORE2 with PRS-factor (low). 
eData obtained after multiplying SCORE2 with PRS-factor (intermediate). 
fData obtained after multiplying SCORE2 with PRS-factor (high).

Figure 3 Sankey diagrams visualizing reclassification by PRS-factor. The figure shows the subgroups which were genetically upgraded (PRS-factor > 1) 
from a lower risk category of SCORE2 to a higher risk category based on ‘SCORE2 × PRS-factor’ in UK Biobank (left) and Framingham/ARIC (right) 
populations. The left side of two Sankey plots shows CVD incidence of the original groups of SCORE2, and the right side shows CVD incidence of 
subgroups genetically upgraded by ‘SCORE2 × PRS-factor’. CVD, cardiovascular disease. *The low incidence rate of high-risk category of SCORE2 
in Framingham/ARIC populations is because of a high number of prevalent cases (n = 130) that had to be excluded for the analysis of incident events 
and a small sample size (n = 875)
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exponential increase of relative risk such that subjects in the highest 
tenth have PRS-factors close to 2.20

Importantly, knowledge of a PRS results is only meaningful in the context 
of other risk factors. Specifically, a high PRS may increase the absolute 
10-year risk by as little as 0.6%, e.g. in a healthy woman, or by more than 
10% in a middle-aged smoker (see Supplementary data online, Figure S3). 
Thus, the clinical relevance of being in a high percentile of the PRS depends 
largely on the outcome from the clinical risk assessment, such as obtained 
by SCORE2, and should not be seen in isolation.21 Indeed, our data suggest 
that using a PRS without recognition of the overall CVD risk may be even 
misleading (Figure 2A). This should be kept in mind when PRS are marketed 
as sole source for predictive information by some ‘over-the-counter’ pro
ducts. On the other hand, there does not seem to be the need for complex 
(black box) algorithms, which are likewise commercially available and trans
late polygenic risk into a clinical recommendation. Instead, the use of 
PRS-factor as an adjunct to a guideline-recommended prediction tool like 
SCORE2 may help to keep the focus on the most imminent issues in pri
mary prevention, e.g. modifiable risk factors, since their effects are amplified 
by polygenic risk and their treatment is already specified in the guidelines.25

Our study comes with a number of limitations. To avoid bias, we built 
the CAD-PRS excluding data from UKB, which precluded the use of 
GWAS data for stroke and might have reduced the precision for studying 
CVD risk (CAD plus stroke). However, our principal aim was to elucidate 
whether the ORs obtained from a PRS are comparable at different levels of 
overall risk, which should not be affected by this strategy. Moreover, there 
is an overlap of genetic risk loci between CAD and stroke26 and the major
ity of CVD events in this population was related to CAD, such that the use 
of the CAD-PRS (rather than a combined CAD/stroke PRS) may have had 
little effect on our overall results. Nevertheless, larger and ethnically more 
diverse GWAS covering stroke may further refine the polygenic risk esti
mates.27 Second, we wanted to avoid that risk estimates on clinical grounds 
are being ‘downgraded’ by a low PRS. Therefore, we would advise to apply 
the PRS-factor for clinical counselling only when it is larger than 1 
(Structured Graphical Abstract). Obviously, this strategy needs further evalu
ation. Third, it needs to be determined whether the generalizability of a PRS 
result across the spectrum of clinical risk can be extrapolated to individuals 
outside the age range or the ethnic group studied in UKB and Framingham/ 
ARIC. Finally, although we show that PRS and SCORE2 act independently 
on clinical risk of CVD, the generalizability to other common diseases and 
additional environmental risk factors needs to be verified.

Conclusions
Across the entire spectrum of clinical risk, as calculated by the ESC 
guideline-recommended prediction tool SCORE2, we observed—for a 
given position in the distribution curve of a CAD-PRS—little variability 
by which polygenic risk multiplied absolute CVD risk. Thus, the polygenic 
risk an individual carries may be used in the form of PRS-factor to enhance 
the precision of risk estimates obtained by conventional measures. 
Applying the PRS-factor substantially increased the number of subjects 
correctly considered to be at high risk, making the strategy attractive 
from a clinical point of view as a refinement of recommended instruments 
of CVD risk assessment.
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