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Approximately 5% of Alzheimer’s disease cases have an early age at onset (<65 years), with 5–10% of these cases attributed to dominantly 
inherited mutations and the remainder considered as sporadic. The extent to which dominantly inherited and sporadic early-onset 
Alzheimer’s disease overlap is unknown. In this study, we explored the clinical, cognitive and biomarker profiles of early-onset 
Alzheimer’s disease, focusing on commonalities and distinctions between dominantly inherited and sporadic cases. Our analysis included 
117 participants with dominantly inherited Alzheimer’s disease enrolled in the Dominantly Inherited Alzheimer Network and 118 indivi
duals with sporadic early-onset Alzheimer’s disease enrolled at the University of California San Francisco Alzheimer’s Disease Research 
Center. Baseline differences in clinical and biomarker profiles between both groups were compared using t-tests. Differences in the rates 
of decline were compared using linear mixed-effects models. Individuals with dominantly inherited Alzheimer’s disease exhibited an earlier 
age-at-symptom onset compared with the sporadic group [43.4 (SD ± 8.5) years versus 54.8 (SD ± 5.0) years, respectively, P < 0.001]. 
Sporadic cases showed a higher frequency of atypical clinical presentations relative to dominantly inherited (56.8% versus 8.5%, respect
ively) and a higher frequency of APOE-ϵ4 (50.0% versus 28.2%, P = 0.001). Compared with sporadic early onset, motor manifestations 
were higher in the dominantly inherited cohort [32.5% versus 16.9% at baseline (P = 0.006) and 46.1% versus 25.4% at last visit (P =  
0.001)]. At baseline, the sporadic early-onset group performed worse on category fluency (P < 0.001), Trail Making Test Part B (P <  
0.001) and digit span (P < 0.001). Longitudinally, both groups demonstrated similar rates of cognitive and functional decline in the early 
stages. After 10 years from symptom onset, dominantly inherited participants experienced a greater decline as measured by Clinical 
Dementia Rating Sum of Boxes [3.63 versus 1.82 points (P = 0.035)]. CSF amyloid beta-42 levels were comparable [244 (SD ± 39.3) 
pg/ml dominantly inherited versus 296 (SD ± 24.8) pg/ml sporadic early onset, P = 0.06]. CSF phosphorylated tau at threonine 181 levels 
were higher in the dominantly inherited Alzheimer’s disease cohort (87.3 versus 59.7 pg/ml, P = 0.005), but no significant differences were 
found for t-tau levels (P = 0.35). In summary, sporadic and inherited Alzheimer’s disease differed in baseline profiles; sporadic early onset is 
best distinguished from dominantly inherited by later age at onset, high frequency of atypical clinical presentations and worse executive 
performance at baseline. Despite these differences, shared pathways in longitudinal clinical decline and CSF biomarkers suggest potential 
common therapeutic targets for both populations, offering valuable insights for future research and clinical trial design.
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Introduction
Alzheimer’s disease (AD) is the most common cause of demen
tia, with more than 131 million people worldwide expected 
to be affected by 2050.1 In 2019, the global economic burden 
of Alzheimer’s disease and related dementias was estimated 
at $2.8 trillion and is projected to increase to $16.9 trillion 
($11.3 trillion–$27.3 trillion) in 2050.2 Low- and middle- 
income countries would account for 65% of the global eco
nomic burden in 2050, as compared with only 18% in 
2019.2,3 Alzheimer’s disease dementia is also among the 
most costly illnesses in the USA, with an estimated yearly ex
penditure between $157 billion and $321 billion.4 Though 
generally considered a disease of the elderly, ∼5% of 
Alzheimer’s disease dementia cases have an early age at onset, 
which is defined as symptom onset before age 65 years.5,6

Patients with early-onset Alzheimer’s disease (EOAD) pose a 
clinical challenge and a scientific enigma.7 Alzheimer’s disease 
is particularly devastating when it occurs at younger ages, as it 
impacts individuals during a peak time of family, professional 
and financial responsibilities, leading to the loss of decades of 
life expectancy.8,9 About 5–10% of EOAD carry established 
dominantly inherited Alzheimer’s disease (DIAD) mutations 
in the presenilin 1 (PSEN1), presenilin 2 (PSEN2) or amyloid 
precursor protein (APP) genes leading to early and aggregation 
of amyloid β (Aβ).10-13 The remainder of patients who develop 
EOAD do not carry an established pathogenic mutation for 
Alzheimer’s disease and are therefore described as having 
‘sporadic’ EOAD (sEOAD).14

Although accumulation of Aβ peptides is thought to be the 
common initiating event in Alzheimer’s disease, leading to 
the downstream spread of tau pathology, synaptic loss and 
neurodegeneration,10,15 there are reported clinical, cognitive 
and pathological differences between typical late-onset 
Alzheimer’s disease (LOAD), sEOAD and DIAD.16,17

Patients with EOAD show a more rapid clinical decline 
and shorter survival than LOAD patients.18-20 A high per
centage of sEOAD cases (∼25–50%) present with non- 
amnestic presentations or atypical variants, such as the logo
penic variant of primary progressive aphasia, posterior cor
tical atrophy and behavioural or dysexecutive variants of 
Alzheimer’s disease.9,21,22 The higher frequency of these 
atypical presentations in sEOAD suggests that a younger 
age of onset of Alzheimer’s disease may have different patho
genic drivers or selectively effect different neural networks 
compared to LOAD. However, these atypical Alzheimer’s 
disease presentations have been reported less frequently in 
DIAD,23 and patients carrying DIAD mutations tend to pre
sent with an amnestic syndrome similar to LOAD.24

Nevertheless, a great diversity of focal neurologic findings 
have been reported in DIAD, including visual agnosia, spas
tic paraplegia, ataxia, aphasia and behavioural changes.16

Post-mortem studies comparing the burden of Alzheimer’s 
disease pathology in early-onset and late-onset patients dem
onstrate a higher overall burden of neurofibrillary tangles (to 
a greater degree than neuritic plaques) and more severe 

neurodegeneration in younger patients,25-34 and similar re
sults have been reported with tau PET and structural MRI 
when comparing DIAD with LOAD cohorts.17,35,36

Despite some evidence suggesting differences between 
sEOAD and DIAD, previous studies examined cross- 
sectional cohorts with no direct comparisons using similar 
measures.7,35,37 Therefore, the extent to which clinical pre
sentations and cognitive and biomarker profiles in DIAD 
overlap with sEOAD remains unknown, and to what extent 
an earlier age of onset is the cause for atypical clinical pheno
types in sporadic versus DIAD remains to be determined.

To address this gap, we aimed to compare EOAD in two 
longitudinal observational studies: an early age-of-onset 
sporadic Alzheimer’s disease cohort followed at the 
University of California San Francisco Alzheimer’s Disease 
Research Center (UCSF ADRC) and the Dominantly 
Inherited Alzheimer Network (DIAN). The overall goal of 
the study was to compare the clinical presentation, cognitive 
performance and CSF biomarker concentrations in DIAD 
and sEOAD. A complementary comparison of PET molecu
lar imaging biomarkers is reported in a separate manuscript 
(see Iaccarino et al., submitted). The results will expand our 
understanding of the relationships between clinical pheno
type, cognitive decline and molecular pathology across dif
ferent subtypes of Alzheimer’s disease.

Materials and methods
Participants
Existing data from two non-overlapping cohorts were used 
to retrospectively compare clinical presentations, cognitive 
performance and CSF biomarker profiles in DIAD and 
sEOAD. For both cohorts, only symptomatic participants 
with a global Clinical Dementia Rating® (CDR®) of >0 
were included.38 Participants were classified as having 
sEOAD if they did not have a family history of dementia 
that followed an autosomal dominant pattern and tested 
negative for known mutations associated with DIAD. 
Participants with DIAD were all confirmed to have known 
pathogenic mutations that cause familial Alzheimer’s disease 
(see below). All participants in the study provided written in
formed consent or assent with proxy consent. The institu
tional review boards at DIAN participating sites and at 
UCSF approved all aspects of the study.

sEOAD participants were selected from ongoing longitu
dinal studies at the UCSF ADRC.

sEOAD participants were required to (i) have biomarker 
evidence of Alzheimer’s disease (positive amyloid PET scan 
or CSF biomarkers), (ii) have at least one clinical assessment 
(detailed neurological and neuropsychological examin
ation), (iii) have age at reported symptoms onset <65 years 
old, (iv) absence of a family history of dementia that fol
lowed an autosomal dominant pattern and did not have evi
dence of a mutation associated with DIAD and (v) have a 
clinical diagnosis of mild cognitive impairment or dementia 
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due to Alzheimer’s disease. sEOAD participants (n = 118) 
were subsequently divided into two groups according to clin
ical presentation: amnestic Alzheimer’s disease (n = 51) or 
non-amnestic Alzheimer’s disease [n = 67, including primary 
progressive aphasia39 (n = 34); posterior cortical atrophy40

(n = 22); and behavioural/dysexecutive variant Alzheimer’s 
disease41 (n = 11)]. For this study, the reported clinical diag
nosis for each participant refers to the clinical syndromic 
diagnosis at the most recent UCSF clinical assessment.

DIAD participants were selected from the DIAN (DIAN 
data freeze 15) observational study.42 All participants in 
DIAN are recruited from families with DIAD pathogenic var
iants in APP, PSEN1 or PSEN2 genes. Participant enrolment 
and procedures have been previously described.42,43 For this 
study, only symptomatic (CDR > 0) mutation carriers with at 
least one clinical assessment (detailed neurological and 
neuropsychological examination) and biomarkers were in
cluded (n = 117). Asymptomatic (CDR = 0) DIAN non- 
mutation carriers were also included as an age-matched cog
nitively unimpaired control group (n = 168).

All participants underwent a comprehensive clinical as
sessment, cognitive testing and CSF and blood draws for 
biospecimen collection. Full details of participating sites, en
rolment and assessments in DIAN and UCSF ADRC have 
been published.42,44 Measures relevant to this comparison 
are detailed below.

Clinical and neuropsychological 
assessments
All participants underwent a comprehensive clinical assess
ment with the National Alzheimer’s Coordinating Center uni
form data set.45-47 This assessment included informant 
interviews, personal medical history, a family history, physical 
and neurologic examination, functional assessments and cogni
tive testing. Data evaluated included the clinical diagnosis; 
demographic features; the age of symptom onset; first disease 
symptom; presence of cognitive, behavioural, neuropsychiatric 
[as measured by Neuropsychiatric Inventory—Questionnaire 
(NPI-Q)] and motor symptoms that developed throughout 
the disease; and neurological examination findings. For both 
cohorts, the participant’s estimated years from symptom onset 
(EYO) was defined as the participant’s age at baseline minus 
their age-at-symptom onset (AAO).10,11,43 The AAO was cal
culated based on the age at the first progressive symptom, as 
stated in the participant’s clinical history. Clinical dementia se
verity was determined with the global CDR® in accordance 
with standard protocols and criteria.38,48 Clinical syndromic 
diagnoses for typical and atypical Alzheimer’s disease syn
dromes were defined using the same clinical criteria in both co
horts, although consensus diagnosis was performed separately 
using cohort-specific procedures.

Core neuropsychological measures were drawn from the 
National Alzheimer’s Coordinating Center cognitive bat
tery. Only neuropsychological measures that were common 
across both cohorts were included in the analysis. Clinical 
progression was assessed using consecutive scores on the 

Mini-Mental State Exam (MMSE) and CDR Sum of Boxes 
(CDR-SB). The rate of cognitive decline was estimated using 
individual measures of cognitive performance (e.g. digit sym
bol, category and verbal fluency, Trails A and B and logical 
memory delayed recall) and a composite score comprised 
of the MMSE, logical memory, digit symbol and animal flu
ency tests. Details of the DIAN cognitive composite and 
measurement properties have been published elsewhere.49

Biochemical analysis
DNA was extracted from blood using standard protocols. In 
the DIAN cohort, the presence or absence of a DIAD muta
tion was determined using PCR-based amplification of the 
appropriate exon followed by Sanger sequencing methods.50

In the UCSF ADRC group, screening for pathogenic variants 
in the most common causative genes for Mendelian forms of 
Alzheimer’s disease and frontotemporal dementia (MAPT, 
C9orf72, GRN, TARDBP, FUS, PSEN1, PSEN2 and 
APP) was performed as previously described.51 APOE geno
typing was performed for both cohorts.51,52

Protocols for CSF collection and processing were consist
ent with the Alzheimer’s Disease Neuroimaging Initiative. 
CSF from both cohorts was collected in the morning under 
fasting conditions by lumbar puncture and immediately 
placed on dry ice. Samples from both cohorts were shipped 
on dry ice to the DIAN Biomarker Core laboratory at 
Washington University (St Louis, MO, USA). Samples were 
thawed and aliquoted into polypropylene tubes before stor
age at −80°C. Aβ1–42, total tau and phosphorylated tau at 
threonine 181 (p-tau181) were measured using the xMAP 
Luminex platform (INNO-BIA AlzBio3 for research-only re
agents; Innogenetics) and according to standardized proce
dures.53 Both cohorts used the same lab procedures and 
assays but were run in different batches using different lot 
numbers. CSF biomarkers were available for 91/117 
(77.8%) DIAD, 165/168 (98.2%) DIAN non-mutation car
rier participants and 37/118 (31.2%) sEOAD.

Statistical analysis
Demographic and baseline characteristics of the participants 
are summarized as mean ± SD for continuous variables and n 
(column percentage) for categorical variables. Group com
parisons were performed using a two-sample t-test for con
tinuous variables and Z-test for two proportions for 
categorical variables. Baseline cognitive performance was 
compared among groups after adjusting for baseline EYO, 
sex, years of education and APOE-ϵ4 status. The annual 
rate of change over the longitudinal follow-up period was es
timated for each cohort (DIAD versus sEOAD) using ran
dom intercept and slope linear mixed-effects models and 
then plotted against baseline EYO to evaluate the trajectories 
of clinical and cognitive changes over the interval since 
symptom onset. Baseline EYO was included as a covariate, 
and all two-way interactions (cohort ∗ time, baseline EYO  
∗ time and cohort ∗ baseline EYO) and a three-way 
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interaction (cohort ∗ baseline EYO ∗ time) were tested. Sex, 
years of education and APOE-ϵ4 carrier status were included 
as covariates, and only significant effects were retained in the 
models. Interactions between APOE-ϵ4 carrier status (ϵ4+ 
versus ϵ4−), CDR® and group and between sex and group 
were not significant for any biomarkers, so were excluded 
from the final models. Statistical analyses were conducted 
with the PROC MIXED procedure in SAS software, version 
9.4 (SAS Institute Inc., Cary, NC, USA). A P-value of <0.05 
was considered to be statistically significant; given the ex
ploratory nature of the study, results were not corrected 
for multiple comparisons.

Results
Subject characteristics
Of 235 participants with EOAD, 118 were considered 
sEOAD; 117 were determined to have a DIAD. Most 

DIAD participants were PSEN1 mutation carriers [87 
(74.4%)]; 9 (7.7%) were PSEN2 mutation carriers, and 21 
(17.9%) were APP mutation carriers. Demographics, base
line clinical presentation, co-morbidities and global cogni
tive measures from the DIAN and UCSF-sEOAD cohorts 
are presented in Table 1. Participants with DIAD were sig
nificantly younger at symptom onset than sEOAD [43.4 ±  
8.5 years (mean ± standard deviation), range 21–64 versus 
54.8 years (SD 5.0), range 34–64, P < 0.001]. We found sig
nificant age and education differences between DIAD and 
sEOAD (P < 0.001), but there were no significant differences 
in sex for these groups (P = 0.56). At baseline, DIAD and 
sEOAD participants were well matched for functional status, 
as measured by CDR-SB and MMSE; sEOAD participants 
had a longer duration as measured by EYO. Compared 
with sEOAD, motor manifestations (including parkinson
ism, tremor, early falls and/or pyramidal signs) were higher 
in DIAD cohort [32.5% versus 16.9% at baseline (P =  
0.006) and 46.1% versus 25.4% at last visit (P = 0.001); 
see Table 1]. Participants in the sEOAD cohort showed a 

Table 1 Demographic and baseline characteristics: symptomatic DIAD versus sEOAD

Characteristic
DIAD 

n = 117
sEOAD 
n = 118

Significance level 
(P-value)

Age at onset, mean (SD) 43.4 (8.5) 54.8 (5.0) <0.001
Age at baseline visit, mean (SD) 46.8 (9.2) 59.2 (5.0) <0.001
Female, n (%) 62 (52.9) 67 (56.8) 0.56
Race/ethnicity 0.12

Non-Hispanic White 97 (87.4) 106 (89.8)
Asian 6(5.4) 3(2.5)
African American 1 (0.9) 3(2.5)
Refuse to state/unknown 7(6.3) 5(3.2)

Years of education, mean (SD) 13.6 (3.5) 16.3 (2.8) <0.001
Symptoms duration*, mean (SD) 3.4 (2.7) 4.4 (1.8) 0.001
Hypertension, n (%) 14(11.9) 30 (25.4) <0.001
Cardiovascular disease, n (%) 1(0.9) 2 (1.7) 0.16
Cerebrovascular disease, n (%) 1(0.9) 0
Diabetes mellitus, n (%) 3(2.6) 3 (2.5) 0.08
Co-morbidity (2 or more), n (%) 2(1.7) 1 (0.8) 0.32
APOE-ϵ4(+), n (%) 33 (28.2) 59 (50.0) 0.001
PSEN1, n (%) 87 (74.4) 0
PSEN2, n (%) 9 (7.7) 0
APP, n (%) 21 (17.9) 0
MMSE, mean (SD) 22.0 (6.9) 21.3 (5.7) 0.38
CDR, n (%)

0.5 75 (64.1) 67 (56.8) 0.25
1 30 (25.6) 50 (42.4) 0.01
2/3 12 (10.2) 1 (0.85) 0.03

CDR-SB at baseline, mean (SD) 3.9 (3.9) 4.0 (1.9) 0.71
NPI-Q at baseline 8.3 (7.1) 6.1 (7.6) 0.02
GDS 3.9 (3.2) (n = 115) 3.4 (2.7) (n = 84) 0.18
Baseline motor Symptoms, n (%) 38 (32.5) 20 (16.9) 0.01
Last visit motor symptoms, n (%) 54 (46.2) 30 (25.4) <0.001
Clinical Presentation

Amnestic 107 (91.5) 51 (43.2) <0.001
Non-Amnestic 10 (8.5) 67 (56.8)

APOE-ϵ4(+) refers to presence of at least one ϵ4 allele of apolipoprotein E. Co-morbidity was defined as having two or more non-communicable disorders (e.g. diabetes mellitus and 
hypertension) or illnesses co-occurring in the same participant. *Symptom duration was defined as the time (years) from age at first progressive symptom to baseline assessment. 
Motor signs were considered to be present if evidence of parkinsonism, gait disorder, early falls, tremor and pyramidal signs. Significant differences are highlighted as bold values. APP, 
amyloid precursor protein; CDR, Clinical Dementia Rating Scale (scores range from 0 to 3, with higher scores indicating worse cognition and daily function); CDR-SB, Clinical Dementia 
Rating Scale Sum of Boxes (scores range from 0 to 18, with higher scores indicating worse cognition and daily function); GDS, Geriatric Depression Scale; NPI-Q, Neuropsychiatric 
Inventory Questionnaire; PSEN1, presenilin 1; PSEN2, presenilin 2.
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high frequency of atypical presentations relative to DIAD 
carriers (56.8% versus 8.5%, respectively). Overall, DIAD 
participants had a lower frequency of APOE-ϵ4 relative to 
sEOAD (28.2% versus 50.0%, P = 0.001; Table 1). In a sub
set analysis, APOE-ϵ4 positivity was significantly more com
mon in the amnestic sEOAD group than in the DIAD group 
(60.78% versus 28.21%, P = 0.001), but this difference was 
less prominent when contrasting non-amnestic sEOAD and 
DIAD (41.79% versus 28.21%, P = 0.06).

Baseline cognitive performance
The baseline cognitive assessments adjusting for baseline 
EYO, sex, years of education and APOE-ϵ4 status are shown 
in Table 2. At baseline, there were no significant differences 
in cognitive performance between the sEOAD and DIAD on 
logical memory (P = 0.74), letter fluency (P = 0.54) and nam
ing (Boston Naming Test) (P = 0.42) (Table 2). Compared 
with DIAD, sEOAD had significantly lower scores in execu
tive function/working memory at baseline (Table 2). Because 
of a higher frequency of atypical Alzheimer’s disease syn
dromes in the sEOAD, we divided the sEOAD according to 
typical (amnestic predominant syndrome) versus atypical 
presentations (non-amnestic predominant syndrome). After 
controlling for EYO, sex, education and APOE4 status. 
Comparisons of baseline cognitive performance in the 
sEOAD (amnestic and non-amnestic groups) versus DIAD 
groups are shown in Supplementary Table 1. Both amnestic 
and non-amnestic sEOAD participants performed signifi
cantly worse on digit span backwards (DIAD versus amnes
tic sEOAD, P = 0.001; DIAD versus non-amnestic sEOAD, 
P = 0.01), category fluency (DIAD versus amnestic sEOAD, 

P = 0.003; DIAD versus non-amnestic sEOAD, P = 0.001) 
and Trail Making Test Part B (DIAD versus amnestic 
sEOAD, P = 0.03; DIAD versus non-amnestic sEOAD, P <  
0.001). In addition, the non-amnestic sEOAD showed worse 
cognitive performance on digit span forward (P = 0.01), 
Trail Making Test Part A and digit symbol substitution 
(P = 0.001).

Behavioural features
At baseline assessment, DIAD participants had higher mean 
ratings on the NPI-Q relative to sEOAD [8.3 (7.1) versus 6.1 
(7.7), P = 0.02] (Table 1). The four most prevalent neuro
psychiatric symptoms in both cohorts included depression, 
irritability, apathy and anxiety (Fig. 1). When examining in
dividual items from the NPI-Q, we found that the frequen
cies of agitation and depression were higher in DIAD 
(35.9% versus 12.7%, P = 0.001 and 55.6% versus 
27.9%, P = 0.01, respectively). Delusions had a higher fre
quency in sEOAD (P = 0.045; Fig. 1 and Supplementary 
Table 2). Differences in NPI scores between DIAD and 
sEOAD remained significant after controlling for CDR and 
EYO. No other items differed between DIAD and sEOAD. 
Longitudinal trajectories of specific NPI domains did not dif
fer between groups (Table 3).

Longitudinal functional and cognitive 
rate of decline
Rates of longitudinal functional and cognitive decline across 
groups are shown in Table 3. Using a cognitive composite 
(MMSE, logical memory, digit symbol and animal fluency), 

Table 2 Baseline cognitive performance: symptomatic DIAD versus sEOAD

Characteristic DIAD sEOAD
Significance level 

(P-value*)

Logical memory (immediate recall), mean (SD), n 6.1 (4.6) 
n = 113

4.7 (4.3) 
n = 45

0.08

Logical memory (delayed recall), mean (SD), n 4.3 (4.5) 
n = 111

4.0 (4.3) 
n = 43

0.69

Category fluency (vegetables), mean (SD), n 9.3 (4.3) 
n = 101

6.7 (4.7) 
n = 43

<0.001

Category fluency (animals), mean (SD), n 15.3 (6.0) 
n = 113

10.5 (5.5) 
n = 101

<0.001

Letter fluency, mean (SD), n 10.6 (4.8) 
n = 99

11.8 (5.1) 
n = 35

0.54

Digit span forward, mean (SD), n 6.6 (2.5) 
n = 113

5.7 (2.4) 
n = 101

<0.01

Digit span backward, mean (SD), n 4.9 (2.3) 
n = 113

3.8 (2.2) 
n = 101

0.001

Trail Making Test Part A, mean (SD), n 54.9 (41.1) 
n = 106

81.6 (51.6) 
n = 66

<0.001

Trail Making Test Part B, mean (SD), n 147.7 (102.4) 
n = 86

207.8 (97.8) 
n = 47

<0.001

Boston Naming Test, mean (SD), n 23.6 (5.7) 
n = 106

22.7 (7.3) 
n = 43

0.27

Digit symbol, mean (SD), n 34.9 (19.1) 
n = 106

22.7 (13.9) 
n = 28

<0.001

Logical memory, category fluency, letter fluency, digit span, Boston Naming Test and digit symbol: lower scores indicating poorer cognitive performance. Trail Making Test scores: 
higher scores indicating poorer cognitive performance. *P-values were adjusted for baseline EYO, sex, education and APOE4 status. Significant differences are highlighted as bold values.
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the rate of cognitive decline was similar among the sEOAD 
and DIAD participants. The mean annual rates of change 
in the cognitive composite score at every EYO point for the 
sEOAD and DIAD cohorts, respectively, were for baseline 
EYO +1, −0.21 (0.04) versus −0.30 (0.09) points (P =  
0.34); for baseline EYO +5 −0.35 (0.05) versus −0.30 
(0.05) points (P = 0.46); and for baseline EYO +10 −0.53 
(0.12) versus −0.30 (0.15) points (P = 0.23). No significant 
difference in rate of disease progression over time was de
tected for other clinical/cognitive measures including 
NPI-Q, category fluency (animal naming) or logical memory 
(see Fig. 2 and Table 3). After EYO = +10, the DIAD cohort 
showed faster functional decline as measured by CDR-SB 
[3.63 (0.71) versus 1.82 (0.54) points (P = 0.035)]. For 
MMSE score, the sEOAD showed faster progression at 
EYO +1 [−3.66 (0.60) versus −1.30 (0.48) points (P =  
0.002)], while the DIAD cohort showed faster progression 
after EYO +10 [−5.18 (1.24) versus −1.67 (0.97) points 
(P = 0.02)]. Longitudinal rate of change and cohort differ
ences on individual cognitive measures are shown in 
Table 3. Annual rates of change in the sEOAD amnestic 
and non-amnestic groups versus DIAD are shown in 
Supplementary Table 3.

CSF biomarker profiles
DIAD and sEOAD biomarker patterns were consistent with 
the presence of Alzheimer’s disease pathology, including re
ductions in Aβ42 (P < 0.0001) and increases in p-tau181 
(P < 0.0001) compared with the DIAN non-carrier group 
(Supplementary Table 4). After adjusting for CDR, age and 
APOE-ϵ4 status, there was a non-significant trend for lower 
CSF Aβ42 levels in DIAD than in sEOAD (243 ± 116 pg/ml 

versus 296 ± 82 pg/ml, P = 0.06; see Fig. 3). CSF p-tau181 
levels were higher in the DIAD cohort (87.3 ± 39.3 pg/ml 
versus 59.7 ± 24.8 pg/ml, P = 0.01), while no significant dif
ferences were found for t-tau levels (P = 0.35). DIAD partici
pants showed a higher pTau-181/Aβ42 ratio relative to 
sEOAD (0.4 ± 0.3 pg/ml versus 0.2 ± 0.1 pg/ml, P = 0.001).

Discussion
The objective of this study was to better understand clinical 
profiles at presentation and disease progression among auto
somal dominant versus sporadic forms of EOAD. Although 
previous studies have reported on clinical, cognitive and CSF 
biomarkers profiles in sEOAD and DIAD, to the best of our 
knowledge, this is the first study to directly compare indivi
duals with sEOAD and those with DIAD using a similar 
methodology. Our sample of sEOAD and DIAD participants 
showed similar baseline global and memory impairment, 
rates of behavioural and cognitive decline and baseline neu
rodegeneration as measured by CSF total tau. Despite many 
similarities, we also observed several important differences. 
At baseline, sEOAD showed a higher frequency of non- 
amnestic presentations while DIAD showed a higher fre
quency of motor symptoms. Even within the amnestic group, 
sEOAD participants presented with lower performance on 
tests of executive function compared with DIAD. 
Conversely, the DIAD cohort showed a higher frequency 
of agitation and depression relative to sEOAD. Finally, par
ticipants with DIAD showed overall higher concentrations of 
CSF p-tau181 and a trend for lower CSF Aβ42 levels. The 
observed differences may shed light on potential differences 
in Aβ42/pTau metabolism leading to differences in 

Figure 1 NPI-Q: sEOAD versus DIAD. (A) Percentage of respondents endorsing each item of the NPI-Q among DIAD (n = 117) and sEOAD 
(n = 118) cohorts. The P-values for comparing the two cohorts are calculated from Fisher’s exact test: *P = 0.01; **P = 0.001. Absolute number, 
percentage and associated P-values are shown in Supplementary Table 2. Conf Int, confidence interval.

Dominantly inherited versus sporadic Alzheimer’s disease                                                BRAIN COMMUNICATIONS 2023: Page 7 of 15 | 7

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/5/6/fcad280/7321528 by guest on 11 June 2024

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad280#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad280#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad280#supplementary-data


neurofibrillary tangles distribution, neurodegeneration and 
possibly selective vulnerability that may explain differences 
in clinical presentation.

As previously reported, DIAD participants had an earlier 
age-at-symptom onset,11 which also may explain the lower 
frequency of medical co-morbidities relative to the sEOAD. 
Of note, age-at-symptom onset is determined by the clinician 
according to the family/caregiver report, which may lead to a 

higher ascertainment bias in sEOAD relative to DIAD; fam
ilies with known mutations may seek diagnosis and treat
ment sooner due to knowledge of the disease and provide 
more accurate estimates of age-at-symptom onset.54 In add
ition, DIAD families are closely monitored prospectively be
fore and after parental EYO leading to very accurate 
estimates of age-at-symptom onset. Conversely, patients 
with sEOAD are known to often face delays in diagnosis 

Table 3 Estimated annual rate of change (standard error): symptomatic DIAD versus sEOAD by baseline EYO = 1, 5 
and 10

DIAD sEOAD

EYO Rate of change P-value* Rate of change P-value*
P-value* comparing DIAD  

versus sEOAD

Cognitive Composite 1 −0.20 (0.06) <0.001 −0.31 (0.10) <0.01 0.32
5 −0.35 (0.07) <0.001 −0.28 (0.07) <0.001 0.37

10 −0.54 (0.16) <0.001 −0.24 (0.16) 0.15 0.17
CDR-SB, mean (SE) 1 0.89 (0.29) 0.003 1.36 (0.33) <0.001 0.25

5 2.11 (0.32) <0.001 1.57 (0.23) <0.001 0.11
10 3.63 (0.71) <0.001 1.82 (0.54) <0.001 0.03

MMSE mean (SE) 1 −1.30 (0.48) 0.008 −3.66 (0.60) <0.001 <0.01
5 −3.03 (0.56) <0.001 −2.77 (0.42) <0.001 0.67

10 −5.18 (1.24) <0.001 −1.67 (0.97) 0.09 0.02
NPI-Q mean (SE) 1 0.33 (0.83) 0.69 1.32 (0.90) 0.15 0.39

5 1.62 (1.03) 0.12 0.72 (0.67) 0.29 0.41
10 3.22 (2.33) 0.17 −0.02 (1.64) 0.99 0.24

Category fluency (animals), mean (SE) 1 −0.93 (0.49) 0.06 −1.19 (0.88) 0.18 0.78
5 −1.84 (0.65) 0.01 −0.77 (0.60) 0.19 0.15

10 −2.98 (1.44) 0.04 −0.25 (1.44) 0.86 0.16
Category fluency (vegetable), mean (SE) 1 −0.62 (0.37) 0.11 −0.62 (0.75) 0.41 0.99

5 −1.40 (0.51) 0.01 −1.65 (0.49) 0.001 0.66
10 −2.37 (1.11) 0.03 −2.95 (1.13) 0.01 0.71

Letter fluency, mean (SE) 1 −0.32 (0.37) 0.40 2.63 (1.33) 0.052 0.03
5 −1.09 (0.56) 0.06 −1.41 (0.82) 0.09 0.71

10 −2.05 (1.21) 0.09 −6.45 (2.29) 0.01 0.08
Logical memory (immediate recall), mean (SE) 1 −0.52 (0.32) 0.11 −0.37 (0.82) 0.65 0.85

5 −1.00 (0.44) 0.02 −1.41 (0.53) 0.01 0.49
10 −1.60 (0.94) 0.09 −2.71 (1.40) 0.06 0.50

Logical memory (delayed recall), mean (SE) 1 −0.17 (0.28) 0.55 −0.05 (0.73) 0.95 0.87
5 −0.76 (0.39) 0.05 −1.84 (0.49) <0.001 0.05

10 −1.50 (0.84) 0.08 −4.09 (1.28) <0.001 0.089
Digit symbol, mean (SE) 1 −4.32 (1.37) <0.001 −5.97 (4.36) 0.18 0.70

5 −7.18 (1.89) <0.001 −4.19 (2.80) 0.14 0.32
10 −10.75 (4.04) <0.001 −1.96 (7.01) 0.78 0.28

Digit span forward, mean (SE) 1 −0.37 (0.19) 0.06 −0.51 (0.35) 0.15 0.69
5 −1.48 (0.25) <0.001 −0.62 (0.23) 0.01 0.004

10 −2.87 (0.56) <0.001 −0.76 (0.57) 0.18 0.01
Digit span backward, mean (SE) 1 −0.30 (0.14) 0.04 −0.08 (0.26) 0.77 0.17

5 −0.30 (0.21) 0.17 −0.77 (0.19) <0.001 0.054
10 −0.29 (0.48) 0.54 −1.83 (0.47) <0.001 0.02

Trail Making Test Part A, mean (SE) 1 6.80 (3.81) 0.081 2.72 (9.58) 0.78 0.68
5 22.00 (4.99) <0.001 10.48 (5.74) 0.07 0.07

10 41.00 (11.02) <0.001 20.18 (14.67) 0.17 0.24
Trail Making Test Part B, mean (SE) 1 17.55 (9.12) 0.06 −41.65 (25.77) 0.11 0.03

5 21.77 (15.70) 0.17 26.81 (16.62) 0.11 0.78
10 27.05 (35.80) 0.45 112.39 (41.84) 0.01 0.11

Boston Naming Test, mean (SE) 1 −0.79 (0.55) 0.15 −1.72 (1.49) 0.25 0.54
5 −2.11 (0.68) <0.001 −2.74 (0.86) <0.01 0.51

10 −3.75 (1.45) 0.01 −4.01 (2.29) 0.08 0.92

Logical memory, category fluency, letter fluency, digit span, Boston Naming Test and digit symbol: lower scores indicating poorer cognitive performance. Trail Making Test scores: 
higher scores indicating poorer cognitive performance. Cognitive composite is the mean of the standardized scores for animal naming, delayed recall, digit symbol and MMSE tests. 
*P-values were adjusted for baseline EYO, sex, education and APOE4 status. Significant differences are highlighted as bold values.
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and to have early symptoms mistakenly attributed to non- 
neurologic causes (e.g. depression and hormonal 
changes).55,56 Better estimation of the age-at-symptom onset 
in DIAD relative to sEOAD may also explain the apparent 
shorter duration of the disease in DIAD.

Our findings showed a more heterogeneous clinical pres
entation in the sEOAD cohort relative to DIAD, which in
cluded a higher percentage of non-amnestic cognitive 
syndromes and neuropsychiatric symptoms. Beyond isolated 
case reports, patients with DIAD typically do not present 

Delayed recall (n = 196) BNT (n = 217)

MMSE (n = 196) Cognitive compostie (n = 196)

CDR sum of boxes (n = 217) NPI (n = 217)
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Figure 2 Estimated mean rate of change from baseline with standard error for DIAD and sEOAD groups. (A) CDR-SB scores 
range from 0 to 18, with higher scores indicating worse cognition and daily function (DIAD versus sEOAD, P = NS; 0.04 at EYO = 10). (B) NPI-Q 
with higher scores indicating high burden of neuropsychiatric symptoms (DIAD versus sEOAD, P = NS). (C) MMSE with lower scores indicating 
worse cognition (DIAD versus sEOAD, P = <0.05; NS at EYO = 5). (D) Global cognitive composite, with lower scores indicating worse cognition 
(DIAD versus sEOAD, P = NS). (E) Logical memory: logical memory delayed recall, scores range from 0 to 25, with lower scores indicating poorer 
cognitive performance (DIAD versus sEOAD, P = NS). (F) Boston Naming Test (BNT) with lower scores indicating poorer cognitive performance 
(DIAD versus sEOAD, P = NS). Observed values from DIAD and sEOAD cohorts were represented by red and blue dots, respectively. The 
temporal patterns of rate of change were shown by locally estimated scatter smoothing curves. Random intercept random slope mixed-effects 
models were fitted to compare the difference between DIAD and sDOAD cohorts after adjusting for baseline EYO, sex, education and APOE4 
status. Mean values and corresponding coefficient’s Wald t-test P-values. Mean values and corresponding coefficient’s Wald t-test P-values are 
shown in Table 3. Mean values for DIAD versus sEOAD amnestic and sEOAD non-amnestic are shown Table S1. NS, not significant.
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with atypical clinical Alzheimer’s disease phenotypes,23,24

and the overwhelming majority of DIAD cases present as a 
primarily amnestic syndrome or a multi-domain syndrome 
including memory impairment.16,57,58 The mechanisms 
that drive phenotypic heterogeneity in sEOAD are not well 
understood. Clinical phenotypes in sEOAD are linked to dif
ferential patterns of neurofibrillary tangles, neurodegenera
tion and network dysfunction,34,59 with logopenic variant 
of primary progressive aphasia showing greater involvement 
of left hemisphere language networks, posterior cortical at
rophy showing greater occipital and visual network involve
ment and dysexecutive/behavioural variants showing 
variable dysfunction of frontal and parietal networks. 
Some data suggest that neurodevelopmental language disor
ders may predispose to logopenic variant of primary progres
sive aphasia, while disorders of spatial reasoning may be 
associated with posterior cortical atrophy.60 It is also 

possible that different brain regions may have greater suscep
tibility to the mechanisms posited to trigger Aβ plaque accu
mulation, i.e. overproduction of Aβ peptides in DIAD versus 
reduced clearance of Aβ in sporadic Alzheimer’s disease.61-63

Differences in genetic risk factors in sEOAD may also ex
plain higher susceptibility to non-amnestic phenotypes.64,65

Our results suggest that age alone is insufficient in explaining 
this aspect of clinical heterogeneity. Both cohorts showed a 
lower frequency of APOE-ϵ4 (<50%) than reported in 
most LOAD studies, suggesting that APOE-ϵ4 alone is un
likely a major driver for sEOAD or DIAD.

Patients with sEOAD showed worse performance at base
line relative to DIAD in several cognitive domains including 
executive function, visuospatial and language. Differences in 
cognitive performance at baseline were attenuated when 
comparing DIAD with the amnestic sEOAD group; however, 
lower performances on executive function remained. 

Figure 3 CSF biomarkers of amyloid, tau and phosphorylated tau at threonine 181. Biomarkers included (A) Aβ42, (B) p-tau181, (C) 
total tau and (D) pTau181/Aβ42. The central horizontal bar shows the median value, and the lower and upper boundaries show the SD. DIAD 
(n = 91); sEOAD (n = 37). Absolute mean differences, SD and associated P-values of ANOVA F-test are shown in Supplementary Table 4. P-value 
adjusted for CDR, age and APOEe4 status. Both cohorts used the same lab procedures and assays but were run in different batches using different 
lot numbers.
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Longitudinally, both groups declined at similar rates, espe
cially during the early stages of the disease; however, the 
DIAD group showed a faster decline in some measures dur
ing more advanced stages (e.g. CDR-SB, MMSE and digit 
span backward). Notably, the small sample sizes in these 
stages of the disease limit the interpretability of these results. 
There are several factors that may explain observed differ
ences in cognitive performance between both groups. First, 
sEOAD is more heterogenous (even those with amnestic 
presentation), so more variability might be present in cogni
tive performance at presentation. Second, the estimation of 
age at onset and symptom duration in sEOAD is more prone 
to recall bias relative to DIAD, so our study might be captur
ing more advanced sEOAD individuals at baseline. Third, 
DIAD participants are on average younger and therefore 
may have better resilience mechanisms to cope with path
ology at early disease stages, which may also explain the fas
ter decline at later stages when resilience mechanisms are 
fully depleted.

Our findings suggest that, at baseline, the DIAD cohort 
presents with a higher frequency of depression and agitation, 
while sEOAD showed a higher frequency of delusions at 
baseline. Several DIAN subjects and family members in the 
study know their genetic status or are aware of at least a 
50% risk of being mutation carriers, which could influence 
their affective state, especially around symptom onset.66

Alternatively, previous studies have shown that different pat
terns of neuropsychiatric symptoms across the Alzheimer’s 
disease spectrum may result from differences in 
Alzheimer’s disease pathology distribution in subcortical re
gions, suggesting the presence of a pattern of selective vulner
ability extending to subcortical structures.67

In general, motor impairment at baseline was relatively 
frequent (>15%) in our cohort, especially in the DIAD 
group, where motor impairment was twice as common in 
DIAD compared with sEOAD. Motor presentations have 
been described in several PSEN-1 pathogenic variants both 
as a presenting feature (spastic paraparesis) and with disease 
progression. Motor features in DIAD have been linked to 
specific mutations and greater involvement of the basal gan
glia.68-70 Evidence of amyloid–PET binding in basal ganglia 
is known to be present in early phases of the diseases in 
DIAD,71-74 while sporadic Alzheimer’s disease is typically 
only described during more advanced stages of the dis
ease.75-77

Despite differences in clinical presentation and cognitive 
performance at baseline between DIAD and sEOAD, the lon
gitudinal rate of decline, CSF Aβ42 and neurodegeneration 
markers, as measured by total tau, were similar among 
groups. The similar rate of decline and the comparability 
of the CSF biomarkers suggest a common pathophysiology 
leading to disease onset and progression in the two groups. 
Comparison of amyloid and tau PET patterns in DIAD rela
tive to sEOAD is underway (see Iaccarino L et al.).

The present study has several strengths, including the use 
of two well-characterized cohorts of EOAD, who had the 
same basic clinical and cognitive assessment, with 

biomarker-supported diagnoses of Alzheimer’s disease. 
However, the study is also subject to several limitations 
that may affect the interpretation and generalizability of re
sults. First, this is a retrospective analysis, and although simi
lar cognitive measures were used across both cohorts, each 
group was assessed at independent centres. Previous studies 
have shown that cross-cohort administration, scoring and 
procedural differences are frequent and may impact data in
terpretation.78 Furthermore, DIAN is a multi-site study in
cluding US and non-US centres, while the UCSF ADRC is a 
single site in the USA; future comparisons between DIAN 
and sEOAD multi-site studies (e.g. the multi-site 
Longitudinal Early-Onset AD Study)79 may help to over
come such limitations.80 Second, our study included a rela
tively high frequency of non-amnestic presentation in the 
sEOAD cohort; the clinical and research focus at UCSF on 
understanding atypical Alzheimer’s disease presentation 
may have resulted in a larger proportion of non-amnestic 
presentations than evident in the larger community, though 
higher rates of non-amnestic presentations in sEOAD have 
been reported at many centers.81 Despite the high frequency 
of non-amnestic presentation, we were underpowered to in
vestigate the sporadic non-amnestic Alzheimer’s disease var
iants as independent groups, and our analysis included these 
variants as a single cohort. Each non-amnestic variant has 
distinct clinical and anatomical features, so the aggregation 
of these groups may obscure the detection of differences in 
the rate of cognitive decline or changes in CSF biomarkers. 
Similarly, we investigated all DIAD mutations as a single 
group, despite known clinical differences across different 
mutations. In addition, both cohorts included a limited sam
ple size in the late stages of the disease, which limited the in
terpretability of the results during advanced clinical stages. 
Third, the relatively low number of sEOAD participants 
with available CSF samples and lack of CSF longitudinal as
sessments may limit our statistical power. In addition, al
though CSF samples from both cohorts were run in the 
same lab and using the same assay, each cohort was run in 
different batches using different lot numbers, which may cre
ate differences in the measurements of analytes. In addition, 
other Alzheimer’s disease relevant biomarkers including tau 
isoforms, neurofilament light and glial fibrillary acidic pro
tein were not available for both cohorts at the time of the 
analysis. Future studies should further explore this question 
by comparing both cohorts using the same assays and lot 
numbers run together for direct comparison. Finally, both 
cohorts included in this study were predominantly 
non-Hispanic Whites with little to no representation of 
more diverse racial and ethnic groups; therefore, the generat
ability of our findings is limited and future studies should in
clude more diverse groups.

In conclusion, sEOAD is best distinguished from DIAD by 
the later age at onset, the high frequency of atypical clinical 
presentations and worse executive performance at baseline, 
while a higher frequency of depression, agitation and motor 
signs is observed in DIAD. Despite the differences in clinical 
presentation and in underlying causes for Alzheimer’s 
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disease development, both groups show similar disease pro
gression, cognitive decline rate and CSF Aβ42 and total tau 
biomarker patterns, reflecting a common cascade of events 
leading to the emergence of symptomatic Alzheimer’s dis
ease. Notably, after 10 years from onset, the DIAD group 
showed a faster decline in CDR-SB and MMSE. Further 
work is needed to better delineate common and distinct path
ways that drive different subtypes of Alzheimer’s disease that 
may impact future therapeutic approaches. Our findings of 
similar patterns of longitudinal cognitive decline between 
DIAD and sEOAD suggest that we may be able to extrapo
late models from DIAD into sEOAD. These findings indicate 
that despite having different causes, familial and sEOAD 
share many aspects of pathophysiology (e.g. biomarkers le
vels) and clinical progression. Differences in presenting clin
ical profiles suggest that clinical outcome measures tailored 
to each population may be needed in clinical trials specific 
to DIAD and sEOAD. Given both similarities and differences 
in biomarkers and underlying mechanisms, it is critical to the 
effectiveness of novel drugs in patients with DIAD and 
sEOAD.

Supplementary material
Supplementary material is available at Brain Communications 
online.
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