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Abstract

Minimal phenotyping refers to the reliance on the use of a small number of self-reported items for 

disease case identification, increasingly used in genome-wide association studies (GWAS). Here 

we report differences in genetic architecture between depression defined by minimal phenotyping 

and strictly defined major depressive disorder (MDD): the former has a lower genotype-derived 

heritability that cannot be explained by inclusion of milder cases and a higher proportion of the 

genome contributing to this shared genetic liability with other conditions than for strictly defined 

MDD. GWAS based on minimal phenotyping definitions preferentially identifies loci that are not 

specific to MDD, and, although it generates highly predictive polygenic risk scores, the predictive 

power can be explained entirely by large sample sizes rather than by specificity for MDD. Our 

results show that reliance on results from minimal phenotyping may bias views of the genetic 

architecture of MDD and impede the ability to identify pathways specific to MDD.
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A key requisite for robust identification of genetic risk loci underlying psychiatric disease is 

the use of an appropriately large sample. However, the high cost of phenotyping limits 

sample collection1. One solution for reducing the burden of case identification is to use 

information from hospital registers2 or individuals’ self-reported symptoms, help seeking, 

diagnoses or medication. We refer to the latter strategy as ‘minimal phenotyping’, as it 

minimizes phenotyping costs and reduces data to a single or few self-reported answers.

However, apart from detecting more GWAS) loci3-5 (Supplementary Table 1), the 

consequences of sacrificing symptomatic information for genetic analyses have rarely been 

investigated. The consequences may be particularly important for MDD because of its 

phenotypic and likely etiological heterogeneity6, its high degree of comorbidity with other 

psychiatric diseases7 and the substantial discrepancies between self-assessment using 

symptom scales and diagnoses made with full diagnostic criteria8. While a majority of the 

population self-identifies as having one or two depressive symptoms at any one time, only 

between 9% and 20% of the population has sufficient symptoms to meet criteria for lifetime 

occurrence of MDD8-10. Furthermore, there are high rates of false positives when diagnoses 

are made without applying diagnostic criteria11, and antidepressants are prescribed for a 

wide range of conditions other than MDD12-14. As such, a cohort of MDD cases obtained 

either through the use of either self-reported illness or prescribed treatment may yield a 

sample that is not representative of the clinical disorder but enriched in those with 

nonspecific subclinical depressive symptoms and depression secondary to a comorbid 

disease.

By comparing the genetic architecture of minimal phenotyping definitions of depression 

with those using full diagnostic criteria for MDD in the UK Biobank15, a community-based 

survey of half a million men and women, we assess the implications of a minimal 

phenotyping strategy for GWAS in MDD. We find that MDD defined by minimal 

phenotyping has a large nonspecific component, and if GWAS loci from these definitions are 

chosen for follow-up molecular characterization, they may not be informative about biology 

specific to MDD.

Results

Definitions of depression in UK Biobank.

We identified five ways that MDD could be defined in the UK Biobank. First, self-reports of 

participants seeking medical attention for depression or related conditions provided ‘help-

seeking’ definitions of MDD (referred to as ‘broad depression’ in a previous GWAS3). 

Second, participants were diagnosed with ‘symptom-based’ MDD if, in addition to meeting 

help-seeking criteria, they reported ever experiencing one or more of the two cardinal 

features of depression (low mood or anhedonia) for at least 2 weeks16. Third, a ‘self-report’ 

definition of MDD was based on participants’ self-reports of all past and current medical 

conditions to trained nurses. Fourth, an electronic medical record (EMR) definition was 

derived from the International Classification of Diseases, Tenth Revision (ICD-10) primary 

and secondary illness codes in electronic health records. Finally, a ‘CIDI-based’ diagnosis of 

lifetime MDD was available from individuals who answered an online ‘Mental Health 

Follow-up’ questionnaire (MHQ)17 based on the Composite International Diagnostic 
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Interview Short Form (CIDI-SF)18, which included the Diagnostic and Statistical Manual of 

Mental Disorders, Fifth Edition (DSM-5) criteria for MDD (Supplementary Note, 

Supplementary Fig. 1 and Supplementary Table 2). None of the definitions used trained 

interviewers applying structured clinical interviews, and only the last applied operationalized 

criteria, including symptoms, length of episode (more than 2 weeks) and impaired social, 

occupational or educational function. From here on, we refer to the first three definitions as 

‘minimal’, the fourth as ‘EMR-based, and the fifth as ‘strictly’ defined MDD 

(Supplementary Note). We also included a category of participants who met the help-

seeking definition (part of broad depression in Howard et al.3) but failed to meet the 

symptom-based definition (as they had neither of the two cardinal symptoms of depression: 

depressed mood or a loss of interest or pleasure in daily activities for more than 2 weeks). 

We refer to this group as ‘no-MDD’ (described in detail in the Supplementary Note and 

Supplementary Table 3). Figure 1 outlines the different diagnostic categories and the number 

of samples that each group contained.

All definitions were based on recall of episodes or symptoms of depression by participants 

in the UK Biobank. As priming of recall by current mood affects the reliability of such 

reports19-21, we emphasize that each definition is noisy and can be interpreted as being 

enriched for individuals truly fulfilling its criteria. We explore further characteristics of all 

definitions and considerations in their GWAS in the Supplementary Note, Supplementary 

Figs. 2-5 and Supplementary Tables 2-11.

Minimal phenotyping definitions of depression are epidemiologically different from strictly 
defined MDD.

We assessed whether known risk factors for MDD were similar between definitions of 

depression22. Figure 2a-g shows the mean effect (odds ratio, OR) with confidence intervals 

of each of the following: sex23,24, age25, educational attainment26-28, socioeconomic 

status29, neuroticism24,30, experience of stressful life events in the 2 years leading up to the 

baseline assessment and cumulative traumatic life events preceding assessment31,32 

(Supplementary Note and Supplementary Table 12). Estimates of the risk factor effect sizes 

differed substantially, and often highly significantly, as shown by the confidence intervals in 

Fig. 2. These may reflect differences in methods of ascertainment or underlying pathology 

between definitions of depression. Next, we asked whether differences in risk factors could 

be used to classify definitions of depression. We applied a clustering algorithm and found 

that all minimal phenotyping definitions of depression clustered separately from strictly 

defined MDD (Fig. 2h).

Minimal definitions of depression are not just milder or noisier versions of strictly defined 
MDD.

Depression defined by minimal phenotyping had lower SNP-based heritabilities (h2
SNP) 

than more strictly defined versions (Fig. 3a). Self-report(SelfRepDeph2
SNP = 11%, standard 

error (s.e.) = 0.85%) and help-seeking (Psypsy h2
SNP = 13%, s.e. = 1.18%; GPpsy h2

SNP = 

14%, s.e. = 0.81%) definitions had heritabilities of 15% or less. By contrast, strictly defined 

MDD (LifetimeMDD) had a much higher h2
SNP of 26% (s.e. = 2.15%); imposing the further 

criterion of recurrence brought the h2
SNP up to 32% (s.e. = 2.56%). Other definitions had 
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intermediate h2
SNP. All h2

SNP values were estimated on the liability scale using phenotype 

correlation-genotype correlation (PCGC)33 (Supplementary Note), and the trend held 

regardless of the method used33-36 (Supplementary Note and Supplementary Table 13). We 

further verified that the trend could not be explained by potential case prevalence 

misestimations (Fig. 3b, Supplementary Note, Supplementary Fig. 3 and Supplementary 

Table 13) and was not affected by regions of high linkage disequilibrium (LD) or 

complexity37 (Supplementary Note and Supplementary Fig. 3). We compared h2
SNP 

estimates from previous studies of MDD4,38,39 (Supplementary Fig. 6) with our results and 

found that they fit squarely into the trend we observed: the less strict the criteria used to 

diagnose MDD, the lower the h2
SNP.

We examined the roles of a number of additional factors for the lower h2
SNP of minimal 

phenotyping definitions of MDD. First, minimal phenotyping definitions did not simply 

have a higher environmental contribution to MDD than the stricter definitions. When we 

assessed h2
SNP in MDD cases with high and low exposure to environmental risk factors40, 

we found that minimal phenotyping definitions of depression (GPpsy and SelfRepDep) 

showed no significant difference between exposures, which were similar to or lower than 

those for strictly defined MDD (LifetimeMDD and MDDRecur) (Supplementary Note and 

Supplementary Table 14). Second, the minimal phenotyping definitions did not merely 

include milder cases of MDD as previously hypothesized41. Inclusion of milder cases is 

equivalent to lowering the threshold for disease liability in the population above which 

‘cases’ for MDD are defined. Under the liability threshold model42, this did not reduce the 

h2
SNP (Supplementary Note and Extended Data Fig. 1). Instead, we showed through 

simulations that the lower h2
SNP of minimal phenotyping definitions of depression may be 

due to misdiagnosis of controls as cases of MDD and misclassification of those with other 

conditions as cases of MDD (Extended Data Figs. 1 and 2).

Genetic correlations between definitions of depression and other diseases.

We found that the genetic correlation (rG) between minimal and strictly defined MDD 

included a large proportion of nonspecific liability to mental ill health. The rG between 

GPpsy (minimally defined MDD) and LifetimeMDD (strictly defined MDD) was 0.81 (s.e. 

= 0.03), significantly different than unity (Fig. 3c,d, Supplementary Table 15, 

Supplementary Fig. 6 and Supplementary Note). One interpretation of this finding is that the 

correlation represents shared genetic liability to MDD4,5. However, the majority of the 

genetic liability of LifetimeMDD due to GPpsy (approximately rG
2 = 0.812 = 66%) was 

shared with the no-MDD definition, GPNoDep, and the genetic liability of GPNoDep 

explained approximately 70% of the genetic liability of GPpsy (rG = 0.84, s.e. = 0.05), and 

34% of that of LifetimeMDD (rG = 0.58, s.e. = 0.08).

We next examined rG between different definitions of MDD and comorbid diseases, using 

cross-trait LD score regression (LDSC)43 to estimate rG with neuroticism and smoking 

(Extended Data Fig. 3 and Supplementary Tables 16 and 17) in the UK Biobank, as well as 

with all psychiatric conditions in the Psychiatric Genomics Consortium (PGC)44, including 

PGC1-MDD39, and depression defined in 23andMe4 (Supplementary Table 1). Figure 4a 

and Supplementary Table 18 show few differences in rG estimates between other psychiatric 
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disorders and the different definitions of MDD in the UK Biobank, consistent with previous 

reports45.

Similar rG estimates can result from different genetic architectures, indexed by the extent to 

which genetic liability is spread across the genome. We estimated local rG and the 

percentage of the genome contributing to total rG using rho-HESS46 (Methods and Fig. 4b). 

Approximately 65.8% (s.e. = 0.6%), 37.1% (s.e. = 4.5%) and 42.7% (s.e. = 2.3%) of the 

genome explained 90% of the total rG between strictly defined MDD (LifetimeMDD) and 

neuroticism, bipolar disorder and schizophrenia, respectively. In comparison, 80.2% (s.e. = 

0.6%), 47.3% (s.e. = 2.4%) and 46.8% (s.e. = 0.2%) of the genome was needed to explain 

the same percentage of total rG between help-seeking-based GPpsy and the same conditions 

(Fig. 4c). In other words, minimal phenotyping definitions of depression share more genetic 

loci with other psychiatric conditions than strictly defined MDD does.

Previous work4 reported that depression defined through minimal phenotyping shows 

enrichment of h2
SNP in regions of the genome encoding genes specifically and highly 

expressed in central nervous system (CNS) tissues represented in Genotype-Tissue 

Expression (GTEx)47 project. We assessed this in the definitions of depression in the UK 

Biobank using LDSC-SEG48. As shown in Fig. 5, neither strictly defined MDD 

(LifetimeMDD) nor MDD defined on the basis of structured clinical assessments in PGC1-

MDD showed significant CNS enrichments, even though larger and more heterogeneous 

cohorts did (Methods, Supplementary Note, Supplementary Table 1 and Extended Data Fig. 

4). Notably, the minimal phenotyping definition GPpsy showed a significant CNS 

enrichment, as did the no-MDD help-seeking definition GPNoDep, neuroticism, smoking, 

and other disorders in the PGC44, such as schizophrenia49 and bipolar disorder50. Our 

analysis shows that the degree of CNS enrichment does not relate to the strictness of the 

definition of MDD and is neither sufficient nor valid evidence that any particular definition 

of depression better represents MDD or captures the biological mechanisms behind MDD.

GWAS hits from minimal phenotyping are not specific to MDD.

We next examined the specificity of the action of individual genetic loci found in GWAS of 

each definition of MDD. We found that the help-seeking definitions gave the greatest 

number of genome-wide-significant loci (27 from GPpsy and Psypsy; Supplementary Table 

10) in GWAS, consistent with their larger sample sizes and statistical power for finding 

associations. We examined whether these loci could be detected in strictly defined MDD. Of 

the 27 loci from minimal phenotyping definitions, 10 showed significant effects (at P < 0.05 

after multiple-testing correction for 27 loci) on LifetimeMDD, despite the latter’s much 

smaller sample size, consistent with the hypothesis that risk loci for minimal phenotyping 

MDD also act in strictly defined MDD. However, all ten loci also showed significant effects 

in neuroticism, smoking, schizophrenia and the no-MDD help-seeking condition 

(GPNoDep; Supplementary Table 19). Furthermore, all significant SNPs in minimal 

phenotyping definitions of depression had the same directions of effect on no-MDD 

phenotypes (Fig. 6).

We found the same pattern of results when we used loci identified from a minimal 

phenotyping strategy in an independent study by 23andMe that used a minimal phenotyping 
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definition4. Of the 17 loci, 10 replicated in GPpsy (at P < 0.05, after multiple testing 

correction for 17 loci) and 3 replicated in LifetimeMDD. All significant SNPs had the same 

directions of effect on neuroticism, smoking and schizophrenia (Extended Data Fig. 5 and 

Supplementary Table 20) and are therefore not specific to MDD, consistent with our analysis 

of minimal phenotyping definitions in the UK Biobank. In summary, GWAS of minimal 

phenotyping definitions of depression primarily enables the discovery of pathways that are 

shared with other conditions. It is not currently possible to assess the specificity of GWAS 

loci from strictly defined MDD in the same way, given that the sample size for strictly 

defined MDD remains relatively small and GWAS hits relatively few.

Out-of-sample prediction of MDD.

Finally, we explored how well the definitions of depression in the UK Biobank predict 

strictly defined, CIDI-based MDD in independent cohorts, using data from 23 MDD cohorts 

in the latest data freeze from the MDD Working Group of the Psychiatric Genomics 

Consortium (PGC29-MDD5,51; Supplementary Note, Supplementary Table 21 and 

Supplementary Fig. 7). We constructed polygenic risk scores (PRSs) on each definition of 

depression in the UK Biobank (Methods) and examined their prediction in each of the 

PGC29-MDD cohorts. Of note, PRS from all definitions of depression in the UK Biobank, 

whether minimally or strictly phenotyped, accounted for a small proportion of variation in 

disease status in PGC29-MDD (Supplementary Table 22). We observed the following 

features.

First, the PRS obtained using the full sample of GPpsy performed best at predicting MDD 

status in independent cohorts from PGC29-MDD (Nargelkerke’s r2=0.018, area uncer the 

curve (AUC) = 0.56 at a P-value threshold of 0.1; Fig. 7a and Extended Data Fig. 6). 

However, when equal sample sizes were used (randomly downsampled to 50,000 and case 

prevalence of 0.15; Methods), GPpsy no longer performed best at predicting MDD status in 

PGC29-MDD cohorts (Fig. 7b). Rather, the PRS from strictly defined CIDI-based MDD 

(LifetimeMDD) best predicted MDD disease status (Nargelkerke’s r2 = 0.0027, AUC = 0.52 

at a P-value threshold of 0.1; Extended Data Fig. 6).

Second, the higher prediction accuracy of the PRS obtained using the full sample of GPpsy 

could be entirely explained by the larger sample size52 (113,260 cases and 219,362 controls; 

effective sample size = 298,677; Supplementary Note and Extended Data Fig. 7). We 

calculated the effective sample size needed for other definitions to have the same predictive 

power: for strictly defined LifetimeMDD, we would need an effective sample size of 

129,106 (Supplementary Note and Extended Data Fig. 7), less than half of that of GPpsy.

Third, the PRS from strictly defined LifetimeMDD predicted MDD disease status better in 

the PGC29-MDD cohorts, which had a higher percentage of cases fulfilling DSM-5 

symptom criteria (Supplementary Table 21 and Extended Data Fig. 8; Pearson r2 between 

the AUC and percentage of cases in PGC29-MDD cohorts fulfilling DSM-5 symptom 

criteria = 0.26, P = 0.025 at PRS P value = 0.1). This is consistent with the interpretation that 

LifetimeMDD captures signals specific to MDD. We did not observe such a trend for GPpsy 

(Pearson r = 0.02, P = 0.57 at PRS P value = 0.1) or any other definition of depression 

(Supplementary Table 23), suggesting their lower specificity for MDD.
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Discussion

Our study demonstrates that the genetic architecture of minimal phenotyping definitions of 

depression is different from that of strictly defined MDD and is enriched for nonspecific 

effects on MDD. Using a range of definitions of MDD in the UK Biobank, from self-

reported help seeking to a full assessment of the DSM-5 criteria for MDD through self-

reported symptoms from the MHQ, we made five key observations.

First, the heritabilities of depression defined by minimal phenotyping strategies are lower 

than those of MDD defined by full DSM-5 criteria using the CIDI questionnaire. Second, 

although there is substantial genetic correlation between definitions, much of the shared 

genetic liability is not specific to MDD and significant differences remain, indicating the 

presence of genetic effects unique to each definition. Third, a larger percentage of the 

genome contributes to the shared genetic liability between minimal phenotyping definitions 

of depression and other psychiatric conditions than that between CIDI-based MDD and 

other conditions, likely driven by misdiagnosis due to nonspecific phenotyping. Fourth, all 

GWAS hits from the GPpsy minimal definition of depression are shared with genetically 

correlated conditions such as neuroticism and smoking. Finally, while minimal phenotyping 

definitions enable greater predictive power for MDD status in independent cohorts, this is 

due to the large sample size rather than indexing of MDD-specific effects. These results 

point to the nonspecific nature of genetic factors identified in minimal phenotyping 

definitions of depression.

A number of factors need to be borne in mind when interpreting the above observations. 

Importantly, none of the definitions of depression in the UK Biobank were obtained from 

structured clinical interviews with an experienced rater (the gold standard for diagnosing 

MDD). The closest to that standard in the UK Biobank is the online MHQ17, based on the 

CIDI-SF18. Our results suggest that self-reported diagnoses using CIDI-SF or other 

diagnostic questionnaire with full DSM-5 criteria lie on the same genetic liability continuum 

as MDD. This would argue that MDD cases identified through self-report using a full 

diagnostic questionnaire will be enriched for more strictly defined forms, with the 

consequence that results from genetic analysis will include loci that contribute to strictly 

defined MDD disease risk53,54.

Minimal definitions of MDD do not simply include cases with lower genetic liability to 

MDD. This is consistent with a recent study of three large twin cohorts, which asked 

whether a combination of MDD, depressive symptoms and neuroticism could capture all 

genetic liability of MDD55 and showed that 65% of the genetic effects contributing to MDD 

are specific, and minimally defined depression (inclusive of MDD, depressive symptoms and 

neuroticism) can index only around one-third of the genetic liability to MDD. Similarly, 

previously reported high degrees of genetic correlation between MDD and depressive 

symptoms (rG = 0.7, implying that roughly rG
2 = 49% of genetic factors contributing to 

liability of the former is attributable to that of the latter)22 need to be put in perspective of 

even higher degrees of sharing between depressive symptoms and other traits such as 

neuroticism (rG = 0.79–0.94, implying that roughly rG
2=62–88% of genetic variance of the 
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former is attributable to that of the latter, especially if both were assayed at a single time 

point56).

Our findings have important implications for downstream investigations. One interpretation 

is that the nonspecific effects found through using minimal phenotyping approaches will still 

advance understanding of the biology of psychiatric disorders and their treatment5,57. A 

recent report used the ‘quasi-replication’ of GWAS loci between depressive symptoms and 

neuroticism as validation of their functional significance56. An alternative view is that these 

loci reflect the ways in which depressive symptoms can develop as secondary effects, 

including through susceptibility to adverse life events58, personality types24 and use of or 

exposure to psychoactive agents like cigarettes59,60—in which case, while useful for 

understanding the basis of mental ill health, they are not informative about the genetic 

etiology of MDD and are not useful for developing disease-specific treatment.

Our findings indicate the need for ways to integrate both strict and minimal phenotyping 

approaches to determine which loci to prioritize for follow-up functional analyses. They also 

indicate a need for means to assess symptoms for diagnosing MDD with specificity at scale, 

rather than reliance on minimal phenotyping. Fast and accurate diagnostic methods that use 

a limited number of questionnaire items are becoming available: for example, computerized 

adaptive diagnostic screening may be as effective for the diagnosis of MDD as an hour-long 

face-to-face clinician diagnostic interview61. There are ongoing attempts to convert 

behavioral health tracking data from phones or wearable devices into diagnostic 

information62. If successful, these attempts may lead to a dramatic expansion in the ability 

to collect data appropriate for psychiatric genetics.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41588-020-0594-5.

Methods

Genome-wide associations.

To obtain and access the difference between ORs of associations in different definitions of 

depression in the UK Biobank, as well as for smoking (data field 20160) and neuroticism 

(data field 20127), we performed logistic regression (or linear regression with –standard-

beta for neuroticism) on all 5,276,842 common SNPs (MAF > 5% in all 337,198 White-

British unrelated samples) in PLINK65 (version 1.9) with 20 principal components and 

genotyping array as covariates.

Estimation of SNP heritability and genetic correlation among definitions of MDD.

All estimates of h2
SNP were computed with the PCGC66 approach implemented with PCGC-

ss33, using 5,276,842 common SNPs (MAF > 5% in all 337,198 White-British unrelated 

samples). LD scores at SNPs were computed with LDSC34 in 10,000 random samples drawn 
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from the White-British samples in the UK Biobank as an LD reference, as well as the MAF 

at all 5,276,842 common SNPs in all 337,198 White-British samples as a MAF reference. 

Covariates were genotyping array and 20 principal components computed using samples in 

each definition of MDD with flashPCA67. Where we stratified each definition of MDD in 

the UK Biobank into two strata by risk factors such as sex (Supplementary Note), we 

computed specific principal components for each definition and stratum (see also the 

Supplementary Note and Supplementary Table 13).

Estimation of genetic correlation between definitions of MDD and other conditions.

Summary statistics for other psychiatric conditions from previous GWAS studies were 

obtained as described in Supplementary Table 1. Association summary statistics for smoking 

and neuroticism in the UK Biobank were generated by GWAS (Supplementary Table 15 and 

16, and Extended Data Fig. 3). We estimated the genetic correlation between definitions of 

MDD in the UK Biobank and each of these conditions using LDSC43, with an LD reference 

panel generated with European (EUR) individuals from 1000 Genomes68. To obtain regional 

rG, we partitioned the genome into 1,703 independent loci64 and estimated regional rG with 

rho-HESS46, using an LD reference panel generated with EUR individuals from 1000 

Genomes68. We estimated s.e. for each regional rG and the total rG across the genome using 

a jackknife approach implemented in HESS36. To assess the percentage of genome 

contributing to total rG, we ranked all independent loci by their absolute value of regional rG, 

and asked how many loci would contribute 90% of the total rG.

Enrichment of SNP heritability in genes specifically expressed in tissues.

We estimated the enrichment of h2
SNP in genes specifically expressed in 44 tissues in the 

GTEx47 project using the partitioned h2
SNP framework in LDSC-SEG46 and an LD 

reference panel generated with EUR individuals from 1000 Genomes68. We obtained tissue-

specific gene expression annotations in GTEx tissues from LDSC-SEG and then estimated 

the enrichment of h2
SNP in annotations that corresponded to each of the tissues together with 

52 annotations in the baseline model69. We report the P value of the one-sided test of 

enrichment of h2
SNP in genes specifically expressed in each tissue against the baseline.

Out-of-sample predictions of MDD.

We performed out-of-sample prediction using individual-level genotype and phenotype data 

from the PGC29-MDD cohorts5. We obtained permissions from 20 cohorts with sample 

sizes greater than 500, among which 17 recorded endorsement of DSM-5 criteria A for 

MDD (Supplementary Note and Supplementary Table 21). We obtained PRSs from GWAS 

for each definition of depression in the UK Biobank, using LD-clumped (LD r2 < 0.1) 

independent SNPs with P values for association below eight thresholds (P < 10−4, 0.001, 

0.01, 0.05, 0.1, 0.2, 0.5 and 1), and predicted MDD status in the 20 PGC cohorts using the 

Ricopili pipeline70-82. We obtained Nagelkerke’s r2 between the PRSs and MDD status, the 

AUC of the prediction and the variance of MDD status explained by the PRSs for each 

cohort. We also obtained the same measures for MDD status pulling data from all cohorts, 

controlling for cohort differences by including cohort as a covariate.
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Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Extended Data

Extended Data Fig. 1 ∣. Simulations of misdiagnosis and misclassification.
a-c, Each boxplot show h2

SNP estimates from 10 simulated phenotypes, with upper and 

lower boundaries of boxes represent the first to third quartiles of all estimates, and the 

whiskers extends to 1.5 times the interquartile range of the estimates. a, This figure shows 

that liability scale h2
SNP does not change with shifting of liability threshold Ki∈{0.1, 0.2, 

0.3, 0.4, 0.5} for simulated heritabilities ℎi
2 ∈ {0.2, 0.4, 0.6, 0.8}. b, The figure shows that 

liability scale h2
SNP is deflated with increasing percentage of controls being misdiagnosed as 

cases, when prevalence of diagnosed cases is kept constant at Ki=0.2, for simulated 

heritabilities ℎi
2 ∈ {0.2, 0.4, 0.6, 0.8}. c, This figure shows liability scale h2

SNP is deflated 

with increasing percentage of misclassification of cases of “other” disease as cases of focal 

disease, if rG between the two diseases are moderate to low, for simulated ℎi, 1
2 = 0.4, for 

each of which all cases at prevalence Ki,1=0.2 are correctly identified as cases.
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Extended Data Fig. 2 ∣. Simulations of misclassification at different heritabilities.
a-d, These figures shows the estimated h2

SNP using-pcgc option with-prevalence K in 

LDAK, plotted on the y-axis) of binary traits (yi,1, where i ∈{1..10}) with simulated ℎi, 1
2 0.2, 

0.4, 0.6, and 0.8, for each of which all cases (at prevalence Ki,1 = 0.2) are correctly identified 

as cases, while varying numbers of cases misclassified from a genetically correlated binary 

trait (yi,2, where i∈{1..10}) of equal ℎi, 1
2  and prevalence as cases of yi,1. Genetic correlations 

between yi,1 and yi,2 (rGi∈{0, 0.2, 0.4, 0.6, 0.8, 0.95}) are shown in the grey bars above each 

panel. Each boxplot show h2
SNP estimates from 10 simulated phenotypes, with upper and 
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lower boundaries of boxes represent the first to third quartiles of all estimates, and the 

whiskers extends to 1.5 times the interquartile range of the estimates.

Extended Data Fig. 3 ∣. GWAS on neuroticism and smoking in UK Biobank.
a, b, This figure shows the Manhattan plot of neuroticism score (data field 20127, 

quantitative trait from 0 to 12) in 274,107 individuals and ever smoked status (data field 

20160, binary trait of 0 for “No”, and 1 for “Yes”) in 336,066 individuals in UK Biobank 

using linear regression on all 8,968,716 common SNPs (MAF > 5% in all 337,198 White-

British, unrelated samples) for all the above analyses in PLINK (version 1.9)32 with 20 PCs 

and genotyping array as covariates. We report all associations with P-values smaller than 

5×10−8 as genome-wide significant (red). We indicated the SNPs in SVs and the MHC in all 

Manhattan plots as hollow points instead of solid points due to lack of control for population 

structure in these regions, and show all top SNPs within peaks (1-Mb regions) in 

Supplementary Tables 10 and 11.
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Extended Data Fig. 4 ∣. LDSC-SEG analysis of tissue-specific enrichment of h2
SNP.

a, This figure shows −log10(P) of enrichment in heritability in genes specifically expressed 

in 44 GTEx tissues, estimated using partitioned heritability in LDSC-SEG, on LifetimeMDD 

(n = 67,171), PGC1-MDD (n = 18,759), PGC29 (n = 42,455) and a meta-analysis of 

LifetimeMDD and PGC29 (n = 109,626, PC29.LifetimeMDD, Methods). While PGC29 

shows CNS enrichment, neither LifetimeMDD nor the meta-analysis shows the same 

enrichment. This suggests sample size and differences in genetic architecture and cohort 

heterogeneity affects results from LDSC-SEG. b, This figure shows the same analysis 

performed on down-sampled data for each definition of depression. Each definition is 

randomly down-sampled to 7,500 cases and 42,500 controls, a constant prevalence of 0.15, 

to remove confounding from sample size and difference in statistical power on the 

enrichment analysis. This figure shows that at equal sample size and prevalence, GPNoDep 

(no-MDD Help-seeking phenotype) is the only one showing CNS enrichment, suggesting it 

may be driving the CNS enrichment signal in GPpsy in Fig. 5.
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Extended Data Fig. 5 ∣. GWAS hits from 23andMe are not specific to MDD.
This figure shows the odds ratios of risk alleles (Risk Allele ORs) at 17 loci significantly 

associated with help-seeking based definitions of MDD in 23andMe27, in GWAS conducted 

on CIDI-based (LifetimeMDD, in purple), help-seeking (GPpsy in red) and no-MDD 

(GPNoDep, in orange) based definitions of MDD, as well as conditions other than MDD: 

neuroticism, smoking and SCZ (all in brown). SNPs missing in each panel are not tested in 

the respective GWAS. For clarity of display, scales on different panels vary to accommodate 

the different magnitudes of ORs of SNPs in different conditions. ORs at all 17 loci are 

highly consistent across phenotypes, regardless of whether it is a definition or MDD or a risk 

factor or condition other than MDD. All results are shown in Supplementary Table 20. Error 

bars show the standard errors of the estimates.
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Extended Data Fig. 6 ∣. Out-of-sample prediction in PGC cohorts.
a, This figure shows the Nagelkerke’s r2 of polygenic risk scores (PRS) calculated for each 

definition of depression in UK Biobank and MDD status indicated in 19 PGC29-MDD 

cohorts, while controlling for cohort specific effects. PRS were calculated using effect sizes 

at independent (LD r2 < 0.1) SNPs passing P-value thresholds 10−4, 0.001, 0.01, 0.05, 0.01, 

0.2, 0.5 and 1 respectively, in GWAS performed on all definitions of depression in UK 

Biobank. b, This figure shows the same analysis performed on down-sampled data (7,500 

cases, 42,500 controls) for each definition of depression.
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Extended Data Fig. 7 ∣. Relationship between effective sample size and prediction accuracy.
a, This figure shows the relationship between the ratio of effective sample sizes between the 

full cohort (NFC) and down-sampled (NDS) data for each definition of depression and the 

ratio of their mean Chi-square (χ2) statistic from GWAS, with black line x = y for reference. 

Across all definitions of depression, 
χFC

2 − 1

χDS
2 − 1

 is highly correlated with 
NFC
NDS

 (Pearson r2 = 

0.999, P = 5.50×10−7), and 
NFC
NDS

 has an effect of beta = 1.27 (s.e. = 0.02) on 
χFC

2 − 1

χDS
2 − 1

. b, 

This figure shows the Nagelkerke’s r2 (Nkr2) for MDD status in PGC29 cohorts predicted 
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for PRS of different definitions of depression at NFC, plotted against their respective 

empirical Nkr2 at NFC, both at P-value threshold = 1. The Pearson correlation r2 between 

predicted and actual NKr2 across all definitions were 0.989 (P = 4.46×10−5). c, This figure 

shows for each definition of depression the effective sample size NX required for each 

predicted Nkr2 in out-of-sample prediction of MDD status in PGC29 cohorts. While Nx= 

274,677 (indicated with orange vertical dotted line) for GPpsy to achieve a Nkr2 of 0.0172 

(indicated with orange horizontal dotted line), a smaller Nx= 129,106 (indicated with pink 

vertical dotted line) is needed to achieve the same Nkr2 for LifetimeMDD.

Extended Data Fig. 8 ∣. Prediction accuracy in cohorts with different percentage of DSM MDD 
cases.
a, This figure shows the area under the curve (AUC) of polygenic risk scores (PRS) 

calculated for each definition of depression in UK Biobank and MDD status indicated in 20 

PGC29-MDD cohorts at P-value threshold of 0.1 (using all SNPs after LD-clumping, see 

results at all P-value thresholds in Supplementary Table 23), plotting AUC for each cohort 

against their respective percentage of cases fulfilling DSM-5 criteria A for MDD (see 

Supplementary Table 21). It shows that strictly defined CIDI-based LifetimeMDD is the 

only definition of depression in UK Biobank that shows increases in AUC as percentage of 

cases fulfilling DSM-5 criteria A for MDD in PGC cohorts increases, despite not giving the 

highest AUC. b, This figure shows the same analysis removing the PGC29-MDD cohort 

rad3, which is the outlier giving AUC > 0.6 in GPpsy in a. As this is a UK-based cohort, it is 

possible it contains relatives of individuals in UK Biobank that upwardly biased prediction 

accuracy in it. For all analysis shown in Fig. 7, Extended Data Figs. 6 and 7 and 

Supplementary Table 23, we have removed this cohort.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank O. Weissbrod, A. Dahl, H. Shi and V. Zuber for insightful discussions. N.C. is supported by the ESPOD 
Fellowship from European Bioinformatics (EMBL-EBI) and Wellcome Sanger Institute. A.V. is supported by the 
Swedish Brain Foundation. C.M.L. and G.B. are funded by the National Institute for Health Research (NIHR) 
Maudsley Biomedical Research Centre at South London Maudsley Foundation Trust and King’s College London. 
In the last 3 years, M.M.W. has received research funds from the US National Institute of Mental Health (NIMH), 
the Templeton Foundation and the Sackler Foundation and has received royalties for publication of books on 
interpersonal psychotherapy from Perseus Press and Oxford University Press, on other topics from the American 
Psychiatric Association Press and royalties on the social adjustment scale from Multihealth Systems. The 
CoLaus∣PsyCoLaus study was and is supported by research grants from GlaxoSmithKline, the Faculty of Biology 
and Medicine of Lausanne and the Swiss National Science Foundation (grants 3200B0-105993, 3200B0-118308, 
33CSCO-122661, 33CS30-139468, 33CS30-148401 and 33CS30-177535/1). The PGC has received major funding 
from the US NIMH and the US National Institute of Drug Abuse (U01 MH109528 and U01 MH1095320). This 
research was conducted using the UK Biobank resource under application no. 28709 and with the support and 
collaboration from all investigators who make up the MDD Working Group of the PGC (full list in the 
Supplementary Note). We are greatly indebted to the hundreds of thousands of individuals who have shared their 
life experiences with the UK Biobank and PGC investigators.

Data availability

Genotype and phenotype data used in this study are from the full release (imputation version 

2) of the UK Biobank resource obtained under application no. 28709. We used publicly 

available summary statistics from other studies downloadable from the website of the 

Psychiatric Genomics Consortium (https://www.med.unc.edu/pgc/results-and-downloads), 

the references for which can be found in Supplementary Table 1. We also referenced the 

2011 Census aggregate data from the UK Data Service (https://doi.org/10.5257/census/

aggregate-2011-2).

References

1. Lu JT, Campeau PM & Lee BH Genotype–phenotype correlation: promiscuity in the era of next-
generation sequencing. Obstet. Gynecol. Surv 69, 728–730 (2014).

2. Ripke S et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat. 
Genet 45, 1150–1159 (2013). [PubMed: 23974872] 

3. Howard DM et al. Genome-wide association study of depression phenotypes in UK Biobank 
identifies variants in excitatory synaptic pathways. Nat. Commun 9, 1470 (2018). [PubMed: 
29662059] 

4. Hyde CL et al. Identification of 15 genetic loci associated with risk of major depression in 
individuals of European descent. Nat. Genet 48, 1031–1036 (2016). [PubMed: 27479909] 

5. Wray NR et al. Genome-wide association analyses identify 44 risk variants and refine the genetic 
architecture of major depression. Nat. Genet 50, 668–681 (2018). [PubMed: 29700475] 

6. Flint J & Kendler KS The genetics of major depression. Neuron 81, 484–503 (2014). [PubMed: 
24507187] 

7. Kessler RC et al. The epidemiology of major depressive disorder: results from the National 
Comorbidity Survey Replication (NCS-R). JAMA 289, 3095–3105 (2003). [PubMed: 12813115] 

8. Boyd JH, Weissman MM, Thompson WD & Myers JK Screening for depression in a community 
sample. Understanding the discrepancies between depression symptom and diagnostic scales. Arch. 
Gen. Psychiatry 39, 1195–1200 (1982). [PubMed: 7125849] 

Cai et al. Page 19

Nat Genet. Author manuscript; available in PMC 2021 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.med.unc.edu/pgc/results-and-downloads


9. Breslau N Depressive symptoms, major depression, and generalized anxiety: a comparison of self-
reports on CES-D and results from diagnostic interviews. Psychiatry Res. 15, 219–229 (1985). 
[PubMed: 3862157] 

10. Weissman MM & Myers JK Rates and risks of depressive symptoms in a United States urban 
community. Acta Psychiatr. Scand 57, 219–231 (1978). [PubMed: 645412] 

11. Mitchell AJ, Vaze A & Rao S Clinical diagnosis of depression in primary care: a meta-analysis. 
Lancet 374, 609–619 (2009). [PubMed: 19640579] 

12. Mojtabai R Clinician-identified depression in community settings: concordance with structured-
interview diagnoses. Psychother. Psychosom 82, 161–169 (2013). [PubMed: 23548817] 

13. Druss BG et al. Understanding mental health treatment in persons without mental diagnoses: 
results from the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 64, 1196–1203 
(2007). [PubMed: 17909132] 

14. Marcus SC & Olfson M National trends in the treatment for depression from 1998 to 2007. Arch. 
Gen. Psychiatry 67, 1265–1273 (2010). [PubMed: 21135326] 

15. Sudlow C et al. UK Biobank: an open access resource for identifying the causes of a wide range of 
complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015). [PubMed: 25826379] 

16. Smith DJ et al. Prevalence and characteristics of probable major depression and bipolar disorder 
within UK Biobank: cross-sectional study of 172,751 participants. PLoS One 8, e75362 (2013). 
[PubMed: 24282498] 

17. Davis KAS et al. Mental health in UK Biobank: development, implementation and results from an 
online questionnaire completed by 157 366 participants. BJPsych Open 4, 83–90 (2018). 
[PubMed: 29971151] 

18. Kessler RC & Ustun TB The World Mental Health (WMH) Survey initiative version of the World 
Health Organization (WHO) Composite International Diagnostic Interview (CIDI). Int. J. Meth. 
Psych. Res 13, 93–121 (2004).

19. Bromet EJ, Dunn LO, Connell MM, Dew MA & Schulberg HC Long-term reliability of diagnosing 
lifetime major depression in a community sample. Arch. Gen. Psychiatry 43, 435–440 (1986). 
[PubMed: 3964022] 

20. Kendler KS, Neale MC, Kessler RC, Heath AC & Eaves LJ The lifetime history of major 
depression in women. Reliability of diagnosis and heritability. Arch. Gen. Psychiatry 50, 863–870 
(1993). [PubMed: 8215812] 

21. Rice JP, Rochberg N, Endicott J, Lavori PW & Miller C Stability of psychiatric diagnoses. An 
application to the affective disorders. Arch. Gen. Psychiatry 49, 824–830 (1992). [PubMed: 
1417436] 

22. Foley DL, Neale MC & Kendler KS Genetic and environmental risk factors for depression assessed 
by subject-rated symptom check list versus structured clinical interview. Psychol. Med 31, 1413–
1423 (2001). [PubMed: 11722156] 

23. Kendler KS, Gardner CO, Neale MC & Prescott CA Genetic risk factors for major depression in 
men and women: similar or different heritabilities and same or partly distinct genes? Psychol. Med 
31, 605–616 (2001). [PubMed: 11352363] 

24. Kendler KS, Gatz M, Gardner CO & Pedersen NL Personality and major depression: a Swedish 
longitudinal, population-based twin study. Arch. Gen. Psychiatry 63, 1113–1120 (2006). [PubMed: 
17015813] 

25. Alexopoulos GS et al. ‘Vascular depression’ hypothesis. Arch. Gen. Psychiatry 54, 915–922 
(1997). [PubMed: 9337771] 

26. Kessler RC et al. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the 
National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62, 593–602 (2005). [PubMed: 
15939837] 

27. Kessler RC, Foster CL, Saunders WB & Stang PE Social consequences of psychiatric disorders. I: 
Educational attainment. Am. J. Psychiatry 152, 1026–1032 (1995). [PubMed: 7793438] 

28. Lorant V et al. Socioeconomic inequalities in depression: a meta-analysis. Am. J. Epidemiol 157, 
98–112 (2003). [PubMed: 12522017] 

29. Kessler RC Epidemiology of women and depression. J. Affect. Disord 74, 5–13 (2003). [PubMed: 
12646294] 

Cai et al. Page 20

Nat Genet. Author manuscript; available in PMC 2021 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



30. Kendler KS, Neale MC, Kessler RC, Heath AC & Eaves LJ A longitudinal twin study of 
personality and major depression in women. Arch. Gen. Psychiatry 50, 853–862 (1993). [PubMed: 
8215811] 

31. Kessler RC The effects of stressful life events on depression. Ann. Rev. Psychol 48, 191–214 
(1997). [PubMed: 9046559] 

32. Mazure CM Life stressors as risk factors in depression. Clinical Psychology: Science and Practice 
5, 291–313 (1998).

33. Weissbrod O, Flint J & Rosset S Estimating SNP-based heritability and genetic correlation in case–
control studies directly and with summary statistics. Am. J. Hum. Genet 103, 89–99 (2018). 
[PubMed: 29979983] 

34. Bulik-Sullivan BK et al. LD Score regression distinguishes confounding from polygenicity in 
genome-wide association studies. Nat. Genet 47, 291–295 (2015). [PubMed: 25642630] 

35. Loh P-R et al. Contrasting genetic architectures of schizophrenia and other complex diseases using 
fast variance-components analysis. Nat. Genet 47, 1385–1392 (2015). [PubMed: 26523775] 

36. Shi H, Kichaev G & Pasaniuc B Contrasting the genetic architecture of 30 complex traits from 
summary association data. Am. J. Hum. Genet 99, 139–153 (2016). [PubMed: 27346688] 

37. Price AL et al. Long-range LD can confound genome scans in admixed populations. Am. J. Hum. 
Genet 83, 132–135 (2008). [PubMed: 18606306] 

38. CONVERGE consortium. Sparse whole-genome sequencing identifies two loci for major 
depressive disorder. Nature 523, 588–591 (2015). [PubMed: 26176920] 

39. Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium et al. A mega-
analysis of genome-wide association studies for major depressive disorder. Mol. Psychiatry 18, 
497–511 (2013). [PubMed: 22472876] 

40. Peterson RE et al. Molecular genetic analysis subdivided by adversity exposure suggests etiologic 
heterogeneity in major depression. Am. J. Psychiatry 175, 545–554 (2018). [PubMed: 29495898] 

41. Northern Ireland Statistics and Research Agency: 2011 Census aggregate data. UK Data Service 
10.5257/census/aggregate-2011-1 (2016).

42. Dempster ER & Lerner IM Heritability of threshold characters. Genetics 35, 212–236 (1950). 
[PubMed: 17247344] 

43. Bulik-Sullivan B et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet 
47, 1236–1241 (2015). [PubMed: 26414676] 

44. Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with 
shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371–
1379 (2013). [PubMed: 23453885] 

45. Brainstorm Consortium et al. Analysis of shared heritability in common disorders of the brain. 
Science 360, eaap8757 (2018). [PubMed: 29930110] 

46. Shi H, Mancuso N, Spendlove S & Pasaniuc B Local genetic correlation gives insights into the 
shared genetic architecture of complex traits. Am. J. Hum. Genet 101, 737–751 (2017). [PubMed: 
29100087] 

47. GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet 45, 580–585 
(2013). [PubMed: 23715323] 

48. Finucane HK et al. Heritability enrichment of specifically expressed genes identifies disease-
relevant tissues and cell types. Nat. Genet 50, 621–629 (2018). [PubMed: 29632380] 

49. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 
108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014). [PubMed: 25056061] 

50. Psychiatric Genomics Consortium Bipolar Disorder Working Group. Large-scale genome-wide 
association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat. 
Genet 43, 977–998 (2011). [PubMed: 21926972] 

51. Trzaskowski M et al. Quantifying between-cohort and between-sex genetic heterogeneity in major 
depressive disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet 180, 439–447 (2019). [PubMed: 
30708398] 

52. Turley P et al. Multi-trait analysis of genome-wide association summary statistics using MTAG. 
Nat. Genet 50, 229–237 (2018). [PubMed: 29292387] 

Cai et al. Page 21

Nat Genet. Author manuscript; available in PMC 2021 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



53. Corfield EC, Yang Y, Martin NG & Nyholt DR A continuum of genetic liability for minor and 
major depression. Transl. Psychiatry 7, e1131 (2017). [PubMed: 28509901] 

54. Direk N et al. An analysis of two genome-wide association meta-analyses identifies a new locus for 
broad depression phenotype. Biol. Psychiatry 82, 322–329 (2017). [PubMed: 28049566] 

55. Kendler KS et al. Shared and specific genetic risk factors for lifetime major depression, depressive 
symptoms and neuroticism in three population-based twin samples. Psychol. Med 49, 2745–2753 
(2018). [PubMed: 30563581] 

56. Okbay A et al. Genetic variants associated with subjective well-being, depressive symptoms, and 
neuroticism identified through genome-wide analyses. Nat. Genet 48, 624–633 (2016). [PubMed: 
27089181] 

57. McIntosh AM, Sullivan PF & Lewis CM Uncovering the genetic architecture of major depression. 
Neuron 102, 91–103 (2019). [PubMed: 30946830] 

58. Kendler KS & Karkowski-Shuman L Stressful life events and genetic liability to major depression: 
genetic control of exposure to the environment? Psychol. Med 27, 539–547 (1997). [PubMed: 
9153675] 

59. Fluharty M, Taylor AE, Grabski M & Munafo MR The association of cigarette smoking with 
depression and anxiety: a systematic review. Nicotine Tob. Res 19, 3–13 (2017). [PubMed: 
27199385] 

60. Wootton RE et al. Evidence for causal effects of lifetime smoking on risk for depression and 
schizophrenia: a Mendelian randomisation study. Psychol. Med 6, 1–9 (2019).

61. Gibbons RD et al. The computerized adaptive diagnostic test for major depressive disorder (CAD-
MDD): a screening tool for depression. J. Clin. Psychiatry 74, 669–674 (2013). [PubMed: 
23945443] 

62. Freimer NB & Mohr DC Integrating behavioural health tracking in human genetics research. Nat. 
Rev. Genet 20, 129–130 (2019). [PubMed: 30523274] 

63. Bycroft C et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 
203–209 (2018). [PubMed: 30305743] 

64. Berisa T & Pickrell JK Approximately independent linkage disequilibrium blocks in human 
populations. Bioinformatics 32, 283–285 (2016). [PubMed: 26395773] 

65. Chang CC et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. 
GigaScience 4, 7 (2015). [PubMed: 25722852] 

66. Golan D, Lander ES & Rosset S Measuring missing heritability: inferring the contribution of 
common variants. Proc. Natl Acad. Sci. USA 111, E5272–E5281 (2014). [PubMed: 25422463] 

67. Abraham G & Inouye M Fast principal component analysis of large-scale genome-wide data. PLoS 
One 9, e93766 (2014). [PubMed: 24718290] 

68. 1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 
526, 68–74 (2015). [PubMed: 26432245] 

69. Finucane HK et al. Partitioning heritability by functional annotation using genome-wide 
association summary statistics. Nat. Genet 47, 1228–1235 (2015). [PubMed: 26414678] 

70. Lam M et al. RICOPILI: Rapid Imputation for COnsortias PIpeLIne. Bioinformatics 10.1093/
bioinformatics/btz633 (2019).

71. Berardi D et al. Increased recognition of depression in primary care. Comparison between primary-
care physician and ICD-10 diagnosis of depression. Psychother. Psychosom 74, 225–230 (2005). 
[PubMed: 15947512] 

72. Fry A et al. Comparison of sociodemographic and health-related characteristics of UK Biobank 
participants with those of the general population. Am. J. Epidemiol 186, 1026–1034 (2017). 
[PubMed: 28641372] 

73. Adams MJ et al. Factors associated with sharing email information and mental health survey 
participation in large population cohorts. Int. J. Epidemiol 10.1101/471433 (2019).

74. Mullins N & Lewis CM Genetics of depression: progress at last. Curr. Psychiatry Rep 19, 43 
(2017). [PubMed: 28608123] 

75. Sullivan PF et al. Psychiatric genomics: an update and an agenda. Am. J. Psychiatry 175, 15–27 
(2018). [PubMed: 28969442] 

Cai et al. Page 22

Nat Genet. Author manuscript; available in PMC 2021 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



76. Coyne JC, Schwenk TL & Smolinski M Recognizing depression: a comparison of family physician 
ratings, self-report, and interview measures. J. Am. Board Fam. Pract 4, 207–215 (1991). 
[PubMed: 1927587] 

77. Nevin RL Low validity of self-report in identifying recent mental health diagnosis among U.S. 
service members completing Pre-Deployment Health Assessment (PreDHA) and deployed to 
Afghanistan, 2007: a retrospective cohort study. BMC Public Health 9, 376 (2009). [PubMed: 
19811664] 

78. Clarke DE et al. DSM-5 field trials in the United States and Canada. Part I: study design, sampling 
strategy, implementation, and analytic approaches. Am. J. Psychiatry 170, 43–58 (2013). 
[PubMed: 23111546] 

79. Spitzer RL, Forman JB & Nee J DSM-III field trials. I. Initial interrater diagnostic reliability. Am. 
J. Psychiatry 136, 815–817 (1979). [PubMed: 443467] 

80. Keller MB et al. Results of the DSM-IV mood disorders field trial. Am. J. Psychiatry 152, 843–849 
(1995). [PubMed: 7755112] 

81. McCarthy S et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet 48, 
1279–1283 (2016). [PubMed: 27548312] 

82. Willer CJ, Li Y & Abecasis GR METAL: fast and efficient meta-analysis of genomewide 
association scans. Bioinformatics 26, 2190–2191 (2010). [PubMed: 20616382] 

Cai et al. Page 23

Nat Genet. Author manuscript; available in PMC 2021 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1 ∣. Definitions of depression in UK Biobank.
This figure shows the different definitions of MDD in the UK Biobank and the color coding 

used consistently in this paper. The minimal phenotyping definitions of depression are 

shown in red for help-seeking definitions derived from the Touchscreen Questionnaire; blue 

for symptom-based definitions derived from the Touchscreen Questionnaire; and green for 

the self-report-based definition derived from the Verbal Interview. The EMR definition of 

depression is shown in orange for definitions based on ICD-10 codes. Strictly defined MDD 

is shown in purple for CIDI-based definitions derived from the Online Mental Health 

Follow-up. The no-MDD definition is shown in brown for GPNoDep, containing cases in 

help-seeking definitions that did not have cardinal symptoms for MDD. The data fields in 

the UK Biobank relevant for defining each phenotype are shown in ‘Data field in UK 

Biobank’; the number of individuals with non-missing entries for each definition are shown 

in ‘n entries’; the qualifying answers for cases and controls are shown in ‘Answers’; the case 

prevalence in each definition is shown in ‘Case prevalence’; and the study and definitions of 

depression most similar to our definitions are shown in ‘Most similar to’. The similarities 

and differences between help-seeking, EMR and symptom-based definitions in comparison 

to previously reported definitions of depression can be found in the Supplementary Note.
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Fig. 2 ∣. Relationship between definitions of depression and environmental risk factors.
a–g, Forest plots of ORs of known environmental risk factors and different types (categories) 

of definitions of depression in the UK Biobank (Definition) from logistic regression, using 

UK Biobank assessment center, age, sex and years of education as covariates to control for 

potential geographic and demographic differences between environmental risk factors, 

except when they were tested. The lifetime trauma measure was derived from the Online 

Mental Health Follow-up (Supplementary Note and Supplementary Table 7); the Townsend 

deprivation index, years of education, sex, age, recent stress and neuroticism were derived 

from Touchscreen Questionnaire (Supplementary Note). h, Hierarchical clustering of 

definitions of depression in the UK Biobank using ORs with environmental risk factors, 

performed using the hclust function in R; ‘height’ refers to the Euclidean distance between 

MDD definitions at the ORs of all six risk factors. MDDRecur was not included in this 

clustering analysis as it is a subset of the LifetimeMDD definition. The statistics used to 

generate these plots are presented as source data.
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Fig. 3 ∣. SNP heritability and genetic correlation estimates among definitions of MDD in UK 
Biobank.
a, h2

SNP estimates from PCGC18 on each of the definitions of MDD in the UK Biobank 

(Methods). h2
SNP (represented as h2(liab)) was converted to the liability scale40,63 using the 

observed prevalence of each definition of depression in the UK Biobank as both population 

and sample prevalence (Supplementary Table 4). Error bars show the s.e. of the estimates. b, 

h2
SNP estimates of definitions of MDD in the UK Biobank from LDSC using logistic 

regression summary statistics on all SNPs with minor allele frequency (MAF) > 5% 

(Methods), transformed to the liability scale assuming a range of population case prevalence 

values, from 0 to 0.5. We do not show results for case prevalence from 0.5 to 1, as they 

would mirror those from 0 to 0.5, with shaded area representing the s.e. of the estimates. We 

indicate with a black vertical dashed line the population prevalence of 0.15, used in PGC1-

MDD; a colored vertical line shows the population prevalence of each definition of 

depression in the UK Biobank. We also indicate with a black horizontal dashed line the 
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arbitrary liability-scale h2
SNP of 0.2, previously estimated for MDD in PGC1-MDD. Using 

this, we show that at no prevalence would minimal phenotyping-defined depression such as 

GPpsy (help-seeking definition) reach this estimate. c, Genetic correlation ‘rG’ between 

CIDI-based LifetimeMDD and all other definitions of MDD in the UK Biobank, estimated 

using PCGC. Error bars show the s.e. of the estimates. d, Pairwise rG between all definitions 

of depression in the UK Biobank, also detailed in Supplementary Table 15.
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Fig. 4 ∣. Genetic correlation between definitions of MDD and other psychiatric conditions.
a, The genetic correlation estimated by cross-trait LDSC43 on the liability scale between 

definitions of MDD in the UK Biobank and other psychiatric conditions in both the UK 

Biobank (smoking and neuroticism) and PGC44 (Supplementary Table 1), including 

schizophrenia49 (SCZ) and bipolar disorder50 (BIP) (Supplementary Table 1). Error bars 

show the s.e. of the estimates. AUT, autism; ADHD, attention deficit/hyperactivity disorder. 

b, The cumulative fraction of regional genetic correlation (out of the sum of regional genetic 

correlation across all loci) between definitions of MDD in the UK Biobank and 

schizophrenia in 1,703 independent loci in the genome64 estimated using rho-HESS46, 

plotted against the percentage of independent loci. CIDI-based LifetimeMDD is shown in 

purple, while help-seeking-based GPpsy is shown in red. The steeper the curve, the smaller 

the number of loci explaining the total genetic correlation. The dashed colored curves 

around each solid line represent the s.e. of the estimate computed using a jackknife approach 

as described in Shi et al.36 The dashed black line represents 100% of the sum of genetic 
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correlation between each definition of MDD in the UK Biobank and schizophrenia. The 

cumulative sums of positive regional genetic correlations (right of y axis) go beyond 100%; 

this is mirrored by the negative regional genetic correlations (left of y axis) that go below 

0%. c, We ranked all 1,703 loci by their magnitude of genetic correlation and asked what 

fraction of loci summed to 90% of total genetic correlation. This figure shows the percentage 

of loci summing to 90% of total genetic correlation between either LifetimeMDD (in purple) 

or GPpsy (in red) and all psychiatric conditions tested, with s.e. estimated using the same 

jackknife approach. The higher the percentage, the higher the number of genetic loci 

contributing to 90% of total genetic correlation. Error bars show the s.e. of the estimates.
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Fig. 5 ∣. Tissue-specific gene expression enrichment in definitions of MDD.
The −log10 P value is shown for enrichment in h2

SNP in genes specifically expressed in 44 

GTEx tissues, estimated using partitioned h2
SNP in LDSC; the help-seeking based definition 

of MDD (GPpsy), as well as its constituent no-MDD phenotype (GPNoDep), showed 

enrichment of h2
SNP in genes specifically expressed in CNS tissues, similarly to an 

independent cohort of help-seeking-based MDD (23andMe4) and other psychiatric 

conditions such as bipolar disorder50, schizophrenia49, autism, personality dimension 

neuroticism, and the behavioral trait smoking. We indicate the sample size (n) for each 

definition of depression and psychiatric condition.
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Fig. 6 ∣. GWAS hits from minimal phenotyping definition of MDD in the UK Biobank are not 
specific to MDD.
ORs are shown for the risk alleles at 27 loci significantly associated with help-seeking 

definitions of MDD in the UK Biobank (GPpsy and Psypsy), in logistic regression GWAS 

conducted using MDD definitions based on on CIDI (LifetimeMDD, in purple), help 

seeking (GPpsy, in red) and no-MDD (GPNoDep, in brown) based definitions of MDD. For 

comparison, we show the same in conditions other than MDD: neuroticism, smoking and 

schizophrenia (all in pink). SNPs missing in each panel were not tested in the respective 

GWAS. For clarity of display, scales on different panels vary to accommodate the different 

magnitudes of ORs of SNPs in different conditions. ORs at all 27 loci were highly consistent 

across phenotypes, being completely aligned in direction of effect, regardless of whether it 

was a definition of MDD or a risk factor or condition other than MDD. All results are shown 

in Supplementary Table 14. Error bars show the s.e. of the estimates.
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Fig. 7 ∣. Out-of-sample prediction of MDD in PGC cohorts.
a, The AUC of PRSs calculated for each definition of depression in the UK Biobank and 

MDD status indicated in 19 PGC29-MDD cohorts5, while controlling for cohort-specific 

effects. PRSs were calculated using effect sizes at independent (LD r2 < 0.1) SNPs passing 

P-value thresholds of 10−4, 0.001, 0.01, 0.05, 0.01, 0.2, 0.5 and 1, in GWAS performed on 

all definitions of depression in the UK Biobank. b, This figure shows the same analysis 

performed on downsampled data (7,500 cases and 42,500 controls) for each definition of 

depression.

Cai et al. Page 32

Nat Genet. Author manuscript; available in PMC 2021 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Results
	Definitions of depression in UK Biobank.
	Minimal phenotyping definitions of depression are epidemiologically different from strictly defined MDD.
	Minimal definitions of depression are not just milder or noisier versions of strictly defined MDD.
	Genetic correlations between definitions of depression and other diseases.
	GWAS hits from minimal phenotyping are not specific to MDD.
	Out-of-sample prediction of MDD.

	Discussion
	Online content
	Methods
	Genome-wide associations.
	Estimation of SNP heritability and genetic correlation among definitions of MDD.
	Estimation of genetic correlation between definitions of MDD and other conditions.
	Enrichment of SNP heritability in genes specifically expressed in tissues.
	Out-of-sample predictions of MDD.
	Reporting Summary.

	Extended Data
	Extended Data Fig. 1 ∣
	Extended Data Fig. 2 ∣
	Extended Data Fig. 3 ∣
	Extended Data Fig. 4 ∣
	Extended Data Fig. 5 ∣
	Extended Data Fig. 6 ∣
	Extended Data Fig. 7 ∣
	Extended Data Fig. 8 ∣
	References
	Fig. 1 ∣
	Fig. 2 ∣
	Fig. 3 ∣
	Fig. 4 ∣
	Fig. 5 ∣
	Fig. 6 ∣
	Fig. 7 ∣

