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Spatial Transcriptomics-correlated Electron
Microscopy maps transcriptional and
ultrastructural responses to brain injury

Peter Androvic1,6, Martina Schifferer 2,3,6, Katrin Perez Anderson1,
Ludovico Cantuti-Castelvetri 2,4, Hanyi Jiang 2,3, Hao Ji1, Lu Liu 1,
Garyfallia Gouna 2,4, Stefan A. Berghoff2,4, Simon Besson-Girard 1,
Johanna Knoferle2,4,5, Mikael Simons 1,2,3,4 & Ozgun Gokce 1,3,5

Understanding the complexity of cellular function within a tissue necessitates
the combination of multiple phenotypic readouts. Here, we developed a
method that links spatially-resolved gene expression of single cells with their
ultrastructural morphology by integrating multiplexed error-robust fluores-
cence in situ hybridization (MERFISH) and large area volume electron micro-
scopy (EM) on adjacent tissue sections. Using this method, we characterized
in situ ultrastructural and transcriptional responses of glial cells and infiltrating
T-cells after demyelinating brain injury in male mice. We identified a popula-
tion of lipid-loaded “foamy” microglia located in the center of remyelinating
lesion, as well as rare interferon-responsive microglia, oligodendrocytes, and
astrocytes that co-localized with T-cells. We validated our findings using
immunocytochemistry and lipid staining-coupled single-cell RNA sequencing.
Finally, by integrating these datasets, we detected correlations between full-
transcriptome gene expression and ultrastructural features of microglia. Our
results offer an integrative view of the spatial, ultrastructural, and transcrip-
tional reorganization of single cells after demyelinating brain injury.

Spatial transcriptomics (ST) methods offer spatially-resolved gene
expression profiling with single-cell resolution for in-depth char-
acterization of cell types and states within a tissue1. While ST is revo-
lutionizing our understanding of tissue organization during
homeostasis2, aging3, and disease4, it provides little information on
cellular morphology. In contrast, electron microscopy (EM) provides
nanometer-resolution view of tissue ultrastructure, but its molecular
readouts are limited to techniques like immunogold labeling or cor-
relative light and electron microscopy, which are insufficient for
comprehensive characterization of cellular states. Considering the
firm connection between cell state and structure5, integration of
molecular andmorphological phenotypes has the potential to uncover

functional properties of cells within a tissue. However, techniques that
could simultaneously probe cellular ultrastructure and multiplexed
molecular profiles in situ are currently unavailable.

Here, we developed spatial transcriptomics-correlated electron
microscopy (STcEM). STcEM correlates large-area scanning EM with
MERFISH6 on adjacent tissue sections and links single-cell transcrip-
tional identities with ultrastructural morphologies. Using STcEM, we
investigated the regenerative processes in the white matter (WM) of
the central nervous system.WMconsists primarily ofmyelinated axons
connecting different regions of the brain. Degradation of myelin
sheaths and decline of remyelination can result in progressive disease
and disability, as seen in chronic progressive multiple sclerosis (MS)7.
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To study remyelination, we used mouse model of lysopho-
sphatidylcholine (LPC)-induced WM injury, that is followed by repair
process peaking between 14- and 21-days post-injury8,9. Successful
regeneration depends on the prompt removal of the damagedmyelin.
Microglia accumulate in demyelinated lesionswhere they phagocytose
and clear damaged, lipid-rich myelin, and initiate a repair process that
depends on a precisely coordinated cellular cross-talk10–12. This multi-
cellular reaction comprises glial subtypes aswell as cells of the adaptive
immune system thatmigrate in small numbers to the lesionwhere they
participate in the injury response8,13. In reaction topathology,microglia
undergo structural changes such as deramification, intracellular
deposition of phagocytic material, and formation of lipid droplets and
inclusions8. Structural changes are accompanied by alterations of gene
expression14–17, however, the relationship between diverse transcrip-
tional and morphological states is not well understood.

We used STcEM to characterize spatial gene expression responses
to LPC-induced demyelinating injury. We identified small inter-
feron (IFN)-responsive populations of microglia, astrocytes and oli-
godendrocytes that are associated with injury and occur in proximity
of T-cells. By comprehensive analysis of matching EM data, we
uncovered ultrastructural heterogeneity of microglia and T-cells and
linked it to their transcriptional signatures. This allowed us to identify
the morphology of IFN-responsive microglia and transcriptional sig-
nature of foamy microglia. We further probed injury-associated path-
ways of foamy microglia using lipid staining-coupled single-cell RNA
sequencing. Finally, we integrated MERFISH, EM and scRNA-Seq
datasets to reveal correlations between structural features and
transcriptome-wide gene expression in microglia. Thus, we used
STcEM to provide an integrated view of the spatial, structural, and
molecular organization of demyelinated lesion at single-cell level.

Results
Protocol harmonization for correlated ST and EM in a mouse
model of demyelination
EM is the gold standard for visualizing structure and organization of
cells and myelinated axons due to their size and complexity18. MER-
FISH is a single-molecule spatial transcriptomics technology capable of
measuring hundreds to thousands of transcripts simultaneously with
subcellular resolution19. This makesMERFISH a compelling STmethod
to integrate with EM, with the shortcoming that sample preparation
requirements substantially differ. The standard MERFISH protocol is
based on snap-frozen tissuewith subsequent washing, embedding and
tissue clearing steps that destroy tissue ultrastructure. EM, in contrast,
requires high pressure freezing or chemical fixation, heavy metal
contrasting and resin embedding steps for imaging, thereby prohi-
biting subsequent investigation by ST methods. Therefore, we har-
monized both protocols (Methods and Tables 1 and 2) until cryo-
microtomy allowed adjacent, 10 µmthin coronal sections of themouse
brain to be processed for EM and MERFISH, respectively (Fig. 1A).
Using this STcEM method, we collected MERFISH and EM data from a
mouse model of LPC-induced demyelinating injury. For comparison,
we also generatedMERFISH data from a fresh-frozen section prepared
with the standard MERFISH protocol.

Ultrastructural analysis requires chemical fixation and crypro-
tection by sucrose for a minimum of 25 h before freezing20. Despite
these long steps, posing potential risk of RNA degradation, MERFISH
data obtained with STcEM protocol had similar segmented cell count,
cell dropout rate, volume, background signal and showed excellent
correlation with the standard protocol, with slightly lower sensitivity
(Fig. S1A–C). TheMERFISH analysis identified all major brain cell types
and localized them to their original spatial positions (Fig. 1B, C).
Moreover, by combination of the subclustering analysis and reference
mapping, we identified smaller cellular subpopulations such as classes
of vascular and immune cells or layer-specific neurons in cortex, whose
spatial organization matched expected patterning (Fig. S2A). These

findings were consistent across sections prepared using both the
STcEM-modified and standard MERFISH protocol, collectively
demonstrating feasibility of STcEMprotocol forMERFISH (Fig. S2B, C).

To obtain a comprehensive set of complementary ultrastructural
information,we flat embedded the entire coronal cryosection adjacent
to the MERFISH section. We sectioned the block face covering both
hemispheres (~3 × 5mm2) at 200nm thickness, which is at the limit of
availablemicrotomy tools (Fig. 1D), and serially sectioned a retrimmed
(2 × 3mm2) area bearing the hemisphere with the lesion site. We then
used the STcEM data to align ultrastructural changes in cell mor-
phology with cellular transcriptional states in demyelinating lesions.
The lesion site was apparent in MERFISH data by profound accumu-
lation of microglia and absence of oligodendrocytes, while the con-
tralateral hemisphere showed none of such characteristics (Fig. 1D).
We registered MERFISH data onto EM sections to identify regions of
interest where immune and glial cells respond to injury. EM micro-
graphs showed an area with demyelinated axons and cellular debris
that overlapped with the lesion area identified by MERFISH (Fig. 1D).
Thus, we successfully obtained EM and MERFISH data from adjacent
sections, indicating the STcEM protocol’s efficacy and potential to
connect different spatial measurements.

Damage-associated responses and spatial organization of glial
cells at single-cell resolution
Next, we aimed to characterize transcriptional states and spatial dis-
tribution of glial cells responding to demyelinating injury using our
MERFISH data. First, we focused on immune cells as the most enriched
cluster in the demyelinated lesion. Previous studies revealed the het-
erogeneity of microglial transcriptional states in different regions and
conditions21, including disease-associated microglia (DAM)15, activated
response microglia (ARM)17, lipid-droplet-accumulating microglia
(LDAM)22, injury-responsive microglia16 or IFN response microglia
(IRM)17. However, spatial as well as annotated ultrastructural informa-
tion of the differentmicroglial states in and around the lesion is lacking.

The immune cell cluster was composed mostly of microglia
(97.0%) identified by microglial signature genes Selplg, Laptm5, Csf1r
or Tmem119. In addition, we identified a small population (1.6%) of
CNS-associated macrophages (CAMs) based on their expression of
canonical CAM markers Mrc1, Cd163 and Msr114. Notably, we also
detected a small population of T-cells (1.4%), marked by Ptprc, Cd3e,
Cd8a, Cd28, Cd247 and Ifng (Fig. S3A, B). The lesion site was dominated
by cells transcriptionally identified as microglia (Fig. S3C), which is
consistent with previous fate-mapping study23. Subclustering analysis
of microglia revealed the presence of four clusters (Fig. 2A, B). The
homeostatic cluster, expressing high levels of typical microglial mar-
kers such asTmem119,Csf1rwas enriched in the uninjured hemisphere.
The remaining clusters localized predominantly to the injured area
indicating they were induced by the demyelinating damage
(Fig. 2A–D). Themost prevalent cluster was defined by upregulation of
DAMmarkers suchasCd74, Itgax,Clec7a andwasenriched in the lesion
site, hence we refer to it as DAM-ST. The second cluster shared DAM
markers but, in addition, displayed a highly specific upregulation of
Gpnmb, Lgals3 and genes related to lipid droplet formation and cho-
lesterol metabolism such as Plin2, Soat1, Abca1 and Abcg1. This cluster
localized to the lesion core area, as opposed to the DAM population
which was distributed more equally around the entire demyelinated
area (Figs. 2D, 3A). Corresponding areas of the lesion core in the
adjacent EM section were filled with lipid droplet-laden foamy micro-
glia (see Alignment of Ultrastructural Classes with Transcriptional
States), thus we refer to this cluster as “Foamy-ST”. The remaining
injury-associated cluster was marked by upregulation of interferon-
stimulated genes (Stat1, Ifit1, Rsad2, Usp18) similar to previously
described IFN-response microglia (IRM)16,17. To complement the clus-
tering, we investigated gradual changes in microglia states by pseu-
dotime analysis using Monocle3 (Fig. S4). This placed the Foamy-ST
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microglia at the end of pseudotime ordering, suggesting they repre-
sent the final differentiation stage of the DAM program (Fig. S4B, C).
Plotting pseudotime in space showed microglia with highest pseudo-
timevalueswere locatedmostly in the center of the lesion (Fig. S4D, E),
revealing spatial component to the gene expression transitions of
microglia during remyelination.

In addition to microglia, recent studies uncovered transcriptional
changes in oligodendrocytes24,25 and astrocytes26,27 during neurode-
generation and aging, but their spatial localization with respect to
pathology and other cell states remains largely unknown. Thus, we
investigated oligodendrocytes as the myelin producing, most abun-
dant white matter cell type that is drastically affected by the LPC-
induced injury (Fig. S5). Our analysis identified 5 clusters of oligo-
dendrocytes (excluding oligodendrocyte progenitor cells) (Fig. S5A,
B). One cluster represented immature oligodendrocytes marked by
Ctps, Dhcr24 and Tmem163. Two other clusters represented mature
oligodendrocytes: Oligo1 characterized by an upregulation of Il33,
Plin4 and Sgk1, and Oligo2 by Klk6, Plin3 and S100b. Two additional
clusters represented injury-responding states of mature oligoden-
drocytes. One was Oligo3 with elevated Serpina3n and C4b levels,
which have previously been defined as marker genes for disease-
associated oligodendrocytes in aging, AD andMSmodels24,25,28. Almost
all of the Oligo3 oligodendrocytes were found at the edge of the

demyelinated lesion, while almost no oligodendrocytes survived in the
lesion core (Fig. S5C, D). The remaining oligodendrocyte cluster spe-
cifically upregulated a battery of interferon-stimulated genes included
in our gene panel (Stat1, Ifit1, Usp18 and Rsad2), similarly to the so-
called interferon-responsive oligodendrocytes (IRO) we described in
white-matter aging25. IRO cluster was overall rare (only 1.7% of all oli-
godendrocytes), andwas found in the lesion aswell as in the remaining
brain area, although its relative frequencywashigher in the lesion edge
compared to control white matter (Fig. S5C, D).

We then performed the subclustering analysis for astrocytes and
identified five distinct clusters (Fig. S6). Three of these clusters
represented states unperturbed by the injury, partially reflecting
known regional heterogeneity of astrocytes29. Astro1 cluster was
marked by Cspg5, Mertk and Fgfr3 and localized to both GM and WM
regions, while Astro2, characterized by higher expression of Gfap and
Aqp4 was enriched in WM regions (Fig. S6A, B). We also found two
clusters that were enriched in the lesion area. Among these injury-
responding astrocytes were Astro4, which were characterized by the
upregulation of Gfap, Serpina3n, Vim and Fos, genes previously iden-
tified in reactive astrocytes after various pathological insults26,27. This
cluster localized exclusively to the demyelinated lesion, but in contrast
to activated oligodendrocytes populated also the lesion core (Fig. S6C,
D). The remaining injury-responding cluster specifically upregulated

Fig. 1 | STcEM spatially links single-cell transcriptomes with tissue ultra-
structure.AOverviewof the STcEMmethod. Adjacent sections of the same sample
are processed in parallel by harmonized MERFISH and EM protocols, and spatially
aligned to link transcriptional profiles with ultrastructure of the regions of interest.
B Transcriptional identities of single cells with their spatial location in tissue (top)
and embedded by UMAP (bottom). “STcEM” refers to modified MERFISH

preparation from fixed-frozen sections, “Standard” refers to snap-frozen section.
C Bubble plot showing expression of cell type markers in identified single cell
populations. D MERFISH data registered onto the 2D overview EM micrograph.
Zoomed-in areas show myelin structure in LPC-injected (left hemisphere) and
uninjured (right hemisphere) white matter (corpus callosum). Images from two
animals are shown. A was created with elements from BioRender.com.
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interferon-stimulated genes, similar to IRM16,17, thus we refer to it as
interferon-responsive astrocytes (IRA). In summary, our data provide a
spatial map of cellular states in response to demyelinating injury at
single-cell resolution. These states are highlighted by distinct as well as
shared gene expression patterns such as altered expression of genes
involved in lipid metabolism by microglia, or upregulation of
interferon-stimulated genes by all three major glial cell types.

Interferon-responsive cell states and spatial relationship with
T-cells
Previously, IFN-responsive glial states have been separately implicated
in CNS pathology17,25,26,30. Our finding of a shared IFN signature among

microglia, oligodendrocytes and astrocytes in close proximity suggest
a common underlying trigger, such as CD8 T cells, as previously
proposed25. Thus, we examined the spatial interactions of IFN-
responsive glia and T cells. IFN-responsive glia spatially co-clustered
in small local niches in the lesion area spanning up to a few hundred
microns (Fig. 2E). Moreover, we found that IFN-responsive glia co-
localized with T-cells, which were also enriched in the lesion area
(Figs. 2E, S7A, B). Quantification of these interactions using Ripley’s L
function confirmed significant co-clustering (Fig. 2F). The density of
T-cells as well as IFN-responsive glia showed considerable animal-to-
animal variation. In one MERFISH sample, both T-cells and IFN-
responsive glia were absent or nearly absent, respectively, indicating a

Fig. 2 | MERFISH analysis of microglia and interferon-responsive cell states.
A UMAP plots of microglia colored by identified clusters (left), tissue region, and
expression of marker genes (right). DAM disease-associated microglia, IRM IFN-
responsive microglia. B Heatmap of average expression per microglia cluster.
C Frequency of microglia clusters per tissue region. D MERFISH spatial plots of
microglia clusters in the lesion area of three biological replicate sections (top) and
spatial expression of selected marker genes (bottom). Polygons depict segmented

lesion areas. Scale bar 100 µm. EMERFISH spatial plot of T-cells and IFN-responsive
glial states in the lesion area. F Centered Ripley’s L- functions showing spatial
clustering of T-cells and IFN-responsive glial states in the lesion area. Shaded area
shows significance envelopes at the 0.05 level (permutation test). IRM interferon-
responsive microglia, IRO interferon-responsive oligodendrocytes, IRA interferon-
responsive astrocytes.
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correlation in the occurrence of these cell populations at the sample
level (Fig. S7A, B). Plotting Cd8a vs Cd4 expression to investigate the
lineage of T-cells revealed higher Cd8a-positivity, with very few Cd4-
positive T-cells detected (Fig. S7C). To confirm the presence of CD8+

T-cells within the lesion we performed additional staining for CD8+

T-cells, IBA1+ microglia, and STAT1+ cells in another set of mice

(Fig. S7D, E). In all three animals, we found enrichment of CD8+ T-cells
in the lesion compared to the area outside the lesion. Similarly, we
found STAT1+ cells exclusively in the lesion area. In contrast to the
MERFISH analysis, almost the entire lesion was filled with STAT1+ cells
in IHC analysis, indicating a difference between STAT1 protein posi-
tivity and transcriptional IFN signature. Together, our findings reveal

Fig. 3 | STcEM analysis of microglia and T-cells. A MERFISH spatial plots of
microglia clusters in the lesion area. Zoomed-in plots (top right) show spatial
location of individual transcripts of selectedmarker genes superimposedoverDAPI
signal. B Expert morphological annotation of microglia and T-cells based on EM,
and their spatial locations in the lesion superimposed onto a summed EM image
stack. Representative EM images per each category are shown, selected froma total
of 1059 cells analyzed fromone animal. Zoomed-in scale bar 2 µm.CNeighborhood
analysis ofMERFISHdata (top) and EMdata (bottom) showing enrichment of target
cell types (x-axis) among 5 nearest neighbors of query cell type (y-axis). P-values

and fold-enrichment are derived from empirical distributions obtained from
10,000 randompermutations of cell labels.D Schematics of the alignment strategy
of MERFISH and EM data, and assessment of spatial concordance between identi-
fied cell classes. E Heatmap of multiscale Earth Mover’s distances (EMD) between
expert-derived EM classes and ST-derived clusters. Z-scored values per EM class
(row scaling) as well as per ST cluster (column scaling) are shown. F Centered
Ripley’s L- functions showing spatial clustering in common coordinate space
between expert-derived EM classes and ST-derived clusters. Shaded area shows
significance envelopes at the 0.05 level (permutation test).
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link between rare T cells and IFN-responsive glial states and its asso-
ciation with demyelinating injury.

Alignment of ultrastructural classes with transcriptional states
To link the transcriptional and morphological phenotype of injury-
responding cells, we collected serial semithin sections of the entire
thickness of the adjacent cryotome section. These large area
(2 × 3mm2) sectionswere used to acquire volumeEMdata of the lesion
area at 20 nm lateral and 400 nm axial (every second section) resolu-
tion. While previous correlative light and electron microscopy studies
divided tissues into pieces of 1–3mm edge length31, we preserved the
coronal section throughout processing, which allowed uninterrupted
alignment to theMERFISH images. To our knowledge this is one of the
largest area scanning EM datasets complementing current large
volume contrasting32 and fast imaging efforts33.

Blind to MERFISH data, we annotated cells in the demyelinated
area into categories according to their ultrastructural
morphology34,35 (Methods and Table 3). Microglia were the most
abundant cell type in the lesion center, in agreement with the MER-
FISH data (Fig. 3A, B). In addition to microglia, we identified a rare
population of T-cells and astrocytes in the EM images of the lesion
area (Fig. 3B). EM annotation revealedmultiplemicroglial subgroups,
including normal-appearing microglia (“Homeo-EM”), reactive
microglia with high content of lysosomes (“Reactive-lysosomal-EM”),
microglia with reactive morphology, high ER and mitochondrial
content, but low lysosomal content (“Reactive-nonlysosomal-EM”),
and foamy microglia characterized by excessive deposition of lipid
droplets and complex phospholipid inclusions in their cytoplasm36

(“Foamy-EM”). Foamy-EM microglia displayed similar localization
pattern as the Foamy-ST cluster identified by MERFISH in adjacent
section, supporting the hypothesis that they represent the same
cellular state (Fig. 3A, B right). We also identified another class of
microglia, marked by a characteristic heterochromatin pattern and
perinuclearly clustered organelles with increased mitochondrial
content. Because these microglia co-localized with T-cells and their
spatial distribution aligned with positions of IRMs in adjacent MER-
FISH section (Fig. 3A, B right), we named them “IRM-EM”. Statistical
analysis of cellular neighborhoods in MERFISH data revealed that
Foamy-ST microglia are significantly clustered together (Fig. 3C top)
and confirmed significant co-localization of IRMs and T-cells. Nota-
bly, these neighborhood composition patterns were in excellent
agreement with neighborhood analysis based on EM data (Fig. 3C
bottom), supporting our annotations.

To quantitatively assess the correspondence between EM- and
MERFISH-derived cell state labels, we registered the MERFISH and EM
lesion data into a common coordinate space (Methods) and subse-
quently evaluated the similarity of spatial patterns between EM and ST
classes (Fig. 3D-F). As a first metric, we used multiscale Earth Mover’s
distance (EMD) to compare the similarity of 2D density distributions of
each cell class (Methods) (Fig. 3E). We found that foamy-ST microglia
bore the closest resemblance to foamy-EMmicroglia, and vice versa, as
evidenced by their low EMDs. Similarly, IRMs and T-cells were rela-
tively closest to their proposed counterparts in the other modality as
well as to each other. Patterns of reactive (merged non-lysosomal and
lysosomal) and homeostatic microglia populations were also similar
across modalities, although this analysis could not unambiguously
differentiate between the two cell states due to their similar patterning
in the lesion area. As a second metric, we used Ripley’s L function to
quantify co-clustering between pairs of cells, reasoning that matching
cell labels between modalities would be found in proximity more fre-
quently compared to random labeling (Fig. 3F).Our analysis confirmed
this for all matching pairs except homeostatic microglia. Overall, the
quantitative assessments support the qualitative observations. Toge-
ther, our results demonstrate how the integration of morphological
and molecular phenotypes by STcEM can assign identity to unknown

cell states, and link ultrastructural morphology with their transcrip-
tional profiles.

Feature-based quantitative analysis of ultrastructural
heterogeneity
After identifying transcriptional and morphological cell states and
their spatial organization, we wanted to understand the underlying
structural heterogeneity in more detail. To this end, we segmented
eight distinct subcellular structures and the respective cell boundary in
EM images of microglia and T-cells located in the lesion (Fig. 4A and
Methods). For each of the 933 cells, we selected the plane with the
largest cellular area for two-dimensional segmentation, resulting in a
final set of 32 structural metrics after calculating the area of encom-
passing structures and ratios (Fig. 4A and Methods). Representative
EM images of cells and their segmented intracellular structures are
shown in a zoom-in view in Fig. 4B. To obtain spatial resolution, we
recorded the global positions of each cell in the stitched and
z-projected overview image (Fig. 4D).

Unsupervised clusteringof this data identified sixultrastructurally
distinct cell clusters (Fig. 4B–D). Cluster 5 showed a foam cell mor-
phology, characterized by a large cell area and high amount of lipid
droplets. Cluster 4 was marked by a high ratio of nuclear to cyto-
plasmic area and very low amount of all cytoplasmic organelles,
reminiscent of the T-cell morphology37. Cluster 3 was characterized by
high ratios ofmitochondria to other organelles, a higher ratio of empty
cytoplasm to organelle-filled cytoplasm and its location largely cor-
responded to the site where we identified IRMs, suggesting this cluster
represents IRMs. Cluster 2 was characterized by high lysosomal con-
tent, while Clusters 1 and 0 were less distinctive, and seemed to
representmicroglia in amore homeostatic and Reactive-nonlysosomal
state, respectively.

To evaluate the correspondence between expert-assigned cell
labels and structural clusters, we calculated overlapof these categories
(Fig. 4E).We found significant overlaps withmost labelsmatching one-
to-one, showing agreement between the results of the two analyses. In
addition, we compared the spatial distributions of structural and
MERFISH-derived clusters using EMD in common coordinate space
(Fig. 4F). This confirmed similarity between cluster 5 and Foamy-ST,
Cluster 3 and IRM-ST, and Cluster 4 and T-cells-ST. In summary, our
feature-based analysis supports expert-assigned cell categories and
reveals quantitative structural characteristics of microglia and T-cells
responding to demyelination.

Comprehensive characterization and validation of foamy
microglia
We aimed to perform a deeper characterization and validation of
microglial populations identified by MERFISH, using full-
transcriptome analysis. In particular, our STcEM analysis indicated
that Foamy-ST cluster identified by MERFISH represents lipid-loaded
microglia with foamymorphology. Foamymicroglia are key players in
lipid metabolism following demyelinating injury, but their molecular
identity and underpinnings of their emergence and fate remain poorly
understood36,38,39. With this in mind, we performed single-cell RNA
sequencing (scRNA-Seq) on sortedCD11b+ cells in a newcohort ofmice
using our established, artifact-free SmartSeq2 protocol (Fig. S8A)40,41.
We also stained the cells with BODIPY, a fluorescent dye binding
neutral lipids that is often used to detect cellular lipid droplets
(Fig. S8B). We then employed an index-sorting strategy, recording the
BODIPY fluorescence signal for each sorted cell. This allowed us to
assign quantitative BODIPY values to single cell transcriptomes during
bioinformatic analysis, as a measure of the cell’s lipid content.

After QC and exclusion of smaller contaminating cell popula-
tions, we obtained 1017 single microglial transcriptomes from 3
control and 5 LPC-injected mice (Fig. S8C, D). We then mapped
MERFISH-derived cluster labels onto scRNA-Seq data, which revealed
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Fig. 4 | Segmented feature-based structural analysis. A Overview of the analysis
pipeline. Subcellular structures of microglia and T-cells were segmented in the EM
images of the lesion area, quantified, and analyzed by unsupervised clustering.
B UMAP embedding of single-cell morphologies, colored by identified clusters.
Representative EM images fromeach cluster are shown, selected froma total of 933
cells analyzed fromone animal. Scale bar 1 µm.CUMAPplots (top) and spatial plots
(bottom) colored by structural feature values.D Spatial plots of structural clusters

superimposed onto the EM image stack of the lesion. E Heatmap of overlaps
between expert-derived EM classes and feature-based structural clusters. One-
sided Fisher exact test. Asterisks show nominal significance (*p-val < 0.1,
***p-val < 1e−5). F Heatmap of multiscale Earth Mover’s distances (EMD) between
feature-based structural clusters and ST-derived clusters. Z-scored values per
structural cluster (row scaling) aswell as per ST cluster (column scaling) are shown.
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the presence of equivalent microglial populations with highly con-
cordant transcriptional profiles (Fig. 5A, B). Leveraging the full-
transcriptome data, we performed functional enrichment analysis
focusing on the foamy microglia cluster, which revealed a strong
upregulation of pathways related to lipid metabolism and lysosomal
processing, showing that these cells are engaged in lipid-processing
functions (Fig. 5C). Analysis of gene expression scores of published
single-cell signatures of lipid-associated macrophages from various
tissues42–44 revealed that our foamy microglia cluster upregulated
consensus lipid-associated macrophage signature, while the
remaining clusters upregulated either homeostatic, interferon or
DAM signatures (Fig. 5D). Single-cell analysis of BODIPY staining data
showed that foamymicroglia cluster had on average highest BODIPY
values among all four clusters (Fig. 5E). Overall, scRNA-seq analyses
support STcEM annotations and indicate conserved,

lipid metabolism-related gene expression responses in foamy
microglia and peripheral lipid-loaded macrophages.

Our dataset provides an opportunity to examine correlations
between gene expression and lipid deposition in microglia by mea-
suring BODIPY values for individual RNA-sequenced cells. To evaluate
these dependencies, we adapted the scWGCNA workflow45 for single-
cell correlation analysis. This approach groups transcriptionally similar
cells intometacells to robustly calculate correlations by accounting for
sparsity and noise known to hamper single-cell correlation analyses46,47

(Methods). We found that top genes positively correlating with BOD-
IPY were largely foamy microglia signature genes such as Gpnmb,
Lgals3, Apoe, Capg, Apoc1, Anxa5, Fabp5, Ftl1, Fth1, Ctsb, among others,
while genes associated with homeostatic microglia such as Tmem119,
Selplg, Cst3 showed negative correlation (Fig. 5F). Plotting gene
expression vs BODIPY in metacells showed that Foamy-ST markers
Gpnmb, Apoc1 and Lgals3, among others, have delayed increase fol-
lowed by a sharp rise, reaching highest levels in metacells with highest
BODIPY values, consistent with their classification as markers of lipid-
loaded microglia (Fig. 5G). Gene set enrichment analysis confirmed
that genes increasing with BODIPY are enriched in functional terms
related to cholesterol homeostasis, lipid storage, cholesterol and lipid
transport, or regulation of lipid metabolism. In addition, we found
enrichment of genes associated with lysosomes, oxidative phosphor-
ylation and respiratory chain, antigen processing and presentation,
ribosomal proteins, and cell death pathways (Fig. 5H).

To further validate the link between foam cell morphology and
molecular signature, we co-stained IBA1+ microglia with antibodies
against intracellular lipid droplet protein PLIN2 and Galectin3 (enco-
ded by Foamy microglia signature gene Lgals3), in sections obtained
fromanew set of LPC-injectedmice (n = 5) (Fig. 5I). Consistentwith our
previous data, Galectin3 labeled 90.8% of PLIN2+ IBA1+ microglia, but
only 18.7% of PLIN2- IBA1+ microglia, representing significant, nearly
5-fold enrichment in lipid droplet-containing microglia (Fig. 5J, K). In
addition, we observed co-labeling of PLIN2+ IBA1+ microglia with anti-
bodies against Glycoprotein NMB, encoded byGpnmb, the topmarker
gene of Foamy microglia (Fig. 5I). Altogether, lipid staining-coupled
scRNA-Seq and immunocytochemistry experiments validated and
expanded the findings from the STcEM analysis by identifying
transcriptome-wide profiles of microglial clusters and revealing cor-
relations between lipid deposition and gene expression in microglia.

STcEM enables gene-structure correlation analysis
So far, we have used STcEM to identify and match morphological and
transcriptional cellular states. We sought to take the STcEM method a
step further and examine its ability to recover continuous dependen-
cies between ultrastructural features and gene expression (Fig. 6).
Such gene-structure correlation networks could reveal functional
modules and identify relationships betweenmorphological properties
and gene expression beyond cell state categories. To obtain genome-
wide coverage, we imputed expression of unmeasured genes in

MERFISH microglia data from our SmartSeq2 dataset (Methods),
leading to 287 measured and 8431 imputed genes. Comparison of
imputed gene expression to ground truth showed consistent patterns
across microglial clusters (Fig. S9). We then devised a strategy for
spatial transfer of the gene expression and morphological feature
values between neighboring cells and across the modalities (Fig. 6A).
Specifically, for 933 EM and 986 neighboring MERFISH cells in the
lesion area, we calculated distance-weighted averages of the gene
expression, and structural features for each cell based on its neighbors
in commoncoordinate space. This resulted in smoothed values of both
modalities in all 1919 cells (Methods). We then calculated Spearman
correlation between genes and structural features.

We found that values of several structural features are correlated
with functionally-related genes (Fig. 6B). For instance, endoplasmic
reticulum (ER)-related gene ontology cellular component (GOCC)
terms were significantly overrepresented among top genes positively
correlatingwith ER area (e.g. “ERmembrane”). Similarly,mitochondria-
related terms (e.g. “mitochondrial matrix”) were overrepresented
among genes positively correlating with mitochondria area. Other
examples include overrepresentation of heterochromatin-associated
terms (“rDNA heterochromatin”) and protein complexes active in
pericentric heterochromatin (“Sin3 complex”) and nucleus (“ESC/E(Z)
complex”) among genes positively correlating with heterochromatin
area; as well as overrepresentation of cytoplasm-associated GOCC
terms among genes negatively correlating with heterochromatin area
(e.g. “septin cytoskeleton”, “microtubule”). These results demonstrate
the ability of STcEM to capture biologically meaningful associations
between structure and gene expression, even though the EM and
MERFISH data were generated from adjacent sections.

We further focused on associations between genes and morpho-
logical features related tomicroglial reactive states, visualizing themas
heatmaps (Fig. 6C, D). In addition to visualizing the correlation struc-
ture of the features, we show their average abundances in the identi-
fied morphological and transcriptional clusters, as well as spatial
matching of the clusters (Fig. 6C, D). This revealed that spatially-
transferred and directly measured values are largely in agreement for
matching structural and transcriptional clusters.Wewere able to show
that interferon-stimulated genes such as Stat1, Ifit1, Rsad2, Irf7, Mx1,
that define IRM microglial state, positively correlated with mitochon-
drial content in a cell, ratio of mitochondria to other organelles and
values of empty cytoplasm area, which are the structural features also
marking morphological cluster 3. Further, we found that MHCII genes
such as Cd74,H2-Ab1,H2-Aa,H2-Oa, that aremost upregulated in DAM
cluster, were positively correlated with cellular ER content. MHCII
genes also showed tendency to increase with ratio of organelles-filled
cytoplasm to lipid droplet-filled cytoplasm, suggesting potential dif-
ferences in antigen-presenting capacity between DAM and Foamy
microglia clusters. Although the correlations between Foamy micro-
glia signature genes and lipid droplet area were more elusive in this
analysis, we did detect positive dependencies, including Gpnmb and
Apoe. Furthermore, foamy signature genes showed positive correla-
tion with lysosomal content, which is consistent with our observation
of microglia containing lipid-rich cytoplasm interspersed with lyso-
somes (see cell number 6 in Fig. 4B). In summary, here we used STcEM
to begin to unravel dependencies between gene expression and
ultrastructural features pertaining to microglial reactive states, pro-
viding a more systematic perspective on the relationships between
microglial structure and molecular function.

Discussion
ST technologies have opened new horizons in biology; however, ST
measurements are typically disconnected from one of the most fun-
damental readouts of tissue phenotype—cellular morphology. While
some studies have linked paired histological staining with lower-
resolution ST methods48,49, these approaches are unable to detect
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Fig. 5 | Extended characterization and validation of microglial populations.
A UMAP embedding of microglial scRNA-Seq data colored by cluster (top left),
experimental group (bottom left) and expression of selected markers (right).
B Heatmap of average expression per microglial cluster measured by MERFISH
(left) or by scRNA-Seq (right).C Pathway andGeneOntology enrichment analysis of
foamy microglia signature genes. One-sided Fisher exact test, nominal p-values.
D Violin plots showing single-cell activity scores of homeostatic microglia,
interferon-stimulated microglia, disease-associated microglia, and lipid-associated
macrophages expression signatures collected from literature. E Boxplot of BODIPY
fluorescence values of single microglia cells index-sorted from LPC-injected mice.
Nominal p-values of post-hoc pairwise comparisons (two-tailed) following ANOVA,
n = 560 cells obtained from 5 animals. Boxplots display the median (central line),
interquartile range (IQR; box), and 1.5 * IQR (whiskers). Points beyond the whiskers
represent outliers. F Rank plot of Pearson correlation coefficients between gene

expression and BODIPY values in metacells. G Scatter plots of metacell gene
expression vs BODIPY values for selected genes. Trendline represents generalized
additive model fit, error band displays 95% confidence interval. H Network of
pathways and Gene Ontology terms enriched in genes positively correlating with
BODIPY. Gene Set Enrichment Analysis test, nominalp-values are shown. I Stainings
of GPNMB, Galectin3 (Foamy microglia signature genes), IBA1 (microglia) and
PLIN2 (lipid droplets) in LPC-injectedwhitematter. Scale bar 10 µm. JQuantification
of Galectin3 positivity in PLIN2-positive and PLIN2-negativemicroglia. Paired T-test
(two-tailed, p-val = 4.021e−6), n = 5 animals. Data are presented as mean values +/-
SEM. K Quantifications of Galectin3 and PLIN2 single and double positive Iba1+
microglia. N = 5 animals. Boxplots display the median (central line), interquartile
range (IQR; box), and 1.5 * IQR (whiskers). Source data are provided as a Source
Data file.
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single cells or their subcellular organization. Attempts to link ultra-
structure to gene expression have been scarce, and limited to inver-
tebrates with stereotypical cellular anatomy50. In this study, we
integrated two seemingly incompatible high-resolution methods - EM
andMERFISH - by anchoring them in spatial dimension. This allowedus

to map and link ultrastructural and transcriptional phenotypes of
single cells responding to LPC-induced demyelination.

After LPC injury, microglia accumulate at the injury site to clear
cellular debris and initiate the regenerative process51. Phagocytosis of
lipid-rich myelin drives the formation of foamy microglia, which play

Fig. 6 | Correlation of gene expression and structural features in microglia.
A Schematics of the computational strategy for spatial transfer of modalities fol-
lowed by gene-structure correlation analysis. Unmeasured genes in MERFISH are
imputed from SmartSeq2 data. MERFISH and EM data from adjacent sections are
registered to common coordinate space. Gene expression values as well as struc-
tural feature values are then transferred between neighboring cells using distance-
weighted averaging. B Rank plots of Spearman correlation between genes and
selected structural features (top). Barplots on the bottom show enriched Gene
Ontology Cellular Component terms among the top 200 positively (shades of red)

or negatively (shades of green) correlating geneswith respective structural feature.
One-sided hypergeometric test, nominal p-value. C Heatmaps showing correlation
between selected genes and structural features in microglia (red-green palette),
average values of spatially transferred modality in ST and EM clusters (red-blue
palette), and average values of directly measured modality in ST and EM clusters
(orange-purple palette). D Heatmap of multiscale Earth Mover’s distances (EMD)
between feature-based structural clusters and ST-derived clusters. Z-scored values
per structural cluster (row scaling) as well as per ST cluster (column scaling) are
shown. A was created with elements from BioRender.com.
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key roles in pathophysiology of multiple sclerosis51, but also in aging52

and neurodegenerative conditions such as Alzheimer’s disease (AD)53.
Using STcEM, we uncovered their localization and transcriptional
profile, which was characterized by the specific upregulation of
Gpnmb, lysosomal transcripts, and genes involved in cholesterol and
lipid metabolism. Intriguingly, in patients with early active MS, a
microglia cluster with highly similar signature has been identified as
the most strongly associated with the disease54. A similar gene set,
including Gpnmb, is upregulated in lipid-loaded macrophages in
atherosclerotic lesions43, obesity42 or fatty liver disease44, suggesting a
conserved response to lipid overload in microglia and macrophages
across tissues and conditions. GPNMB represents a genetic risk factor
for Parkinson’s disease (PD)55, and is elevated in the substantia nigra of
PDpatients56, and in spinal cords of amyotrophic lateral sclerosis (ALS)
patients57,58. Our results concur with the function of Gpnmb within a
lipid-associated inflammatory network and identify it as a marker of
subpopulation of foamy microglia. In addition, our data show that
foamy microglia upregulate several AD genetic risk factors, including
cholesterol transporters Abca1, Apoc1 and Apoe59, further implicating
them in the disease beyond the LPC demyelinationmodel. STcEM thus
identified candidate genes that could facilitate therapeutic targetingof
foamy microglia to promote regeneration and decrease neuroin-
flammation in demyelination disorders, aging and neurodegeneration.

Following LPC injury, an early and transient influx of T cells plays a
role in microglia activation and subsequent demyelination13. In this
study, we observed low T-cell numbers with considerable animal-to-
animal variation, possibly due to the late analysis time point when
T cells had already entered and were lost. However, we found that the
few remaining T cells were enriched in the lesion, and co-localizedwith
IFN-responsive cell states. This suggests that T cells, similar to aging
WM25, could contribute to induction of IFN-responsive cell states and
play a role in tissue damage. STcEM allowed us to discover structural
properties of IFN-responsive microglia, characterized by areas of
empty cytoplasm and perinuclearly clustered organelles with
increased proportion of mitochondria. Interestingly, a recent study
reported that transcriptional response to IFNγ in macrophages is
dependent on mitochondrial function and mitochondrial mass60, but
more research will be needed to elucidate the impact of IFN signaling
on the ultrastructural organization of cells. In contrast to previous EM
analysis of microglia in AD models61, we did not observe a “dark”
microglia phenotype, indicating potential differences in microglial
remodeling during chronic pathologies and acute demyelination.

The recent surge in generating vast EM datasets also increased the
need for their annotation and analysis62,63. However, identifying cell
types fromEM images is time-consuming and requires expertize. STcEM
tackles this bottleneck and extends the capacity of current EMmethods
such as correlative light and electron microscopy or immunogold
labeling from handful of antibodies to hundreds of molecular targets.
This enables the identification of subtle cellular states, and the study of
interplay between structural reorganization and gene activity of cells in
response to stimuli in situ. This is showcased by our gene-structure
correlation analysis, that detected low to moderate correlations, which
alignswithother studies64,65, andpoints to the complementary nature of
gene expression and structural morphology in defining multi-
dimensional cellular phenotypes. Our vision for future work is to utilize
reference STcEM datasets from the same tissue to train models for
predictionof single-cell geneexpression fromEM imagesor vice versa48.

While in this study we focused on the brain, STcEM can, in prin-
ciple, be applied to any tissue, opening opportunities across fields. For
example, STcEM could be applied to simultaneously identify virus
particles via EM-based morphological criteria66 and detect associated
spatial gene expression responses. Our approach to anchoring mod-
alities via spatial domain could be expanded to other spatial technol-
ogies that are otherwise incompatible, facilitating spatial multiomics.
We envision future STcEM developments, where multiple sections

from the same cell could be generated by ultrathin sectioning, even-
tually providing a powerful approach for subcellular omics.

Methods
Animals
All mouse experiments in this study were performedwith the approval
and according to the regulations of the District Government of Upper
Bavaria and reported according to guidelines23,24. Male C57BL/6 J mice
were obtained from Janvier Laboratories (Supplementary Data 1). All
mice were housed at the animal facility in the German Centre for
Neurodegenerative Diseases (DZNE) in Munich in standard, pathogen-
free conditions. The temperature in the housing unit was kept between
20 and 22 °C with 40–60% humidity and a 12-h light/12-h dark cycle.

LPC injections
Lysophosphatidylcholine (LPC) injections were administered at the
age of 3–4months. A solution of 1% LPC (L4129, Sigma) in PBS was
mixed with Monastral blue (274011, SigmaAldrich) at a concentration
of 0.05% to aid with visualization of the lesion during tissue proces-
sing.Micewere anaesthetizedwith an intraperitoneal injectionofMMF
solution (0.5mg medetomidin/kg (body weight), 5.0mg midazolam/
kg (body weight) and 0.05mg fentanyl/kg (body weight)). Then, head
fur was removed, the eyes were treated with bepanthene cream
(1578847, Bayer) and a small incision in the skin was performed to
expose the skull. The mouse was positioned into a stereotactic injec-
tion apparatus and a small hole was drilled at the following injection
coordinates (frombregma): (X, ± 1.0mm; Y, −0.1mm). A glass capillary
containing the LPC–monastral blue solution was then lowered to Z:
−1.40mm(including scull) frombregma, and 1 µLwas injected at a rate
of 100 nL/min. Twominutes after the delivery of LPC, the capillary was
slowly retracted. The mouse was then injected with 0.05mg bupre-
norphin/kg (body weight), and the skin was sutured. Anesthesia was
terminated by a subcutaneous injection of AFN solution, containing
2.5mg/kg (body weight) atipamezol, 1.2mg/kg (body weight) naloxon
and 0.5mg/kg (body weight) flumazenil.

Tissue collection and preparation for STcEM
Eighteen days after LPC injection, mice were anaesthetized with an i.p.
injection of MMF (fentanyl (0.05mg/kg)–midazolam (5mg/kg)–
medetomidine (1mg/kg)) and transcardially perfused with 2UI/mL
Heparin (Heparin-Natrium-25000-ratiopharm®, PZN: 03029843) in
HBSS (no calcium, nomagnesium, Gibco™, 14175129) for 3min and 4%
paraformaldehyde (PFA, EMGrade, ElectronMicroscopy Sciences, Cat.
No. 15710, diluted in 10X PBS, Invitrogen™ (to a final concentration 1x),
AM9624 and UltraPure™ Distilled Water, Invitrogen™, 10977-035) for
5min, before carefully removing the brain from the skull. Afterwards,
the brains were fixed by submerging in 4%PFA for 6 h, followed by 14 h
in 15% sucrose (Sigma-Aldrich, S0389 in UltraPure™ Distilled Water,
Invitrogen™, 10977-035) and 5 h in 30% sucrose. Next, the PFA-fixed
brains were simultaneously embedded in Tissue-Tek® O.C.T.™ Com-
pound (Sakura, 4583) and frozen in a plastic mold on dry ice. For the
“standard protocol”, fresh frozen brain samples were used: the mouse
was only perfused with Heparin in HBSS and directly embedded and
frozen in Tissue-Tek® O.C.T.™ Compound on dry ice. Brains were
stored at −80 °C until further processing.

Tissue sectioning
Coronal, 10 µm thick brain sections were prepared and collected at a
cryotome (CryoStar NX70, Thermo Scientific). Sections determined
for MERFISH analysis were placed on round glass slides provided by
Vizgen Corp. (Cambridge, MA 02138; MERSCOPE slide part number
20400001). Sections for electron microscopy were collected on
Superfrost Plus® Gold slides (Thermo Scientific, Menzel Gläser,
K5800AMNZ72). Brain sections for MERFISH were subsequently
washed two times with PBS and one time with 70% ethanol (VWR

Article https://doi.org/10.1038/s41467-023-39447-9

Nature Communications |         (2023) 14:4115 11



Chemicals, 20.821.310, diluted in UltraPure™ Distilled Water, Invitro-
gen™) for 5min each. Then samples were individually sealed in bags
filled with 70% ethanol and shipped to Vizgen Corp. (Cambridge, MA
02138) for MERFISH analysis. Sections for electron microscopy were
stored at −80 °C until further processing.

MERFISH procedure
Gene panel. Gene panel for this study consisted of 287 protein-coding
genes and 98 blank probes. Genes included selection of known brain
and immune cell type markers including glial cells, vascular cells, T-
cells, macrophages and subtypes of Glutamatergic and GABAergic
neurons. In addition, we included a panel of microglial, astrocytic and
oligodendrocytic reactive markers from literature, and genes from
cholesterol metabolic pathways. Full gene panel is listed in Supple-
mentary Data 2.

Hybridization. Samples on beaded slides were placed tissue-side up in
60×15mm petri dishes and kept at the back of the cryostat at −20 °C
for at least 5min for the tissue to adhere. For the fresh frozen samples,
5ml of fixation buffer (4% paraformaldehyde in 1x Phosphate buffered
saline) were added in a fume hood and incubated for 15min at room
temperature. The fresh frozen samples were then washed with 5ml
Phosphate buffered saline 3 times, 5min each.

Both the fresh frozen and the fixed frozen samples were then
permeabilized in 5ml 70% ethanol at 4 °C overnight, in parafilm-sealed
dishes, and stored long-term in the same conditions. For hybridizing
with the library (the gene panel), the samples were washed with 5ml
Vizgen Sample PrepWash Buffer (Vizgen part number 20300001) and
then incubated in 5ml FormamideWash Buffer (Vizgen pn 20300002)
at 37 °C for 30min in an incubator. The Formamide Wash Buffer was
aspirated from the tissue, and 50μl of the gene panel mix was added
on top of each tissue. A piece of parafilm ~1.5 cm×1.5 cmwas placed on
top to spread the library mix and protect it from evaporation. The
dishes were sealed with parafilm and placed in a humidified incubator
at 37 °C for 36–48h. The parafilm was removed from the top of each
tissue, and the sampleswere incubated in 5ml FormamideWashBuffer
at 47 °C for 30min, twice. The samples were then washed with 5ml
Sample Prep Wash Buffer for 2min.

Gel embedding. To gel embed the samples, fresh 10% w/v ammo-
nium persulfate solution was prepared. For each sample, 5ml of Gel
Embedding Premix (Vizgen pn 20300004) was combined with 25 μl
of the 10% ammonium persulfate solution and 2.5μl of TEMED
(N,N,N’,N’-tetramethylethylenediamine). In parallel, one 20mm Gel
Coverslip (Vizgen pn 20400003) for each sample was cleaned with
RNAseZap, followed by 70% ethanol and dried with Kimwipes. The

Gel Coverslips were then covered with 100μl of Gel Slick Solution
(VWR, catalog number 12001-812) for a minute and wiped dry with
Kimwipes. The Sample Prep Wash Buffer was aspirated from the
samples. For each sample, 100μl of the Gel Embedding Mix was
retained in a small tube, while the remainder of the Gel Embedding
Mix was added to the samples and incubated for 1min. The Gel
Embedding Mix was then poured out from the samples into a waste
tube but kept aside on the bench (to monitor gel formation). The
slides were then aspirated dry, leaving just enough liquid to keep the
tissue from drying out. 85μl of the separately retained Gel Embed-
ding Mix was added on top of the tissue, and the Gel Slick treated
coverslip was placed over it with tweezers, with the Gel Slick-treated
side facing down toward the tissue and avoiding air bubbles. Extra
Gel Embedding Solution was aspirated from the sides of the cover-
slips. The dishes were incubated at room temperature for 1.5 h to
allow the gels to form. Thereupon, the coverslips were removed
using a Hobby Blade and tweezers.

Tissue clearing. To clear the samples of lipids and proteins that
interfere with imaging, 5ml of Clearing Premix (Vizgen pn 20300003)
were mixed with 50μl of Proteinase K for each sample. After the
coverslipswere removed from the gel embedded samples, the clearing
solution was added to each sample, and the dishes were sealed with
parafilm. The fresh frozen sampleswereplaced at 37 °C in a humidified
incubator overnight, while the fixed frozen samples were placed at
47 °C in a humidified incubator overnight (or for a maximum of 24 h),
and then moved to 37 °C. The samples were stored in the Clearing
solution in the 37 °C incubator prior to imaging for up to a week.

Sample imaging. The Clearing solution was aspirated from the sam-
ple, and the sample was washed three times with Sample Prep Wash
Buffer briefly, then again for 10min on a rocker, and then three more
times briefly. The sample was incubated with 3ml of the appropriate
first hybridization buffer, including Dapi and polyT reagent (Vizgen pn
20300021), for 15min at room temperature on a rocker, covered from
light. The sample was then washed with 5ml of the Formamide Wash
Buffer (Vizgen pn 20300002) for 10min at room temperature on a
rocker, covered from light, and then transferred to 5ml of the Sample
PrepWash Buffer (Vizgen pn 20300001). In themeantime, the Imaging
buffer was prepared by combining the Imaging buffer, the Imaging
Buffer Activator (Vizgen pn 20300015), and RNase inhibitor at a ratio
of 500:2.5:1. The hybridization buffers appropriate to the gene panel,
as well as the imaging buffers, were loaded onto the Vizgen micro-
scope system. The sample was placed in the flow chamber and con-
nected to the fluidics system of the Vizgen microscope, taking care to
disperse air bubbles. A low-resolutionmosaicwas acquired using a 10X

Table 1 | Comparison of protocol changes between standard MERFISH and STcEM MERFISH sample preparation

Standard MERFISH protocol StcEM MERFISH protocol reasoning impact

Tissue perfusion Perfusion with HBSS
(Ca2+, Mg2+ free)

Perfusion with HBSS (Ca2+, Mg2+ free), fol-
lowed by perfusion with 4% PFA (EM grade
quality) in PBS-CMF

Fixation needed for
EM protocol

Longer perfusion time poses
potential risk of losingmRNAand
induction of stress-
response genes

Tissue preparation
and freezing

Freezing in Tissue-Tek®O.C.T.™
Compound on dry ice. Storage
at −80 °C.

Incubation at 4 °C for 6 h in 4%EMgradePFA
in PBS-CMF, followed by 14h in 15% sucrose
and 5 h 30% sucrose in PBS-CMF, before
embedding and freezing in Tissue-Tek®
O.C.T.™ Compound on dry ice. Storage
at −80 °C

Fixation needed for
EM protocol

Potential risk of nuclease con-
tamination and lowering RNA
quality and quantity

Tissue Sectioning cryotome sections, 10 µm
thickness

cryotome sections, 10 µm thickness

Post-preparation
and post- fixation

Washed two times with PBS,
followed by one time 70%
ethanol for 5min each

Washed two timeswith PBS, followed by one
time 70% ethanol for 5min each

Storage 70% ethanol 70% ethanol
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objective, and the regions of interest (whole coronal sections) were
selected for high-resolution imaging with a 60x lens.

For the high-resolution imaging, the focus was locked to the
fiducial fluorescent beads on the coverslip. Seven 1.5μm-thick z planes
were taken for eachfield of viewwhen imaging the tissue, including for
the DAPI channel. Cell segmentation was performed using the Water-
shed algorithm, using DAPI nuclear seeds and PolyT total RNA staining
basins. Images were decoded to RNA spots with xyz and gene id using
Vizgen’s Merlin software.

MERFISH analysis
Data quality control and filtering. Single-cell gene expression matri-
ceswere obtained by countingmRNAmoleculeswithin segmented cell
boundaries and further analyzed in R using Seurat package and
custom-made scripts. We excluded cells containing <30 or >2500
individual transcripts, <5 unique genes, cells with volume <40 µm3 or
>2500 µm3 or cells with average count of blank probe spots >1.

Annotation of cell types and clustering analysis. Data were nor-
malized by dividing gene counts for each cell by total count for that
cell, multiplied by 10,000 and log-transformed. Data were then scaled
and principal components were calculated on all 287 measured genes.
Between 20 and 30 principal components were used to calculate
UMAP embedding and perform clustering analysis using Louvain
algorithm to examine each section individually. Afterwards, we inte-
grated data from three replicates using Seurat’s rpca workflow and
repeated UMAP and clustering analysis. Cluster markers were identi-
fied using Wilcoxon rank-sum test. To resolve neuronal subclasses, we
downloaded Allen Brain Atlas reference single-cell RNA-Seq data,
includingmetadata with cell type annotations25.We then subsetted the
reference data to neuronal classess and mapped cell type annotations
to our integratedMERFISH data using Seurat’s label transfer workflow.
These annotations as well as annotation of remaining cell types
(striatal neurons, glial, immune cells) were refined in rounds of sub-
clustering analysis by each time subsetting data tomajor cell class and
repeating normalization, scaling, pca and clusteringworkflows.During
analysis we noted that fraction of segmented single-cell profiles exhi-
bits contamination with transcripts from other cell types originating
mostly from imperfect cell boundary segmentation. These resemble
“doublets”, however unlike doublets in droplet-based single-cell RNA-
Seq workflows, in MERFISH data they bear biological significance as
they originate from physically proximal cells. Therefore, we opted to
annotate clusters that clearly represented mixture of different cell
types as doublets, but keep them in the data, keeping this in mind
during analyses. During subclustering analysis, we further removed
effect of contaminating RNA by regressing expression signatures of
other cell types from the data. For this, we first obtained signatures of
each cell type by searching for differentially expressed genes between
analyzed cluster and other coarse clusters (other present cell types)
using strict threshold. We then calculated aggregate score for each
signature in each cell using Seurat’s AddModuleScore function and
regressed these scores from expression matrix of analyzed cluster
before running PCA, UMAP and subclustering analyses. For analysis of
astrocytes, we iteratively repeated the subclustering in 3 rounds, each
time removing the smaller subclusters that clearly exhibited profiles
mixed with other cell types. For subclustering of microglia, we further
excluded known non-microglial genes (known markers of other cells)
from the matrix. This strategy dramatically improved resolution of
clusters and allowed us to discover expression patterns previously
masked by contaminating RNA while keeping sufficient cell numbers.

Pseudotime analysis. Pseudotime within microglia was calculated
usingMonocle3 (packageversion 1.3.1). TheSeurat objectwith3DUMAP
embeddings and cluster information (res 1.5) was converted into a cell
data set object using SeuratWrapper functions and used as input for

trajectory inference. Principal graphs were calculated with learn_graph
without considering partitions or closed loops, followed by calculating
pesudotimewith order_cells (selected root state within the homeostatic
subpopulation). Pseudotime values for each single cell were then used
to explore pseudotime per subcluster or within the spatial context.

Spatial segmentation of the lesion. To quantify cell types within the
lesion areas, we in silico dissected lesion areas into lesion core, lesion
inner edge and lesion outer edge. First, we segmented area repre-
senting lesion core based on: (i) spatial pattern of microglia (accu-
mulated in lesion core, decreasing density towards lesion edge), (ii)
spatial pattern of oligodendrocytes (absent in lesion, marking lesion
edge) and (iii) expression profile of Mbp (marking lesion edge). We
then expanded the polygon around lesion core twice by 50um, seg-
menting inner lesion edge and outer lesion edge. For comparison, we
also segmented area of uninjured white matter and uninjured cortical
gray matter from contralateral hemisphere. We then quantified pro-
portions of cell types in these areas.

Cell neighborhood analysis. To analyze cellular neighborhoods of
microglial clusters and T-cells in the lesion, we first subsetted data to
unionof cells from lesioncore, lesion inner edge and lesionouter edge.
We then identified each cell’s 5 nearest neighbors in physical space
(based on Euclidean distance) and counted the proportion of each cell
type label among the neighbors.We then repeated this process 10000
times, each time randomly permuting cell type labels to obtain
empirical p-value and empirical fold-enrichment (defined as observed
fraction of cell type label among neighbors divided by average fraction
obtained from all permuted iterations). Neighborhood analysis of the
EMdata was performed in the sameway using EM-derived annotations
and cellular positions.

Spatial interaction analysis. To evaluate spatial interactions between
cell types in the lesion, we calculated Ripley’s L function (specifically
Besag’s transformation of Ripley’s K function) for pairs of cell clusters,
using Lcross function from spatstat R package. L function is a cumu-
lative statistic measuring average number of cells (points in 2d area)
that are closer to a given cell than a certain distance. For plotting, we
centered L-values by subtracting the measured value from the expec-
ted value (average of 200 random permutations of cell labels). Thus,
values >0 indicate attraction/clustering between cells and values <0
indicate repulsion at a given distance. Values outside of the envelopes
around L-function indicate statistical significance. We considered only
the area of the lesion (bounded by “lesion outer edge” polygon) and
evaluated L-value at distances from 5 um to 250um.

Alignment of MERFISH and EM data. For initial exploration, DAPI
staining images of MERFISH sections were registered onto EM over-
view scans of the sections of the same sample based on user-defined
anatomical landmarks with BigWarp ImageJ plugin using thin plate
spline transformation. After obtaining EM image stacks of the lesion,
performing single-cell morphological analysis and recording positions
of cells in the lesion core in the image coordinates, we repeated the
alignment of the lesion area to the MERFISH data. Specifically, we
identified corresponding landmark points in the EM stack image of the
lesion area andMERFISH DAPI image, and then used icp function from
Morpho R package to register the landmark points through iterative
closest point algorithm. We performed this process in steps starting
with rigid registration followedby similarity registration to align global
coordinates and finally, thin-plate-splines registration (using tps2d
function) to refine the alignment by correcting local deformations.

Analysis of similarity between cellular spatial patterns. EM and
MERFISH data in common coordinate system were used for the analy-
sis. For each cell cluster from both modalities, cellular density in the
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area encompassing the registered cells was calculated using density
function from spatstat R package. We calculated densities at multiple
smoothing scales by varying parameter sigma (sigma = 25/50/75/100).
Density distributions were then normalized to 1 and Earth Mover’s
Distance (EMD)was calculatedbetweenpairs of clusters. EMDevaluates
dissimilarity of two probability density distributions by measuring the
amount of “work” (represented by the amount of probability mass and
the distance it needs to be moved) needed to transform one distribu-
tion into theother. This distancemetric has several desirable properties
for global comparison of spatial patterns, including considering the
overall layout and relative positioning of the density distribution bins,
rather than values at individual bins only. Finally, the average of EMDs
from four sigma scales was calculated to obtain a multiscale EMD.

Imputation of unmeasured genes in MERFISH data. Anchors
betweenMERFISHmicroglia data and SmartSeq2 scRNA-Seq data were
identified using Seurat’s FindTransferAnchors function based on the
same gene set as previously for clustering (excluded non-microglial
genes) and using rpca reduction with 15 dimensions. Subsequently
expression of unmeasured genes was imputed using Seurat’s Trans-
ferData function. We filtered out genes with low expression (requiring
at least 10 counts in at least 20 cells based on original SmartSeq2 data)
resulting in imputed expression of 8687 genes in 15830 MERFISH
microglial cells.

Correlation analysis between structural features and gene
expression. EM andMERFISHdata in common coordinate systemwere
used for the analysis. From MERFISH data, we considered only cells
withing the area surrounding the available EM data. We then smooth-
ened the data by applying spatial distance-weighted averaging in order
to (i) increase signal-to-noise ratio, (ii) compensate for potential mis-
alignment and (iii) spatially transfer the values between the two mod-
alities. Specifically, for each cell, we calculated 2d kernel-weighted
average of the feature values of its neighbors (both gene expression
based on neighboring MERFISH cells and structural features based on
neighboring EM cells). For gene expression modality, we used the
measured values for the genes that were present in MERFISH panel,
and the imputed values for the remaining genes. The weights for
averaging were defined by bisquare kernel function with maximal dis-
tance parameter 75 microns, beyond which the weight is zero. This
resulted in 2d-smoothed gene expression values as well as 2d-
smoothed structural feature values in all cells in the analyzed area in
the lesion. Finally, we calculated spearman correlation coefficient for all
gene-structural feature pairs. We identified enriched Gene Ontology
Cellular Component terms among the top 200 correlating genes using
enrichR package.

Tissue collection and preparation for scRNA-Seq
Themice (18 and 24weeks old) were deeply anesthetized by 10mg/ml
ketamine and 1mg/ml xylazine solution i.p. and perfused with cold
HBSS between 9am-11am (to decrease circadian fluctuations). Each
brain was removed and under a dissection microscope individually
micro-dissected; gray matter was isolated from the frontal cortex and
white matter form optic tract, medial lemniscus and corpus callosum
(attached graymatter and choroidplexus were carefully removed).We
used a microglia isolation protocol we previously described26, that
prevents ex-vivo transcription and automatizes the mechanical isola-
tion parts using GentleMacs with the Neural Tissue Dissociation Kit
(Papain) (Miltenyi Biotec).We added actinomycin D (Act-D, Sigma, No.
A1410) to a final concentration of 45μM into the dissociation solution
and enzyme mix to prevent ex-vivo transcription. The dissociated cell
suspensionwaspassed through a 70μmcell strainer (Corning, 352350)
before labeling. Subsequently, cells were blocked with mouse FcR-
blocking reagent (CD16/CD32 Monoclonal Antibody, eBioscience
cat:14-0161-82,1100) and then stained with the antibody against CD11b

(PE/Cy7,M1/70, eBioscience, Cat:48-0451-82,1:200) and washed with
PBS (Sigma, D8537). Cells were then resuspended in PBS with BODIPY
493/503 (1:2,000 from a 1mgml–1 stock solution in DMSO) and acti-
nomycin D (final concentration of 45μM) and incubated for 10min at
37 °C. Cells were washed two times with FACS buffer. Cells were
excluded by staining with DAPI (1:10,000; Invitrogen). Viable (DAPI
negative) single immune cells (CD11b positive cells) were sorted by
flow cytometry (SH800; Sony), and index-sorting mode was used to
save BODIPY fluorescence values for each cell. Single-cells were sorted
into 96 well plates filled with 4μL lysis buffer containing 0.05% Triton
X-100 (Sigma), ERCC (External RNA Controls Consortium) RNA spike-
in Mix (Ambion, Life Technologies) (1:24000000 dilution), 2.5μM
oligo-dT, 2.5mM dNTP and 2U/μL of recombinant RNase inhibitor
(Clontech) then spun down and frozen at −80 °C.

scRNA-Seq library preparation and sequencing
The 96-well plates containing the sorted single cells were first thawed
and then incubated for 3min at 72 °C and thereafter immediately
placed on ice. To perform reverse transcription (RT) we added into
each well a master mix of 0.59μL H2O, 0.5μL SMARTScribe™ Reverse
Transcriptase (Clontech), 2μL 5x First Strand buffer, 0.25μL Recom-
binant RNase Inhibitor (Clontech), 2μL Betaine (5M Sigma), 0.5μL
DTT (100mM) 0.06μL MgCl2 (1M Sigma), 0.1μL Templateswitching
oligos (TSO) (100μM AAGCAGTGGTATCAACGCAGAGTACrGrG+G).
Next RT reactions were incubated at 42 °C for 90min followed by
70 °C for 5min and 10 cycles of 50 °C 2min, 42 °C 2min; ending with
70 °C for 5min for enzyme inactivation. Preamplification of cDNA was
performed by adding 12.5μL KAPA HiFi Hotstart 2x (KAPA Biosys-
tems), 2.138μL H2O, 0.25μL ISPCR primers (10μM, 5’ AAGCAGTGG-
TATCAACGCAGAGT-3), 0.1125μL Lambda Exonuclease under the
following conditions: 37 °C for 30min, 95 °C for 3min, 23 cycles of
(98 °C for 20 s, 67 °C for 15 s, 72 °C for 4min), and a final extension at
72 °C for 5min. Libraries were then cleaned using AMPure beads
(Beckman-Coulter) cleanup at a 0.7:1 ratio of beads to PCR product.
Libraries were assessed by Bio-analyzer (Agilent 2100), using the High
Sensitivity DNA analysis kit, and quantified usingQubit’s DNAHS assay
kits and a Qubit 4.0 Fluorometer (Invitrogen, LifeTechnologies). Fur-
ther selection of samples was performed via qPCR assay against ubi-
quitin transcripts Ubb77 (primer 1 5'-GGAGAGTCCATCGTGGT
TATTT-3' primer 2 5'-ACCTCTAGGGTGATGGTCTT-3', probe 5'-/5Cy5/
TGCAGATCTTCGTGAAGACCTGAC/3IAbRQSp/−3') measured on a
LightCycler 480 Instrument II (Roche). Samples were normalized to
160pg/μL. Sequencing libraries were constructed by using in-house
produced Tn5 transposase. Libraries were barcoded, pooled and pur-
ified in 3 rounds of AMPure bead (Beckman-Coulter) cleanup at a 0.8:1
ratio of beads to library. Libraries were then sequenced with 100 bp
paired-end sequencing on DNBSeq platform (BGI group) to a median
depth of 8.6×105 reads/sample.

scRNA-Seq analysis
Demultiplexed Fastq files were quality-controlled with FastQC and
reads were then aligned using rnaSTAR to the GRCm38 (mm10) gen-
ome with addition of ERCC spike-in sequences. To obtain single-cell
gene expression matrices reads were counted with rnaSTAR using
parameter “quantMode GeneCounts” and unstranded argument. Fur-
ther analysis was performed in R using Seurat package and custom-
made scripts. Samples were filtered for quality with several QC
thresholds (Fig. S4b). Data from LPC-injected and control mice were
integrated together using Seurat’s CCA integration workflow: Expres-
sion was normalized by dividing gene counts for each cell by total
count for that cell, multiplied by 10,000 and log-transformed, 3000
variable features were identified with SelectIntegrationFeatures()
function, transfer anchors were found using FindIntegrationAnchors()
function and data were integrated with IntegrateData() function. Data
were scaled before calculating PCA and UMAP embedding using 30
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PCs. Cell type clusters were identified using Leiden algorithm and
annotated basedon canonical cell typemarkers identified byWilcoxon
rank-sum test. After first round of coarse clustering, microglia were
isolated and analyzed separately by repeating aforementioned work-
flow. Microglial cluster labels were then mapped from MERFISH data
onto SmartSeq2 data by finding anchors using Seurat’s FindTransfer-
Anchors() function and mapping labels with TransferData() functions.
Cluster markers were identified using Wilcoxon rank-sum test.

Functional enrichment analysis. Gene expression signatures for each
microglial population were identified by (i) finding sets of differentially
upregulated genes between said population and every other population
(wilcoxon rank-sum test) (ii) intersecting these sets. Identified sig-
natures are available in SupplementaryData 3. EnrichedKEGGpathways
andGeneOntology terms in these signatures were then identified using
Enrichr package. Full results are available in Supplementary Data 4. For
analysis of publishedmicroglial signatures,marker geneswere collected
from relevant publications. Specifically, for lipid-associated macro-
phage signature we intersected markers of lipid-associated macro-
phages in adipose tissue42, atherosclerotic aorta43 and liver44. For DAM
signature, we intersected markers of disease-associated microglia
(DAM)15, activated-responsemicroglia (ARM17), and neurodegeneration-
related microglia signature67 and excluded genes in lipid-associated
macrophage signature to assure specificity. For homeostatic signature
we intersected markers of homeostatic microglia from refs. 15,67. For
interferon signature we intersected signature of interferon microglia67

and core module of interferon-stimulated genes68. Activity of each sig-
nature was scored in each cell using AddModuleScore() function. Sig-
natures from literature are available in Supplementary Data 5.

Analysis of BODIPY staining data. Continuous BODIPY staining
values were matched to the single-cell transcriptomes from Smart-
Seq2 dataset based on the index-sorting information. Exploratory
analysis revealed moderate batch effect in BODIPY data between
control and LPC-treated samples. To remove any potential batch
influence, we used only cells from LPC-treated samples in the sub-
sequent analysis. BODIPY values were log10-transformed and differ-
ences between microglial clusters were tested with ANOVA followed
by pairwise-post hoc tests using emmeans R package. To robustly

identify correlationsbetween genes andBODIPY values,we employed
metacell approach that collapses transcriptionally highly similar cells
into small groups. Thismitigates sparsity and noise inherent in single-
cell data that are known to hamper correlation analyses46. Metacells
were constructed with ConstructMetacells function from hdWGCNA
R package47,69 using k = 20. We then calculated Pearson correlation
coefficients between average values of genes and average BODIPY
value in the metacells. To identify pathways and biological processes
enriched in BODIPY-correlating genes, we used Gene Set Enrichment
Analysis (via fgsea R package) with pearson correlation values as rank
metric (Supplementary Data 6). Gene Ontology, KEGG and Hallmark
Signature gene sets were retrieved from the Molecular Signature
Database using msigdbr R package.

Serial section electron microscopy using automated
tape-collecting ultramicrotomy (ATUM)
Mouse cryotome sections adjacent to the ones analyzed by spatial
transcriptomics were sectioned at 10 µm thickness and collected onto
glass slides (SuperFrost Plus Gold, Thermo). Tissue sections stayed
adherent to the glass slides during the processing for EM and were
kept in slide containers (Simport™ Scientific LockMailer™ Tamper
Evident Slide Mailer, Fisher Scientific). These holders were positioned
in a wrack on an orbital shaker during the incubation steps and
reagents were exchanged by pouring or pipetting. We postfixed the
sections in 2.5% glutaraldehyde (Science Services) in 0.1M sodium
cacodylate (Science Services) buffer (pH 7.4) for 30min and applied a
standard rOTO protocol starting with 1 h incubation in 1% osmium
tetroxide (Science Services), 1% potassium ferricyanide (Sigma) in
0.1M sodium cacodylate buffer (pH 7.4). After washing and reaction
with 1% thiocarbohydrazide (Sigma) for 20min at 40 °C we applied a
secondosmiumstep (1%osmiumtetroxide inwater, 1 h). The tissuewas
further contrasted in 1% aqueous uranyl acetate at 4 °C over night.
Samplesweredehydrated in anascending ethanol series and infiltrated
with LX112 in acetone (LADD). Large gelatin capsules covering the
entire brain coronal section (size 000, 9.55mm diameter, Science
Services) were positioned onto the glass slides and cured for 2d at
60 °C. In order to remove the encapsuled sample from the glass slide
we notched the resin around the tissue section with a sharp blade. The
glass slidewas then submerged into liquidnitrogen for several seconds

Table 2 | Comparison of protocol changes between standard ATUM and STcEM ATUM for EM

standard ATUM (Kislinger,
et al. 2020)

STcEM ATUM reasoning impact

fixation perfusion by 4% PFA, 2.5%
glutaraldehyde in 0.1M
cacodylate buffer, pH 7.4

perfusion by 4% PFA in PBS pH 7.4; post-
fixation of cryosections in 2.5% glutar-
aldehyde in0.1Mcacodylate buffer, pH7.4

glutaraldehyde would impact
MERFISH analysis

lack of glutaraldehyde in perfusion
fixative restricts ultrastructural
preservation

freezing no 14h 15% sucrose 5 h 30% sucrose Tissue-
Tek® O.C.T.™ Compound embedding
Freezing to −80 °C

freezing needed for cryosectioning freezing sacrifices ultrastructural
preservation

tissue
slicing

vibratome sections cryotome sections freezing needed for MERFISH, thin-
ner sections allow the inspection of
similar regions by both methods

10µm thin sections are prone to puff-
ing up and require special handling
during further processing

tissue
dissection

dissection, area
usually <3×3mm

no dissection, area ~8×10mm (an entire
coronal adult mouse brain section)

matching the information content of
EM and MERFISH for later decision
on the region of interest

challenging for tissue flatness during
contrasting/embedding and section
removal from glass slide

contrasting
container

glass vial microscope slide container cryotome slice is adhered onto a
glass slide

larger amount of reagents needed

embedding
mold

<7mm diameter gelatin
capsule or silicone mold

9.55mm diameter gelatin capsule large tissue area ultramicrotomy holder has to be fitted
by removal of inner metal blocks;
lower stability during ultramicrotomy

tissue
retrieval
after curing

manual removal freeze-thaw cycles thin, large sections tend to break
during retrieval from glass slide

fragility

Ultramicro-
tomy

3–4mm diamond knives 4–8mm diamond knives blockface size ultrathin or serial sectioning harder
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and heated up in a 60 °C water bath. These freeze-thaw cycles were
repeated until the tissue block could be removed from the glass slide.

The block was trimmed at the empty resin end using a rotary tool
(Dremel) in order to fit it into a standard sample holder. We trimmed
the tissue end to generate an approximately 3 × 5mm block face
bearing the entire cortex and the ventriclesusing a trimming machine
(TRIM2, Leica). After taking single large sections covering both hemi-
spheres, the block was trimmed to the ipsilateral region only
(2 × 3mm) for the whole area annotation (Fig. 2). Sections (127) at
200nm thickness were collected onto an ATUMtome (Powertome,
RMC) using a histo knife (Diatome) and collected on freshly plasma-
treated (custom-built, based on Pelco easiGlow, adopted from M.
Terasaki, U. Connecticut, CT), carbon nanotube (CNT) tape (Science
Services). CNT tape stripes were assembled onto adhesive carbon tape
(Science Services) attached to a 4-inch silicon wafer (Siegert Wafer)
and grounded by adhesive carbon tape strips (Science Services). EM
micrographs were acquired on a Crossbeam Gemini 340 SEM (Zeiss)
with a four-quadrant backscatter detector at 8 kV. In ATLAS5 Array
Tomography (Fibics), we acquired the whole section at 200nm and
ipsi- and contralateral regions of interest at 20 nm lateral resolution.
For the serial sections, we imaged the whole section overview at
200 × 200 × 200nm resolution and selected the region of interest
within a thickness of 13.2 µm(66 × 200nm). Every second section (axial
resolution 400 nm) was imaged at 20 × 20nm lateral resolution. This
resulted in three image stacks, one covering the full area of interest at
1.2 × 1.2mm and two covering 0.5 × 0.5mm. The large image stacks
were exported as tiles, stitched and aligned using Fiji TrakEM2 and
three VAST files generated from them.

For the whole area annotation (Fig. 2) we trimmed the block face
to a 2 × 3mmsize covering the ipsilateral lesion site. Serial sections (127
at 200nm thickness) were taken and collected onto tape. We imaged
the whole section overview at 200x200x200 nm resolution and
selected the regionof interestwithin a volumeof 13.2 µm(66 × 200nm)
thickness. Every second section (z resolution 400nm) was imaged at
20 × 20nm lateral resolution. This resulted in three image stacks, one
covering the full area of interest at 1.2 × 1.2mm and two covering
0.5× 0.5mm. The large image stacks were exported as tiles, stitched
using TrakEM2 and three VAST files generated from them.

Expert cell type annotation
Annotation of cell types according to the ultrastructural morphology
was performed in VAST70 on all three datasets. The respective cell of
interest was investigated along the entire stack thickness, screened for
ultrastructural features (lipid droplet, lysosomal content, ER branch-
ing), categorized and flagged at the stack surface. The structural

criteria for categorization are summarized in Table 3. The three VAST
object files were exported and reassembled in Blender.

Quantitative structural analysis
Segmentation. For quantitative feature-based classification of ultra-
structuralmicroglialmorphologieswe segmented the entire organellar
inventory of examined cells. These segmentations are cell-type inde-
pendent, only the extent of prevalenceof lipiddroplets is characteristic
to (foamy) microglia. Specifically, microglia from 17 consecutive tissue
sections were segmented using VAST in one of the three image stacks
that covered the entire area. For each cell, the plane with the biggest
cellular area within the stack was selected and its features were
manually segmented. Exclusion criteria were: (i) cells with most of its
volume outside the stack and (ii) cells with representative planes that
were damaged from sample preparation. Nuclear eu- and hetero-
chromatinwere differentiated by separate segments. Further organelle
labeling comprised lysosomes, mitochondria and ER. In addition, areas
with lipid droplets or other complex phospholipid inclusions (hall-
marks of different processing state of the phagocytosed lipidic mate-
rial) were segmented and termed “lipid droplet-filled area”. In addition,
“organellar cytoplasm” and “empty cytoplasm” refer to cytoplasmic
areas with or without any aforementioned organelles, respectively.

Generating raw features data from segmentation. Segmentations
were exported with VAST tools as binary image tiles of 8192×8192
pixels. The followingprocessing stepswere carried outwith the helpof
a user-defined script using Napari for visualization71 Tiles were repat-
ched and whole cell segmentations were indexed using connected
component labeling. For each indexed cell, the exact location was
obtained from its bounding box coordinates. Other ultrastructural
segmentations were referred to the whole cell segmentations. For
nucleus, heterochromatin, lysosomes, lipid droplets, mitochondria
and other organelles, the ultrastructural area was expressed as total
number of pixels. The length of endoplasmic reticulum (“ER length”)
was calculated as arc length using OpenCV72. Finally, the “empty
cytoplasm area” was obtained by subtracting the number of pixels
fromall other segmentations from that of thewhole cell segmentation.
These were represented as a structured database, which was subse-
quently cleaned by removing stray pixels and any cells with unseg-
mented ultrastructure before undergoing further feature selection.

Clustering analysis. PCAwas calculatedbasedon all structural features
(areasof segmentedultrastructures and their non-redundant ratios) and
first 20 PCs were used to calculate shared nearest neighbor graph using
Seurat’s FindNeighbors function. The snn graph was then clustered by

Table 3 | Overview of major ultrastructural criteria for expert classification

criteria references

microglia in general darker cytoplasm, oval nuclei, characteristic heterochromatin pattern showing a
peripheral heterochromatin ring and several larger patches throughout the
nucleus, other morphological characteristics depend on the activation state

(Nahirney and Tremblay 2021)34 (Savage, et al. 2018)35

homeostatic small cytoplasmic compared to nuclear area this paper

reactive non-
lysosomal

larger cytoplasmic compared to nuclear area, extended ER partially with parallel
sheets, several mitochondria, few lysosomes

this paper

reactive lysosomal like reactive non-lysosomal, several lysosomes (van Eijk and Aerts 2021)39 (Du, et al. 2019)38

foamy lipid accumulation, overload of the cytoplasmwith lipid droplets and other states
of phagocytosed lipidic material

(van Eijk and Aerts 2021)39 (Berghoff, et al. 2021)36

(Cantuti-Castelvetri, et al. 2018)8 (Bosch-Queralt, et al.
2021)12

T-cell characteristic heterochromatin pattern, low amount of organelles, relatively small
cytoplasm (compared to nucleus)

(Hirsh, et al. 2007)37 (Wacker, et al. 2015)73

unknown nuclear morphology similar to T-cells, large cytoplasm without organelles,
mitochondria only close to nuclear envelope region, not peripheral

astrocyte contain dark granules (glycogen), nuclear membrane concave (star-like) (specific
to this protocol), processes with filaments (GFAP filaments), bright cytoplasm

(Nahirney and Tremblay 2021)34 (Calì, et al. 2019)74

(Maxwell and Kruger 1965)75
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Louvain algorithm with FindClusters function. Data were visualized as
UMAP, which was calculated based on 15 PCs using RunUMAP function.

Method for retrieving corresponding manual label. As expert clas-
sification and feature-based ultrastructural analysis were conducted
independently, along with inadvertent folds in some sections that
resulted in imprecise cross-section alignment, exact coordinates of a
cell can vary slightly between both datasets. Tomatch cells from expert
classification and feature-based analysis to a common index, euclidean
distanceswere calculatedbetweenevery coordinateof the twodatasets.
For each expert classified cell, the shortest distance was selected where
it was then assigned the corresponding cell index. Fisher exact test was
used to compare significance of overlap between expert-assigned labels
and cluster labels in 144 cells for which both labels were retrieved.

Immunohistochemistry
To quantify PLIN2 and GPNMB/Galectin3 double positive microglia,
brain sections (16 µm thick) from LPC injected mice (4months old, 14
dpi) were permeabilized for 10min in sodium citrate buffer (0.01M, pH
6.0) at 80 °C, blocked in Blocking Buffer (2,5% BSA, 2,5% fish gelatin,
2,5% FCS in 1xPBS) and incubated with Plin2 (Novus Biological NB110-
40877, 1:200, rabbit), Iba1 (Synaptic Systems 234 009,1:400, chicken),
Gpnmb (biotechne, BAF2330, 1:200, goat) or Galectin3 (Novus Biolo-
gical, NBP2-16590, 1:400, rat) in diluted blocking buffer (1:5 PBS) with
0,05% saponin (Sigma Cat.47036) overnight at 4 °C. After repeated
washing, section were incubated with secondary antibodies (Alexa-
Fluor™ 488, donkey anti-chicken Invitrogen # A78948, 1:1000, Alexa-
Fluor™555donkey anti-rabbit, Invitrogen#A-31572, 1:1000, AlexaFluor™
647 donkey anti-goat, 1:1000 or AlexaFluor™ 647 donkey anti rat, #
A48272, 1:1000) diluted in blocking buffer (1:5 in PBS) with 0,05%
Saponin for 2 h at RT. Nuclei were stained with Hoechst (2μg/ml
Hoechst 33342). Optical sections were acquired with a confocal laser-
scanning microscope (Zeiss LSM 900 AiryScan) using a 63x/1.46 Oil-
objectives (Zoom factor 1.3–2.5). The z-step in z-stacks was kept
at 0.8μm.

Toquantify T cells within andoutside the lesion area, brain sections
of LPC injected mice (14 dpi) were permeabilized in permeabilization
buffer (0,5%TritonX-100 in PBS) for 30min andblockedwithAffiniPure
FAB Fragment Donkey Anti-Mouse IgG (H+L) (715-007-003, Jackson
ImmunoResearch, 1:100 in permeabilization buffer) for 1 h, followed by
incubation with blocking buffer (5% goat serum in permeabilization
buffer) for another hour. Primary antibodies against Iba1 (Synaptic
Systems 234004, guinea pig, 1:500), Stat1 (Cell Signaling Technology,
clone 14994S, rabbit, 1:500) andCd8a (biolegend, 100702, clone 53-6.7,
rat, 1:100) were diluted in blocking buffer and incubated on the sections
overnight at 4 °C. After washing three times with permeabilization
buffer, sections were blocked using the Avidin/Biotin Blocking Kit
(Vector’s Laboratories, SP-2001) and then incubated with secondary
antibodies against guinea pig (AlexaFluor™ 647, Invitrogen, A-21450,
1:500), rat (AlexaFluor™ 488, Invitrogen, A-11006, 1:500) and rabbit
(Goat Anti-Rabbit IgG Antibody (H + L), Biotinylated BA-1000) in
blocking buffer on the sections for 1 h. Sections were washed three
times with permeabilization buffer and incubated with fluorescently
conjugated streptavidin (Streptavidin, AlexaFluor™ 555 conjugate,
Invitrogen, 1:500) in blocking buffer for 1 h. Lastly, DAPI (Invitrogen,
D1306, 1 μg/mL final concentration) in blocking buffer was added for
30min. Sections were finally washed and embedded in ProLong™
Gold Antifade Mountant (Life Technologies, P36934). Images were
taken as z-stacks at a Zeiss LSM 900 AiryScan, with a 20x objective
(Plan-Apochromat 20x/0,8 M27-Air).

Analysis of IHC data. For IHC quantification, images were taken from
3 to 5 biological replicates. The value of n and what it represents in
each quantification can be found in the respective figure legends. For
the quantification of double positive PLIN2+Galectin3+ cells, the

average of 2–4 lesion side images per mouse was considered as one
biological replicate. For the T cell count within and outside the lesion
side, one whole imaged lesion and surrounding area per mouse was
considered as a biological replicate. For the count of T cells outside of
the lesion area, ventricles were excluded, as well as brain area without
any further T cell occurrence, meaning the most distant T cell outside
the lesion in the image frame built the landmarks for framing the
outside lesion area, however, if not applicable (because of missing T
cell), the border of the lesion side built the alternative landmark to
frame the “outside lesion area”. Quantification was performed with
ImageJ. Bar graphs and boxplots related to IHC staining were gener-
ated in R and base R functions were used to perform statistical testing
and to calculate p-values for Fisher’s exact test or Wilcoxon-Mann-
Whitney test. A p-value of <0.05 was considered as significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The MERFISH and scRNA-Seq datasets generated in this study have
been deposited in the Gene Expression Omnibus (GEO) database
under accession number GSE202638. Figure source data are provided
with this paper. All other data that support the findings are available
upon request from the authors. Source data are provided with
this paper.

Code availability
The code used for the analyses is available at Github: https://github.
com/ISD-SystemsNeuroscience/STcEM.
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