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Purpose: We sought to delineate the genotypic and phenotypic
spectrum of female and male individuals with X-linked, MSL3-
related disorder (Basilicata–Akhtar syndrome).

Methods: Twenty-five individuals (15 males, 10 females) with
causative variants in MSL3 were ascertained through exome or
genome sequencing at ten different sequencing centers.

Results: We identified multiple variant types in MSL3 (ten
nonsense, six frameshift, four splice site, three missense, one in-
frame-deletion, one multi-exon deletion), most proven to be de
novo, and clustering in the terminal eight exons suggesting that
truncating variants in the first five exons might be compensated by
an alternative MSL3 transcript. Three-dimensional modeling of
missense and splice variants indicated that these have a deleterious
effect. The main clinical findings comprised developmental delay
and intellectual disability ranging from mild to severe. Autism
spectrum disorder, muscle tone abnormalities, and macrocephaly

were common as well as hearing impairment and gastrointestinal
problems. Hypoplasia of the cerebellar vermis emerged as a
consistent magnetic resonance image (MRI) finding. Females and
males were equally affected. Using facial analysis technology, a
recognizable facial gestalt was determined.

Conclusion: Our aggregated data illustrate the genotypic and
phenotypic spectrum of X-linked, MSL3-related disorder
(Basilicata–Akhtar syndrome). Our cohort improves the under-
standing of disease related morbidity and allows us to propose
detailed surveillance guidelines for affected individuals.

Genetics in Medicine (2021) 23:384–395; https://doi.org/10.1038/s41436-
020-00993-y
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INTRODUCTION
MSL3 resides on the X-chromosome and encodes a subunit of
the chromatin-associated male specific lethal (MSL) complex.1,2

The MSL complex mediates global histone H4 lysine-16
acetylation (H4K16ac) and plays a crucial role as an epigenetic
modulator in flies and mammals.1–4 In mammalian species, the
core MSL complex consists of MSL1, MSL2, MSL3, and MOF
(males absent on the first).2,3,5 MSL3 itself contains a C-terminal
morf-related gene (MRG) domain, responsible for MSL
complex formation, and an N-terminal chromo domain (CD),
implicated in chromatin targeting.6–12

MSL3 was first identified as a candidate gene in the
Deciphering Developmental Disorder Study13 and was recently
described as the underlying genetic cause of Basilicata–Akhtar
syndrome (MIM 301032), a novel X-linked neurodevelopmen-
tal disorder that equally affects female and male individuals.14 In
a total of 16 patients (including two siblings), exome sequencing
revealed a variety of associated variant types in MSL3, but
mainly loss-of-function variants. Except for the siblings with
suspected parental mosaicism and a maternally inherited X-
chromosome inversion, all variants occurred de novo. In
transfected HEK293 cells, mutant proteins displayed loss of
interaction with the histone acetyltransferase MOF and with

MSL1. In patient-derived cells, a bulk reduction of acetylated
H4K16 compared with wild type was observed. Transcriptome
analyses of patient cells showed dysregulation, mainly down-
regulation, of genes involved in developmental pathways.
Treatment with a histone deacetylase inhibitor in vitro restored
acetylation levels and MSL3 mutant cells adopted the migratory
behavior of the control cells.
Common clinical features in affected individuals include

global developmental delay, delayed speech, muscular hypo-
tonia, feeding difficulties in early infancy, progressive
spasticity, and overlapping facial dysmorphism.14

However, with only 16 individuals described to date, the full
genotypic and phenotypic spectrum of MSL3-related syn-
drome remains incompletely elucidated. Hence, this study
aims to provide a comprehensive clinical and molecular
characterization of individuals with causative variants in
MSL3, to study possible genotype–phenotype correlations and
to determine sex-specific differences.

MATERIALS AND METHODS
Participants and samples
Individuals with disease associated variants in MSL3 were
ascertained via the public data sharing platform GeneMatcher
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(entry “MSL3”)15 and via a Facebook family group
(“MSL3 syndrome”). All individuals or their legal guardians
gave written informed consent for their participation in the
study and the publication of detailed clinical data. Additional
informed consent was obtained when identifying images were
included in this article. We obtained and thoroughly reviewed
clinical records and genetic findings in every individual as
well as photographs and brain magnetic resonance images
(MRIs) when available. Individual 13 was previously pub-
lished by Basilicata et al. (as P4)14 and was enrolled in this
study after obtaining additional clinical follow-up data.

Ethics statement
The study was performed in agreement with the ethical
standards of the responsible committee on human experi-
mentation (institutional and national) and with the Declara-
tion of Helsinki, and was approved by the local ethics
committee of the Technical University Munich (#5360/12S).

Exome sequencing
Exome sequencing (ES), genome sequencing (GS), and MSL3
Sanger sequencing was carried out independently at ten
different research or diagnostic centers using genomic DNA
extracted from leukocytes or whole blood. Technical details
can be found in Supplementary Information. Variants’
pathogenicity was classified according to the American
College of Medical Genetics (ACMG) guidelines.16 Nonsense,
frameshift, and splice variants as well as multi-exon deletions
were classified as loss-of-function variants in contrast to
missense and indel variants.

Statistics
Statistical analyses were performed in R (version 3.5.3).17

Comparative analyses between females and males and
between loss-of-function variants and missense variants/in-
frame deletions were calculated using the Fisher’s exact test.18

Given the exploratory design of our study, P values < 0.05
were considered statistically significant. Counts for clinical
features are given only for those where the respective
information was available, therefore the total count can be
lower than the total number of individuals.

Molecular modeling
SpliceAI (Illumina) was used to predict splice junctions for
splice variants.19 For 3D modeling of identified missense
variants and splice variants that are predicted to escape
nonsense-mediated decay (NMD), we used the experimentally
solved structure of the MSL3:MSL1 tetramer complex (PDB:
2y0n)12 with unresolved loops modeled using homology-
based methods.20 Variants were mapped to the protein
structure using custom scripts. ΔΔGfold was calculated for
each variant studied using FoldX version 4.0.21

Facial analysis
The DeepGestalt technology by Face2Gene (FDNA Inc.,
Boston, MA) was used to assess the presence of distinct facial

patterns. Twelve frontal facial photographs (P1, P2, P3, P5,
P6, P7, P8, P9, P10, P11, P12, P13) were obtained from
Basilicata et al.14 Individuals P14 and P15 were excluded as
deletions spanning more genes than MSL3 were identified in
the latter. For individual P4, who was also included in this
study (as individual 13), a more recent photograph was
chosen. Frontal images of additional 17 unpublished indivi-
duals from this study were available, thus adding up to a total
of 30 individuals applicable for facial analysis. Age-, sex-, and
ethnicity-matched controls were used as a comparison cohort.
As previously reported, a composite image of the affected
individuals was generated using the DeepGestalt facial
analysis and binary comparison between controls and affected
individuals was evaluated by measuring the receiver operating
characteristic (ROC) curves and the corresponding area under
the curve (AUC).22

RESULTS
Demographic features
Our cohort of 25 individuals with hemizygous or hetero-
zygous variants in MSL3 includes 15 males and 10 females
whose ages ranged from 14 months to 30 years (median: 7.25
years, interquartile range: 3.08–16.33 years) at the time of the
last follow-up. Table 1 gives an overview of the clinical
phenotype of the 25 individuals described in this study.
Figure 1a displays the facial appearance of the individuals for
whom facial pictures were available. A comprehensive
summary of the clinical features of the 25 individuals is
provided in Table S1.

Neurological findings
Neurological abnormalities constituted the main clinical
phenotype of MSL3-related disorder. Developmental delay
(DD) was prominent in all individuals (n= 25/25, 100%),
with global DD in 24/25 (96%) individuals and isolated
speech development delay in 1/25 (4%) individual. Fifteen
of 16 (94%) individuals were diagnosed with intellectual
disability (ID). ID was classified as mild in 5/15 (33%)
individuals, moderate in 3/15 (20%) individuals, severe in
1/15 (7%) individuals, profound in 1/15 (7%) individuals,
and borderline intellectual functioning in 1/15 (7%)
individuals. Four of 15 (27%) individuals had received
the diagnosis of ID; however, the level of ID had not been
determined.
Twenty-two of 25 (88%) individuals had a history of

abnormal muscle tone, comprising truncal muscular hypoto-
nia (n= 21) and/or spasticity of the upper and lower limbs (n
= 7) while 5 individuals had mixed tone. Muscular hypotonia
was predominantly evident in infancy, while spasticity
appeared to evolve with increasing age.
A heterogeneous spectrum of movement disorders was

reported including dystonia (n= 5/25; 20%), brady-/hypoki-
nesia (n= 6/24; 25%), and ataxia (n= 6/23; 26%). Dystonic
movements were described as generalized as well as focal.
Three individuals had received the clinical diagnosis of
cerebral palsy before genetic testing was initialized.
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Most individuals ambulated prior to age of 3 years with the
exception of one individual who did not walk until the age of
4 years. Three individuals (ages: 14 months, 15 months,
33 months) were still non-ambulatory at the time of last
follow-up. Gait abnormalities were present in eight indivi-
duals. One individual (individual 17) developed progressive
gait disturbance due to ataxia by the age of 13 years and was
non-ambulatory by the age of 15 years. No other individual
was reported to have lost ambulation.
Receptive language skills seemed to be better developed

than expressive language; however, these observations were
not based on standardized testing. Ten of 25 (40%)
individuals were nonverbal at the time of data collection
(ages: 14 months, 15 months, 29 months, 33 months, 3 years,
3 years, 4 years, 8 years, 16 years, 19 years).
None of the participants showed signs of developmental

regression except for two individuals. Individual 18 displayed
two episodes of developmental regression in his verbal and
cognitive abilities at ages 13 and 18 years from which he
recovered only partially. Neither of these episodes was
associated with a documented triggering event. Individual
17 had regression of his motor skills with progressive gait
disturbance and became nonambulatory. Ten of 20 (50%)
individuals had a diagnosis of autism spectrum disorder
(ASD). Other behavioral abnormalities included attention
deficit–hyperactivity disorder (ADHD) (n= 4), aggressive
behavior (n= 2), anxiety (n= 4), obsessive–compulsive dis-
order (n= 2), and self-injurious behavior (n= 2). Three
individuals, however, were described as very friendly and
sociable.
Four of 23 (17%) individuals had a history of seizure(s).

Seizures were well controlled with antiepileptic treatment in
all cases. Individual 17, who experienced a single seizure in
infancy, later stopped antiepileptic drugs and has been
seizure-free since then.

MRI findings
To gain further insight into brain MRI abnormalities, relevant
images or whole MRI data sets of eight affected individuals
were evaluated by the same pediatric neuroradiologist
(individuals 1, 2, 3, 11, 15, 16, 17, and 18). Image analysis
revealed hypoplasia of the inferior part of the cerebellar
vermis as a consistent feature in the individuals investigated
(Fig. 2). Variable dilatation at the trigone of the lateral
ventricles was also noted (Fig. S1). In addition, a spectrum of
variable central nervous system (CNS) findings was reported
including nonspecific white matter abnormalities (five
individuals) and moderate widening of external cerebrospinal
fluid spaces (two individuals). Follow-up MRIs were available
for two individuals (2 and 17). In these cases, cerebellar
abnormalities were nonprogressive (Fig. S2).

Additional findings
Macrocephaly (occipital frontal circumference [OFC] > 97th
percentile) (including relative macrocephaly) was present in 3/
14 (21%) individuals at birth, while at the time of the lastTa
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follow-up macrocephaly was seen in 11/21 (52%) individuals
indicating secondary macrocephaly. Birth length was within
normal limits (3rd–97th percentile) in 19/19 (100%) indivi-
duals and 4/23 (17%) individuals subsequently developed short
stature (<3rd percentile). Polyhydramnios was evident in 4/18
(22%) pregnancies. A heterogeneous spectrum of gastrointest-
inal problems, mainly constipation and gastroesophageal reflux
disease, was found in 18/23 (78%) individuals. Five of 23 (22%)
individuals were reported to have urinary symptoms: two
individuals had urinary retention needing catheterization, one
individual had bilateral hydroceles at birth, and two had
hydronephrosis and pyeloureteral junction stenosis, respec-
tively. Respiratory symptoms were observed in 8/21 (38%)
individuals and 4/23 (17%) individuals had abnormalities of the
cardiovascular system. Vision abnormalities were common but

heterogeneous (12/22; 55%). Eight of 23 (35%) individuals had
conductive and/or sensorineural hearing loss (uni- or bilateral).
Individual 6, who had moderate to severe bilateral sensor-
ineural deafness, also harbored a pathogenic homozygous
STRC gene deletion as an additional genetic finding and was
diagnosed with deafness, autosomal recessive 16 (MIM
603720). We considered it more likely that the pathogenic
variant in STRC primarily contributed to the hearing
impairment in this individual. Skeletal features (e.g., pes
planus, plagiocephaly, pectus carinatum) were evident in 17/
24 (71%) individuals. Abnormalities of the fingers, such as
clinodactyly, tapered and slender fingers, which were observed
in several individuals, are depicted in Fig. S3. A detailed
description of additional findings is provided in the Supple-
mentary case reports and Table S1.

Facial appearance
Dysmorphic facial features were reported in the majority
(n= 23/24 [96%]). Figure 1a displays the facial appearance of
18 individuals for whom facial pictures were available.
Dysmorphic features were relatively mild, especially at a
young age, but commonly shared features were round face,
broad nasal bridge, epicanthal folds, hypertelorism, promi-
nent forehead, and coarse facial features. Additional features
included arched brows, high nasal bridges, abnormal denti-
tion, overbites, narrow palates, and micrognathia. An
abnormal shape or position of the outer ear encompassing
low set and/or posteriorly rotated ears, preauricular tags, and
overfolded helices was present in 14/22 (64%) individuals.
We used Face2Gene RESEARCH application to perform

computer-based facial analyses of 30 individuals with MSL3
variants (12 individuals from Basilicata et al.,14 18 individuals
from this study). The binary comparison between individuals
with MSL3 variants and unaffected controls (age, sex, and
ethnicity matched) yielded an average AUC of 0.976
expressing a significant difference between these two cohorts
(p < 0.005) (Fig. 1b). The aggregated composite facial image/
mask depicts a distinct facial gestalt (round face, coarse facial
features, broad nasal bridge, puffy eyes, hypertelorism,
downslanting palpebral fissures, downturned corners of the
mouth) (Fig. 1b).

Phenotypic differences between females and males
We further evaluated if specific clinical characteristics
significantly (Fisher’s exact test) appear more often in females

Fig. 1 Phenotypic characteristics of males and females with X-linked, MSL3-associated disorder. (a) Facial gestalt of individuals with causative
variants in MSL3 showing dysmorphic features with broad nasal bridge, ear abnormalities (low set and/or posteriorly rotated ears, preauricular tags,
overfolded helices), and coarse facial features in older individuals being the most common characteristics. (b) Using Face2Gene, a composite image based on
the frontal facial images of previously published and newly diagnosed cases with MSL3-associated disorder was created. The mask of the healthy controls
was generated by an age-, sex-, and ethnicity-matched control group. The composite image of individuals with MSL3 variants visualizes dysmorphic and
distinguishing facial features (round face, coarse facial features, broad nasal bridge, puffy eyes, hypertelorism, downslanting palpebral fissures, downturned
corners of the mouth). The aggregated binary comparison (AUC area under the curve, ROC receiver operating characteristic) demonstrates a significant
difference between the two cohorts (p < 0.005). (c) Back-to-back chart visualizes the frequency (in percent) of respective clinical features present in females
(gray bars, n= 10) and males (blue bars, n= 15). The distribution of no feature was significantly different between the respective subgroups (Fisher’s
exact test).

a b c

d

g h i

e f

Fig. 2 Brain magnetic resonance image (MRI) findings in individuals
with pathogenic variants in MSL3. (a) Brain MRI image (T1-weighted
sagittal view) of a healthy individual at the age of 13 years. The white arrow
indicates the inferior part of the cerebellar vermis. (b–i) Brain MRI images
(sagittal views) of individuals with variants in MSL3 (T1-weighted sequen-
ces; [f, g] are contrast enhanced sequences). (b) Individual 17 (age 13
years). (c) Individual 15 (age 7 years). (d) Individual 16 (age 5 years). (e)
Individual 11 (age 24 months). (f) Individual 18 (age 18 years). (g) Individual
3 (age 14 months). (h) Individual 1 (age 12 months). (i) Individual 2 (age
20 months). In all individuals with pathogenic variants in MSL3 variable
hypoplasia (or atrophy) of the inferior part of the cerebellar vermis was
observed (white arrows; please compare with normal findings in [a]).
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versus males (Table S4). No significant difference regarding
the frequency of clinical features was found between the two
groups. Figure 1c visualizes the comparison of the clinical
features between females and males.

Phenotypic differences between individuals with missense
variants/in-frame deletions and individuals with loss-of-
function variants
We further evaluated if specific clinical characteristics
significantly (Fisher’s exact test) appeared more often in
individuals with loss-of-function variants versus individuals
with missense variants/in-frame deletions (Table S4). No
significant difference regarding the frequency of clinical
features was found between the two groups. Figure S4
visualizes the comparison of the clinical features between
both groups.

Variants in affected individuals
We identified heterozygous and hemizygous variants in MSL3
(NM_078629.4) in 25 individuals from 25 independent
families and observed a spectrum of variant types with loss-
of-function variants being the predominant variant type (n=
21/25). These comprised ten nonsense variants, six frameshift
variants, four splice site variants, and one multi-exon deletion.
In two canonical splice site variants, exon skipping or the use
of a cryptic splice site would disrupt the reading frame. The
variant c.1382–1G>A is predicted to result in an in-frame
product with use of a cryptic splice site (p.[Val461_Pro464-
del]).19 The splice variant c.1466+1G>A is predicted to lead
to exon skipping with the introduction of a premature
translation termination codon in the last exon (p.[Val461-
Glyfs*3]) and would most likely not undergo NMD.23,24 The
multi-exon deletion comprises exons 6–8 and is predicted to
result in the disruption of the reading frame (out-of-frame
deletion) as well. All other truncating variants occurred before
the last exon of MSL3 and were predicted to undergo
NMD.23,24 Furthermore, three missense variants as well as
one in-frame deletion were detected that all affected highly
conserved amino acids in the MRG domain. All detected
variants were absent from gnomAD.25 All variants were
classified as likely pathogenic or pathogenic, respectively,
accordingly to the ACMG criteria (Table S2).16

To date, three recurrent variants have been observed: the
variant c.590_593del, p.(Leu197*) was found in two unrelated
individuals from this study (individuals 14 and 20), and the
variants c.1125_1141dup17, p.(Met381Argfs*30) and
c.1372C>T, p.(Arg458*), which were identified in individuals
12 and 25, respectively, were previously reported.14 All
variants were located within the last eight exons (exon
6–13) of MSL3 (NM_078629.4), encoding the MRG domain,
whereas no variants were detected within the first six exons.
Figure 3a visualizes the type and distribution of the variants
described in this study. We furthermore aggregated all so-far
reported causative variants14,26 in MSL3 confirming that
pathogenic variants inMSL3 cluster in the exons encoding the
MRG domain. Figure 3b illustrates the distribution of the

respective variants. Table S3 summarizes all previously
published variants as well as variants from this study (n= 41).
Parental DNA samples were available for 22 individuals.

Variants were proven to be de novo in 21 of those individuals.
In the healthy mother of individual 11, segregation study
(Sanger sequencing) suggested the variant as low-level mosaic
in blood cells. The variant load of approximately 8% was
estimated using droplet digital polymerase chain reaction
(ddPCR). No respective parental DNA samples were available
for individuals 6, 8, and 20; however, unremarkable family
histories in combination with the finding of pathogenic
variants in those cases suggested likely de novo origins as well.
Overall, we did not identify familial cases.

Molecular modeling reveals common underlying
mechanism
We investigated the 3D pattern of genetic variants on the
encoded protein of the MRG domain. The MRG domain is
predicted to make a bipartite fold where the N- and C-
terminal regions intertwine. The substitutions p.(Leu457Pro)
and p.(Arg458Leu), the in-frame deletion p.(Gln454del), as
well as the two splice variants with the predicted con-
sequences p.(Val461_Pro464del) and p.(Val461Glyfs*3) that
presumably escape NMD all occur in the middle of this region
(Fig. 4). These alterations will, most likely, destabilize the fold,
which is necessary for binding to MSL1. The folding energy
(ΔΔGfold) is highly destabilizing for missense variants p.
(Leu457Pro) (5.36 kcal/mol) and p.Arg458Leu (4.02 kcal/
mol), while it is neutral for the variant p.(Asn437Thr)
(−0.23 kcal/mol) in the monomer. The p.(Asn437Thr) variant
is present at the interface of the complex, possibly interfering
with the complex formation.

DISCUSSION
Here, we present 25 individuals (15 male, 10 female) with
disease-causing hemizygous or heterozygous variants in
MSL3, which is the largest cohort of individuals with X-
linked, MSL3-related disorder to date. With the exception of
one individual whose phenotypically normal mother had
germline mosaicism, all cases were either proven (n= 21) or
presumed to be de novo based on family history (n= 3).
Our cohort allowed a more comprehensive definition of X-

linked, MSL3-related disorder as a syndromic condition
affecting females and males equally, with varying degrees of
ID (mild to severe) and DD as the most consistent features.
ASD, found in 50% of all individuals, emerged as a new
feature of X-linked, MSL3-related disorder. Variable neuro-
logical findings were common and comprised muscular
hypotonia, upper and lower limb spasticity, abnormal move-
ments (dystonia, ataxia, hypokinesia), and cerebellar vermis
hypoplasia as a consistent MRI finding. Data for longitudinal
MRI studies were only available for two individuals (Fig. S2)
and we can therefore not completely exclude the possibility
that the cerebellar vermis volume loss is progressive
(atrophy). Interestingly, the cerebellar abnormalities were
only identified during reanalysis for several cases and
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comparison with other individuals with MLS3 variants,
highlighting the importance of systematic image analysis in
rare neurological disorders.
A high prevalence of features affecting other organ systems

was encountered, some of which occurred more frequently
than previously reported in the existing literature. Gastro-
intestinal problems (constipation, gastroesophageal reflux,
and vomiting) as well as disorders of the genitourinary system
were commonly found. Hearing impairment, namely sensor-
ineural and/or conductive hearing loss, macrocephaly, as well
as a variety of visual abnormalities were observed as new
significant features. Polyhydramnios also emerged as a newly
recognized prenatal feature in MSL3-related disorder.
Facial dysmorphism, which appeared rather subtle in the

younger individuals, was described in the majority of
individuals and included several consistent facial features.
Computational facial analysis technology was able to
accurately discriminate between affected individuals and
healthy controls, indicating that affected individuals have a
recognizable facial gestalt that might help to diagnose affected
individuals early using “next-generation phenotyping” or to
guide diagnosis in case of inconclusive genetic results.27

Among 25 disease-causing variants identified in this cohort,
22 variants were novel. Using ACMG criteria, all variants
were classified as likely pathogenic or pathogenic (Table S2).
Besides considerably expanding the list of likely pathogenic
and pathogenic variants in MSL3, we illustrate a variety of
variant types to be associated with X-linked, MSL3-related
disorder, with loss-of-function variants accounting for
the majority (n= 21/25). Loss-of-function variants and
missense variants were found equally in affected males and
females. Prior to this study, only one individual harboring a
disease-causing missense variant—previously referred to as
p.(Leu308Pro) and listed here as p.(Leu457Pro)—in MSL3
had been reported.14 Of note, this individual was also
included in this study (as individual 13) after obtaining
additional follow-up data. Herein, we describe two additional
missense variants (p.[Asn437Thr] and p.[Arg458Leu]) as well
as one in-frame deletion (p.[Gln454del]) confirming that
missense variants and in-frame deletions are part of the
genotypic spectrum of MSL3-related disorder. Whereas the
missense variant p.(Asn437Thr) is predicted to impair
complex formation with MSL1 the substitutions p.(Leu457-
Pro), and p.(Arg458Leu) as well as the in-frame deletion

11NM_078629 1 2 3 4 5 7 8 10 13

c.1466+1G>A, p.?

12
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c.1381+1G>T, p.? 

c.1168_1169del, p.(Lys390Glufs*6)

Deletion exon 10

chrX:g.11633731_11797224del (two gene deletion)

chrX:g.11600773_12249902del (three gene deletion)

c.1314C>A, p.(Tyr438*)

c.590_593del, p.(Leu197*)

c.589-4_591del, p.?

c.1373G>T, p.(Arg458Leu) 

c.1319dup, p.(Gly441Argfs*2) 

c.1362_1364del, p.(Gln454del) 

c.913C>T, p.(Gln305*) 

c.1146del, p.(Lys383Serfs*22) 

c.961C>T, p.(Gln321*) 

c.1105C>T, p.(Gln369*) 

c.1310A>C, p.(Asn437Thr) 

c.1370T>C, p.(Leu457Pro) 

Loss-of-Function variant

c.1193C>A (p.Ser398*)

c.1208del, p.(Pro403Leufs*2)

c.1436dup, p.(Leu480Phefs*6)

c.1516_1517delinsA, p.(Ala506Metfs*23)

Recurrent variant

Key

c.865A>T, p.(Lys289*) 

11

NM_006800 11 2 3 4 5 6 7 8 9 10 12

Deletion exon 6-8

c.841C>T, p.(Gln281*)c.566_567del, p.(Tyr189Leufs*3)
c.938dup, p.(Leu314Phefs*18)

c.1018del, p.(Ala340Leufs*9)

c.1036C>T, p.(Gln346*)

c.1065_1066del, p.(Ala356Glnfs*3)

b
previously reported variants

a
variants from this study

c
MSL3 domains

MRG domainCD

0 521

Missense variant/

In-Frame-Deletion

32 90 168 517

c.566dup, p.(Tyr189*)

c.973_974del, p.(Gln326Alafs*5)

c.1347C>A, p.(Tyr449*)

c.1125_1141dup17, p.(Met381Argfs*30)

c.1372C>T, p.(Arg458*) 

c.1372C>T, p.(Arg458*) 

6

11

Fig. 3 Variant type and exon distribution of variants in MSL3 (NM_078629.4). (a, b) Gray boxes illustrate the coding sequence, smaller gray boxes
illustrate untranslated regions (UTRs). The predominant MSL3 transcript NM_078629 (ENST00000312196) and the shorter transcript NM_006800
(ENST00000380693) are shown with numbered exons. Variants identified in this study are depicted above the dotted line (a) and previously reported
variants are presented below (b). The color of the circle represents the corresponding variant type (see key). Overall, the majority of variants are predicted
loss-of-function variants. Three recurrent variants (depicted with stars) were observed. Notably, all newly and previously reported variants (excluding
deletions spanning more genes than MSL3) are confined to the last eight exons (exons 6–13) of MSL3 (NM_078629). No variants affecting only the first five
exons of MSL3 (NM_078629) were identified. (c) Schematic representation of MSL3 protein domains. The chromo domain (CD) (amino acid position 32–90)
is depicted in brown and the MRG domain (amino acid position 168–517) is depicted in green. The shorter transcript NM_006800 corresponds only to the
MRG domain.
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p.(Gln454del) all affect highly conserved amino acids
disrupting the bipartite fold region of the MRG domain.12,28

The lack of clinical differences between individuals with loss-
of-function and missense variants in our cohort (Fig. S5,
Table S4) points toward a loss of function as the mutational
mechanism. However, this analysis has a low power and
larger studies might identify subtle differences between these
groups.
All currently reported causative variants (excluding multi-

gene deletions) (n= 41) were confined to the last eight exons
(exon 6–13) of MSL3 with exon 9 (n= 14) and exon 11 (n=
11) being most frequently affected whereas no pathogenic
variants were observed in the first exons in individuals with
MSL3-associated disease (Table S3).14,26 The latter finding
might indicate that translation of the shorter transcript
NM_006800 (ENST00000380693), which lacks the CD and is
only comprised of the MRG domain responsible for
interaction with MSL1, can rescue gene function (functional
MSL complex) even in the presence of variants in the first
exons. These findings suggest that the N-terminal CD of
MSL3 is either redundant or that a mutant CD is associated
with traits different than those seen in Basilicata–Akhtar
syndrome. One case (nsv1075719) with a deletion comprising
the first exon is listed in the Database of Genomic Variants
(DGV) and an additional case with a heterozygous frameshift
variant p.Lys34ArgfsTer20 in the first exon in the longer
transcript NM_078629 is listed in gnomAD, compatible with

the hypothesis that the CD is redundant.25,29 However, it
should be noted that the variant listed in gnomAD has low
coverage and poor base quality. Another explanation for the
observed pattern is that loss-of-function variants in the first
five exons are not viable and that loss-of-function variants in
the eight C-terminal exons escape NMD and result in the
translation of a truncated protein with residual function.
However, the full gene deletion argues against this
possibility.25,29

It should be noted that our cohort contains one individual
(individual 11) with parental germline mosaicism (variant
allele fraction of 8% in a phenotypically normal mother). This
represents the first genetically confirmed case of parental
germline mosaicism in the context of X-linked, MSL3-related
disorder.
MSL3 was recently found to escape X-chromosome

inactivation (XCI).30 X-linked genes that largely escape from
XCI (escapees) have been linked to genetic disorders that
affect both female and male individuals, however, with sex-
specific differences.30–34 We therefore conducted a compara-
tive analysis between females and males to evaluate possible
sex-specific differences (Table S4). Our cohort included 15
males and 10 females with disease-causing variants in MSL3
and we did not identify significant differences regarding
the frequency of clinical features between the two groups.
The absence of obvious differences between males and
females is so far unexplained and future studies are

a b

c e

d f

C-terminal(MRG Domain)

N-terminal(MRG Domain)

MSL3(MRG Domain)

Case Variant

Splice Variant

MSL1

Hydrophobicity

Fig. 4 Overview of the position of case variants on the MSL3–MSL1 tetrameric complex. (a) MSL3–MSL1 tetrameric complex with the N-terminal
and C-terminal MRG regions from one monomer highlighted in pale green and salmon. The sites of missense variants are marked by red spheres.
p.(Asn437Thr) is the first amino acid in the disordered loop and is present at the interface of the tetramer. p.(Leu457Pro) and p.(Arg458Leu) are located
within the bipartite fold region. (b) The environment around the case variants is shown in sticks. The Arg458 residue interacts with Asp187 and Glu278 of
the N-terminal region of the MRG domain. (c) The structure is highlighted based on hydrophobicity which ranges from red (hydrophobic) to white
(hydrophilic). It is visually evident that one side of this region is highly hydrophobic and includes Leu457, while the other side is hydrophilic and includes
Arg458 and Gln454. (d) Variant Asn437Thr is marked by a red sphere, present at the monomer–monomer interface. (e, f) The amino acids removed by
splice variants are colored in black and affect the same region as missense variants.
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required to elucidate the precise molecular basis behind this
phenomenon.
Even though specific treatment is not available to date, we

observed a large number of disease-associated complications,
which can be managed symptomatically. Based on the clinical
phenotypic delineation in this MSL3-associated disorder
cohort, we propose the following clinical management and
follow-up recommendations. Following diagnosis, affected
individuals should be referred to the following: (1) a
(pediatric) ophthalmologist as impairment of the visual
system was frequent and early therapy may be required to
avoid amblyopia; (2) a (pediatric) otolaryngologist as hearing
impairment should be treated early with hearing aids or
cochlear implants; (3) gastroenterological evaluation for
feeding problems and gastroesophageal reflux disease; (4)
nephrology assessment including kidney ultrasound is
recommended to detect structural abnormalities early that
may predispose to urinary tract infections and/or subsequent
renal damage; prophylactic treatment and follow-up by a
renal specialist may be indicated; (5) evaluation of the skeletal
system for malformations, which may require orthopedic
management; and (6) regular neurodevelopmental and
neurological follow-up because developmental delay, beha-
vioral abnormalities, movement disorders, and seizures
contributed most to disease burden.

SUPPLEMENTARY INFORMATION
The online version of this article (https://doi.org/10.1038/s41436-
020-00993-y) contains supplementary material, which is available
to authorized users.

ACKNOWLEDGEMENTS
First and foremost, all authors thank the families for their trust
and for participating in the study. The study was supported by a
grant of the German Research Foundation/Deutsche Forschungs-
gemeinschaft (DI 1731/2–2 to F.D.) and by a grant of the
Elterninitiative Kinderkrebsklinik e.V. (Düsseldorf; #701900167).
The study was supported by Progetto GENE (Genomic Analysis
Evaluation Network) founded by Progetti di Innovazione in
Ambito Sanitario e Socio Sanitario (Bando Ex Decreto 2713 del
28/02/2018). One individual was ascertained in the Duke
Genome Sequencing Clinic. Funding for the Duke Genome
Sequencing Clinic is supported by the Duke University Health
System. B.L.C. is a senior clinical investigator of the Research
Foundation–Flanders. GS data for individual 25 was provided by
the 100,000 Genomes Project delivered by Genomics England.

FUNDING
Open Access funding enabled and organized by Projekt DEAL.

DISCLOSURE
A.B., K.M., R.E.P., M.J.G.S., R.E.S., S.P. and I.M.W. are employees
of GeneDx, Inc. N.F. is employee of FDNA. A.K. is employee of
CENTOGENE. The other authors declare no conflicts of interest.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional
affiliations.

REFERENCES
1. Taipale M, Rea S, Richter K, et al. hMOF histone acetyltransferase is

required for histone H4 lysine 16 acetylation in mammalian cells. Mol Cell
Biol. 2005;25:6798–6810.

2. Smith ER, Cayrou C, Huang R, Lane WS, Cote J, Lucchesi JC. A human
protein complex homologous to the Drosophila MSL complex is
responsible for the majority of histone H4 acetylation at lysine 16. Mol
Cell Biol. 2005;25:9175–9188.

3. Keller CI, Akhtar A. The MSL complex: juggling RNA-protein interactions for
dosage compensation and beyond. Curr Opin Genet Dev. 2015;31:1–11.

4. Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL.
Histone H4-K16 acetylation controls chromatin structure and protein
interactions. Science. 2006;311:844–847.

5. Mendjan S, Taipale M, Kind J, et al. Nuclear pore components are
involved in the transcriptional regulation of dosage compensation in
Drosophila. Mol Cell. 2006;21:811–823.

6. Buscaino A, Legube G, Akhtar A. X-chromosome targeting and dosage
compensation are mediated by distinct domains in MSL-3. EMBO Rep.
2006;7:531–538.

7. Sural TH, Peng S, Li B, Workman JL, Park PJ, Kuroda MI. The MSL3
chromodomain directs a key targeting step for dosage compensation of
the Drosophila melanogaster X chromosome. Nat Struct Mol Biol.
2008;15:1318–1325.

8. Nielsen PR, Nietlispach D, Buscaino A, et al. Structure of the chromo
barrel domain from the MOF acetyltransferase. J Biol Chem.
2005;280:32326–32331.

9. Akhtar A, Zink D, Becker PB. Chromodomains are protein-RNA
interaction modules. Nature. 2000;407:405–409.

10. Kim D, Blus BJ, Chandra V, Huang P, Rastinejad F, Khorasanizadeh S.
Corecognition of DNA and a methylated histone tail by the MSL3
chromodomain. Nat Struct Mol Biol. 2010;17:1027–1029.

11. Morales V, Regnard C, Izzo A, Vetter I, Becker PB. The MRG domain
mediates the functional integration of MSL3 into the dosage
compensation complex. Mol Cell Biol. 2005;25:5947–5954.

12. Kadlec J, Hallacli E, Lipp M, et al. Structural basis for MOF and MSL3
recruitment into the dosage compensation complex by MSL1. Nat Struct
Mol Biol. 2011;18:142–149.

13. Deciphering Developmental Disorders Study. Prevalence and architecture of
de novo mutations in developmental disorders. Nature. 2017;542:433–438.

14. Basilicata MF, Bruel AL, Semplicio G, et al. De novo mutations in MSL3
cause an X-linked syndrome marked by impaired histone H4 lysine 16
acetylation. Nat Genet. 2018;50:1442–1451.

15. Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: a
matching tool for connecting investigators with an interest in the same
gene. Hum Mutat. 2015;36:928–930.

16. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the
interpretation of sequence variants: a joint consensus recommendation
of the American College of Medical Genetics and Genomics and the
Association for Molecular Pathology. Genet Med. 2015;17:405–424.

17. Team RC. R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria, 2013.

18. Fisher RA. On the interpretation of χ 2 from contingency tables, and the
calculation of P. J R Stat Soc. 1922;85:87–94.

19. Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, et al.
Predicting splicing from primary sequence with deep learning. Cell.
2019;176:535–.e524.

20. Bienert S, Waterhouse A, de Beer TA, et al. The SWISS-MODEL Repository
—new features and functionality. Nucleic Acids Res. 2017;45:D313–D319.

21. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The FoldX
web server: an online force field. Nucleic Acids Res. 2005;33:
W382–W388.

22. Gurovich Y, Hanani Y, Bar O, et al. Identifying facial phenotypes of
genetic disorders using deep learning. Nat Med. 2019;25:60–64.

23. Lewis BP, Green RE, Brenner SE. Evidence for the widespread coupling of
alternative splicing and nonsense-mediated mRNA decay in humans. Proc
Natl Acad Sci U S A. 2003;100:189–192.

24. Chang YF, Imam JS, Wilkinson MF. The nonsense-mediated decay RNA
surveillance pathway. Annu Rev Biochem. 2007;76:51–74.

BRUNET et al ARTICLE

GENETICS in MEDICINE | Volume 23 | Number 2 | February 2021 393

https://doi.org/10.1038/s41436-020-00993-y
https://doi.org/10.1038/s41436-020-00993-y


25. Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint
spectrum quantified from variation in 141,456 humans. Nature.
2020;581:434–443.

26. Landrum MJ, Lee JM, Benson M, et al. ClinVar: improving access to
variant interpretations and supporting evidence. Nucleic Acids Res.
2018;46:D1062–D1067.

27. van der Donk R, Jansen S, Schuurs-Hoeijmakers JHM, et al. Next-generation
phenotyping using computer vision algorithms in rare genomic
neurodevelopmental disorders. Genet Med. 2019;21:1719–1725.

28. Zhao X, Su J, Wang F, et al. Crosstalk between NSL histone
acetyltransferase and MLL/SET complexes: NSL complex functions in
promoting histone H3K4 di-methylation activity by MLL/SET complexes.
PLoS Genet. 2013;9:e1003940.

29. Thareja G, John SE, Hebbar P, Behbehani K, Thanaraj TA, Alsmadi O.
Sequence and analysis of a whole genome from Kuwaiti population
subgroup of Persian ancestry. BMC Genomics. 2015;16:92.

30. Tukiainen T, Villani AC, Yen A, et al. Landscape of X chromosome
inactivation across human tissues. Nature. 2017;550:244–248.

31. Jensen LR, Amende M, Gurok U, et al. Mutations in the JARID1C gene,
which is involved in transcriptional regulation and chromatin remodeling,
cause X-linked mental retardation. Am J Hum Genet. 2005;76:227–236.

32. Banka S, Lederer D, Benoit V, et al. Novel KDM6A (UTX) mutations and a
clinical and molecular review of the X-linked Kabuki syndrome (KS2). Clin
Genet. 2015;87:252–258.

33. Lederer D, Grisart B, Digilio MC, et al. Deletion of KDM6A, a histone
demethylase interacting with MLL2, in three patients with Kabuki
syndrome. Am J Hum Genet. 2012;90:119–124.

34. Snijders Blok L, Madsen E, Juusola J, et al. Mutations in DDX3X are a
common cause of unexplained intellectual disability with gender-
specific effects on Wnt signaling. Am J Hum Genet. 2015;97:
343–352.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License,which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons license, and indicate if changes were made. The
images or other third party material in this article are included in the article’s
Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/licenses/
by/4.0/.

© The Author(s) 2020

Theresa Brunet, MD 1, Kirsty McWalter, MS2, Katharina Mayerhanser, BS1, Grace M. Anbouba, MS3,
Amy Armstrong-Javors, MD4, Ingrid Bader, MD, MS5, Evan Baugh, PhD6, Amber Begtrup, PhD2,
Caleb P. Bupp, MD7,8, Bert L. Callewaert, MD, PhD9,10, Anna Cereda, MD11,
Margot A. Cousin, PhD12,13, Juan C. Del Rey Jimenez, MS14, Laurie Demmer, MD15,
Nikita R. Dsouza, PhD16, Nicole Fleischer, MS17, Ralitza H. Gavrilova, MD12,18,19, Sumedha Ghate, MS20,
Elisabeth Graf, PhD21, Andrew Green, MD, PhD22, Sarah R. Green, MS23, Maria Iascone, PhD24,
Ameni Kdissa, PhD25, Dirk Klee, MD26, Eric W. Klee, PhD12,13,18, Emily Lancaster, MS27,
Kristin Lindstrom, MD28, Johannes A. Mayr, PhD29, Meriel McEntagart, MD30,
Naomi J. L. Meeks, MD31, Dana Mittag, MS15, Harrison Moore, MS32, Anne K. Olsen, MD33,
Damara Ortiz, MD27, Gretchen Parsons, MS7, Loren D. M. Pena, MD, PhD34,35, Richard E. Person, PhD2,
Sumit Punj, PhD2, Gonzalo Alonso Ramos-Rivera, MD36, Maria J. Guillen Sacoto, MD2,
G. Bradley Schaefer, MD23, Rhonda E. Schnur, MD2, Tiana M. Scott37,38, Daryl A. Scott, MD, PhD37,39,40,
Carolyn R. Serbinski, MS34, Vandana Shashi, MD41, Victoria M. Siu, MD42,
Barbro Fossøy Stadheim, MD43, Jennifer A. Sullivan, MS41, Jana Švantnerová, MD44,
Lea Velsher, MD45, David S. Wargowski, MD3,20, Ingrid M. Wentzensen, MD2,
Dagmar Wieczorek, MD46, Juliane Winkelmann, MD1,47,48,49, Patrick Yap, MD50,51,
Michael Zech, MD1,47, Michael T. Zimmermann, PhD16,52,53, Thomas Meitinger, MD, MS1,
Felix Distelmaier, MD54 and Matias Wagner, MD1,47

1Institute of Human Genetics, Technical University Munich, Munich, Germany; 2GeneDx, Inc., Gaithersburg, MD, USA; 3Division of
Genetics and Metabolism, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI,
USA; 4Department of Pediatric Neurology, Massachusetts General Hospital, Boston, MA, USA; 5Department of Clinical Genetics,
University Children’s Hospital, Paracelsus Medical University, Salzburg, Austria; 6Institute for Genomic Medicine, Columbia
University, New York, NY, USA; 7Medical Genetics, Spectrum Health and Helen DeVos Children’s Hospital, Grand Rapids, MI, USA;
8Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI,
USA; 9Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; 10Department of Biomolecular Medicine, Ghent
University, Ghent, Belgium; 11Department of Pediatrics, ASST Papa Giovanni XXIII, Bergamo, Italy; 12Center for Individualized
Medicine, Mayo Clinic, Rochester, MN, USA; 13Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA; 14St
George’s Genomics Service, St George’s University Hospitals NHS FT, London, UK; 15Medical Genetics, Atrium Health Levine
Children’s Hospital, Charlotte, NC, USA; 16Bioinformatics Research and Development Laboratory, Genomics Sciences and Precision
Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA; 17FDNA Inc., Boston, MA, USA; 18Department of Clinical
Genomics, Mayo Clinic, Rochester, MN, USA; 19Department of Neurology, Mayo Clinic, Rochester, MN, USA; 20St Vincent Hospital
Medical Genetics Clinic, Green Bay, WI, USA; 21Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany;

ARTICLE BRUNET et al

394 Volume 23 | Number 2 | February 2021 | GENETICS in MEDICINE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-5183-780X
http://orcid.org/0000-0002-5183-780X
http://orcid.org/0000-0002-5183-780X
http://orcid.org/0000-0002-5183-780X
http://orcid.org/0000-0002-5183-780X


22Department of Clinical Genetics, Children’s Health Ireland at Crumlin, Dublin, Ireland; 23University of Arkansas for Medical
Sciences, Arkansas Children’s Hospital, Springdale, AR, USA; 24Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo,
Italy; 25CENTOGENE AG, Rostock, Germany; 26Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich
Heine University Düsseldorf, Düsseldorf, Germany; 27UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA; 28Division of Genetics and Metabolism, Phoenix Children’s Hospital, Phoenix, AZ, USA;
29Department of Pediatrics, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria; 30Medical Genetics, St
George’s University Hospitals NHS FT, London, UK; 31Department of Pediatrics, Section of Genetics, University of Colorado Anschutz
Medical Campus, Aurora, CO, USA; 32INTEGRIS Pediatric Specialties/Medical Genetics, Oklahoma City, OK, USA; 33Department of
Pediatric, Soerlandet Sykehus Kristiansand, Kristiansand, Norway; 34Division of Human Genetics, Cincinnati Children’s Hospital
Medical Center, Cincinnati, OH, USA; 35Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA;
36Department of Pediatric Neurology, National Institute of Children’s Diseases, Bratislava, Slovakia; 37Texas Children’s Hospital,
Houston, TX, USA; 38Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University,
Provo, UT, USA; 39Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; 40Department of
Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA; 41Department of Pediatrics, Division of
Medical Genetics, Duke University Medical Center, Durham, NC, USA; 42Department of Pediatrics, Western University, London, ON,
Canada; 43Department of Clinical Genetics, Oslo University Hospital, Oslo, Norway; 44Second Department of Neurology, Faculty of
Medicine, Comenius University, University Hospital Bratislava, Bratislava, Slovakia; 45Genetics Program, North York General
Hospital, Toronto, ON, Canada; 46Institute of Human Genetics, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany;
47Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany; 48Munich Cluster for Systems Neurology
(SyNergy), Munich, Germany; 49Neurogenetics, Technische Universität München, Munich, Germany; 50Genetic Health Service New
Zealand (Northern Hub), Auckland, New Zealand; 51Faculty of Medical and Health Sciences, University of Auckland, Auckland, New
Zealand; 52Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, USA; 53Department of
Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA; 54Department of General Pediatrics, Neonatology and Pediatric
Cardiology, Heinrich-Heine-University, Düsseldorf, Germany.

BRUNET et al ARTICLE

GENETICS in MEDICINE | Volume 23 | Number 2 | February 2021 395


	Defining the genotypic and phenotypic spectrum of X-linked MSL3-related disorder
	INTRODUCTION
	MATERIALS AND METHODS
	Participants and samples
	Ethics statement
	Exome sequencing
	Statistics
	Molecular modeling
	Facial analysis

	RESULTS
	Demographic features
	Neurological findings
	MRI findings
	Additional findings
	Facial appearance
	Phenotypic differences between females and males
	Phenotypic differences between individuals with missense variants/in-frame deletions and individuals with loss-of-function variants
	Variants in affected individuals
	Molecular modeling reveals common underlying mechanism

	DISCUSSION
	Supplementary information
	ACKNOWLEDGMENTS
	DISCLOSURE
	References




