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DNA methylation classifiers (“episignatures”) help to determine the pathogenicity of variants of uncertain significance (VUS).
However, their sensitivity is limited due to their training on unambiguous cases with strong-effect variants so that the classification
of variants with reduced effect size or in mosaic state may fail. Moreover, episignature evaluation of mosaics as a function of their
degree of mosaicism has not been developed so far. We improved episignatures with respect to three categories. Applying (i)
minimum-redundancy-maximum-relevance feature selection we reduced their length by up to one order of magnitude without
loss of accuracy. Performing (ii) repeated re-training of a support vector machine classifier by step-wise inclusion of cases in the
training set that reached probability scores larger than 0.5, we increased the sensitivity of the episignature-classifiers by 30%. In the
newly diagnosed patients we confirmed the association between DNA methylation aberration and age at onset of KMT2B-deficient
dystonia. Moreover, we found evidence for allelic series, including KMT2B-variants with moderate effects and comparatively mild
phenotypes such as late-onset focal dystonia. Retrained classifiers also can detect mosaics that previously remained below the 0.5-
threshold, as we showed for KMT2D-associated Kabuki syndrome. Conversely, episignature-classifiers are able to revoke erroneous
exome calls of mosaicism, as we demonstrated by (iii) comparing presumed mosaic cases with a distribution of artificial in silico-
mosaics that represented all the possible variation in degree of mosaicism, variant read sampling and methylation analysis.

European Journal of Human Genetics (2023) 31:1032–1039; https://doi.org/10.1038/s41431-023-01406-9

INTRODUCTION
Disease states come with epigenetic dysregulation, especially in
case of Mendelian disorders of the epigenetic machinery (MDEM)
[1], which may leave specific traces in DNA methylation that can
be read out as disease biomarkers. Thus, easily accessible
“episignatures” have been defined for more than half of
the MDEM [2, 3]. We [4] and others [5, 6] recently added histone-
lysine N-methyltransferase 2B (KMT2B)-associated dystonia type 28
to that list. Moreover, we showed that disease-associated
methylation aberration correlates with the age at dystonia-onset.
Episignature-classifiers are established by training a classifier such

as a support vector machine (SVM) on disease-associated CpG-sites
[7]. Sensitivity and specificity of the SVM-classifier depend on its
training conditions: Including other MDEM in the control set, as in
multiclass SVM-training [2, 7], improves the classifier’s specificity. To
improve the sensitivity for intermediate cases with SVM probability
scores <0.5 [8] we performed step-wise re-training of the classifier,

including all newly recognized cases with scores ≥0.5 in the next
training step.
Mosaicism is a challenge for the use of episignatures [2] since

mosaics account for a relevant proportion of isolated disease cases. In
intellectual disability, a leading phenotype also in MDEM, 6.5% of
presumed de novo germline mutations have been reassigned as
mosaics [9]. However, episignature-classifiers may fail to identify
mosaics because of the subset of non-affected cells. On the other hand,
the diagnosis of mosaicismmay be erroneous due to limitations of the
sequencing analysis pipeline. We used episignature-classifiers as
independent tools to identify such errors.

MATERIALS AND METHODS
Study participants and variant detection
The study comprised 268 individuals, including 35 with KMT2B-variants, 20
with KMT2D-variants, 19 training controls, and for e.g. specificity analysis,
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194 independent controls with and without variants in MDEM-genes
(Supplementary Table 1). Variants in KMT2B and KMT2D were detected by
standardized short-read exome sequencing with read depths between 15
and 475 (mean ± SD= 199 ± 108). All participants or their guardians
provided written informed consent according to the ethics research
board-approved protocols of the contributing centers and all procedures
were performed in accordance with the Declaration of Helsinki.

DNA methylation analysis and quality control
Genomic DNA was extracted from peripheral blood leukocytes by standard
methods. Genome-wide DNA methylation of about 850,000 CpG-sites was
interrogated by Illumina MethylationEPIC BeadChip according to the
manufacturer’s protocol as described previously [4]. CpG-sites with detection
p-value > 0.01, on sex chromosomes, at known single nucleotide poly-
morphisms, with cross-reactivity, or call rate < 95% were excluded from
downstream analyses as well as samples with mean detection p-value > 0.05
or call rate < 95%. After background correction and normalization usingminfi
[10], the percentage of each CpG-methylation in each individual was
assessed as beta value (β) and expressed as M-value=log2(β/(1−β)). Minfi
and all consecutive analyses were performed in R 3.6.3 software [11]. For
outlier detection, we derived the 99%-confidence ellipse from the first two
principal components of the 694,532 generally available CpG-sites. All study
individuals were within or at the border of that ellipse (see Supplementary
Material).

EWAS, mRMR feature selection, and SVM-training
Differentially methylated CpG-sites were detected by epigenome-wide
association analysis (EWAS) using limma_3.42.2 [12] regressing M-values on
mutation status, sex, age, and Houseman-estimates of white blood cells. 19
controls of both sexes, 2–50 years old, matched the cases’ range of
0–51 yrs and were very unlikely genetically and phenotypically to have
methylation aberrations. Cases were chosen as described below (“stepwise
re-training”). Primary selection of CpG-sites from EWAS on M-values
required genome-wide significance ( < 5x10E-08) and an absolute average
difference >0.4.
To find an optimal selection among these sites with regard to their

correlation structure we applied the bootstrap ensemble variant
(mRMRe.b) of the minimum-redundancy-maximum-relevance feature
selection algorithm (mRMRe_2.1.2) [13]. It first searches the CpG-site x1
that has the highest mutual information MI with the phenotype y, MI(x1, y)
=-ln(1-ρ(x1, y)

2)/2 where ρ is the correlation coefficient. Then, the selection
S of CpG-sites is increased one by one, with each added site xi having an
optimal trade-off between maximal MI with y and minimal MI with the
previously selected sites xj. This is achieved by finding the site xi with
maximal score MI(xi,y)-Σj∈SMI(xi, xj)/|S | . Since this classical mRMR may miss
the global optimum, however, ensemble versions have been developed
which combine the results of m classical mRMR runs that are either started
from each of the m features with the top MI(x,y) values or, what turned out
to be even better, are run onm bootstraps of the examined individuals. We
used m= 20 bootstraps of the case-control dataset, each running classical
mRMR with the recommended max( | S | )= 15 CpG-sites, and united all
CpG-sites selected by the 20 runs. (Smaller values of m and max( | S | ) were
used, however, for reducing the episignature length; see below).
On the M-values of the so selected CpG-sites an SVM classifier was

trained (e1071 R package) [14] with linear kernel (cost-C) and 10-fold cross-
validation. Platt’s [15] probability scores with cut-off= 0.5 were used in
keeping with Aref-Eshghi [7].

Stepwise re-training of the classifier
For stepwise re-training, the initial case set consisted of patients (7 in case
of KMT2B, 8 in case of KMT2D) with unambiguously pathogenic loss-of-
function variants and without evidence of potential mosaicism. All tested
patients whose SVM-score surpassed the level of 0.5 were then included in
the case set of the first re-training step. This was repeated in further re-
training steps at least until the case set did not change anymore. Specificity
and quantiles (50th and 95th) were calculated in 194 individuals who were
not involved in any classifier training.

Classifier performance as function of the episignature length
For evaluation of classifier performance as function of the episignature
length k of CpG-sites, we selected the sites as described above but
increased the number b of bootstraps from 1 to 20 and the solution length
s=max( | S | ) of the mRMR runs on each of the bootstrap from 2 to 15.

This produced 20*(15–1)= 280 classifiers with 2≤ k< max(b*s), max(k)
being 144 for the KMT2B classifiers and 68 for the KMT2D classifiers. For
each k, we then averaged the specificities and pseudo-sensitivities of the
classifiers of that length, with the specificity determined in 194
independent controls, and the pseudo-sensitivity being the number of
variant-carriers verified as positive divided by the maximal number of such
positives identified by any of the 280 classifiers.

Evaluation of presumed mosaics
Potential mosaicism was assumed if sampling variance of sequencing
reads could not sufficiently explain the difference between the observed
and the expected variant read count n/2 under the assumption of non-
mosaicism, i.e., if the absolute of that difference was larger than 2 standard
deviations (SD) of a binomial distribution Bin(n,p), that is, >2(np(1-p))½=√n,
with read depth n and p= 0.5.
All potential mosaics were included in the analysis under the re-training

paradigm described above. For discovering erroneous mosaics by
comparison with in silico-mosaics, the classifiers were used without re-
training, however. Moreover, two cases were left out from the training set
and used for construction of in silico-mosaics (see below) in order to have
sufficiently many cases to choose from. All variant-carriers identified by the
classifier and without evidence of potential mosaicism were also included
in the set from which the affected parts of the in silico-mosaics was chosen
randomly. The unaffected counterparts were selected randomly from a set
of 67 individuals, aged 2–78 yrs (mean ± SD= 20 ± 18), lacking any
evidence of MDEM, and not used in classifier training. The degree d of
mosaicism (= proportion of the affected part) was selected randomly from
a uniform distribution U(0,1), and the DNA methylation beta values of the
mosaic were then assumed to be the proportionally weighted averages of
the two parts, β(in silico-mosaic)=d*β(affected)+(1-d)*β(unaffected), from
which the M-values were calculated as indicated above. Each in silico-
mosaic was assigned with a sequencing read depth n, randomly selected
from a normal distribution with mean ± SD and lower-end truncation as
observed for the gene-specific read depths of the cases with variants in the
respective gene (184 ± 93 and > 47 for KMT2B, 213 ± 121 and > 14 for
KMT2D). Then, to model sampling variance of the sequencing reads, the
variant read count of the in silico-mosaic was selected randomly from a
binomial distribution Bin(n,p) with p= d/2, considering heterozygosity of
the causative variants in KMT2B- and KMT2D-related disorders. With
multiple different ways of leaving out 2 cases from the training set (7!/2!/
5!= 21 for KMT2B and 8!/2!/5!= 28 for KMT2D), we created 150 in silico-
mosaics for each possibility which, together with the potential mosaic
cases under examination, then received SVM-scores by the respective
classifier. Thus, we generated 21*150= 3150 in silico-KMT2B-mosaics and
28*150= 4200 in silico-KMT2D-mosaics with read depths, variant read
counts, and SVM-scores. For each gene, 3000 randomly selected in silico-
mosaics were then sorted according to their relative variant read counts in
order to calculate their 5th and 95th SVM-score quantiles in 0.025-sized
bins of relative variant read count between 0 and 0.5, followed by
smoothing using the default loess-algorithm in R [11]. From the 21
respectively 28 SVM-scores derived for each potential mosaic under
examination, individual means and 95%-confidence intervals were
calculated. (See Supplementary Material for a flow chart of the evaluation
of presumed mosaics.)

Mean normalized methylation deviation versus age at
dystonia-onset
As described previously [4], the individual mean normalized methylation
deviation was the average of the absolute z-values at the CpG-sites of the
(not re-trained) episignature. The z-value of a CpG-site was the difference
of the individual’s M-value from the mean of the M-values at that site in
controls, divided by their SD in controls. The association with the age at
dystonia-onset was assessed by Cox-proportional-hazards-regression with
right-censoring (if dystonia had not yet occurred at the time of
examination) and maximum-likelihood-ratio significance testing (R survival
package) [16].

RESULTS
Optimizing episignatures by mRMRe.b
EWAS results may qualify a large number of CpG-sites for inclusion
in an episignature-classifier (we identified >1000 in the KMT2B
EWAS). These sites are likely correlated, that is, redundant when
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used in classifiers or predictors. Therefore, we selected the sites for
a classifier by applying the mRMRe.b-algorithm [13, 17] to the
initial EWAS-based selection. Performing 20 bootstraps with
solution length max( | S | )= 15 each, we reduced the number of
sites for the classifier by one order of magnitude to 144 in case of
KMT2B and by half to 68 in case of KMT2D in the third re-retraining
(Supplementary Table 2). These classifier sizes still had a
considerable safety margin. In fact, by varying max( | S | ) between
2 and 15 and the number m of bootstraps between 1 and 20, we
found that in terms of specificity and sensitivity, classifiers reached
stable performance ( ≤ 1.5% deviation from window mean)
already with 4 and 30 CpG-sites, respectively, in case of KMT2B,
and with 49 sites for both specificity and sensitivity in case of
KMT2D (Fig. 1).

Optimizing episignatures by stepwise re-training
Stepwise re-training of the classifier by inclusion of diagnosed
cases in the training set increased the sensitivity of the classifiers,
essentially without loss in specificity (Fig. 2). Beyond the mere
increase of the number of cases and the concomitant balancing of
the case-control proportion, the re-trained classifier profited from
widening the spectrum of effect sizes in the training set. Initial
classifier training comprised only cases with obviously pathogenic
variants, that is, loss-of-function variants without evidence of
mosaicism. The initial classifier was then applied to all samples,
including those that carried a variant in the respective gene and
were received too late or had unclear pathogenicity attributed to
the variant (e.g., missense-VUS; see Supplementary Tables 3, 4).

Thereby, 10 pathogenic KMT2B-variants and 6 pathogenic KMT2D-
variants were verified as pathogenic and included in the case set
for the first re-training of the respective classifier. Cases to be
included in that way came up until the 3rd re-training of the
KMT2B-classifier and the 2nd re-training of the KMT2D-classifier.
Maximal re-training of the classifiers identified 7 more individuals
as carrying pathogenic variants, including 3 KMT2B-variants (one
of them being present in 3 related individuals) and 2 KMT2D-
variants, thus increasing the classifiers’ sensitivities by 3/10= 30%
for KMT2B-variants and 2/6= 33% for KMT2D-variants, respec-
tively, while the specificities as determined in a set of 194
independent controls remained close to 1 (0.99 and 0.985,
respectively; see Fig. 2 and Supplementary Table 1). The two
KMT2D-variants verified only after re-training were de novo stop
mutations, occurring as mosaics with low variant read count
proportions (0.19 and 0.23) and strong deviation from the
expected heterozygous read count (by 9.8 and 6.3 binomial SD,
respectively). None of the cases whose scores remained <0.5 even
after re-training were mosaics.
Even the maximally re-trained classifier may have missed some

pathogenic variants. 4 dystonia cases with VUS in KMT2B ranged
above the 95th percentile of the independent controls after the
third re-training but failed to reach SVM-scores ≥0.5 (Fig. 2).
Phenotypes in these 4 cases were less severe than in classical
KMT2B-related dystonia, including generalized dystonia with no
neurodevelopmental comorbidity (2/4), minor neurodevelopmen-
tal disturbances without dystonia (1/4), and adult-onset isolated
focal (cervical) dystonia (1/4). Remarkably, transmission to

Fig. 1 SVM-classifier performance as a function of episignature length. The performances of SVM episignature-classifiers for KMT2B and
KMT2D after the third re-training (cf. Fig. 2) are shown as a function of their length, that is, the number k of CpG-sites included in the
episignature. Selection of sites by the ensemble bootstrap version of the mRMR algorithm was varied by varying the number of bootstraps
and the length of the mRMR solutions. For each k the average specificity of the classifiers of that length was calculated (solid line).
Analogously, a pseudo-sensitivity (dashed line) was calculated as the average number of variants verified as pathogenic by the classifiers of
length k divided by the maximal number of (seemingly) verified variants by any of the classifiers for the respective gene. The specificities
reached their plateaus for k ≥ 4 in case of KMT2B and k ≥ 49 in case of KMT2D. Pseudo-sensitivities stabilized at k ≥ 30 and k ≥ 49, respectively.
Since not all k were realized by the selection procedure, the curves have small gaps.

K. Oexle et al.

1034

European Journal of Human Genetics (2023) 31:1032 – 1039



seemingly unaffected offspring was seen in this variant category.
Moreover, when comparing the SVM-scores of VUS-carriers below
the 95% percentile with those of independent controls below that
level by Wilcoxon rank sum test (one-sided with continuity
correction; individuals from the same family being represented by
only one value, i.e., their mean), the VUS-carriers ranged
significantly higher (p= 0.03 for KMT2B and p= 0.02 for KMT2D).
KMT2B and KMT2D-variants with re-trained SVM-scores above the
95th percentile of the independent controls are listed in
Supplementary Tables 3, 4, respectively.

DNA methylation deviation versus age at onset of KMT2B-
deficient dystonia
Among the individuals with KMT2B-variants that had not been
examined previously already [4] which implies that they also were
not included in the initial training of the present study, 8 patients
with available data on age at dystonia-onset were verified to be
KMT2B-deficient (directly or after re-training of the classifier). In
these patients we examined the correlation between the age at
dystonia-onset and the average normalized deviation of M-values
of the CpG-sites contained in the initial classifier as described
previously [4]. We replicated the then described negative
correlation with a significance of p= 0.017 (maximum-likelihood-
ratio test after Cox-proportional-hazards regression with right-
censoring in 2 cases in whom dystonia had not yet occurred at the
time of examination). Similar to the previous analysis, the average
of the normalized M-values was 2.9 and 3.7 in individuals with no
onset before adulthood and 7.2 for onset at preschool age. Using
age as proxy of age at onset in the 2 censored cases, Pearson
correlation was −0.55, corresponding to r2= 30% of the variance

in age at onset explained by the average normalized methylation
deviation. This is lower than the previously observed r2= 57% [4],
possibly due to a winner’s curse in the previous analysis. Testing of
the age at onset against the SVM-scores of the primary classifier
(instead of the average normalized methylation deviation) gave
less significant results (p= 0.038, r2= 0.24) but the difference
of the correlation coefficients was not significant (p= 0.31,
William’s test).

Evaluation of presumed mosaics
We examined cases with strongly diverging variant read calls as
potential mosaics, that is, all cases with variant read call numbers
diverging from the expected value (=n/2) by more than 2 SD
(= 2(n/4)1/2= √n) of the theoretical binomial sampling distribu-
tion Bin(n,p) in non-mosaic cases with read depth n and sampling
probability p= 0.5. Since n differed from case to case (mean ±
SD= 184 ± 93 for KMT2B-variants and 213 ± 121 for KMT2D-
variants), the threshold expressed as variant read call proportion
also depended on the individual n according to (n/2-√n)/n= 0.5-1/
√n. The variant read call proportions of the potential mosaics
that we examined thus varied between 0.13 and 0.4 (Fig. 3).
They comprised 2 cases with KMT2B-variants and 8 with
KMT2D-variants, 5 being indels and 5 single nucleotide
variants (SNV), all of them causing loss-of-function with the
possible exception of one in-frame duplication (see Supplemen-
tary Tables 3 and 4).
We compared the SVM-scores of these potential mosaics with

the score distribution of artificial, in silico-synthesized mosaics.
These artificial mosaics accounted for all possible sources of
variation, that is, variable degree d of mosaicism, variable, i.e.

Fig. 2 SVM probability scores with stepwise re-training of classifiers. SVM-classifier training started with cases (dark green) with obviously
pathogenic, that is, non-mosaic loss-of-function variants (step 0). This initial classifier was applied to cases with variants (gray) of various levels
of pathogenic significance. The cases in whom this produced an SVM probability score > 0.5 were then included in the case set (light green)
for re-training of the classifier. Novel cases to be thus included in re-training were detectable up to the 3rd re-training of the KMT2B classifier
and up to the 2nd re-training of the KMT2D classifier. The 19 controls (black) were the same in all training steps. Dashed blue lines indicate
50th (=median) and 95th quantiles of the classifiers’ SVM probability scores in a set of 194 independent samples with and without variants in
genes of the epigenetic machinery other than the gene under examination. The upper dotted line indicates the classifiers’ specificities as
determined in these independent control samples.
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randomly selected empirical cases and non-cases representing the
methylations in the mutated and non-mutated parts of the
mosaic, variable sequencing read depth n, and variable sampling
deviation of reads. Moreover, we also varied the sets of cases used
for SVM-training and cases used for composing the in silico-
mosaics. Expectedly, the overall distribution of the artificial
mosaics was rather broad (Fig. 3). Nonetheless, the analysis
highlighted 6 suspected mosaics as possibly erroneous as their
SVM probability scores were above the 95th percentile of the
artificial mosaics. The 6 variants included 1 SNV and all 5 indels,
reminding of the fact that indel detection by exome sequencing is
insufficient [18]. When these 6 cases were re-examined, the initial
assumption of mosaicism was found to be erroneous in both
KMT2B mosaics and in 2 of the KMT2D mosaics, while 2 other
KMT2D-indels still remained possible mosaics after re-examination
(Table 1): Direct inspection by Integrative Genomics Viewer (IGV)
in case of the tandem duplication c.6245_6266dup in KMT2B
additionally revealed 2 reads where the duplication was
misinterpreted as mismatches and 49 non-informative reads
which started or ended within the duplicated region and may
well have been derived from the duplicated allele. Assuming an
unbiased distribution of allelic reads, the initial variant read count
by the automated exome pipeline (52 out of 171, resulting in a
seeming allele frequency of 0.30) was thus corrected to
52+ 2+ 49/2= 78.5, resulting in an allele frequency of 0.46 and

a deviation of only 1.07 binomial SD. In case of the KMT2B-deletion
c.3335-9_3363del, the re-analysis of reads by DeepVariant, a deep
convolutional neural network which outperformed state-of-the-art
tools [19], indicated 68 variant reads in 166 reads, strongly
increasing the seeming variant allele frequency from 36/
129= 0.28 to 0.41 which corresponded to a borderline deviation
of 2.3 binomial SD. SVM probability scores of 4 KMT2D mosaic
candidates were above the 95th percentile of the artificial
mosaics. One of them showed the previously described patho-
genic splice site variant c.510 G > A [20] in only 2 of 15 reads.
Despite a deviation from the expected variant read count by 2.9
binomial SD, this case was very unlikely to be a mosaic because
the variant was inherited from the mother. The other 3 cases
carried indels. At least one of them was very unlikely to be a
mosaic upon DeepVariant examination which elevated the relative
variant allele count above 50% (Table 1).

DISCUSSION
We optimized episignature-classifiers and their application with
respect to several aspects. First, we reduced the size of the
classifiers which usually comprise 100 to 500 CpG-sites [2] by
removing redundancy without loss of accuracy. We did so by
applying the bootstrap ensemble version of the minimum-
redundancy-maximum-relevance feature selection algorithm

Fig. 3 Analysis of presumed mosaics. For suspected mosaics (red), that is, cases with variant read calls diverging by more than 2 binomial SD
from expectation (i.e., from half of the total read number), the SVM probability scores and variants’ read proportions were compared to those
of in silico-synthesized mosaics (grey) which represented the potential variations due to degree of mosaicism, read depth, variant read
sampling, methylation analysis, and classifier training. Dashed lines indicate the 5th and 95th percentiles of the SVM-scores in the synthesized
mosaics. The variation in classifier training resulted in variation of the SVM-scores of the suspected mosaics (vertical red lines indicating the
95%CI). Note that the classifiers were varied by running through all possibilities of leaving out 2 cases from the training set, reducing their
power as compared to the classifiers in Fig. 2 that were trained on the complete sets. The suspected KMT2B and KMT2D mosaics above the
95th percentile were reassessed (Table 1) and at least 4 of them were found to be erroneous outputs of the automated exome analysis
pipeline due to poor read depth or insufficient assignment of indel reads.
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(mRMR) [13, 17] whose name explains its basic idea. This size
reduction was most efficient in case of KMT2B-deficiency where
the set of CpG-sites with epigenome-wide significance could be
reduced by almost 2 orders of magnitude to minimally 30 without
detectable loss in the classifier’s accuracy (Fig. 1). In case of
KMT2D-deficiency the maximal reduction was less pronounced,
i.e. by about half to minimally 49 CpG-sites. The potential for
reduction differs between diseases because the specific deficien-
cies do not have the same effect (and effect size) on DNA
methylation. Others previously reduced classifier redundancies by
removing CpG-sites with correlation > 80% [7] or ≥ 90% [21, 22].
However, the accepted level of remaining redundancy appeared
to be arbitrary in these studies and the selection of individual
CpG-sites was not a direct function of the trade-off between
redundancy and relevance. Moreover, because their further
correlation patterns may differ, it is not irrelevant which of two
correlated CpG-sites is selected. The mRMR-algorithm provides a
plausible selection rationale. Nonetheless, it may still miss the
globally optimal classifier. In its bootstrap ensemble version, which
we applied, the optimization is further improved without
exceeding computation time [13]. (Note added in proof: During
preparation of this manuscript Zhang et al. [23] reported on
feature selection by mRMR when relating fetal intolerance of labor
to maternal blood cell DNA methylation.).
Second, we optimized the sensitivity of the episignature-

classifier by repetitively re-training the classifier with recursive
inclusion of newly diagnosed cases into the classifier’s training set.
Each episignature-classifier of a monogenic disorder necessarily
must first be trained on undoubtedly positive cases. “Undoubt-
edly” implies a trend towards loss-of-function variants in the
causative gene which usually have strong effects, however. This
limits the sensitivity of classifiers in case of disorders in which the
phenotypic severity relates to the remaining genetic effect. That
limitation was substantially reduced by stepwise re-training of our
KMT2D and KMT2B classifiers, increasing their sensitivity by 30%
while their high specificity was preserved. Sooner or later, such re-
training of classifiers runs into contingent and necessary restric-
tions, however. Contingently, the recursive re-training may break
off if no case of intermediate severity comes up anymore to be
included in the next training step. Thus, at least 4 of our dystonia
patients with VUS in KMT2B whose SVM probability scores
remained below 0.5 even after maximal re-training, likely are
KMT2B-deficient because the scores were still above the 95th
percentile of independent controls. A necessary restriction of the
re-training method beyond inclusion of moderate-effect variants is
given by the unavoidable trade-off between sensitivity and
specificity if there is a continuous allelic series of effect strengths.
Including variants of lower and lower effects in the training set
will, at some point, impair the specificity of the classifier due to
random variation in the control set or residual cross-sensitivity of
the classifier for other disorders. The latter problem can be
remedied by including samples of the respective disorders in the
control set of the SVM-training or even of the EWAS [2]. We did
not do so since we wanted to see any impact of the re-training on
the specificity. As indicated above, this impact was very small and
the specificities remained close to 1 ( ≥ 0.98). Expectedly, a few
cases of disorders with related episignatures [3, 24] came up such
as a DNMT1-deficient sample in case of the KMT2B classifier and
samples from BAFopathies or Kabuki type 2 in case of the KMT2D
classifier.
We previously found evidence of allelic series in KMT2B-

associated dystonia where the age of dystonia-onset was
associated with the degree of KMT2B-deficient methylation
deviation [4]. Other made analogous observations in other
disorders such as the Au-Kline syndrome [8], for instance, where
intermediate severities correlated with intermediate episignature-
classifier scores. We now confirmed this association in indepen-
dent samples of KMT2B-deficient dystonia. Analogous associationTa
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between phenotypes and methylation deviation may be detect-
able for reliably quantifiable phenotypes in other MDEM.
Cases above the 95th percentile in independent controls but

below the 0.5-probability score of the maximally re-trained
classifier also had no or late-onset (mean= 26 years) dystonia.
These four cases included an adult patient with isolated focal
cervical dystonia as the only symptom, highlighting the possibility
that moderate KMT2B-deficiency may play a causative role in a set
of dystonia patients much larger than previously thought. Even
the KMT2B VUS cases below the 95th percentile of the probability
score ranked significantly higher than the independent controls in
that range. The same was true for KMT2D VUS. These findings raise
the possibility that those deficiencies contribute with small effect
to polygenic forms of the respective disorders, that is, dystonia
and intellectual disability, respectively. However, this would imply
a low pathogenicity-threshold of the histone and DNA methyla-
tion deviations.
The optimal trade-off between sensitivity and specificity of a

tunable biomarker such as a classifier score varies depending on
the biomarker’s concrete use and on the prior diagnostic
probability. For instance, if the biomarker is the only available
parameter to diagnose a monogenic disorder, its specificity should
not be much compromised. On the other hand, if the classifier is
used to exclude the pathogenicity of a VUS, high sensitivity is
desirable. As shown in Fig. 2, there are VUS in KMT2B and KMT2D
whose classifier scores remained close to the median of
independent controls even after maximal re-training.
Sensitivity is also crucial when episignature-classifiers are

applied to mosaics since only a fraction of the examined blood
cells display the deviation in methylation. Indeed, two of eight
potential KMT2D mosaics were only detected when the classifier
had become more sensitive after re-training (Fig. 2). Their variants’
read proportions were as low as 0.19 and 0.23. Montano et al. [25]
recently described a KMT2D mosaic with variant read proportion
of 0.11 whose classifier score of 0.2 clearly ranged above the
scores of controls but failed to reach the level of 0.5.
Regular diagnostic use of episignatures for evaluation of mosaic

states has recently been called for, as the latter may account for a
relevant proportion of disease cases [2, 9]. Collecting sufficiently
manymosaic samples for each degree of mosaicism in order to train
the respective classifiers will be difficult, however. Therefore, as the
third optimization developed by this study, we simulated mosaic
states in silico by pairwise combination of methylation data from
sets of non-mosaic cases and of non-affected assuming that the
specific DNA methylation aberration in blood of an MDEMmosaic is
displayed only by cells that carry the defect of the epigenetic
machinery. Besides the variation in methylation assessment which
was represented by the empirical data sets used for their
construction, the distribution of the in silico-mosaics also realistically
represented the variation of the degree of mosaicism and the
variation of the proportion of variant sequencing reads. When we
compared the 10 potential mosaic cases in our cohorts with the
distribution of these in silico-mosaics (Fig. 3), we identified 6 outliers
of whom 5 carried indel variants which are notoriously difficult to
adequately detect by exome sequencing [18]. Re-evaluating the
sequencing and family data of the 6 outliers, mosaicism turned out
to be unlikely in at least 4 of them. These findings benchmarked the
usefulness of the in silico-mosaics. Interestingly, after re-evaluation
of the outliers, none of the KMT2B-deficient patients appeared to be
an obvious mosaic. The difference to KMT2D-deficient patients - of
whom at least 4 SNV-carriers complied with mosaicism according to
pedigree, exome, and episignature data - was striking, as our study
included more cases with KMT2B-deficiency than cases with
KMT2D-deficiency. Indeed, KMT2B mosaics have not yet been
published either, as opposed to 14 reported KMT2D mosaics
[20, 25, 26]. As a possible explanation of this difference, there may
be interneuronal redundancy in suppression of KMT2B-deficient
dystonia so that mosaics rarely develop dystonia.

DATA AVAILABILITY
CpG-sites episignatures for KMT2B and KMT2D after maximal re-training are provided
in Supplementary Table 2. Details of the variants in KMT2B or KMT2D with evidence of
pathogenicity in (re-trained) episignature analyses are provided in Supplementary
Tables 3 and 4.
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