
Foo et al. Translational Psychiatry           (2019) 9:343 

https://doi.org/10.1038/s41398-019-0671-7 Translational Psychiatry

ART ICLE Open Ac ce s s

Longitudinal transcriptome-wide gene expression
analysis of sleep deprivation treatment shows
involvement of circadian genes and immune
pathways
Jerome C. Foo 1, Nina Trautmann1,2,3, Carsten Sticht4, Jens Treutlein1, Josef Frank 1, Fabian Streit 1,
Stephanie H. Witt 1, Carolina De La Torre4, Steffen Conrad von Heydendorff2, Lea Sirignano1, Junfang Chen2,
Bertram Müller-Myhsok5,6,7, Andreas Meyer-Lindenberg2, Christian C. Witt8, Maria Gilles2, Michael Deuschle2 and
Marcella Rietschel 1

Abstract
Therapeutic sleep deprivation (SD) rapidly induces robust, transient antidepressant effects in a large proportion of
major mood disorder patients suffering from a depressive episode, but underlying biological factors remain poorly
understood. Research suggests that these patients may have altered circadian molecular genetic ‘clocks’ and that SD
functions through ‘resetting’ dysregulated genes; additional factors may be involved, warranting further investigation.
Leveraging advances in microarray technology enabling the transcriptome-wide assessment of gene expression, this
study aimed to examine gene expression changes accompanying SD and recovery sleep in patients suffering from an
episode of depression. Patients (N= 78) and controls (N= 15) underwent SD, with blood taken at the same time of
day before SD, after one night of SD and after recovery sleep. A transcriptome-wide gene-by-gene approach was used,
with a targeted look also taken at circadian genes. Furthermore, gene set enrichment, and longitudinal gene set
analyses including the time point after recovery sleep, were conducted. Circadian genes were significantly affected by
SD, with patterns suggesting that molecular clocks of responders and non-responders, as well as patients and controls
respond differently to chronobiologic stimuli. Notably, gene set analyses revealed a strong widespread effect of SD on
pathways involved in immune function and inflammatory response, such as those involved in cytokine and especially
in interleukin signalling. Longitudinal gene set analyses showed that in responders these pathways were upregulated
after SD; in non-responders, little response was observed. Our findings emphasize the close relationship between
circadian, immune and sleep systems and their link to etiology of depression at the transcriptomic level.

Introduction
Therapeutic sleep deprivation (SD) rapidly induces

robust antidepressant effects in a large proportion of
major mood disorder patients suffering from a depressive
episode1–5. The effects of the treatment are transient as
relapse is usually observed after recovery sleep. Although
SD is considered useful and recommended, it is rarely
applied in the clinical routine6. The mechanisms through
which SD exerts its antidepressant effects nevertheless

© The Author(s) 2019
OpenAccessThis article is licensedunder aCreativeCommonsAttribution 4.0 International License,whichpermits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changesweremade. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to thematerial. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: Jerome C. Foo (jerome.foo@zi-mannheim.de)
1Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental
Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim,
Germany
2Department of Psychiatry and Psychotherapy, Central Institute of Mental
Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim,
Germany
Full list of author information is available at the end of the article.

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

http://orcid.org/0000-0003-1067-5725
http://orcid.org/0000-0003-1067-5725
http://orcid.org/0000-0003-1067-5725
http://orcid.org/0000-0003-1067-5725
http://orcid.org/0000-0003-1067-5725
http://orcid.org/0000-0003-4867-9465
http://orcid.org/0000-0003-4867-9465
http://orcid.org/0000-0003-4867-9465
http://orcid.org/0000-0003-4867-9465
http://orcid.org/0000-0003-4867-9465
http://orcid.org/0000-0003-1080-4339
http://orcid.org/0000-0003-1080-4339
http://orcid.org/0000-0003-1080-4339
http://orcid.org/0000-0003-1080-4339
http://orcid.org/0000-0003-1080-4339
http://orcid.org/0000-0002-1571-1468
http://orcid.org/0000-0002-1571-1468
http://orcid.org/0000-0002-1571-1468
http://orcid.org/0000-0002-1571-1468
http://orcid.org/0000-0002-1571-1468
http://orcid.org/0000-0002-5236-6149
http://orcid.org/0000-0002-5236-6149
http://orcid.org/0000-0002-5236-6149
http://orcid.org/0000-0002-5236-6149
http://orcid.org/0000-0002-5236-6149
http://creativecommons.org/licenses/by/4.0/
mailto:jerome.foo@zi-mannheim.de


offer important insights into the biological factors
involved in depression and antidepressant response, and
have been the focus of recent research7–11. Work in
humans12–15 as well as animals16–18 consistently docu-
ments the effects of mistimed or insufficient sleep and
sleep deprivation on circadian gene expression (such as
CLOCK, ARNTL [BMAL1], PER1, PER2, PER3, etc.) as
well as on genes involved in related biological processes
such as inflammatory, immune and stress response19,20. A
prominent hypothesis about the antidepressant mechan-
ism underlying SD is that it restores circadian rhythmicity,
which is often dysregulated in depression, via resetting
clock gene transcription21,22. The well-controlled nature
and rapidity of response to SD treatment23 renders it a
promising context to investigate associated biological
measures such as gene expression.
While no systematic investigation of gene expression

changes in depressed patients undergoing SD treatment
has been conducted to date, the study of gene expression
in major depressive disorder (MDD) has raised the idea
that genes associated with MDD are enriched for
inflammation and immune response pathways, which may
be linked to the sleep disturbances observed in depres-
sion24–26. Circadian rhythms are found in the majority of
physiological processes and the immune system is no
different, with alterations of these rhythms leading to
disturbed immune responses27. The immune system and
circadian clock circuitry crosstalk, with immune chal-
lenges and mediators, such as cytokines, also feeding back
to affect circadian rhythms28. Cytokines, including che-
mokines, interferons and interleukins, are integral to sleep
homeostat regulation and can modulate behavioural and
physiological functions29.
We recently conducted a naturalistic study, which

aimed to examine clinical and genetic factors predicting
response to SD30. This was conducted in a sample of
major mood disorder inpatients experiencing a depressive
episode (n= 78) and healthy controls (n= 15). Briefly,
72% of patients responded to SD. Responders and non-
responders did not differ in self/expert assessed symptom
ratings or chronotype, but mood differed. Response was
associated with lower age and later age at lifetime disease
onset. Higher genetic burden of depression was observed
in non-responders than healthy controls, with responders
having intermediate risk scores.
The present study now aimed to examine gene

expression changes accompanying SD and recovery sleep
during a depressive episode using a longitudinal design,
looking at changes in peripheral blood gene expression in
the same sample. Gene expression changes occurring after
SD and recovery sleep, as well as associated with response
and case-control status, were explored. In a hypothesis-
driven approach, expression patterns of circadian genes
were investigated. For a systematic search, transcriptome-

wide gene-by-gene and gene set enrichment analyses were
performed, while longitudinal gene set analysis31 explored
dynamics in expression trajectories at the functional gene
set level.

Methods and materials
Participants
The present sample has been described elsewhere30.

Seventy-eight inpatients (34 females; age mean ± standard
deviation= 43.54 ± 14.80 years) presenting with a
depressive episode (unipolar, n= 71; bipolar I, n= 6; and
bipolar II, n= 1) and on stable medication for ≥5 days
participated in this study. Depression was diagnosed
according to ICD-10 criteria. Patients were recruited from
consecutive admissions to the depression unit of the
Department of Psychiatry and Psychotherapy of the
Central Institute of Mental Health (CIMH), Mannheim,
Germany. Prescribed medication included typical and
atypical antidepressants, lithium, and adjunct therapies
(anticonvulsants, antipsychotics and sleeping agents).
Fifteen healthy controls (eight females; 40.53 ± 15.90
years) with no history of psychiatric/somatic disorders
were recruited through an online advertisement on the
CIMH website. The criteria for inclusion and exclusion
were the same as the criteria for patients, except controls
needed to lack psychiatric diseases, which was evaluated
via Structured Clinical Interview for DSM-IV Axis II
disorders (SCID-II) prior to SD. The investigation was
carried out in accordance with the Declaration of Helsinki
and approved by the local ethics committee. All partici-
pants provided written informed consent following a
detailed explanation of the study.

Sleep deprivation
On Day 1, participants gave informed consent and

entered the study (see Fig. 1). SD was conducted from Day

Day 1 Day 2 Day 3 Day 4

Recovery 
Sleep (1800 – 0100)Sleep Deprivation (~36 hrs)

12 24 12 24 12 24 12

Fig. 1 Experimental procedure. Patients entered the study on Day 1
and underwent sleep deprivation for ~36 h from Day 2 to Day 3
before undergoing recovery sleep. Response was assessed with the
CGI-C in the afternoon of Day 3 before recovery sleep. Blood for gene
expression was taken at the same time (0600–0730 h) on Days 2, 3 and
4 (T1, T2 and T3, respectively).
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2–Day 3, in small groups of 1–5 participants under staff
supervision. Participants were free to move around during
the night of the SD protocol and were supervised by staff
and occupied with activities such as games and walks to
ensure wakefulness. Resting in bed was not allowed and
SD was carried out on the ward under regular ward
lighting conditions (no bright or dim lighting). Food
intake was not restricted and some patients consumed
snacks (i.e. bread) during SD. Participants underwent the
same protocol irrespective of habitual sleep/wake timing;
patients followed ward routines (i.e. lights on, lights out
times) prior to inclusion to the study. Participants
remained awake from ~0600 h on Day 2 to 1800 h on Day
3 (36 h). On Day 3, participants underwent recovery sleep
from 1800–0100 h. Sleep phase advance was then carried
out, shifting sleep 1 h forward each day until the patient’s
regular sleep pattern was reached. Controls participated
alongside patients. Response was assessed by the senior
clinical researcher using the Clinical Global Impression
Scale for Global Improvement/Change in the afternoon
on Day 3.

Data collection
Blood samples were collected in RNA-stabilizing PAX-

gene tubes (Qiagen, Hilden, Germany), processed
according to standard procedures, and stored at −80 °C
until analysis. Blood was collected at the same time
(between 0600–0730 h) on Day 2 before SD (T1), on Day
3 after SD (T2) and on Day 4 (T3) (see Fig. 1). The
number of samples decreased over time points (Table 1)
due to non-participation.

Sample preparation and analysis
RNA and microarray analyses
Laboratory analyses were performed using standard

methods (see Supplementary Information, SI).

Gene expression data pre-processing
A Custom CDF Version 20 with ENTREZ-based gene

definitions was used to annotate the Affymetrix Gene-
Chip™ Human Gene 2.0 ST arrays used for gene expres-
sion profiling32. The Raw fluorescence intensity values
were normalized applying quantile normalization
and RMA background correction using SAS JMP11

Genomics, version 7 (SAS Institute, Cary, NC, USA). The
final dataset comprised mRNA expression targeting
24,733 unique genes for each time point per participant.

Data analysis
Analyses were conducted in R (Microsoft R Open 3.4.2).

Significance was set at FDR q < 0.05.

Gene-based analysis
Analyses were conducted using lme4 (Version 1.1–17).

Linear mixed effects models with random intercepts were
fitted to examine gene expression differences between T1
and T2 (‘effect of time point’). Three main models were
fitted: effect of time point in ‘all patients’ (M1), in
‘responders vs. non-responders’ (M2) and in ‘patients vs.
controls’ (M3). In all analyses, age and sex were included
as covariates.
Models were specified as follows: for each transcript,

likelihood ratio tests were calculated between two models
(h1 vs h0). In both models, gene expression was specified
as the dependent variable, covariates were specified as
fixed effects and the individual was specified as a random
effect. h1 contained the comparison of interest specified
as a fixed effect while h0 was a reduced model without it.
That is, in M1, the ‘effect of time point’ was the only
difference between h1 and h0, while in M2 and M3, the
effect of interest was the interaction of the comparison
group status (i.e. responder/non-responder, and case/
control) and ‘effect of time point’.
Additionally, whether differences in expression levels at

T1 ‘baseline’ were informative about response and disease
status was examined using linear models, controlling for
sex and age.

Targeted examination of differential expression of circadian
genes
To determine differential expression of circadian genes,

a list of genes comprising both traditional clock genes (in
order of highest signal-to-noise ratio predicting circadian
rhythmicity): PER1, NR1D2, PER3, NR1D1, PER2,
ARNTL, NPAS2, CLOCK, CRY2 and CRY1 as well as other
top genes shown to predict circadian rhythmicity in
human blood (DDIT4, CLEC4E, FKBP5, DAAM2, TPST1,
IL13RA1, SMAP2, HNRNPDL, FOSL2, PER1, FLT3,

Table 1 Samples included for analysis at different time points.

Time point All subjects Patients Responders Non-responders Controls

T1 91 76 (43M/33F) 60 (36M/24F) 16 (7M/9F) 15 (7M/8F)

T2 87 72 (41M/31F) 56 (34M/22F) 16 (7M/9F) 15 (7M/8F)

T3 81 66 (38M/28F) 53 (32M/21F) 13 (6M/7F) 15 (7M/8F)

Total 259 214 (122M/92F) 169 (102M/67F) 45 (20M/25F) 45 (21M/24F)
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CDC42EP2, TMEM88, NR1D2, RBM3) in ref. 33 was used
to take a focused look at results of the gene-based ana-
lysis. Using a Monte-Carlo approach, the probability of
obtaining at least the observed number of significant
associations (p < 0.05 uncorrected) in a random gene set
of the same size was calculated (see SI, Fig. S1a-c).

Gene set enrichment analysis
Gene Set Enrichment Analysis (GSEA)34 was used to

determine whether differentially expressed genes offered
biologically meaningful insights about SD. Ranked lists
were created based on results of models M1-M3, using a
signed log10 transformed p-value with sign denoting
direction of change, as described elsewhere35. To allow a
concise interpretation of the potentially widespread effects
of SD interventions, the Hallmark gene set collection36

(MSigDB Version 6.2), comprising 50 gene sets repre-
senting specific well-defined biological states/processes
displaying coherent expression, was used. The heme
metabolism gene set was excluded due to the globin
interference artefact (communication with ThermoFisher).

Longitudinal Gene Set Trajectory
Time-course Gene Set Analysis (TcGSA)31 (Version

0.12.1) was employed to examine gene expression
dynamics over all three time points. TcGSA, employing
mixed models, detects gene sets in which expression
changes over time, taking between-gene and individual
variability into account, with higher sensitivity and better
interpretability than univariate individual gene analysis
(for details, see ref. 31). As above, the Hallmark gene set
collection was used. Significance was set at FDR q < 0.05.
TcGSA was employed separately for all patients, controls,
responders and non-responders. Data at T3 from two

patients not following the recovery sleep protocol were
excluded, while 8 participants had dropped out.

Results
Gene-based analysis
In all patients [M1], 4071 (2083 up, 1988 down) genes

were significantly differentially expressed after SD. Sig-
nificant differential changes in gene expression after SD
between responders and non-responders [M2] were
observed in 360 genes [150 up, 210 down] and in patients
vs. controls [M3] in 495 genes [248 up, 247 down].
Table 2 shows top differentially expressed genes for these

models. Tables S1.1-S1.3 show the number of genes dif-
ferentially expressed, upregulated and downregulated for all
models, and detailed lists of differentially expressed genes.
At baseline, no genes were significantly differentially

expressed between patients/controls and responders/non-
responders (Table S1.4).

Target examination of differential expression of circadian
genes
We observed significant differential expression of cir-

cadian genes in models M1, M2 and M3. (Table 3, for
more details, see Tables S2.1–3). Baseline differences in
circadian genes between responders/non-responders, and
patients/controls did not reach FDR q < 0.05, but achieved
nominal significance (see Table S2.4).
Monte Carlo simulations confirmed that significantly

more circadian genes were differentially expressed than
random gene sets of the same size (see SI).

Gene set enrichment analysis
GSEA notably found enrichment in immune response

related pathways (see Tables S3.1–3).

Table 2 Top 10 differentially expressed genes for each model (T2 vs. T1).

Patients [M1] Responders vs. Non-responders [M2] Patients vs. Controls [M3]

Gene symbol Estimate P-val FDR Gene symbol Estimate P-val FDR Gene symbol Estimate P-val FDR

TSPAN2 0.554523443 7.53143E-19 DNER 0.19414884 0.000170023 ERN1 0.30163938 0.003013102

KLF6 0.162981029 2.03907E-16 LPCAT2 0.32653286 0.000170023 EZH2 0.38906547 0.003013102

MAK 0.476984074 1.20412E-15 SLC10A5 −0.62752802 0.000170023 SLC44A1 0.27499289 0.003013102

ANTXR2 0.199530713 4.42924E-15 PCID2 −0.300504 0.000209042 MEMO1 0.43613957 0.003013102

TMEM43 0.19700767 5.80393E-15 TESC-AS1 −0.3069843 0.001180095 UTP11L 0.4553397 0.003013102

TREM1 0.300131404 1.1734E-14 BECN1 0.21458155 0.001180095 NSFL1C 0.2298895 0.003013102

LRRFIP1 0.178631499 1.1734E-14 IFT74 −0.43960958 0.001375265 PCTP 0.30731503 0.003013102

NHSL2 0.253418357 2.50255E-14 ZNF790 −0.29221374 0.002668032 ZBTB16 0.53874494 0.003013102

ARHGEF40 0.32560393 3.23301E-14 GSR 0.17871771 0.00297074 CISH −0.31446529 0.003456021

SIPA1L1 0.228865158 3.2956E-14 LINC01125 −0.16389193 0.00297074 TRAV4 −0.4598706 0.003456021

FDR false discovery rate

Foo et al. Translational Psychiatry           (2019) 9:343 Page 4 of 10



For M1, M2 and M3, 12, 23 and 11 gene sets were
significantly positively enriched, respectively (FDR q <
0.05). The TNFα signalling via NFKβ gene set had the
strongest positive enrichment in all models, while
Inflammatory Response was also consistently among the
significantly positively enriched gene sets.
Given the enrichment observed in Tumor Necrosis

Factor Alpha (TNFα) and immune pathways, selected
genes prominent in immune processes26 were further
examined (Table S4).

Time-course gene set analysis
TcGSA results mirrored and extended gene-based

analysis results:
In responders, 48 gene sets varied significantly (the

model for one gene set, G2M Checkpoint, did not con-
verge) (see Fig. 2a). Descriptively, in comparison to T1,
responders showed a spectrum of differential gene
expression at T2, with strong upregulation observed
(TNFα Signalling via NFKβ, IL6-JAK-STAT3-Signaling,
Inflammatory Response, Angiogenesis) and maintained
until T3. The Interferon Gamma Response and Interferon
Alpha Response gene sets showed the strongest upregu-
lation at T3.
In non-responders, 44 gene sets varied significantly (the

model for one gene set, Allograft Rejection, did not
converge) (see Fig. 2b), the majority of gene sets were
downregulated at T2, with upregulation of the above-
mentioned gene sets only observed at T3.

In patients, expression was observed to vary significantly
in 49 gene sets (see Fig. 2c). Descriptively, upregulation
was observed in immune system related gene sets in two
main patterns; (1) strong upregulation at T2, sustained
but weakening at T3 (i.e. Inflammatory Response, IL6-Jak-
Stat3-Signalling and TNFα Signalling via NFKβ) and (2)
light upregulation at T2 followed by stronger upregulation
at T3 (e.g., Interferon Gamma Response, Interferon Alpha
Response).
In controls, 21 gene sets varied significantly (see Fig. 2d).

Descriptively, at T3, immune/inflammation related gene
sets were upregulated (e.g. Inflammatory Response, IL6-
Jak-Stat3-Signalling, TNFα Signalling via NFKβ). The
majority of other gene sets were downregulated at T2,
followed by upregulation at T3.
Tables S5.1–4 list significant TcGSA gene sets.

Discussion
Here, we report the first longitudinal transcriptome-

wide study of SD treatment in major mood disorder
patients suffering from a major depressive episode.
Widespread differential gene expression was observed
after SD; circadian genes were differentially expressed,
and enrichment in pathways related to immune function,
inflammatory response and sleep regulation was observed.
It has been hypothesized that SD exerts its anti-

depressant effect by resetting disturbed clock gene func-
tioning thought to be a feature of depression10.
Consequently, we examined changes in expression of

Table 3 Differential expression in circadian genes after SD.

Pa�ents [M1] Responders vs. Non-responders [M2] Pa�ents vs. Controls [M3]
Gene T2 vs. T1 T2 vs. T1 T2 vs. T1

P-val(β) P-val(β) P-val(β)
PER1* NS 0.083 FDR  (0.27) 0.045 FDR (0.32)

NR1D2* NS NS NS
PER3 0.0063 FDR (-0.11) NS 0.065 FDR  (-0.22)

NR1D1 0.0014 FDR (-0.12) 0.035 unc (-0.14) 0.036 FDR (-0.27)
PER2 0.038 unc (-0.059) NS NS

ARNTL 0.017 FDR (0.059) 0.033 unc (0.096) NS
NPAS2 NS NS 0.0054 unc (-0.18)
CRY2 NS NS NS
CRY1 NS NS NS

CLOCK NS 0.029 unc (-0.15) NS
DDIT4 1.24e-04 FDR (-0.32) NS NS

CLEC4E 0.0023 FDR (0.20) 0.0483 FDR  (0.42) 0.018 FDR (0.48)
FKBP5 0.037 unc (0.088) NS 0.028 FDR (0.38)

DAAM2 0.037 FDR (0.069) 0.020 unc (0.14) NS
TPST1 1.85e-04 FDR (0.23) NS 0.025 FDR (0.44)

IL13RA1 NS 0.0047 unc (0.19) NS
SMAP2 1.16e-5 FDR (0.12) 0.0390 FDR  (0.18) 0.030 FDR (0.18)

HNRNPDL 1.32e-04 FDR (-0.10) 0.0173 unc (-0.13) 0.035 FDR (-0.18)
FOSL2 2.23e-06 FDR (0.19) 0.0046 unc (0.22) 0.0046 unc (0.22)
FLT3 NS NS NS

CDC42EP2 4.19e-04 FDR (0.18) 0.0071 unc (0.26) NS
TMEM88 9.50e-05 FDR (0.21) NS 0.023 unc (0.23)

RBM3 7.12e-11 FDR (-0.21) NS 0.024 unc (-0.14)

Tradi�onal Clock 
Genes

Circadian 
Genes

Bold text indicates FDR q < 0.05
Blue= downregulation, Red= upregulation
FDR false discovery rate, NS not significant, unc uncorrected
aPER1 and NR1D2 are also on the list of circadian genes identified in Hughey et al. 2017
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circadian genes. All individuals, i.e. patients and controls,
showed significant differential expression of circadian
genes after SD. In responders, many significant gene
expression changes were observed while in non-
responders only a few nominally significant changes
were found. The following observation may be of interest:
three circadian genes, PER1, CLEC4E and SMAP2 (FDR q
= 0.083 approaching significance, 0.048, and 0.039,
respectively) showed strong differential gene expression,
i.e. increased expression, in responders versus non-
responders after SD. While the roles of CLEC4E and
SMAP2 are yet unexplored in this context (however, see
below for additional discussion of CLEC4E), similar PER1-
related findings have been previously reported; consistent
with the present findings, PER1 expression is observed to
be increased in SD responders and decreased in non-

responders10. Animal studies have shown that sleep
deprivation or prolonged wakefulness enhanced Per1
expression in several brain regions21,37, and that quetia-
pine increased Per1 expression in the amygdala38.
The present results are interesting in light of a study in

human post-mortem brain tissue of ~12,000 ranked genes
according to robustness of circadian rhythmicity across
six brain regions; the top ranked circadian genes in that
study were ARNTL, PER2, PER3 and NR1D1 and dysre-
gulation in MDD vs controls were observed in these
genes22. The present study observed that these same
genes were the most affected (of the traditional clock
genes) as a result of SD, supporting the idea that SD may
act on the dysregulation of these genes in depression.
The present findings cannot yet demonstrate that clock

gene dysregulation/normalization is at the core of the SD

C)

A) B)

D)

Fig. 2 Heatmaps of estimated dynamics from significant gene sets in a responders, b non-responders, c patients, and d controls. The median gene
expression over subjects is used for each trend. Each trend is zeroed at T1 to represent baseline expression. Each row is a group of genes having the
same trend inside a gene set, while the columns are time points. Trends are hierarchically clustered. Trends become red as median expression is
upregulated or blue as it is downregulated compared to the baseline value at T1. The colour key represents the median of the standardized
estimation of gene expression over the group of participants for a given trend in a significant gene set. Non-converging gene sets were excluded. For
non-responders, the gene set for peroxisome was excluded from visualisation due to non-homogeneous expression within the set.
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mechanism. However, they suggest that (genes of) the
molecular clocks of responders/non-responders, as well as
patients/controls respond differently to chronobiologic
stimuli, which may be associated with treatment
outcomes.
Among the top 10 genes most significantly differentially

expressed after SD in patients [M1] were: (i) KLF6,
observed to be upregulated in individuals after experi-
mental restriction in a genome-wide association study of
sleep duration39; (ii) SIPA1L1, expression of which was
found to be increased in a study examining changes in
military personnel at baseline and after improvement of
sleep40; (iii) NHSL2, the function of which is unknown,
but which is located in a genomic region found to be
differentially hydroxymethylated in a study of sleep
deprivation in mice41; (iv) TREM1, which has immune
function12 and (v) TSPAN2, of which a study looking for
gene expression changes under fluoxetine in rats found
hippocampal upregulation42. Among the top 10 genes
observed in responders vs non-responders [M2] is BECN1
(Beclin1)—which (together with FKBP5, see below) is
shown to be involved in priming autophagic pathways to
set the stage for antidepressant action43,44. Circadian
rhythms of autophagic proteins, including beclin1 have
been linked to sleep disturbances45. Also in the top 10 in
M2 were DNER, and GSR which have functions related to
immune response46,47. Between patients and controls
[M3], top genes included EZH2, which is reported to have
a close relationship to IL-648. ZBTB16 is implicated in
human sleep duration39 and sleep deprivation in animal
studies49, and CISH is shown to be involved in immune-
related processes50,51. Among other differentially expres-
sed genes are ones evidently associated with anti-
depressive intervention, such as FKBP552 where we
observed significant upregulation in patients vs. controls
after SD (see Tables S1.1, S2.1). FKBP5 plays an important
regulatory role in stress response52–55; circadian rhythm
abnormalities have been linked to the stress response
system, and circadian clock genes can both regulate and
be regulated by rhythms of glucocorticoid release56.
Pathway analyses showed a global effect of SD on gene

expression; immunological, inflammatory response and
sleep regulation involved pathways were most strongly
affected. These findings are of interest in light of previous
gene expression studies linking immune function to
MDD57,58; SD may affect pathways involved in the MDD
etiology. In patients and especially responders, in the
Inflammatory Response (genes related to cytokines,
growth factors, cell differentiation markers and tran-
scription factors)36, IL6-JAK-STAT3-Signalling (aber-
rantly hyperactivated in patients with cancer and chronic
inflammatory conditions)59, and TNFα Signalling via
NFKβ (cell proliferation, differentiation, apoptosis, neu-
roinflammation mediated cell death) gene sets, strong

upregulation was observed at T2. Prior findings have
shown associations between the immune system and
depression, suggesting that causal pathways exist from
immune dysregulation and inflammation to MDD24,25,60–

63. This raises the question of how SD and the immune
system interact and whether SD counteracts and/or
enhances depression-related immunological processes.
Interestingly, and in contrast to responders, mainly

weaker downregulation was observed at T2 in non-
responders, with upregulation of immune-related gene
sets only observed at T3. This differential function of
immune-related processes (i.e. blunted system respon-
siveness) might be associated with non-response to
treatment. This preliminary finding must be further
explored in larger sample sizes.
Of note, downregulation of MYC targets pathways after

SD was consistently observed in both responders and
non-responders but not controls. MYC, well known as an
oncogene64, acts as a mediator and coordinator of cell
behaviour which also inversely modulates the impact of
the cell cycle and circadian clock on gene expression65. It
has been shown that dysregulation of MYC disrupts the
molecular clock by inducing dampened expression and
oscillation of CLOCK-BMAL1 master circadian tran-
scription factor66. Removal of clock repression by MYC
may play a role in the interaction of SD with depression
and further investigation of these potential mechanisms is
warranted.
Sleep and immunity are connected by anatomical and

physiological bases67. The role of cytokines in the brain is
complex and remains to be fully understood; while a full
discussion of their roles is beyond the scope of this work,
Table S4 shows cytokines and substances which have
been implicated in both immune and sleep regulatory
processes26. The present findings, observing upregulation
after SD, support reports linking levels of pro-
inflammatory cytokines to depression and suggesting
involvement in disease pathogenesis26,68,69.
One important clue to SD response may lie in the

observed TNFα expression patterns. TNFα is a pro-
inflammatory cytokine controlling expression of inflam-
matory genetic networks; in addition to many immune-
related functions in the brain, it influences whole organ-
ism function, including sleep regulation26,61. After SD,
patients had significantly decreased expression of TNF
compared to controls (FDR q= 0.01); upregulation was
observed in controls and downregulation in patients. It
should be noted here that the sample sizes were unba-
lanced, potentially introducing bias in the result; however,
upregulated TNF in controls is consistent with reports of
sleep deprivation-induced increases in TNFα levels in
healthy people70. The decrease observed in patients, and
especially responders, may inform the mechanism of SD
response-increased TNFα concentrations are reported to
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be a marker of depression and TNFα administration is
reported to induce depressive symptoms71.
Sleep-wake cycles are accompanied by changes in cir-

culating immune cell numbers and disturbing the circa-
dian cycle affects immune response72,73. Acute SD
reportedly affects diurnal rhythmicity of cells, mirroring
the immediate immune stress response74,75. Consistent
with a stress-like response, upregulation of expression of
IL6 and IL1B, thought to be involved in depression76 and
regulation of circadian rhythm/sleep homeostasis13,69,77,
was observed after SD. Given the tight coupling between
circadian and immune systems, it may be that like the
‘resetting’ of circadian genes, the altered rhythmicity of
the stress immune response system in depression is
transiently normalized, leading to antidepressant effects;
chronotherapeutic approaches that extend SD effects may
be prolonging this normalization21.
In support of the idea of involvement of stress response

associated with SD is the fact that several of the differ-
entially expressed genes are known to be driven by glu-
cocorticoid signalling. One possibility is that differential
expression observed has been induced by stress responses
associated with SD; it is not possible in the present pro-
tocol to disentangle stress and SD. For example, while as
indicated above CLEC4E is not explored in the SD con-
text, it is known to be involved in immune function and
also to be driven by glucocorticoids and is thus related to
the stress response78. Animal studies have shown that by
removing glucocorticoid signalling via adrenalectomy,
PER1, for example, was no-longer affected by SD, and
responds to the stress induced by SD rather than SD
itself79.
There are several limitations to our study. The sample

sizes of non-responders and controls were limited, with
less power potentially contributing to the lower number
of significant genes. The differences in sample sizes might
furthermore create bias in the analyses of differential
gene expression. While the statistical approach (linear
mixed models) used in the single-gene analysis and
underlying TcGSA is robust against unbalancedness and
missing data, caution should still be exercised when
considering the comparative results, as mentioned above.
Next, although blood was sampled once per day on three
consecutive days, a significant but manageable load for
patients, the amount of data is sparse for statistical esti-
mation. To better leverage longitudinal data and meth-
ods, a denser sampling scheme (e.g. every few hours) will
be required to attain a more refined understanding of
underlying SD mechanisms. It should be noted that the
recovery sleep episode was a total of 7 h in length (i.e.
1800–0100 h) after a 36 h homeostatic buildup of sleep
pressure; this may not be long enough for homeostasis to
recover and thus SD could have still had an effect on gene
expression at T3. However, it is still unclear how

circadian and homeostatic factors interact to regulate
sleep processes80 and to address this in more detail, a
different experimental design would have been required.
Also, while food intake was not given special emphasis in
this study, timing of food intake can be an entrainment
signal for the circadian clock81. In the present study,
some participants had small or simple meals (i.e. bread)
and food intake was not restricted; possible effects cannot
be excluded in the present design. Another direction,
which would be informative about circadian phase, would
be to include a marker of the central clock phase, e.g.
melatonin secretion, also sampled at high temporal
resolution. The sample studied was a naturalistic sample
recruited from consecutive admissions and treated fol-
lowing standardized clinical guidelines. Medication regi-
mens were tailored to the individual based on specific
need, resulting in a variety of therapies used. While the
effects of particular medications were not examined, to
control for effects on results of the study, as an inclusion
criterion, it was stipulated that the patient had to be on
stable medication for at least 5 days prior to SD. Given
the variety of medications used it was not possible to test
for associations with drug response with sufficient sta-
tistical power. However, there was no apparent difference
in substance class across response status. Nevertheless,
robust effects of SD were observed, perhaps in part
attributable to the consistent methodology for applying
SD treatment in a relatively large cohort for SD. Con-
sidering the fact that depression is a heterogeneous
phenotype accompanied by a heterogeneous immuno-
phenotype61, means that even larger sample sizes will be
needed to substantiate the present findings. Finally, we
investigated peripheral tissue transcriptome-wide
expression changes; although an easily obtained, valu-
able proxy, the correlation of expression in the blood
with expression in the brain, where depression is thought
to act, is imperfect and requires further study82. On the
other hand, it is precisely these cells that best represent
the current status of the immune system and the
inflammatory response, the gene expression of which
appears at the centre of SD. In addition, the crosstalk of
the organs and biorhythm tuning is also mediated via the
blood system.
Our findings affirm and emphasize the close relation-

ship between circadian, immune and sleep systems in
depression at the transcriptomic level, but the direction-
ality of cause-effect remains unclear. Circadian, immune
and sleep dysregulation may precede, accompany or come
as a result of depression; they now represent targets for
treatment, which have the ability to influence clinical
outcomes. Closer investigation of these systems with lar-
ger sample sizes and denser, longer-term sampling
schemes will be key to disentangling and understanding
the multi-level interactions occurring.
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