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Abstract

Introduction: Large datasets are required to ensure reliable non-invasive glioma assessment with radiomics-based
machine learning methods. This can often only be achieved by pooling images from different centers. Moreover, trained
models should perform with high accuracy when applied to data from different centers. In this study, the impact of recon-
struction settings and segmentation methods on radiomic features derived from amino acid and TSPO PET images of
glioma patients was examined. Additionally, the ability to model and thus reduce feature differences was investigated.
Methods: [18F]FET and [18F]GE-180 PET data were acquired from 19 glioma patients. For each acquisition, 10 recon-
struction settings and 9 segmentation methods were included to emulate multicentric data. Statistical robustness measures
were calculated before and after ComBat harmonization. Differences between features due to setting variations were
assessed using Friedman test, coefficient of variation (CV) and inter-rater reliability measures, including intraclass
and Spearman’s rank correlation coefficients and Fleiss’ Kappa.
Results: According to Friedman analyses, most features (>60%) showed significant differences. Yet, CV and inter-rater
reliability measures indicated higher robustness. ComBat resulted in almost complete harmonization (>87%) according
to Friedman test and little to no improvement according to CV and inter-rater reliability measures. [18F]GE-180 features
were more sensitive to reconstruction settings than [18F]FET features.
Conclusions: According to Friedman test, feature distributions could be successfully aligned using ComBat. However,
depending on settings, changes in patient ranks were observed for some features and could not be eliminated by harmo-
nization. Thus, for clinical utilization it is recommended to exclude affected features.
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1 Introduction

The most common type of primary malignant brain tumor
is glioma with an overall incidence of approx. 6 per 100,000
persons. Glioblastoma, the most aggressive subtype of
glioma, has a 5-year relative survival of only 7% and repre-
sents 49% of all malignant central nervous system tumors
[1]. This dismal outcome underlines the urgent need for
improved diagnosis, patient stratification and, consequently,
improved treatment planning. Hence, many studies aim to
improve the clinical performance of simple image statistics
combined with clinical parameters by further including
multi-modal and texture information and using machine or
deep learning methods [2–4].

Several radiomic studies were performed using magnetic
resonance imaging (MRI) data, which offer excellent spatial
resolution and soft tissue contrast but lack specificity for
tumor tissue. Therefore, positron emission tomography
(PET) using amino acid radiotracers, which show increased
uptake in neoplastic tissue, is now widely used [5,6] and sev-
eral related studies have shown the added value of radiomic
analyses for patient survival [7], tumor classification [8–10],
and identification of tumor recurrence and early tumor pro-
gression [11,12]. Recently, the overexpression of the 18-
kDa translocator protein (TSPO) in neoplastic tissue in addi-
tion to activated glial cells has also attracted attention as a
novel imaging marker for assessing glioma microenviron-
ment [13,14].

To properly translate radiomic models into clinical rou-
tine, they should be validated on large datasets that prefer-
ably include data from multiple centers and thus improve
reproducibility and generalizability of radiomics analyses.
However, reports have shown that features are sensitive to
variations of several factors, including image acquisition,
image reconstruction, tumor segmentation, as well as test-
retest imaging [15–22]. Thus, it is essential to ensure the
reproducibility and robustness of features in this regard. Sev-
eral methods for removing unwanted variations have been
introduced and tested. These so-called harmonization tech-
niques aim to integrate data originating from different cen-
ters while preserving clinically relevant information [23].
The ComBat method outperformed other data adjustment
methods [24] and was previously validated on radiomic fea-
tures extracted from PET, MRI, and computed tomography
(CT) images of cancer patients and phantoms [21,25–27].
Several statistical measures have been used in previous pub-
lications to assess the robustness of features. Orlhac et al.
[25–27] used Friedman test and the equivalent Wilcoxon test
to validate the ComBat harmonization method. Differences
between scanners or reconstruction algorithms and test-
retest variability have been assessed using either coefficient
of variation (CV) [15,17], intra-class correlation coefficient
(ICC) [16,19–22], or Spearman’s correlation coefficient
[16,22]. Since each of these measures reflects different prop-
erties of the data, their relevance may depend on the specific
application. Thus, in this work, the robustness of radiomic
features was analyzed by including all statistical measures
applied in either of the aforementioned publications.

The main goal of this study was to assess whether radio-
mic feature harmonization is feasible for pooling amino acid
or TSPO PET images of glioma patients. To achieve this,
radiomic features were evaluated with respect to variations
in image processing as encountered in multicentric studies,
where data pooling is required for improved generalizability
of clinical models. Furthermore, the effectiveness of Com-
Bat feature harmonization was assessed for this specific
application. Variations arising from multicentric data were
emulated by reconstructing each patient dataset with differ-
ent settings and applying multiple segmentation methods.
To the best of our knowledge, these analyses have not been
performed so far.

2 Methods

2.1 Patient data and imaging

PET images from a cohort of 19 patients diagnosed with
glioma were included in this study. 10 patients were scanned
at initial diagnosis before any treatment and 9 patients at
tumor recurrence. Histological and molecular genetic classi-
fication according to the 2021 WHO guideline for brain
tumors [28] revealed 13 glioblastomas, IDH wildtype; 4
astrocytoma IDH mutant without 1p/19q codeletion; 2 oligo-
dendroglioma, IDH mutant, 1p/19q codeleted. All patients
have given written informed consent to the data analysis.
The study was approved by the local ethics committee (ap-
proval number 18-783).

The images were acquired on a Biograph 64 PET/CT
scanner (Siemens Healthineers, Erlangen, Germany) at the
Department of Nuclear Medicine of the University Hospital,
LMU Munich. Immediately before each PET scan, low-dose
CT was performed for attenuation correction. Each patient
underwent one PET scan after administration of the radiola-
beled TSPO ligand (S)-N,N-diethyl-9-(2-[18F]-fluoroethyl)-
5-methoxy-2,3,4,9-tetrahydro-1H-carbazole-4-carboxamide
([18F]GE-180) and one PET scan after administration of the
amino acid tracer O-(2-[18F]-fluoroethyl)-L-tyrosine ([18F]
FET) on consecutive days.

[18F]FET was synthesized in a 2-step process by [18F]-
fluoroethylation of L- and D-tyrosine as described by Wester
et al. [29] and [18F]GE-180 was synthesized using a FAS-
Tlab synthesizer with single-use cassettes (GE Healthcare,
Chicago, Illinois, USA) [30]. Dynamic acquisitions were
obtained in list mode and corrected for scattered and random
coincidences, photon attenuation, radionuclide decay and
detector dead time during image reconstruction. For both
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radiotracers, late tracer uptake was used for radiomics anal-
ysis. The respective late static images were derived by aver-
aging motion corrected 10-minute time frames of the
dynamic studies. Frame-wise motion correction to an early
0-3 min post-injection (p.i.) image was performed using
the PVIEW tool of the PMOD software (version 3.502,
PMOD Technologies, Zürich, Switzerland).

For each patient, a 90-minute scan was performed after
intravenous bolus injection of 172 ± 11 MBq of [18F]GE-
180. The aforementioned 10-minute frames were generated
from 60-90 min p.i. acquisition data according to previous
research [31–33]. On the following day, a 40-minute scan
was carried out after bolus injection of 177 ± 9 MBq of
[18F]FET. In this case, 20-40 min p.i. acquisition data were
used for the static images following international practice
guidelines for glioma imaging with amino acid tracers [6].

2.2 Image reconstruction

Each image was reconstructed 10 times with different set-
tings. One setting was defined as the default and comprised
reconstruction parameters that were optimized for clinical
quantification of brain PET images at our department
[32,34]. For the remaining settings, the respective parame-
ters were fixed to the default setting, while either the recon-
struction algorithm, the matrix size, the number of subsets or
the filter size were varied individually. The default recon-
struction setting was OSEM3D algorithm with 4 iterations,
21 subsets, and 5 mm Gaussian post-reconstruction filter.
The default matrix size of 336 � 336 � 109 with a zoom
factor of 2 resulted in a voxel size of
1.018 � 1.018 � 2.027 mm3. An overview of all included
settings is given in Table 1.

2.3 Tumor segmentation

The background intensity IBG was defined on the PET
images as the mean intensity in a crescent shaped volume
manually delineated in a non-affected brain region encom-
passing both white and grey matter, as recommended in
the EANM/EANO/RANO/SNMMI joint practice guidelines
Table 1
Image reconstruction settings for PET data of 19 glioma patients
acquired on a Biograph 64 PET/CT system. The bold entries were
selected as the default. FBP: filtered back-projection; OSEM:
ordered subsets expectation maximization; FWHM: full width half
maximum.

Parameter Values

Algorithm OSEM3D; OSEM2D; TrueX;
FBP with 4.9 mm Hann

Matrix 128; 168; 336
Subsets 8; 16; 21
Filter 2; 4; 5 mm Gaussian
for amino acid PET imaging [6] and described by Unter-
rainer et al. [35]. For comparison of reconstruction settings,
volumes-of-interest (VOI) were segmented using the back-
ground intensity multiplied by a factor of 1.6 as a threshold
for [18F]FET and 1.8 for [18F]GE-180 [34,36]. Semiauto-
matic segmentation was performed inside of a manually
defined confining volume, using initial seeds and the region
growing algorithm provided by the simpleITK library (ver-
sion 2.1.1, [37]) in Python 3.9.

For comparison of feature values derived using different
segmentation methods, three different threshold-based seg-
mentation methods were employed each with three different
threshold values, resulting in nine segmentation methods
(Table 2). These analyses were performed on patient images
reconstructed with the default setting. The intensity thresh-
old was either derived using background intensity (IBG),
maximal intensity (Imax), or contrast (Imax � IBG). The values
of the threshold factors F BG, F max, and F cont defined in
Table 2 were chosen using previous literature [34,36,38].
VOIs with less than 18 voxels were considered too small
[39]. Thus, the data of 2/19 patients were excluded.

2.4 Radiomic feature extraction

Initially, PET images were normalized to the background
signal by dividing all voxel intensities by IBG to improve
inter-patient comparability yielding tumor-to-background
ratio (TBR) images. Feature extraction was performed with
the Python package PyRadiomics (version 3.0.1, [40]). Vox-
els were resampled to 2 � 2 � 2 mm3 with a b-spline inter-
polator and TBR values were discretized using a fixed bin
width as recommended by Leijenaar et al. [22] to preserve
quantitative characteristics and improve inter- and intra-
patient comparability of radiomic features. In accordance
with previous publications, the bin width was set to the
interquartile range of TBR values devided by 4, which yields
0.13 [41,42]. Overall, 107 features from the following cate-
gories were extracted from each image: first order statistics
(n = 18), 3D shape features (n = 14), and texture features
(n = 75). Detailed feature definitions, most of which are
compliant with the definitions published by the Image Bio-
marker Standardization Initiative (IBSI, [43]), can be found
in the PyRadiomics documentation [40].

2.5 Feature harmonization

The ComBat method is an empirical Bayes framework
that was proposed to harmonize data originating from differ-
ent sites [44]. It assumes that the data are affected by site-
specific additive and multiplicative effects. The neuroCom-
bat package (version 0.2.12, [45]) was implemented in
Python to apply ComBat for each feature separately with
no adjustments for biological covariates assuming non-



Table 2
Image segmentation methods for PET data of 19 glioma patients acquired on a Biograph 64 PET/CT system.

Method Threshold Empirical factors F

Background intensity FBG � IBG 1.4; 1.6; 1.8
Maximum intensity Fmax � Imax 0.4; 0.45; 0.5
Contrast Fcont � Imax � IBGð Þ þ IBG 0.3; 0.35; 0.4
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parametric variables. In this study, different radiomic feature
distributions resulting from a variation of reconstruction set-
tings and segmentation methods were aligned using ComBat
by removing batch effects. ComBat was fitted and applied
independently to assimilate the features derived from each
of the following subgroups with the respective number of
feature distributions given in brackets: all reconstructions
(10), algorithm (4), matrix (3), subsets (3), filter (3), all seg-
mentations (9), background (3), maximum (3), and contrast
(3) (see Tables 1 and 2).

2.6 Statistical analysis

Each of the statistical measures described below was cal-
culated using the radiomic features of the entire patient
cohort before and after ComBat harmonization. The evalua-
tion was performed separately for [18F]FET and [18F]GE-
180 data. The different statistical measures allow for a sep-
arate quantification of differences between feature distribu-
tions, variability of feature values, and changes in patient
ranks.

Friedman test was employed using the Python package
SciPy (version 1.7.3, [46]) to compare the distributions of
feature values with respect to patients, whereby each distri-
bution originated from a different setting. Statistically signif-
icant differences between distributions were indicated by p-
values less than 0.05, therefore percentages of robust fea-
tures exhibiting p-values greater than 0.05 were reported.

Mean coefficients of variation (CV) over all patients were
calculated in a feature-wise manner with SciPy to character-
ize the within-patient variance relative to the mean value
from different settings. A threshold of 0.1 was used to iden-
tify robust features to provide a reference value for compar-
ison with results from previous robustness studies [15,17].

Intraclass correlation coefficients (ICC) were estimated in
Python with the Pingouin package (version 0.5.0, [47]) to
quantify the within-patient variance relative to the
between-patient variance [48]. According to the guideline
published by Koo and Li [49], the model for two-way mixed
effects, consistency, single rater, and single measurement
was selected. Following their recommendation for evaluat-
ing reliability without considering the 95% confidence inter-
val of the ICC estimate, features were categorized as robust
when their ICC exceeded a value of 0.9.

Differences between patient ranks were quantified by
computing pair-wise Spearman’s rank correlation coeffi-
cients and Fleiss’ Kappa using the Python packages SciPy
and statsmodels (version 0.14.0, [50]). Whereas Spearman’s
rank correlation coefficient was calculated directly from the
feature values, Fleiss’ Kappa was derived from patient ranks.
Since the Spearman’s correlation coefficient can only be
determined for two rankings at a time, the calculation was
performed by averaging over all pair-wise coefficients.
Thus, Fleiss’ Kappa was also computed directly on the
patient ranks to include a measure that eliminates the need
for averaging. Thresholds for defining robust features were
set to 0.9 for Spearman’s rank correlation and to 0.4 for
Fleiss’ Kappa based on previous studies and recommenda-
tions [16,22,51].

Furthermore, spaghetti plots were generated for an exem-
plary feature to visually inspect the influence of setting
variations.

3 Results

Fig. 1 shows boxplots of ICC and Spearman’s correlation
coefficient, and supplementary Fig. S1 shows boxplots of
CV and Fleiss’ Kappa. The percentages of features with
p > 0.05 are listed in Table 3 for reconstruction settings
and Table 4 for segmentation methods. Percentages for
CV > 0.1, ICC < 0.9, Spearman’s correlation coeffi-
cient > 0.9, and Fleiss’ Kappa > 0.4 are listed in supplemen-
tary Tables S2a and S2b (Supplementary Material 2). All
percentages reported in this section are for a variation of
all settings and/or all feature classes. A complete list of indi-
vidual values for every feature is provided in Tables S3a-S3d
(Supplementary Material 3) for the variation of all settings.
All tables contain results with and without ComBat
harmonization.

3.1 Robustness of radiomic features

The percentages of robust features according to Friedman
test were low for the variation of reconstruction settings
([18F]FET: 2%; [18F]GE-180: 1%) with highest robustness
for shape features (14%; 7%) and for changes in matrix size
(27%; 33%) and number of subsets (26%; 29%). Less than
1% of first order and texture features were robust to a vari-
ation of all reconstruction settings. In contrast, CV and inter-
rater reliability measures indicated a moderate to high
robustness for variable reconstruction settings (Fig. 1 and
S1), whereby texture features presented with lower percent-



Figure 1. Boxplots showing intraclass correlation coefficients (ICC) and Spearman’s rank correlation coefficients of shape, first order and
texture features. Statistics were calculated by comparing feature values between all reconstruction settings, all segmentation methods, and
subgroups thereof. The horizontal lines indicate the robustness thresholds for the respective measure.
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ages compared to shape and first order features. Further-
more, lower robustness was observed for [18F]GE-180 com-
pared to [18F]FET. All statistical measures implied a high
sensitivity to the choice of post-reconstruction filter, espe-
cially for texture features.

For variation of segmentation methods, the fraction of
robust features according to Friedman test was slightly
increased but still low ([18F]FET: 22%; [18F]GE-180:
17%), whereby shape features were least robust (7%; 7%).
ICC and Spearman’s correlation indicated a moderate to
low robustness (Fig. 1), with first order features being the
most robust and shape features being the least robust. In this
case, both measures indicated a lower feature robustness for
[18F]GE-180.
3.2 Effect of ComBat harmonization

ComBat feature harmonization enabled an almost perfect
assimilation of features as assessed using Friedman test for
the variation of both reconstruction settings and segmenta-
tion methods ([18F]FET: >89%; [18F]GE-180: >90%). The
only exception was a residual sensitivity of several shape
features to the variation of reconstruction settings. Accord-
ing to CV and ICC, ComBat caused an overall improvement
in robustness, whereas the settings which already presented
with very high percentages of features with CV < 0.1 and
ICC > 0.9 showed little to no increase. For a variation of
reconstruction settings, the percentage of robust features
after ComBat harmonization according to CV and ICC



Table 3
Percentages of features without significant differences between reconstruction settings before and after ComBat
harmonization. Percentages are color-coded with shades of green ranging from white for low values to dark green for high
values. CV: coefficient of variation; ICC: intraclass correlation coefficient.

Table 4
Percentages of features without significant differences between segmentation methods before and after ComBat
harmonization. Percentages are color-coded with shades of green ranging from white for low values to dark green for high
values. CV: coefficient of variation; ICC: intraclass correlation coefficient.
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remained lowest for texture features. Similarly, the percent-
ages of shape features with CV < 0.1 and ICC > 0.9
remained lowest for variable segmentation methods. Spear-
man’s rank correlation and Fleiss’ Kappa were not affected
by the ComBat method (see Tables S2a-S2b, Supplementary
Material 2).

4 Discussion

A large number of publications report the clinical relevance
of radiomic features derived from PET images of glioma
patients [3]. Hence, pooling data and applying trained models
todata fromdifferentcentersbecomesessential to improvegen-
eralizability of models and ultimately enable translation into
clinical routine. Therefore, in this study, sensitivity of radiomic
features derived from [18F]FET and [18F]GE-180 PET images
of glioma patients was quantified with respect to variations in
image reconstruction settings and tumor segmentation meth-
ods. Since feature robustness has previously been evaluated
by different statistical measures, we compared their results
and critically assessed their usefulness in judging the success
of harmonization.

In previous studies, Friedman test was applied for evalu-
ation of ComBat performance [25–27], whereas CV and ICC
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were frequently applied to assess feature variance and inter-
rater reliability and have been complemented by Spearman’s
rank correlation coefficient [15–17,19–22]. Friedman test
quantifies significant differences in feature distributions con-
sidering the paired nature of feature values of each patient.
Since feature harmonization using ComBat allows to
improve the correspondence between feature value distribu-
tions, this property can be directly evaluated using Friedman
test [25–27]. CV and inter-rater reliability measures describe
substantially different aspects of feature robustness. CV
quantifies the within-patient variance relative to the mean
feature value of the patient and ICC relative to the
between-patient variance [48]. Spearman’s rank correlation
coefficient and Fleiss’ Kappa quantify whether patients are
ranked differently within each setting, which could
adversely affect e.g. classification tasks. Since changes in
patient ranks cannot be compensated using feature harmo-
nization, variations leading to a low rank correlation need
to be avoided.

Overall results showed that PET radiomic features were
highly sensitive to the choice of image segmentation meth-
ods and, in accordance with the literature for [18F]FDG
PET, reconstruction settings [15,17,52]. Rank-based mea-
sures implied that a variation of segmentation methods is
more likely to change patient ranks with respect to feature
values than a variation of reconstruction settings. As this
variability cannot be diminished, it is important to first care-
fully select a clinically meaningful segmentation method and
then consistently apply the chosen segmentation method to
all patient data.

The high impact of different post-reconstruction filters is
most likely explained by the strong effect of smoothing on
object boundaries, image texture, as well as voxel intensities
in general. This finding contradicts results of a previous
study using [18F]FDG for the assessment of lung lesions
[15], where the choice of matrix size had the strongest
impact on radiomic features as assessed by CV. However,
the impact of matrix size might be reduced in this study as
the applied radiomics pipeline included resampling to the
same voxel size before feature extraction.

The sensitivity difference of shape features between
reconstruction and segmentation was expected, as image
segmentation directly relates to the shape of a VOI, whereas
reconstruction rather affects voxel intensities and their inter-
relations. Especially in lesions with a more spread-out tracer
uptake, VOIs that were generated with different segmenta-
tion methods showed significant differences in shape fea-
tures, as exemplarily seen in Fig. 2.

The lower robustness to a variation of reconstruction set-
tings of features from the [18F]GE-180 data compared to the
[18F]FET data might be explained by the potential contribu-
tion of low inflammation-related PET signal in [18F]GE-180
images and by the lower activity concentration in healthy
background resulting in an increased noise contribution
especially when combined with a narrow post-
reconstruction filter. This is visualized in Fig. 2 for an exam-
ple glioma, where in case of a 2 mm Gaussian filter, the
tumor volume is rather compact for [18F]FET, while it is
broad and patchy for [18F]GE-180. Evidently, the feature
extraction process is therefore also dependent on the inter-
play between reconstruction and segmentation. Hence, the
robustness of radiomic features can be influenced by
tracer-specific uptake patterns especially when a solely
PET-based radiomics workflow including tumor segmenta-
tion is used. This implies that the distribution of suspiciously
increased biological signal, which is driven by tracer charac-
teristics, may affect the sensitivity of radiomic features to a
variation of reconstruction settings or segmentation methods.

As assessed using Friedman test, ComBat harmonization
successfully assimilated most radiomic features, which is in
line with previous publications validating the ComBat
method [25–27]. However, CV and ICC showed only little
to no improvements and rank correlation measures were
unchanged. Similarly, only little improvement of ICC was
observed after Combat harmonization of CT based features
as reported by Ligero et al. [21].

The different aspects quantified by statistical measures
can be visualized using spaghetti plots as presented in
Fig. 3 for the shape feature mesh volume derived from
[18F]GE-180 PET data. Feature values of one patient for dif-
ferent settings are connected by lines. For zero variance, a
straight horizontal line reflects perfect agreement of feature
values from different settings, whereas a jagged line reflects
increased variance. Fig. 3 depicts spaghetti plots before and
after ComBat harmonization for a variation of reconstruction
settings (Fig. 3a, b) and for a variation of segmentation
methods (Fig. 3c, d). The mesh volume presents with only
few intersecting lines and is therefore less sensitive to a vari-
ation of reconstruction settings according to rank correlation
measures. Yet, for instance the upper-most blue line in
Fig. 3a is slightly jagged and transformed to a straight line
after harmonization (Fig. 3b), leading to a slightly decreased
CV and satisfactory alignment of distributions according to
Friedman test. In contrast, for a variation of segmentation
methods, a large number of lines are jagged and intersecting
before harmonization, which is reflected by all included sta-
tistical measures. Although feature distributions of each seg-
mentation method were well aligned after harmonization, the
feature values of each individual patient showed a high vari-
ability between settings as quantified using CV and ICC.
Furthermore, mesh volume ranks of different patients
remained the same as visualized by persisting intersecting
lines and quantified using Spearman’s rank correlation and
Fleiss’ Kappa. These observations are in line with the
above-mentioned increased sensitivity of shape features to
tumor segmentation.



Figure 2. [18F]FET (a-c) and [18F]GE-180 (d-f) PET images showing the same axial slice through a lesion (TBR intensity window: 0-5).
Tumor VOIs, marked by red contours, were generated after applying different smoothing filters and segmentation thresholds FBG. The
values of four radiomic features are shown for each image.
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A limitation of this study is the small sample size, which
was restricted due to the large number of included recon-
struction protocols (20 per patient for both radiotracers,
380 overall). Results were derived from a mixed patient
cohort, which comprises gliomas at initial diagnosis as well
as recurrent tumors. To explicitly exclude features which
cannot be harmonized using ComBat, the presented analyses
should be reperformed with a larger sample size for each
specific clinical task and patient group of interest.

One potential caveat concerning ComBat is the occur-
rence of negative feature values after harmonization for fea-
tures that can only assume positive values per definition,
which was for example observed for the feature mesh vol-
ume for one patient (Fig. 3d). Thus, the biological meaning
of the harmonized values is uncertain in these cases. In gen-
eral, it is not clear how well biological variations are retained
by ComBat, as ground truth data are usually unavailable to
correlate radiomic feature values to the underlying biology.
Furthermore, it remains to be evaluated, whether ComBat
model fitted to a small patient cohort can be meaningfully
applied on data from of a larger or even different patient
population. Yet, the striking improvement of feature similar-
ity among different settings in terms of overlapping feature
distributions will increase the performance of clinically rele-
vant features unless they are susceptible to patient rank vari-
ability. The clinical benefit of feature harmonization for
glioma classification, survival prediction, or identification
of tumor recurrence will be assessed in a separate study.



Figure 3. Spaghetti plots showing the values of the shape feature mesh volume after extraction from the [18F]GE-180 data before and after
ComBat harmonization. a & b: distributions over all patients for every reconstruction setting. c & d: distributions over all patients for every
segmentation method. Results of the statistical analyses are highlighted in green or red depending on the respective robustness threshold
(pFriedman: 0.05; CV: 0.1; ICC: 0.9; Spearman: 0.9; Kappa: 0.4).
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5 Conclusions

In this study, radiomic feature robustness and the applica-
bility of ComBat feature harmonization was assessed with
regard to variations that are typically encountered when data
from multiple centers are pooled. From the findings it can be
concluded that radiomic features derived from [18F]FET or
[18F]GE-180 data of glioma patients are highly susceptible
to setting variations, whereby [18F]GE-180 features display
higher sensitivity to a variation of reconstruction settings
compared to [18F]FET. This implies that feature robustness
is tracer dependent. Although feature value distributions
can be assimilated using ComBat, variable patient ranks can-
not be compensated. However, poor agreement between
patient ranks may have a significant impact on the biological
interpretability and clinical applicability of radiomic fea-
tures. Hence, multicentric data can be successfully pooled
for selected clinically relevant features when ComBat har-
monization is employed and rank variability is considered.
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