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A B S T R A C T

Longitudinal analysis of white matter lesion changes on serial MRI has become an important parameter to study
diseases with white-matter lesions. Here, we build on earlier work on cross-sectional lesion segmentation; we
present a fully automatic pipeline for serial analysis of FLAIR-hyperintense white matter lesions. Our algorithm
requires three-dimensional gradient echo T1- and FLAIR- weighted images at 3 Tesla as well as available cross-
sectional lesion segmentations of both time points. Preprocessing steps include lesion filling and intrasubject
registration. For segmentation of lesion changes, initial lesion maps of different time points are fused; herein
changes in intensity are analyzed at the voxel level. Significance of lesion change is estimated by comparison
with the difference distribution of FLAIR intensities within normal appearing white matter. The method is va-
lidated on MRI data of two time points from 40 subjects with multiple sclerosis derived from two different
scanners (20 subjects per scanner). Manual segmentation of lesion increases served as gold standard. Across all
lesion increases, voxel-wise Dice coefficient (0.7) as well as lesion-wise detection rate (0.8) and false-discovery
rate (0.2) indicate good overall performance. Analysis of scans from a repositioning experiment in a single
patient with multiple sclerosis did not yield a single false positive lesion. We also introduce the lesion change
plot as a descriptive tool for the lesion change of individual patients with regard to both number and volume. An
open source implementation of the algorithm is available at http://www.statistical-modeling.de/lst.html.

1. Introduction

Longitudinal analysis of white matter (WM) lesion changes on serial
magnetic resonance imaging (MRI) has become an important parameter

to study diseases with WM lesions (WMLs) such as multiple sclerosis
(MS). The pathological hallmark of MS is WMLs in brain and spinal
cord. WMLs appear T2-hyperintense on MRI. WML load has become the
most important paraclinical tool to monitor disease activity and
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response to immunomodulatory treatment (Sormani and Bruzzi, 2013;
Wattjes et al., 2015). This is of clinical relevance, as the disease course
of MS is very heterogeneous – from benign to disastrous, while various
immunomodulatory drugs with different modes of action are available,
and while early treatment is most effective (Kappos et al., 2015;
Sormani et al., 2014). Therefore, serial brain MRI is indispensable for
clinical routine, clinical trials, and research (Sormani and Bruzzi, 2013;
Wattjes et al., 2015). WML load is commonly described by either
number or total volume. Although both measures relate to each other,
they can diverge considerably; for example, the same lesion volume can
result from few large lesions or many small lesions. However, we are
not aware of a commonly accepted descriptive tool for individual lesion
development accounting for number, volume and their interrelation.
More importantly, quantification of WML load is challenging. Manual
WML segmentation is time-consuming and bears the risk of a con-
siderable inter- and intra- rater bias. Several algorithms have been
suggested for automated cross-sectional segmentation of WMLs
(Danelakis et al., 2018; Garcia-Lorenzo et al., 2013; Valverde et al.,
2015). Longitudinal WML segmentation is even more challenging and
particularly prone to misinterpretations. Varying WML contrast and
different positioning of the patient in serial scans may hamper detection
of WML changes, particularly when they are more subtle. Accordingly,
agreement among experienced observers was poor for counting enlar-
ging lesions (Rovaris et al., 1999). Nevertheless tools for automatic
segmentation of WML changes over time have been regarded desirable
(Vrenken et al., 2013). We believe that such a pipeline should ideally
cover both absolute WML load (i.e. WML load per time point) and
changes of WMLs over time in a single frame work with the possibility
to analyze more than two time points and to saliently illustrate in-
dividual lesion change. Besides reliable performance, it should be freely
available, easy to use and easy to implement. To the best of our
knowledge, the majority of the suggested tools focus on the analysis of
difference images derived from coregistered T2- or FLAIR-weighted
images; most of these tools use subtraction images (Battaglini et al.,
2014; Eichinger et al., 2017; Elliott et al., 2010; Ganiler et al., 2014;
Sweeney et al., 2013), whilst others use deformation fields with (Salem
et al., 2018) or without (Cabezas et al., 2016) the necessity to apply a
training dataset beforehand. Finally, an algorithm (https://icometrix.
com/ products/icobrain-ms) was compared to a ß-version of the algo-
rithm proposed here (Jain et al., 2016). This study built on earlier work
on cross-sectional WML segmentation (Jain et al., 2015). Table 1
summarizes studies on the segmentation of WML changes.
In this work, we aimed at the introduction and validation of an

automated algorithm for segmentation of WML changes by extending
earlier work on cross-sectional WML segmentation (Schmidt et al.,
2012) as implemented in the lesion segmentation tool LST, which is
freely available (www.statistical-modelling.de/ lst.html). Although our
approach enables analysis of multiple time points in principle, we here
focus on segmentation of WML changes between two time points as-
suming available cross-sectional WML segmentation of both time
points.

2. Methods

2.1. Subjects

This study was performed in accordance with the Code of Ethics of
the World Medical Association (Declaration of Helsinki) for experi-
ments involving humans and was approved by the local ethics com-
mittee of all participating centers. Patients were recruited from the
national cohort study of the German Competence Network Multiple
Sclerosis (http://www.kompetenznetz-multiplesklerose.de/en). For in-
ternal validation, we selected serial data sets of 5 patients from each of
three sites: Ruhr University of Bochum, Johannes Gutenberg University
Mainz, and Technical University of Munich (TUM). All these patients
had an increase in WML load according to the reports of the evaluating Ta

bl
e
1

St
ud
ie
s
on
se
gm
en
ta
tio
n
of
w
hi
te
m
at
te
r
le
si
on
ch
an
ge
s.

St
ud
y

n
M
RI
pa
ra
m
et
er
s,
vo
xe
ls
iz
e
(m
m
)

D
es
cr
ip
tio
n/
co
m
m
en
ts

Le
si
on
-w
is
e
pe
rf
or
m
an
ce
pa
ra
m
et
er
s

(r
an
ge
)a

TP
R

FD
R/
FP
R

(E
lli
ot
t
et
al
.,
20
10
)

23
1.
5
T;
T1
w
,P
D
/T
2w
:1
×
1
×
3

Ba
ye
si
an
cl
as
si
fic
at
io
n
fr
am
ew
or
k
on
su
bt
ra
ct
io
n
im
ag
es
(T
2w
),
tr
ai
ni
ng
da
ta
se
t
(n
=
66
);
sp
ec
ifi
ci
ty
no
t

qu
an
tit
at
iv
el
y
ev
al
ua
te
d

0.
84
(n
.i.
)

n.
d.

(S
w
ee
ne
y
et
al
.,
20
13
)

5
1.
5
T;
2D

FL
A
IR
,P
D
,T
2w
,3
D
T1
w
:1
×
1
×
1

(e
xt
ra
po
la
te
d)

Lo
gi
st
ic
re
gr
es
si
on
m
od
el
us
in
g
m
ul
tip
le
se
qu
en
ce
s
an
d
su
bt
ra
ct
io
n
im
ag
es
,R
O
C
cu
rv
e
an
al
ys
is

0.
95

(v
ox
el
-w
ise
)

0.
01

(v
ox
el
-w
ise
)

(B
at
ta
gl
in
ie
t
al
.,
20
14
)
19

PD
,T
2w
,T
1w
,F
LA
IR
:3
×
1
×
1

Ba
se
d
on
su
bt
ra
ct
io
n
im
ag
es
(P
D
);
m
ul
tic
en
te
r
tr
ia
l(
M
ill
er
et
al
.,
20
12
)

0.
91
(n
.i.
)

0.
21
(n
.i.
)

(G
an
ile
r
et
al
.,
20
14
)

20
1.
5
T;
PD
,T
2w
,T
1w
:3
×
1
×
1

Ba
se
d
on
su
bt
ra
ct
io
n
im
ag
es
(P
D
)

0.
77
(n
.i.
)

0.
18
(n
.i.
)

(C
ab
ez
as
et
al
.,
20
16
)

36
3
T;
PD
/T
2w
:0
.8
×
0.
8
×
3;
FL
A
IR
:

0.
5
×
0.
5
×
3
T1
w
:1
×
1
×
1.
2

M
ul
tic
ha
nn
el
pi
pe
lin
e
ba
se
d
on
de
fo
rm
at
io
n
fie
ld
s

0.
81
(n
.i.
)

0.
18
(n
.i.
)

(J
ai
n
et
al
.,
20
16
)

12
3
T;
T1
w
,F
LA
IR
:1
×
1
×
1

Ex
pe
ct
at
io
n-
m
ax
im
iz
at
io
n
fr
am
ew
or
k

0.
62
(0
.5
3–
0.
69
)

0.
16
(0
.0
0–
0.
51
)

(E
ic
hi
ng
er
et
al
.,
20
17
)
10
6
3
T;
FL
A
IR
:1
×
1
×
1.
5;
T1
w
:1
×
1×

1
Ba
se
d
on
su
bt
ra
ct
io
n
im
ag
es
(F
LA
IR
);
re
la
tin
g
to
a
co
ns
en
su
s
re
fe
re
nc
e,
m
ai
n
fo
cu
s
on
D
IR
su
bt
ra
ct
io
n
im
ag
es

0.
79

(n
.i.
)

0.
05
(n
.i.
)

(p
at
ie
nt
-w
ise
)

(p
at
ie
nt
-w
ise
)

(S
al
em

et
al
.,
20
18
)

60
3
T;
PD
/T
2w
:0
.8
×
0.
8
×
3;
FL
A
IR
:

0.
5
×
0.
5
×
3;
T1
w
:1
×
1×

1.
2

M
ul
tic
ha
nn
el
pi
pe
lin
e,
us
e
of
in
te
ns
iti
es
,s
ub
tr
ac
tio
n
im
ag
es
,a
nd
de
fo
rm
at
io
n
fie
ld
s;
36
M
S
pa
tie
nt
s,
24
co
nt
ro
ls

0.
74
(+
/−

0.
29
)

0.
12
(±

0.
18
)

a
Pe
rf
or
m
an
ce
pa
ra
m
et
er
s
(w
ith
ra
ng
es
as
gi
ve
n
in
th
e
or
ig
in
al
pu
bl
ic
at
io
ns
)
re
fe
r
to
le
si
on
s
un
le
ss
in
di
ca
te
d
by
ita
lic
le
tt
er
s;
FL
A
IR
,fl
ui
d
at
te
nu
at
ed
in
ve
rs
io
n
re
co
ve
ry
;F
D
R/
FP
R,
fa
ls
e
di
sc
ov
er
y/
po
si
tiv
e
ra
te
;M
S,

m
ul
tip
le
sc
le
ro
si
s;
M
RI
,m
ag
ne
tic
re
so
na
nc
e
im
ag
in
g;
n.
d.
,n
ot
de
te
rm
in
ed
;n
.i.
,n
ot
in
di
ca
te
d;
PD
,p
ro
to
n
de
ns
ity
;R
O
C,
re
sp
on
se
op
er
at
or
ch
ar
ac
te
ri
st
ic
s;
T,
Te
sl
a;
TP
R,
tr
ue
po
si
tiv
e
ra
te
,i
.e
.d
et
ec
tio
n
ra
te
or
se
ns
iti
vi
ty
;

w
,w
ei
gh
te
d.

P. Schmidt, et al. NeuroImage: Clinical 23 (2019) 101849

2

https://icometrix.com/
https://icometrix.com/
http://www.statistical-modelling.de/
http://www.kompetenznetz-multiplesklerose.de/en


radiologists. For external validation, we analyzed serial data sets of
another 40 patients from two centers (20 per center), namely the Max
Planck Institute of Psychiatry (MPIP) Munich and TUM. These patients
represented a broader spectrum of WML evolution with 5 stable pa-
tients per site and the remaining patients with activity ranging from
mild to severe. Baseline demographic data of patients are summarized
in Table 2.

2.2. Magnetic resonance imaging

MR scans were acquired in the context of regular follow-up visits in
the national cohort study of the German Competence Network Multiple
Sclerosis. Data storage and quality control was performed centrally
(Bochum). We exclusively used scans, which had passed all quality
checks. Those included controls for completeness, and scanning pro-
tocol (as agreed upon by the respective center before recruitment start)
and thorough visual inspection. Details on the MRI protocols of the
different sites are given in Table 3.

3. Preprocessing

3.1. Initial cross-sectional WML segmentation per time point

Cross-sectional WML segmentation was used to aid intrasubject
image coregistration of T1w (T1-weighted) images through lesion
filling, and to aid manual segmentation for internal validation (see next
sections). WMLs were segmented for each time point independently by
the lesion growth algorithm (Schmidt et al., 2012) as implemented in
the lesion segmentation tool LST (www.statistical-modelling.de/lst.
html) for SPM12. The algorithm first segments the T1w images into
the three main tissue classes (cerebrospinal fluid, grey matter, WM).
This information is then combined with the coregistered FLAIR in-
tensities in order to calculate lesion belief maps. By thresholding these
maps with a pre-chosen initial threshold (κ), an initial binary lesion
map is obtained which is subsequently grown along voxels that appear
hyperintense in the FLAIR image. The result of this procedure is a lesion
probability map. We used the same initial threshold (κ=0.3) for all
images. This value has been proven to be useful in previous studies
(Mühlau et al., 2013; Rissanen et al., 2014) and was confirmed by vi-
sual inspection.

3.2. Lesion filling

Lesion filling was used to aid intrasubject image coregistration of
T1w images, as it has been shown that the presence of WMLs can have a
negative impact on registration results (Chard et al., 2010; Sdika and
Pelletier, 2009). Therefore, lesions are first filled in all T1w images with
intensities of normal-appearing white matter (NAWM). This task is
accomplished by the lesion filling routine implemented in LST.

3.3. Intrasubject registration

Images of both time points have to be in alignment with each other
to compare the segmented WML maps. For intrasubject registration, we
used the filled T1w images as they show more contrast between tissue
classes than FLAIR images. It has been recognized that non-symmetric
registration protocols, i.e. methods that align each scan to a baseline,
increase the risk of inducing false positive differences (Ashburner and
Ridgway, 2012). Addressing this problem, different symmetric strate-
gies have been developed including the affine transformation of all
scans into a ‘halfway’ space (Smith et al., 2001). Here, images of two
time points are aligned to a point that lies in between the scans of
different time points by using the square root of the transformation
matrix. Here, we used such an algorithm (longitudinal rigid registra-
tion) as currently implemented in the SPM12 toolbox CAT12 (http://
dbm.neuro.uni-jena.de/cat/). It combines rigid-body registration withTa
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initial bias-field correction and uses sinc interpolation. Coregistration
matrices were also applied to corresponding FLAIR images after bias
field correction (SPM12) and initial co-registration to the corresponding
T1w image (same subject, same time point, LST).

4. Segmentation of WML changes between two time points

4.1. Overview on the segmentations of WML changes between two time
points

Once all images are in alignment, the core of our longitudinal pi-
peline can be applied (Fig. 1). A joint lesion map is rendered from cross-
sectional WML segmentations of both time points by logical disjunction
(i.e. fusion) in order to divide WM into lesion voxels (part of any lesion
at any time point) and non-lesion voxels, i.e. NAWM. The distribution
of FLAIR intensity differences is estimated within the voxels of NAWM
to enable statistical quantification of intensity changes within the joint
lesion map. Significant changes are interpreted as increase (new or
enlarged lesion) or decrease (disappeared or shrunken lesion). Non-
significant changes but different cross-sectional lesion segmentation
results is interpreted as lesion at both time points. Here we followed our
experience that false positive lesion segmentations are less likely than
false negative lesion segmentations (see discussion).

4.2. Assessment of WML change

Once lesion maps, bias corrected FLAIR images and information
about tissue classes of all time points are in alignment with each other,
the core of the longitudinal pipeline can be applied. FLAIR intensities of
consecutive time points are compared by the procedure explained
below. As a result of this process, the initial lesion maps are updated.
The final result of this algorithm is that each voxel of each time point is
either classified as lesion or not by an update of lesion maps of all time
points; further, a lesion change label (LCL) for comparison of both time
points is rendered. Six combinations can occur from the initial cross-
sectional results (Table 4). If the initial state of a voxel does not differ,
the corresponding label in the LCL is either ‘no lesion at both time
points’ or ‘lesion at both time points’, depending on the initial seg-
mentation. If the initial voxel states differ, two choices remain. If the
difference in FLAIR intensity (δ, see below) is significant, the LCL of the
voxel is marked as ‘lesion appeared’ or ‘lesion disappeared’. Otherwise,
the LCL of the voxel is labeled as ‘lesion at both time points.’ For
consistency between LCLs and lesion maps of both time points, the le-
sion map ‘no lesion’ is updated to ‘lesion’. We have chosen this strategy
as, in our experience, both the lesion growth algorithm as implemented
in LST for cross-sectional lesion segmentation and the manual

segmentation pipelines (see below) tend to produce false negatives
rather than false positives (see discussion).

4.3. Comparison of FLAIR intensities

Here we explain how a change in FLAIR intensities between time
points t and t + 1 is classified as significant or not.
First, FLAIR intensities of both time points are normalized (scaled)

by dividing all voxel values by the mean of segmented grey matter (of
the respective time point) as implemented in LST. In addition, a joint
lesion map is created. This is a binary mask that indicates whether a
voxel was segmented as WML in at least one time point. Next, relative
differences in FLAIR intensities are computed for each voxel by the
following formula:

y y
y y

i ni, t i, t 1 i, t
( i, t i, t 1)/2

, 1, ., .= +
+ +

= …

Here, yi,t is the FLAIR intensity of voxel i at time point t obtained
from the scaled coregistered bias corrected FLAIR image. Due to noise
of various sources, we expect δi,t ≠ 0 even if the corresponding tissue
has not changed. Hence, we have to apply a rule in order to distinguish
a significant change. We derive this rule by analyzing δi,t within the
class of NAWM, i.e. voxels that were segmented as WM but not as WML
at both time points. We approximate the distribution of these values by
a Gaussian distribution with mean μWM and standard deviation σWM
which are estimated by the empirical mean and empirical standard
deviation, respectively. Here, we introduce alpha; it controls the
amount of differences identified as significant changes, where high
alpha values lead to more changes. The optimal alpha is determined by
an internal validation study (see below). These thresholds for distin-
guishing normal variation from significant changes are obtained by
calculating the α and 1- α, 0 < α < 1, quantiles from this distribution,
yielding lower and upper thresholds θL(α) and θU(α), respectively.
These thresholds are then applied to voxels within the joint lesion map,
that is, to voxels that were segmented as lesions at least at one time
point. Significant change in FLAIR intensity is detected if either δi,
t < θL(α) or δi, t > θU(α).

4.4. Lesion change plot

When inspecting the results of longitudinal lesion segmentation, it
can be hard to gain a comprehensive overview on all changes. To this
end, we developed the lesion change plot. This plot depicts the change
of each lesion between two time points by plotting the lesion volume of
time point t (x-axis) against the lesion volume of time point t + 1 (y-
axis). Lesions are represented by squares, whose size is proportional to

Table 3
Scanning protocols.

Bochum Mainz Munich MPIP Munich TUM

Scanner 3 T Achieva, Philips, Netherlands 3 T Trio, Siemens, Germany 3 T Signa MR750, GE, United States 3 T Achieva, Philips, Netherlands

3D GRE T1 Orientation 180 contiguous sagittal slices 192 contiguous sagittal slices 160 contiguous sagittal slices 170 contiguous sagittal slices
Slice thickness (mm) 1 1 1 1
Field of view (mm) 240×240 256×256 256×256 240×240
Voxel size (mm) 1.0× 1.0× 1.0 1.0× 1.0×1.0 1.0× 1.0× 1.0 1.0× 1.0× 1.0
TR (ms) 10 1900* 8.2 9
TE (ms) 4.6 2.52 3.2 4

3D FLAIR Orientation 170 contiguous sagittal slices 192 contiguous sagittal slices 160 contiguous sagittal slices 144 contiguous axial slices
Slice thickness (mm) 1 1 1 1.5
Field of view (mm) 240×240 256×256 256×256 230×185
Voxel size (mm) 1.0× 1.0× 1.0 1.0× 1.0×1.0 1.0× 1.0× 1.0 1.0× 1.0× 1.5
TR (ms) 4800 5000 7500 10,000
TE (ms) 291 389 118 140
TI (ms) 1650 1800 2173 2750

3D, three-dimensional; 3 T, 3 Tesla; FLAIR, fluid-attenuated inversion recovery; GE, General electrics; MPIP, Max Planck Institute of Psychiatry Munich; TE, echo
time; TI, inversion time; TR, repetition time; TUM, Technical University of Munich *Siemens here actually indicates the duration of the shot interval.
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the joint lesion volume. The area of the squares is divided into colored
blocks that encode volumes that disappeared (green), remained con-
stant (yellow), and appeared new (red). Further, a column on the right
encodes the volume changes as a whole with the same colors as in the
diagram. The descriptive tool is further complemented by a maximum
intensity projection (Wallis et al., 1989) for the LCL along the sagittal,
coronal and transverse plane to allow localization of the lesion evolu-
tion in the brain.

5. Validation

5.1. General validation strategy and validation outcome parameters

We chose a two-step approach, comprising an internal and an ex-
ternal validation step (Fig. 2). Both were based on manual segmentation
as gold standard – yet with technical differences. 1) Internal validation:
This served to stabilize the diverse steps of our pipeline, exclusion of a
systematic bias towards WML decrease or increase, and identification of
an optimal value for α. This part of the validation was carried out by in-
house software, standard fast preprocessing steps and manual seg-
mentation by one co-author (PS) not blinded to time points. 2) External
validation: This served to eventually assess the performance of the
entire tool on the basis of the LCL maps without elements of circularity
and without co-authors being directly involved. This strict procedure in
combination with new independent samples of MS patients was chosen
to approach generalizability of our results. Comparison of LCL maps
were restricted to changes of at least 15 μl in contiguous volume cor-
responding to a diameter of about 3mm as stipulated by the current
criteria to diagnose MS (Thompson et al., 2018).

5.2. Internal validation: details on manual segmentation and optimization
of alpha

Here (Fig. 2A), WMLs were manually segmented by one observer
(PS) with over 6 years of experience in segmenting WMLs in MS. First,
WMLs were cross-sectionally segmented by LST and manually corrected
by means of the drawing tools of MRIcron, version 1.4 (Rorden and
Brett, 2000) according to previous work (Caligiuri et al., 2015; Droby
et al., 2015; Gamboa et al., 2014; Zimmermann et al., 2015) in
chronological order. Axial slices served as primary orientation; sagittal
or coronal slices of the same time point as well as slices of the other
time point were used on demand. These binary manually corrected
cross-sectional segmentations were saved and LCLs calculated through
subtraction of both time points; these LCLs were again manually cor-
rected. For each LCL, the Dice coefficient (DC) was calculated.

α critically influences the quality of the longitudinal segmentation
(see above section on comparison of FLAIR intensities). Smaller values
will yield more conservative LCLs while larger values are able to re-
cognize smaller changes in FLAIR intensities, yet increasing the risk of

Fig. 1. Overview on image processing for the segmentation of WML changes.
After coregistration of individual T1-weighted and FLAIR images and cross-
sectional lesion segmentation, a joint lesion map is rendered. Normal appearing
white matter (NAWM) is derived from the remainder (WM segmentation
without WM lesions); after correction for the bias field, intensity scaling ac-
cording to grey matter, the distribution of FLAIR intensity differences is esti-
mated from NAWM differences to enable statistical testing for intensity changes
within the joint lesion map. Significant changes are classified as increase (new
lesion in red) or decrease (disappeared lesion in green). Non-significant changes
but different cross-sectional lesion segmentation results are interpreted as le-
sion at both time points (yellow). For example, the large lesion fades out at its
outer sections over time (light blue area at time point 2); since the intensity
difference is not significant, no lesion change is indicated. For details, see text.
NAWM, normal-appearing white matter.

Table 4
Lesion change labels and updates of cross-sectional lesion maps.

Initial voxel state (lesion yes/no) Significant difference in FLAIR intensities (δ) (+/−) Updated voxel state
(lesion yes/no)

Lesion change label

t t+ 1 t t+ 1

No No Ignore No No No lesion at both time points
Yes Yes Ignore Yes Yes Lesion at both time points
No Yes − Yes Yes Lesion at both time Points
No Yes + No Yes Lesion appeared
Yes No − Yes Yes Lesion at both time points
Yes No + Yes No Lesion disappeared

t, time point 1; t+ 1, time point 2.
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false positive lesion change voxels. We performed a sensitivity analysis
across α values ranging from 0.01 to 0.40. First, we applied our pipeline
to the images of 5 subjects from TUM since LST (Schmidt et al., 2012)
had been developed based on these same sequences. Then, we com-
pared this to the performance on two other platforms (5 patients per
scanner). LCLs obtained from our pipeline were compared to reference
LCLs derived from manual segmentation using the voxel-wise Dice
coefficient (Dice, 1945):

DC TP
TP FN FP

2
2

= ×
× + +

TP, FP, and FN refer to the number of true positives, false positives,
and false negatives, respectively. Voxels that were not segmented as
WML at any time point with either of the two methods were excluded
from validation analysis. Voxels are counted as TP if ‘change’ or ‘no
change’ has been estimated correctly. In contrast, the number of mis-
classified voxels, i.e. F= FN+FP, is composed of voxels with different
lesion labels. Dice coefficients derived from the voxel-wise comparison
were analyzed across α values using local polynomial regression LOESS
(Cleveland and Devlin, 1988).

5.3. External validation: details on segmentation procedure and
performance parameters

The external validation (Fig. 2B) was performed by Medical Image
Analysis Center AG (MIAC) Basel, Switzerland (http://miac.swiss/en/),
a certified imaging clinical research organization providing high pre-
cision WML segmentations, e. g. for international phase III pharma-
ceutical trials (Kappos et al., 2010). The full technical details are un-
disclosed. It is manual but aided by a semi-automated contour-detection
algorithm to be applied slice-by-slice and based on independent lesion
segmentation by two professional readers with an intrarater variability
of ≤5% (Kappos et al., 2010). Interrater variability is kept low by le-
sion segmentation through two independent readers and consensus
decisions led by a neuroradiologist. To use the MIAC pipeline for va-
lidation of our algorithm, some adaptations were necessary: First, the
MIAC pipeline yields coregistered FLAIR images and WML segmenta-
tions of both time points as well as the LCLs in DICOM (Digital Imaging
and Communications in Medicine) format. After conversion to NIFTI
(Neuroimaging Informatics Technology Initiative) format, MIAC images

were coregistered to the images derived from our intrasubject regis-
tration by subjecting FLAIR images of the first time point to a standard
coregistration routine as implemented in SPM12 and applying the same
transformation to all other images. The LCLs coregistered in this way
were used for eventual quantification steps. Second, as the applied
MIAC pipeline is manual, LCLs do not necessarily fully overlap with at
least one of the two cross-sectional WML maps. Therefore, we calcu-
lated a joint lesion map from the coregistered MIAC WML maps of both
time points and the coregistered MIAC LCLs. Of note, this step does not
change the MIAC based segmentation results, but is needed to have a
comparable analysis space.
For the external validation, we aimed at lower dependence from

absolute volumes and also calculated additional similarity measures
(beyond the voxel-wise DC). Since for MS monitoring, the number of
new WMLs is more established than the overall volume of new WMLs,
lesion-wise measures were determined. As proposed more recently
(Ganiler et al., 2014), we considered segmentation of a new WML TP in
case of at least 1 voxel intersecting with a WML according to manual
segmentation; in contrast, we considered segmentation of a WML FP in
case of no voxel intersecting with a WML according to manual seg-
mentation. This way, we determined sensitivity, which can be referred
to as detection or true positive rate (TPR) in our case,

Sensitivity Detection rate TPR TP
TP FN

= = =
+

and the false discovery rate (FDR), which can be referred to as false
positive rate (FPR)

FDR FPR FP
FP TP

= =
+

in a lesion-wise manner in addition to the voxel-wise DC. We also
calculated these parameters across different WML size ranges. Finally,
we performed simple correlation analyses to identify effects of age,
disease duration or severity (EDSS) on performance parameters.
Subject-wise mean values of both time points (age, disease duration,
EDSS) were entered into analyses.

6. Repositioning experiment

To investigate test-retest reliability, we re-analyzed data of a re-

Fig. 2. Overview of image processing for the vali-
dation analysis.
A) For the internal validation, we used the lesion
segmentation tool (LST) for cross-sectional lesion
segmentation separately for each time point. These
lesion segmentations were manually corrected.
Lesion changes were created by difference images
which were also manually corrected (manually cor-
rected lesion change label, LCL). Manually corrected
cross-sectional lesion segmentations served as
starting point for the segmentation of white matter
lesion changes by LST (including the joint lesion
map). For validation analysis, manually corrected
LCLs were compared to LCLs derived from LST.
B) For the external validation, MIAC AG (Medical
Image Analysis Center Basel, Switzerland) delivered
coregistered cross-sectional lesion segmentations of
both time points and segmentations of white matter
lesion changes (LCL). MIAC cross-sectional lesion
segmentation served as starting point for the long-
itudinal lesion segmentation by LST including the
joint lesion map. The latter was complemented by
MIAC LCLs. For validation analysis, MIAC LCLs were
compared to LCLs derived from LST.
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positioning experiment performed in the context of another study at the
scanner of Munich MPIP (Biberacher et al., 2016). Four scans were
acquired in sequence; between scans, the patient (with MS) stood up,
rotated once, and was repositioned. We compared the results of the
cross-sectional pipeline of LST with its longitudinal pipeline, which
builds upon WML segmentations derived from the cross-sectional pi-
peline. Then, it segments WML changes and updates segmentations of
cross-sectional WML per time point, as suggested in this study, to
achieve coherence between lesion segmentation per time point and
lesion changes between time points. Of note, the data set is challenging
as the patient has over twenty lesions many of them fading out at the
borders and with a lesion sizes near the commonly proposed minimal
WML size of at least 15 μl in contiguous volume corresponding to a
diameter of about 3mm (Thompson et al., 2018).

7. Implementation

We will implement this tool in the next version of our open source
software package LST. The user can choose between different thresh-
olds (α) for the relative difference in FLAIR intensities. As a default, the
optimal threshold derived from the validation (α= 0.1) is used. The
tool finally returns corrected lesion probability maps of all time points,
lesion change labels of all pairs of consecutive scans, as well as cor-
egistered T1w and FLAIR images. In addition, an HTML report with
segmentation overlays, lesion change plots and maximum intensity
projections is generated. For each subject, lesion number and volume
(total, decreased, increased and unchanged) of all time points are
summarized in a table (CSV format).

8. Results

8.1. Internal validation

Similarity of automated WML change segmentation with the manual
segmentation was estimated by the voxel-wise DC. In the upper panel of
Fig. 3, the DCs along different α values are depicted (upper left, TUM;
upper right, common analysis of all 3 centers; lower left, Bochum; lower
right, Mainz). With increasing α, the agreement between manual and
automatic segmentations first increases, then reaches a plateau and fi-
nally decreases. We found the optimal threshold to be near 0.1, which is
indicated by the maximum of the blue line representing the fit of
LOESS. The shape of LOESS is similar for all centers with a maximum
near α=0.1, confirming that α=0.1 is a suitable choice for the data of
all centers. The DCs obtained with α= 0.1 ranged from 0.67 to 0.81
and differed only slightly between centers (mean and range): Bochum,
0.73 (0.66–0.76), Mainz, 0.73 (0.72–0.74), and TUM 0.77 (0.74–0.81).

8.2. External validation

Overall performance was good. Volumes of new/increased WMLs
derived from both methods showed high correlations (MPIP: R2=0.53;
TUM: R2=0.44) although there was a systematic bias towards higher
volumes derived from the manual segmentation with a 95% confidence
of the slope below one (common analysis: [0.47; 0.96]; MPIP: [0.48,
1.32]; TUM: [0.3, 1.03] whilst the interval of the intercept contained
zero (common analysis: [−1.32; 0.21]; MPIP: [−0.08, 0.1]; TUM:
[−0.02, 0.42]). Across all WMLs, voxel-wise DC was 0.7, lesion-wise

Fig. 3. Effect of α on reliability of segmentations.
Evolution of Dice coefficients (DC, y-axis) over dif-
ferent α values for the TUM data (left upper panel).
Black lines display relationships between Dice coef-
ficient and different α values for each subject. Fit of
local polynomial regressions (LOESS) are indicated
by blue lines; corresponding confidence regions are
highlighted in grey. Analogous plots are displayed
for a common analysis of all centers (right upper
panel) and for the sites of Bochum (left lower panel)
and Mainz (right lower panel).
Univariate linear regression analyses of WML vo-
lumes from automated longitudinal lesion segmen-
tation with WML volumes from manual segmenta-
tion across subjects provided no evidence of
systematic shifts or differences. Analyzing dis-
appeared/decreased, new/increased, and unchanged
WML volumes separately, all 95% confidence inter-
vals for the intercepts contained 0 [−0.01, 0.27],
[−0.19, 0.27], [−0.11, 0.59]) and all intervals for
the slopes contained 1 ([0.88, 1.13], [0.79, 1.12],
[0.91, 1.1]). Coefficients of determination (R2) were
0.94, 0.89, 0.97, respectively. Hence, we set α to 0.1
for the external validation analyses.
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detection rate (sensitivity) 0.8 and lesion-wise false-discovery rate 0.2.
Performance tended to decrease with decreasing WML volume
(Table 5). Simple correlation analyses did not indicate an effect of age,
disease duration or severity (EDSS) on performance parameters.

9. Repositioning experiment

The longitudinal pipeline of LST did not find a single (false positive)
new or disappeared lesion whilst the cross-sectional pipeline of our
lesion segmentation algorithm yielded varying lesion numbers. Changes
in volumes of WML were also drastically reduced by the longitudinal
pipeline of LST but not zero. The results of the repositioning experiment
are summarized in Table 6.

9.1. Lesion change plot

Moreover, lesion change plots helped to exemplify the main in-
formation from individual segmentation of WML changes at first glance.
Each WML is plotted in the diagram by considering its volume at time
point 1 (t=1) at the x-axis and its volume at time point 2 (t=2) at the
y-axis resulting in new or enlarging lesions displayed left to the diag-
onal, vanishing or shrinking lesions displayed right to the diagonal, and
stable lesions displayed on the diagonal. An example of a patient,
randomly chosen from patients with an increase in WML load according
to the reports of the evaluating radiologists, is given in Fig. 4 and allows
for a fast intuitive interpretation. Between time point 1 and 2, MS was
active as indicated by one new larger WML (left frontal) and one
smaller enlarged WML (posterior callosum), whilst the other WMLs
shrank or remained stable.

10. Discussion

We introduced and validated a pipeline on segmentation of FLAIR
hyperintense WML changes between two time points. This pipeline
shares a common framework with a previously developed method for
cross-sectional WML segmentation but can also be combined with other
methods for cross-sectional WML segmentation.
Although it is critical to compare values of performance measures

across studies and, hence, across different study populations and MRI
sequences, performance of our algorithm seems to be in the range of
those of other algorithms for the detection of WML changes (Table 1).
Lacking a commonly accepted gold standard and given the broad
overlap of ranges of different algorithms, it seems very difficult to de-
monstrate superiority of one algorithm over another. This is well in line
with experiences from a previous challenge on longitudinal WML seg-
mentation (Carass et al., 2017). The type of longitudinal WML seg-
mentation, investigated in this study, must be distinguished from seg-
mentation of WML changes, since WML segmentations per time point
but not WML changes were evaluated. Of note, the performance of 15
algorithms on this less challenging task were compared but ranges of
values of performance parameters overlapped largely so that the best
algorithm could not be identified. However, we believe that our algo-
rithm primarily constitutes a conceptual advantage, since it can be in-
tegrated in a common frame work with cross-sectional WML segmen-
tation, it can potentially analyze more than two time points, and its
current version will be made freely available as part of the LST toolbox
of the SPM12 software package.
Several methods for longitudinal segmentation of WMLs in MS have

been proposed. These methods were roughly categorized into lesion
detection and change detection methods (Llado et al., 2012a; Llado
et al., 2012b). In the context of lesion detection methods, WMLs are
segmented at each time point and the change in segmented lesions is
measured. These simple approaches seem to be insufficiently precise,
since they do not make use of the full information of available data. At
the beginning of our project, we inspected many longitudinal datasets
with the naked eye. Sometimes, it was very challenging to distinguish a
real change in lesions from technically driven variation in visibility due
to variation in positioning, magnetic field inhomogeneity, or intensity
scaling. Intriguingly, some lesions could only be identified in one FLAIR
image with the knowledge of the FLAIR image acquired at another time
point – bearing the risk to erroneously conclude a lesion change by
segmenting a persistent lesion at only one time point. In contrast to
lesion detection methods, change detection methods address the issue
of these classification errors by focusing on intensity changes over time
in the raw data (Battaglini et al., 2014; Eichinger et al., 2017; Elliott
et al., 2010; Ganiler et al., 2014; Salem et al., 2018; Sweeney et al.,

Table 5
Results of external validation.

Lesion size (range in ml) Number of WMLs DC voxel-wise Sensitivity voxel-wise FDR voxel-wise Sensitivity lesion-wise FDR lesion-wise

All 496 0.72 [0;1] 0.74 [0;1] 0.08 [0;0.96] 0.81 [0;1] 0.22 [0;1]
(0.015,0.02] 66 0.52 [0;1] 0.52 [0;1] 0.01 [0;0.22] 0.53 [0;1] 0.33 [0;1]
(0.02,0.025] 51 0.55 [0;1] 0.57 [0;1] 0.04 [0;0.71] 0.59 [0;1] 0.32 [0;1]
(0.025,0.03] 52 0.76 [0;1] 0.76 [0;1] 0.02 [0;0.5] 0.79 [0;1] 0.27 [0;1]
(0.03,0.04] 70 0.67 [0;1] 0.70 [0;1] 0.09 [0;0.95] 0.76 [0;1] 0.27 [0;1]
(0.04,0.05] 40 0.73 [0;1] 0.74 [0;1] 0.08 [0;0.95] 0.83 [0;1] 0.25 [0;1]
(0.05,0.075] 86 0.82 [0;1] 0.85 [0;1] 0.11 [0;0.96] 0.94 [0;1] 0.14 [0;1]
(0.075,0.1] 30 0.80 [0;1] 0.85 [0;1] 0.14 [0;0.79] 0.93 [0;1] 0.19 [0;1]
(0.1,0.15] 38 0.85 [0.22;1] 0.88 [0.43;1] 0.14 [0;0.87] 1 [1;1] 0.14 [0;1]
(0.15,0.2] 27 0.82 [0.11;0.98] 0.86 [0.42;1] 0.18 [0.01;0.94] 1 [1;1] 0.17 [0;1]
(0.2,0.3] 14 0.85 [0.57;0.98] 0.83 [0.48;1] 0.10 [0;0.41] 1 [1;1] 0.21 [0;1]
(0.3,0.5] 14 0.88 [0.68;0.98] 0.92 [0.68;1] 0.13 [0.02;0.44] 1 [1;1] 0.07 [0;1]
(0.5,1] 5 0.82 [0.72;0.96] 0.88 [0.66;1] 0.21 [0.09;0.42] 1 [1;1] 0.14 [0;1]
(1,3] 3 0.94 [0.93;0.96] 0.94 [0.88;0.97] 0.05 [0;0.10] 1 [1;1] 0 [0;0]

DC, Dice coefficient, FDR, false discovery rate; ml, milliliters; WMLs, white matter lesions.

Table 6
Results of repositioning experiment.

Scan WML

Total volume (ml) Numbers

CS LT CS LT
1 7.33 8.94 26 35
2 7.17 8.95 30 35
3 6.75 8.93 29 35
4 7.25 8.90 24 35
Mean difference 0.36 0.02 3.3 0

Total volume and numbers of white matter lesions per scan are given as derived
by the cross-sectional (CS) or longitudinal (LT) pipeline of LST. Mean differ-
ences were derived by averaging absolute values of differences (n=3) between
consecutive scans.
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2013). However, many studies also require absolute cross-sectional
measures of WML load. This necessitates the compatibility with tools
for cross-sectional WML segmentation and prompts the challenge not
only to enable application of both pipelines one after the other but also
to gain consistent results from both cross-sectional lesion segmentation
and segmentation of lesion changes. Otherwise, incoherent results are
likely to occur. For example, according to the cross-sectional segmen-
tation, a voxel may be classified as ‘no lesion’ at time point 1 and ‘le-
sion’ at time point 2, whilst the segmentation of WML changes does not
identify a significant change. To prevent such inconsistencies, we
decided to update the results of the cross-sectional segmentation ac-
cording to the results of the segmentation of WML changes. Given that
intensities are not fully stable over time, a significant change in in-
tensities to conclude a lesion change seems inevitable. Assuming con-
sistency, classification of the voxel as WML must be regarded either
false positive at one time point or false negative at the other time point.
We chose the latter as, in our experience on both automated segmen-
tation by LST and manual segmentation, false positives occur less often
than false negatives. Yet our experience may not be shared by others. It
may also depend on the sequences analyzed. Of note, our choice on the
update strategy on the cross-sectional data does not influence the result
on the segmentation of WML changes between two time points. Strictly
speaking, our update strategy on the cross-sectional WML segmentation
was only encouraged by preliminary tests through visual inspection but
deserves validation in another project.
The task of longitudinal lesion segmentation can be further com-

plicated by data on more than two time points. Here discrepancy be-
tween cross-sectional and longitudinal lesion segmentation would
hamper effective analysis even more. In case of 3 time points, results
from the analysis of all 3 time points would not allow to simply add up
the lesion change labels ‘time point 1 to time point 2’ and ‘time point 2
to time point 3’ to calculate the lesion change label ‘time point 1 to time
point 3’. To avoid these problems, we aimed at a framework for long-
itudinal WML segmentation that is capable of consistently attributing
the label of being a lesion or not to each voxel at each time point, rather
than a framework for mere lesion detection or mere lesion change.
Accepting the necessity of a significant intensity change to identify

changes in WMLs, we introduced the cut-off parameter α. Initially, we

applied different α values to the TUM data, since LST was developed
with these sequences. Segmentation with α= 0.1 showed plausible
results according to visual inspection and greatest similarity with
manual segmentation. The choice of α=0.1 was encouraged by data of
another two centers.
To investigate test-retest reliability, we analyzed scans of a re-

positioning experiment of a single patient with MS. We analyzed all
four scans with the cross-sectional pipeline of LST and with the long-
itudinal pipeline of LST, which uses the segmentations of the cross-
sectional pipeline as initial estimates. Then it segments significant
changes and updates cross-sectional WML segmentation per time point
as suggested in this study. This way, we tested for false positive WML
changes and evaluated whether the update of cross-sectional WML
segmentations leads to more coherent results. This was clearly the case
with regard to the overall number and volume of WML load. At the
same time, more lesions were segmented per time point, which resulted
from the update strategy. The joint lesion map comprises all WML with
the minimum requirement for a single WML of having been segmented
as a WML by the cross-sectional pipeline of LST at least at one time
point. Of note, this includes the minimum size of at least 15 μl in con-
tiguous volume corresponding to a diameter of about 3mm. Within this
joint lesion map, smaller significant changes were identified but none of
them with a contiguous volume of at least 15 μl. In consequence, higher
WML load per time point were segmented with regard to both volume
and number. The maximum difference in number of 11 WML is sur-
prisingly high at first glance but understandable given that the data set
was challenging as the patient had over twenty WML, many of them
fading out at the borders and with a WML sizes near the commonly
proposed minimal WML size of 3mm in diameter. In these WML with
sizes near the threshold of 3mm in diameter, only slight differences in
segmentation in the outer layers decided whether the cross-sectional
pipeline detected a WML or not. In conclusion, analysis of this chal-
lenging data set did not indicate a tendency towards false positive WML
changes. Although the number WML per time point increased, the up-
date strategy led to more coherent results.
We acknowledge limitations of our work. Although successfully

applied to data of four scanners in total, the choice of α= 0.1 cannot be
regarded valid in general at this stage. Adaptation of α to process other

Fig. 4. Example of a lesion change plot of the lesion segmentation tool (LST) derived from two scans of 1 MS patient who was randomly chosen from patients with an
increase in WML load according to the reports of the evaluating radiologists. Lesion numbers (> 0.015ml) were 35, and 37. Each lesion is plotted in the diagram by
considering its volume at time point 1 (t=1) at the x-axis and its volume at time point 2 (t=2) at the y-axis. The area of the square is proportional to the volume of
the lesion and divided in three categories (red, new; yellow, unchanged; green, disappeared). The bar right to the diagram illustrates the overall lesion volume the
same way. On the upper right, axial slices of FLAIR images are shown (left, time point 1; middle, time point 2; right, lesion changes with the same color coding
projected on time point 2). On the lower right, maximum intensity projections of lesion changes labels are displayed. FLAIR, fluid-attenuated inversion recovery; LCL,
lesion change label.
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data, perhaps even data based on other sequences, may be necessary.
We caution that our algorithm was validated through high-quality,
high-resolution MRI data acquired at 3 Tesla in patients primarily in
early stages of MS. Hence, it may not work as well in other situations.
We are unable to comment on the effect of lower image quality as we
studied data of high image quality collected by the German Competence
Network MS, which goes along with the disadvantage of limited gen-
eralizability to data as acquired in routine clinical practice, since
blurred images may not allow for a precise estimation of difference
distribution through NAWM. Our subjects were mainly in early stages
of MS. Hence, performance parameters as estimated here may not apply
to patients in later stages with high volumes of confluent lesions, more
severe demyelination in lesions, or pronounced brain atrophy. Further,
it is inherent to our approach that new lesions can only be correctly
classified if detected by the preceding cross-sectional segmentation at
least at one time point so that the performance of our algorithm criti-
cally depends on the precision of the preceding cross-sectional lesion
segmentation. Moreover, the precision of our algorithm is not sufficient
to make readings of professional observers dispensable. Small or low
intensity lesions can still be missed and in single cases lead to mis-
classification of patients as also indicated by individual zero values of
performance parameters.
Another problem is the lack of a commonly accepted gold standard.

We chose a certified imaging clinical research organization (MIAC AG)
as provider. Yet conventional reading could be aided and potentially
improved by subtraction of follow-up images.
In addition to longitudinal lesions segmentation, we introduced the

idea of a merely descriptive tool for individual lesion changes between
two time points. The main goal was to combine the two common
measures of lesion load, number and volume of lesions, in a salient way,
also accounting for the fact that during the same interval some lesions
may shrink or even disappear whilst others may occur or grow. For the
handling of TUM in-house data with hundreds of follow-up data, we
have already appreciated this tool.
Finally, by providing an open source implementation of this pipe-

line, which is freely available to the scientific community (http://www.
statistical-modeling.de/lst.html). We hope that our algorithm will be
further refined and eventually contribute to the analysis of MR images
in both clinical routine and research.
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