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A B S T R A C T   

Previous studies have demonstrated resilience to AD-related neuropathology in a form of cognitive reserve (CR). 
In this study we investigated a relationship between CR and hypometabolic subtypes of AD, specifically the 
typical and the limbic-predominant subtypes. We analyzed data from 59 Aβ-positive cognitively normal (CN), 
221 prodromal Alzheimer’s disease (AD) and 174 AD dementia participants from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) from ADNI and ADNIGO/2 phases. For replication, we analyzed data from 5 Aβ- 
positive CN, 89 prodromal AD and 43 AD dementia participants from ADNI3. CR was estimated as standardized 
residuals in a model predicting cognition from temporoparietal grey matter volumes and covariates. Higher CR 
estimates predicted slower cognitive decline. Typical and limbic-predominant hypometabolic subtypes demon-
strated similar baseline CR, but the results suggested a faster decline of CR in the typical subtype. These findings 
support the relationship between subtypes and CR, specifically longitudinal trajectories of CR. Results also un-
derline the importance of longitudinal analyses in research on CR.   

1. Introduction 

Individuals with Alzheimer’s disease (AD) pathology demonstrate 
heterogeneity in the clinical presentation, progression of the disease, as 
well as differences in spatial patterns of distribution of pathology 
markers such as atrophy and hypometabolism (Lam et al., 2013). Het-
erogeneity in distribution of tau, which itself may be a driver of both 
atrophy and hypometabolism, has also been demonstrated (Franzmeier 
et al., 2020; Vogel et al., 2021). Previous studies have used spatial 
patterns of AD-related pathology and brain atrophy to identify distinct 
groups of individuals with AD dementia and mild cognitive impairment 
(MCI) that showed differences in clinical characteristics, typically 
referred to as AD subtypes (Ferreira et al., 2020; Habes et al., 2020). A 

study from our group described hypometabolic subtypes in AD and 
prodromal AD patients based on spatial patterns of 18F-fluorodeox-
yglucose PET (FDG-PET) signal (Levin et al., 2021). Specifically, we 
identified typical, limbic-predominant and cortical predominant sub-
types. The typical subtype showed an AD-typical pattern of pronounced 
hypometabolism in temporal and parietal areas, with comparably less 
pronounced involvement of the medial temporal lobe. The 
limbic-predominant subtype demonstrated pronounced hypo-
metabolism in the medial temporal lobe and posterior cingulate cortex, 
with additional involvement of temporoparietal and frontal lobe areas. 
The cortical-predominant subtype showed a pattern of hypometabolism 
similar to the typical AD subtype, but with more pronounced hypo-
metabolism in the frontal lobe. We observed differences between 
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subtypes in cognitive performance and longitudinal cognitive decline. 
Cognitive reserve (CR) is a protective factor that has been considered 

a potential source of the cognitive variability observed in AD (Bettcher 
et al., 2019). It has also been suggested that CR could explain why some 
AD subtypes identified in patients at similar levels of clinical severity 
show differences with respect to pathology measures (Ferreira et al., 
2020; Poulakis et al., 2022). CR refers to mechanisms that allow some 
individuals to maintain cognitive performance despite pathological 
processes associated with aging, AD, or other disorders (Stern, 2002; 
Stern et al., 2020). For example, higher CR is predictive of slower than 
otherwise expected cognitive decline, or slower progression of MCI to 
AD dementia (Nelson et al., 2021). Approaches to quantifying CR 
include proxy measures and residual approaches (Stern et al., 2020). 
Proxy variables such as education or IQ characterize an individual’s 
experience that would contribute to CR, whereas the residual approach 
aims to quantify the mismatch between an individual’s neuropathology 
and cognition where cognitive performance that is better than what 
would be expected by the individual’s pathologic burden would indicate 
higher CR (Nelson et al., 2021; Reed et al., 2010). Functional imaging 
has also been used to evaluate specific characteristics of the brain that 
are relevant to CR such as left frontal cortex connectivity (Franzmeier 
et al., 2017; Franzmeier et al., 2018) or segregation of functional net-
works (Ewers et al., 2021). 

In addition to cross-sectional measurements of CR, longitudinal as-
sessments have been used to evaluate differences between participants 
in susceptibility to clinical progression and cognitive decline. Longitu-
dinal change in residual memory variance – a measure of CR – was a 
better predictor of incident dementia than a cross-sectional measure as 
shown in a study by Zahodne and colleagues (Zahodne et al., 2015). 
Similarly, change in CR over time as assessed via latent variable models 
predicted clinical progression and cognitive performance in a sample 
ranging from cognitively normal participants to participants with mild 
dementia (Bettcher et al., 2019). 

In the present research, we investigated the relationship between the 
subtype heterogeneity and CR. We addressed the question about 
whether the major subtypes of AD-related neurodegeneration – the 
typical and the limbic-predominant subtypes – showed differences in 
CR; and whether these differences could explain trajectories of cognitive 
decline or predict conversion from prodromal AD to AD dementia. We 
also addressed the question about whether potential differences in CR 
could explain characteristics of the subtypes themselves as suggested in 
the past research that considered the role of CR in atrophy-based sub-
types in AD dementia (Persson et al., 2017; Poulakis et al., 2022). We 
considered a similar possibility – if one hypometabolic subtype showed 
less pronounced cerebral damage than another subtype at a similar level 
of cognitive impairment, it could be related to lower CR of participants 
within that subtype. In this study we were primarily interested in 
assessing CR in amyloid beta-positive cognitively normal (Aβ-positive 
CN) participants who would represent preclinical Alzheimer’s patho-
logical change and in Aβ-positive participants with MCI who would 
represent prodromal AD. However, we also characterized subtype 
characteristics and potential subtype differences in CR in the AD de-
mentia group to provide additional context. 

To quantify CR, we adapted a residual-based approach (Jack et al., 
1997; van Loenhoud et al., 2019; van Loenhoud et al., 2017). Residuals 
in such an approach can be obtained from a regression model predicting 
cognitive performance from pathological brain changes (Zahodne et al., 
2015) or from a model predicting levels of neuropathology from 
cognitive performance (van Loenhoud et al., 2019). To characterize the 
degree of neuropathological change, we selected grey matter (GM) 
volume in temporoparietal area corresponding to the typical AD atrophy 
(Ossenkoppele et al., 2015). Additionally, we aimed to evaluate CR re-
siduals based on hippocampal and global GM volumes. Despite the focus 
of the study on CR in Aβ-positive CN and prodromal AD, the data from 
AD dementia participants were included in regression models used for 
estimating residual CR to represent a wider continuum of AD-related 

neurodegeneration. 
To address the research questions of the current study, we tested 

whether hypometabolic subtypes differed in CR as expected based on the 
previous studies, and whether CR residuals together with subtype clas-
sification predicted progression from prodromal AD to AD dementia or 
cognitive decline in participants enrolled in the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI). Following that, longitudinal CR re-
siduals would be analyzed to investigate potential differences in CR 
trajectories between the typical and limbic-predominant hypometabolic 
subtypes. Finally, we aimed to assess the replicability of findings on CR 
and hypometabolic subtypes in a separate ADNI3 sample. Current 
approach leverages different imaging modalities available in ADNI by 
defining subtypes using FDG-PET which is likely more sensitive to early 
neurodegenerative changes than measures of atrophy assessed with MRI 
(Kljajevic et al., 2014), and by using the residual CR measure based on 
GM volumes obtained from MRI scans, including longitudinal 
assessments. 

2. Methods 

2.1. Participants 

The main analysis sample included 59 amyloid-positive CN, 221 
prodromal AD (amyloid positive MCI participants) and 174 amyloid- 
positive AD participants from ADNI and ADNIGO/2 (henceforth 
referred to as the “main ADNI sample”). 

To assess replicability of findings, we also analyzed data from a 
separate sample of participants selected from the ADNI3 phase of ADNI. 
CN, prodromal AD and AD dementia participants were selected if they 
had FDG-PET scans, matching MRI scans and cognitive data, as well as a 
finding of amyloid positivity (henceforth referred to as the “ADNI3 
sample”). The resulting sample included 5 amyloid-positive CN, 89 
prodromal AD and 43 AD dementia participants. 

Amyloid positivity in both samples was established based on 18F- 
florbetapir PET (AV45-PET) or 18F-florbetaben (FBB-PET) standardized 
uptake value ratios (SUVR) with whole cerebellum as a reference region 
available via the ADNI PET core (Jagust Lab, UC Berkeley). We used 
recommended thresholds of 1.11 for AV45 (Landau et al., 2014) or 1.08 
for FBB (Royse et al., 2021) to select Aβ-positive participants. We also 
used available CSF amyloid data (Aβ [1–42]) as obtained using Elecsys 
cobas e 601,2 to select amyloid-positive participants in cases when 
amyloid-sensitive PET data was not available (Grothe et al., 2021). 
Specifically, we selected participants with the values under the cutoff of 
880 pg/ml (Hansson et al., 2018). Additionally, we used APOE ε4 in-
formation (Saykin et al., 2010) to code a binary variable showing 
presence of at least one APOE ε4 allele in order to account for it in 
statistical analyses. 

The inclusion criteria for diagnostic groups in ADNI have been 
described previously (Teipel and Grothe, 2015). Specific inclusion 
criteria for different groups within the ADNI study are listed on the ADNI 
website (https://adni.loni.usc.edu/methods/documents/). The ADNI 
was launched in 2003 as a public-private partnership, led by Principal 
Investigator Michael W. Weiner, MD. The ADNI is a longitudinal 
multicenter study aimed at investigating whether neuroimaging 
methods such as MRI and PET, together with other biological, genetic, 

2 The Elecsys β-Amyloid(1− 42) CSF immunoassay in use is not a commer-
cially available IVD assay. It is an assay that is currently under development and 
for investigational use only. The measuring range of assay is 200 (lower tech-
nical limit) – 1700 pg/ml (upper technical limit). The performance of the assay 
beyond the upper technical limit has not been formally established. Therefore, 
use of values above the upper technical limit, which are provided based on an 
extrapolation of the calibration curve, is restricted to exploratory research 
purposes and is excluded for clinical decision making or for the derivation of 
medical decision points. 
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clinical and neuropsychological measures can be used to characterize 
progression of mild cognitive impairment (MCI) and early Alzheimer’s 
disease (AD). For up-to-date information, see https://adni.loni.usc.edu. 

2.2. Neuropsychological test scores 

ADNI data includes neuropsychological tests covering different do-
mains. For analysis of cognitive performance, we used established 
cognitive composite scores for memory (ADNI-MEM) (Crane et al., 
2012) and executive function (ADNI-EF) (Gibbons et al., 2012). The 
ADNI-MEM composite score was used for calculating residuals to 
represent an estimate of CR. Mini Mental State Examination (MMSE) 
scores were used for characterizing global cognitive impairment. Clin-
ical dementia rating (CDR) scores were used to assess progression from 
prodromal AD to AD dementia (defined as a change in the score from 0.5 
to ≥ 1.0). To characterize longitudinal cognitive performance in the 
Aβ-positive CN and prodromal AD participants in the main ADNI sam-
ple, we analyzed ADNI-MEM and ADNI-EF data with available follow-up 
of up to 114 months and with a mean follow-up period of 53 ± 29 
months. In the replication ADNI3 sample, we analyzed longitudinal data 
from the Aβ-positive CN and prodromal AD with a maximal follow-up of 
49 months and a mean follow-up of 24 ± 10 months. 

2.3. FDG-PET data analysis and assignment into subtypes 

Pre-processed FDG-PET images were obtained from the ADNI server. 
For a more detailed description of acquisition and standardized image 
pre-processing steps please refer to the ADNI website (https://adni.loni. 
usc.edu/methods/documents/). The images were additionally normal-
ized to a customized FDG-PET template and smoothed with a Gaussian 
kernel of 8 mm full-width at half maximum (Lange et al., 2016; Levin 
et al., 2021). As in our previous study, subtypes were defined using 
Ward’s hierarchical clustering of individual voxel-wise FDG-PET pro-
files (Levin et al., 2021). Clustering analyses were implemented in 
MATLAB. Individual voxel-wise FDG-PET profiles of participants were 
normalized to the global mean signal to account for possible differences 
in the overall hypometabolism severity prior to clustering or classifica-
tion. Following our previous study (Levin et al., 2021), a cutoff at the 
level of three clusters was applied yielding a typical, a 
limbic-predominant and a cortical-predominant subtype. 
Amyloid-positive CN participants and prodromal AD participants from 
the main ADNI sample, as well as participants from the replication 
ADNI3 sample, were classified based on their similarity to AD dementia 
clusters. Briefly, each participant’s individual FDG-PET profile was 
categorized into a corresponding AD subtype based on Euclidean dis-
tance to the mean profiles of the typical, limbic-predominant and 
cortical-predominant subtypes. Due to low participant numbers in the 
cortical-predominant subtype (n = 12 in the AD group and n = 2 in the 
prodromal AD group in the main ADNI sample), it was omitted from 
statistical analyses, which instead focused on differences between the 
typical and the limbic-predominant subtypes. 

For visualizing hypometabolic patterns of the typical and the limbic- 
predominant subtypes, we conducted two-sample voxel-wise t-tests 
comparing the respective subtypes to an Aß-negative CN group (n =
120), applying scaling to the pons reference signal, and including age, 
sex and years of education as covariates to visualize the patterns inde-
pendently of possible differences in these demographic characteristics. 
Additionally, we directly compared the typical and the limbic- 
predominant subtypes by using two-sample voxel-wise t-tests, 
applying scaling to the pons reference signal, and including age, sex, 
years of education and MMSE as covariates. Please note, that scaling to 
pons signal for the purpose of visualizing subtypes here differs from 
scaling to the average signal used for the clustering procedure. Statistical 
parametric maps of the group differences were converted into Z-score 
maps using CAT12.8 (Gaser et al., 2023). 

2.4. MRI scan preprocessing and volumetric analysis 

Structural MRI scans (including scans obtained with 1.5 T scanners in 
ADNI1 and scans obtained with 3 T scanners in other ADNI phases) were 
used to obtain measures of GM volumes in selected brain areas. For 
details about collection of the MRI data in ADNI, please refer to the 
documentation at the website (https://adni.loni.usc.edu/methods/doc-
uments/). We used separate preprocessing pipelines for the baseline and 
for the longitudinal MRI data. The baseline MRI data were preprocessed 
with the CAT12.8 (Gaser et al., 2023) segmentation pipeline imple-
mented within SPM12 toolbox (Wellcome Trust Center for Neuro-
imaging) and spatially normalized using DARTEL (Diffeomorphic 
Anatomical Registration Through Exponentiated Lie algebra). 

We selected follow-up MRI scans that were available for a subset of 
the main ADNI sample, including 44 Aβ-positive CN, 175 prodromal AD 
and 105 AD dementia participants. Follow-up MRI data from AD de-
mentia participants were included to obtain GM volume estimates using 
the same longitudinal pipeline as for other participants to later include 
in the regression model used for obtaining longitudinal W-scores. Scans 
were obtained for delays of approximately 1, 2 or 4 years after the 
baseline, with an average of 1.8 follow-up scans per participant in 
addition to the baseline scan. MRI scans collected at delays of about 3 
years were omitted from this analysis due to the drop in the number of 
available scans (37 available a 3-year delays, compared to 157 at 2 years 
and 77 at 4 years; excluding the cortical-predominant subtype). Longi-
tudinal data available within the ADNI3 sample included 3 Aβ-positive 
CN and 53 prodromal AD participants with available MRI follow-ups, 
and we selected MRI scans obtained at delays of approximately 1, 2, 3 
and 4 years after the baseline, with an average of 1.6 follow-up scans. 
For one participant in the main ADNI sample and for 6 participants in 
the ADNI3 sample there were no cognitive composites found that cor-
responded to follow-up MRI scans. The baseline data from these par-
ticipants were still included in the longitudinal models of progression of 
CR residuals. 

Longitudinal MRI data were preprocessed using the CAT12.8 longi-
tudinal segmentation pipeline with a setting optimized for detecting 
large changes such as atrophy (Gaser et al., 2023). The longitudinal 
pipeline also used the DARTEL algorithm as a setting for spatial regis-
tration. Scans were evaluated for segmentation errors and two partici-
pants from the ADNI3 sample were excluded from the longitudinal MRI 
analyses and one other participant was excluded from the baseline data 
analyses. We obtained temporoparietal (for the exact list of the included 
atlas labels, see Supplementary table 1) and hippocampal bilateral 
masks that were defined in the AAL3 atlas (Rolls et al., 2020; 
Tzourio-Mazoyer et al., 2002) available with the CAT12.8 toolbox, as 
well as global GM volumes, and thresholded them at 0.5 template GM 
probability. We extracted GM volume from the regions of interest using 
modulated normalized GM maps and divided the values by the indi-
vidual total intracranial volume (TIV) at baseline (Dyrba et al., 2021). 

In some cases, MRI data within one participant were collected using 
different scanner models. We included a variable indicating participants 
with a change in the scanner as a covariate in the longitudinal regression 
analyses of CR residuals. 

2.5. Calculation of CR residuals 

We calculated standardized residuals as a measure of CR (van 
Loenhoud et al., 2019). We used a regression model in which individual 
cognitive performance at baseline represented by the ADNI-MEM score 
was predicted by the temporoparietal GM volume adjusted to the TIV, 
and covariates – age and sex. Temporoparietal GM volume has been 
previously used for obtaining W-scores based on standardized residuals 
in a model predicting atrophy (van Loenhoud et al., 2019), and we also 
selected this measure because temporoparietal regions show common 
atrophy across distinct AD phenotypes (Ossenkoppele et al., 2015). 
Despite differences in spatial patterns of hypometabolism of subtypes, 
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we used common atrophy measures across participants to be able to 
directly compare the differences in CR between the subtypes. Regression 
model in the current study used the main ADNI sample data including 
Aβ-positive CN, prodromal AD and AD dementia participants to take into 
account the relationship between neurodegeneration and cognitive 
performance throughout the clinical continuum of the disease. Including 
AD participants ensures that there are sufficient data in the model to 
characterize the relationship between neurodegeneration and cognitive 
performance at lower values of either measure. The data contributing to 
the model and the plotted predicted values from the regression model 
are presented in Figure 1. For a given participant, a positive residual as 
obtained directly in the regression model would correspond to cognitive 
performance higher than expected given the neurodegeneration mea-
sure and covariates, therefore indicating higher CR than for a participant 
with a lower value of the residual. We multiplied residual values by − 1 
so that higher values of the residual estimates of CR would correspond to 
better than expected cognitive performance. We standardized individual 
residuals dividing them by the residual standard error of the sample used 
for the model. 

In the ADNI3 sample, we obtained CR residuals by applying the same 
calculation as used in the main ADNI sample. We used the intercept and 
regression coefficients from the regression model from the main ADNI 
sample to calculate ADNI-MEM values that would have been predicted 
by this model for ADNI3 participants. Then the differences between 
observed and predicted values for the participants in the ADNI3 sample 
were standardized by being divided by the residual standard error from 
the model using the main ADNI sample. This calculation was done in the 
consistent manner with CR residuals in the main ADNI sample to ensure 
direct comparability of the measures. For comparisons, we also calcu-
lated analogous models: one based on using temporoparietal FDG-PET 
signal (adjusted to pons) in the main ADNI sample and another based 
on temporoparietal GM volume in the ADNI3 baseline data alone. 

For the analysis of the longitudinal trajectories of CR, we calculated 
longitudinal CR residuals in the subsample of participants who had 
available longitudinal MRI data, as well as cognitive composite scores. 
Specifically, we first selected the baseline visit data from Aβ-positive CN, 
prodromal AD and AD dementia participants who had available follow- 
up MRI scans, because only for them longitudinal temporoparietal GM 
volume values could be obtained from the longitudinal MRI segmenta-
tion. These data were used in a regression model analogous to the main 
baseline model for CR residuals. Intercept and regression coefficients 
from this regression model were then used with follow-up data to 
calculate longitudinal CR residuals in the main ADNI sample and in the 
ADNI3 sample. Specifically, for each follow-up entry with available MRI 
and ADNI-MEM data we consistently calculated the CR residual measure 
in the same manner. 

In complementary analyses, we considered alternative approaches to 
defining CR residuals, specifically using GM volumes extracted from 
other brain areas to represent neurodegeneration measures such as 
hippocampal and global GM atrophy with baseline and longitudinal data 
(referred to as “CR residuals – hippocampal GM” and “CR residuals – 
global GM” respectively) (van Loenhoud et al., 2019). Longitudinal 
versions of CR residuals using hippocampal and global GM volumes 
were also analyzed in similar longitudinal regression models. 

2.6. Statistical analysis 

We conducted statistical analyses using R (version 4.1.3) accessed 
via RStudio. Characteristics of subtypes within groups were compared 
using Mann–Whitney U test or Chi-squared tests (for sex and APOE ε4 
prevalence). We tested the relationships between years of education and 
various versions of baseline CR residuals using partial correlations with 
age, sex and a variable indicating AD dementia status as covariates. AD 
dementia status was included as a control variable because previous 
publications have suggested a possible acceleration of cognitive decline 
in AD dementia patients with higher CR (Stern, 2012; van Loenhoud 
et al., 2019). This could result in a decrease in W-scores in some par-
ticipants leading to a stronger discrepancy with education representing 
premorbid CR in the AD dementia group. 

To evaluate risk of clinical progression depending on subtype and CR 
residuals, we used survival analysis with progression from prodromal 
AD to AD defined as a change from CDR score 0.5 to ≥ 1.0 (Teipel et al., 
2020). The Cox proportional hazards model included W-scores, subtype 
variable, interaction between them, as well as sex, age, and APOE ε4 as 
covariates. 

To assess whether CR residuals predicted longitudinal cognitive 
performance change, we used linear mixed effects regression models 
(Levin et al., 2021) in the subsample of Aβ-positive CN and prodromal 
AD participants. Linear mixed effects regression models were used to 
assess differences in longitudinal changes in memory, executive func-
tion, and global cognitive performance assessed via MMSE scores. 
Models included time of follow-up measured in years from baseline, CR 
residuals, a binary variable indicating the limbic-predominant subtype 
and an interaction term for these variables. Interaction between CR re-
siduals and time indicated an effect of CR residuals on cognitive tra-
jectories over time, whereas an interaction between CR residuals, time 
and subtype indicated potential difference between the subtypes with 
respect to the benefit of higher W-scores for longitudinal cognitive 
performance. Age, sex, APOE ε4 and interaction of age with the time 
variable were included as covariates. The resulting models were speci-
fied with the following variables and interactions: Y = Time*CR resi-
duals*Subtype + Time*CR residuals+ Time*Subtype + CR 

Figure1. Regression model used for defining CR residuals. Regression model predicting memory (ADNI-MEM) composite scores from temporoparietal GM 
volumes and covariates. Lines represents values predicted by the model for a woman with average age (74y). Positive residuals (above individual predicted values) 
correspond to higher residuals and indicate higher CR. On the left – datapoints split by group, on the right – datapoints split by hypometabolic subtypes. 
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residuals*Subtype + Time*Age + Time + CR residuals+ Subtype + Age 
+ Sex + APOE ε4. Regression models included random intercepts for 
participants and random slopes for the time variable. The age variable 
was centered and rescaled by standard deviation. In the ADNI3 sample, 
the longitudinal models predicting memory and CR residuals obtained 
using the hippocampal volume prompted warnings of a singular fit 
indicating a potential issue with overfitting. Therefore, in the ADNI3 
sample we only report mixed effects models with random intercepts, but 
not random slopes. Additionally, we also considered analogous models 
without the subtype variable and corresponding interactions to assess 
the potential protective effect of CR residuals across the subtypes. 

We assessed differences between the subtypes with respect to the 
longitudinal change of W-scores using mixed effects models with lon-
gitudinal CR residuals as a dependent variable. Models included time of 
follow-up measured in years from baseline, a binary variable indicating 
the limbic-predominant subtype, and an interaction term for time by 
subtype as independent variables. Interaction between subtype and time 
indicated whether subtypes differed in trajectories of CR residuals over 
time, with age, sex, APOE ε4, a variable indicating a change in scanner 
as covariates and an interaction term for age and time. The resulting 
models included following variables and interactions: Y 
= Time*Subtype + Time*Age + Time + Subtype + Age + Sex + APOE 
ε4 + Scanner change. We additionally used similar models but limited 
to prodromal AD participants to rule out the possibility of results being 
driven by the Aβ-positive CN group. We also used a mixed effects 
regression model to compare the subtypes with respect to the longitu-
dinal temporoparietal GM volume change to provide additional context 
to the analysis of CR residuals. To examine a potential confounding ef-
fect of using age as a covariate, we evaluated versions of regression 
models that excluded it. Additionally, we evaluated performance of 
FDG-PET-based CR residuals in models of longitudinal change in 
cognitive performance to verify consistency of the results using this 
measure. 

3. Results 

3.1. Hypometabolic subtypes 

Characteristics of hypometabolic subtypes across the main ADNI and 
ADNI3 samples are presented in Tables 1 and 2 and Supplementary ta-
bles 2 and 3, respectively. Comparisons of FDG-PET patterns of the 
typical and limbic-predominant subtypes to the Aß-negative CN group 
are presented in the Figure 2. Direct comparisons of FDG-PET patterns 
between the typical and limbic-predominant subtypes in the main ADNI 
and in the ADNI3 samples are presented in Supplementary figures 1 and 
2. Characteristics of the hypometabolic subtypes in AD dementia have 
also been described previously (Levin et al., 2021). In the replication 
ADNI3 sample, some differences between the subtypes followed a 
generally similar pattern to the one previously observed in the main 
ADNI sample. For example, the limbic-predominant subtype in the AD 
dementia group as compared to the typical subtype was on average older 
(77.5 vs 73 years, p = 0.179) and showed higher baseline executive 
function performance (p = 0.028; Supplementary table 2). 

3.2. CR residuals and education 

Confirming the expected relationship between our residual measure 
of CR and the commonly used proxy measure of CR, CR residuals posi-
tively correlated with years of education in a partial correlation 
including covariates age, sex and AD dementia status (main ADNI 
sample: r = 0.16; p < 0.001; ADNI3 sample: r = 0.26; p = 0.002). The 
regression model in the main ADNI sample used for defining the CR 
residuals had adjusted R2 = 0.33; resulting CR residuals correlated with 
ADNI-MEM scores with r = 0.81 (p < 0.001). The regression model 
predicting ADNI-MEM from temporoparietal FDG-PET defined in the 
main ADNI sample and the model predicting ADNI-MEM from 

temporoparietal GM defined in the baseline ADNI3 sample demon-
strated parameters similar to the main model defined in the main ADNI 
sample that was used for deriving the CR residuals based on tempor-
oparietal GM volume (please see Supplementary table 4). 

To evaluate the potential contribution of the selected neuro-
degeneration measure to the observed subtype differences in CR we 
considered alternative approaches for deriving CR residuals – using the 
hippocampal and global masks to assess GM volume alternative to the 
temporoparietal mask as used in the main CR residuals model. All ver-
sions of CR residuals correlated with each other and with years of ed-
ucation in partial correlations controlling for age, sex and AD dementia 
status (all p ≤ 0.001). 

3.3. CR and hypometabolic subtypes 

We assessed potential differences in CR between the subtypes, as well 
as interactions between CR and subtypes in regression analyses pre-
dicting longitudinal cognitive decline and clinical progression. Contrary 
to the expected effect, the typical and the limbic-predominant subtypes 
in the Aβ-positive CN, prodromal AD and AD dementia groups in the 
main ADNI and in the ADNI3 samples did not demonstrate significant 
differences in education (Tables 1 and 2, Supplementary tables 2 and 3). 

Table 1 
Demographic, clinical and biomarker characteristics of AD dementia subtypes in 
the main ADNI sample at baseline.   

Typical Limbic- 
predominant 

Cortical- 
predominant 

P-value, 
typical vs 
limbic- 
predominant 

Demographics      
n (%) 84 

(48.3%) 
78 (44.8%) 12 (6.9%)   

Age, years 74.2 
(8.5) 

76 (6.7) 67.9 (7.1)  0.263 

Sex, female (%) 39% 49% 50%  0.293 
Education, years 15.6 

(2.6) 
15.3 (3.1) 16.7 (2.5)  0.797 

Cognition      
MMSE 23.2 

(2.3) 
23.4 (1.9) 22.1 (2.2)  0.518 

ADNI-MEM -0.91 
(0.49) 

-0.85 (0.56) -1.31 (0.44)  0.515 

ADNI-EF -1.1 
(0.87) 

-0.66 (0.88) -1.68 (0.74)  0.002 

Biomarkers      
APOE ε4 (%) 79% 81% 58%  0.912 
AV45-PET SUVR 1.47 

(0.17) 
1.44 (0.15) 1.41 (0.17)  0.374 

CSF Aβ, pg/ml 584 
(229) 

596 (166) 645 (142)  0.177 

Temporoparietal 
GM 

69.52 
(5.62) 

72.4 (6.5) 66.01 (2.7)  < 0.001 

Hippocampal GM 3.71 
(0.45) 

3.6 (0.61) 4.04 (0.49)  0.259 

Global GM 299.06 
(18.5) 

300.71 
(23.24) 

289.19 
(15.31)  

0.263 

CR      
CR residuals – 

temporoparietal 
GM 

-0.49 
(0.78) 

-0.73 (0.74) -0.65 (0.59)  0.053 

CR residuals – 
hippocampal 
GM 

-0.64 
(0.82) 

-0.49 (0.84) -1.44(0.76)  0.199 

CR residuals – 
global GM 

-0.68 
(0.74) 

-0.68 (0.69) -0.85 (0.57)  0.911 

Sample sizes are presented with percentages relative to the group in parentheses. 
GM volumes are scaled to TIV. Values for variables are presented as percentages 
(for sex and APOE ε4 genotype) or means with standard deviation in paren-
theses. Missing values are excluded. Subtypes are compared using Man-
n–Whitney U tests, apart from sex and APOE ε4 prevalence which were 
compared using Chi-squared tests. 
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The limbic-predominant subtype in the main ADNI sample AD group 
demonstrated somewhat lower level of CR residuals on average; but this 
result was not statistically significant (p = 0.053). 

In the Cox proportional hazards model, the effect of CR residuals in 
the reference typical subtype suggested that higher residuals had a 
protective effect (HR = 0.54; p = 0.004; Table 3). An interaction of CR 
with the subtype variable indicating limbic-predominant subtype did 
not show a significant effect (HR = 1.22, p = 0.458) suggesting a lack of 
subtype differences with respect to the effect of CR residuals. In the 
analyses in the ADNI3 sample, the effects of CR residuals in the typical 
subtype and the interaction term of CR residuals and the subtype vari-
able were not statistically significant, potentially due to the small sam-
ple size. 

Higher CR residuals were associated with a slower ADNI-EF and 
MMSE decline in a mixed effects regression model in the main ADNI 
sample as indicated by the interaction term for time and CR residuals 
(p = 0.047 and p < 0.001 respectively; see Supplementary table 5). The 
same effect in the model predicting ADNI-MEM was in a similar direc-
tion but not significant (p = 0.08). Subtypes did not significantly differ 
with respect to an effect of CR residuals on longitudinal cognitive 
decline as indicated by the interaction term (see Table 4 and Figure 3, 
for the version with individual data plotted see Supplementary figure 3). 
However, the coefficient estimates and corresponding CI for the model 
predicting ADNI-EF and MMSE scores indicated a potential higher 
benefit of CR residuals for the longitudinal progression of the typical 
subtype (with p = 0.082 and p = 0.060, respectively). In the ADNI3 
sample (Supplementary table 6), such an effect was not supported. 

We observed differences in longitudinal trajectories of change in CR 
between the subtypes in the predementia cohort (Aβ-positive CN and 
prodromal AD) of the main ADNI sample – the limbic-predominant 
subtype did not seem to show a pronounced longitudinal decline over 
time, but the typical subtype did (Table 5, Supplementary table 7,  
Figure 4, for the version with individual data plotted see Supplementary 
figure 4). The statistical test for this interaction did not yield a signifi-
cant result for the CR residuals based on temporoparietal GM volume 

(p = 0.054). However, supporting the faster decline of CR in typical 
subtype, alternative CR residuals declined significantly faster for the 
typical subtype compared to the limbic-predominant subtype (for hip-
pocampal GM CR residuals: p = 0.025; for global GM CR residuals: 
p = 0.037; Supplementary table 7). These effects were not supported in 
the replication ADNI3 sample (Supplementary table 8) – likely due to 
the limited sample size. Specifically, the interaction term suggested 
weak effects for all three CR residuals variants that were also not sta-
tistically significant (p = 0.652, p = 0.579 and p = 0.626 for CR re-
siduals based on temporoparietal, hippocampal and global GM volumes 
respectively). In a longitudinal regression model limited to prodromal 
AD participants from the main ADNI sample, the results showed a 
similar pattern to the model with both Aβ-positive CN and prodromal AD 
participants (Supplementary table 9). Therefore, it is unlikely that this 
result was driven mainly by the inclusion of Aβ-positive CN participants 
who were predominantly (90% of Aβ-positive CN participants) assigned 
to the limbic-predominant subtype. An additional comparison of the 
longitudinal change in temporoparietal GM suggested a slower decline 
for the limbic-predominant subtype (p = 0.024; Supplementary table 
10). Exclusion of the age covariate did not seem to have noticeable effect 
on regression model results (Supplementary tables 11 and 12). Finally, 
alternative versions of regression models examining cognitive decline 
that used FDG-PET-based CR residuals instead of GM-based measures 
demonstrated largely consistent results (Supplementary table 13). 

4. Discussion 

The current study investigated the relationship between CR and 
hypometabolic subtype heterogeneity within groups of Aβ-positive CN, 
prodromal AD and AD dementia participants. The two examined major 
hypometabolic subtypes – the typical and the limbic-predominant sub-
types – differed at baseline with respect to the temporoparietal GM 
volume (p < 0.001), but not ADNI-MEM. It is likely that this contributed 
to the average CR residuals for the typical subtype being somewhat 
higher in the AD group, although non-significantly (p = 0.053). 

Table 2 
Demographic, clinical and biomarker characteristics of amyloid-positive CN and prodromal AD subtypes in the main ADNI sample at baseline.   

Amyloid-positive CN participants Prodromal AD participants  

Typical Limbic- 
predominant 

Typical Limbic- 
predominant 

Cortical- 
predominant 

P-value, prodromal AD typical vs limbic- 
predominant 

Demographics       
n (%) 6 (10%) 53 (90%)) 57 (25.8%) 162 (73.3%) 2 (0.9%)  
Age, years 74.1 (6.1) 76.9 (6) 70.8 (6.5) 74.1 (6.8) 76.4 (0.57) 0.006 
Sex, female (%) 33% 60% 42% 44% 0% 0.880 
Education, years 17.5 (2.3) 16 (2.6) 16.5 (2.5) 15.9 (3.0) 17 (1.41) 0.180 
Cognition       
MMSE 28.7 (1.5) 29 (1) 27.4 (1.8) 27.8 (1.8) 28 (2.8) 0.145 
ADNI-MEM 0.51 (0.67) 0.9 (0.58) 0.04 (0.72) 0.21 (0.65) -0.07 (0.46) 0.056 
ADNI-EF 0.49 (0.78) 0.59 (0.70) 0.29 (1.03) 0.22 (0.87) -1.4 (0.35) 0.826 
Biomarkers       
APOE ε4 (%) 50% 38% 72% 64% 50% 0.369 
AV45-PET SUVR 1.29 (0.21) 1.32 (0.18) 1.42 (0.16) 1.37 (0.18) 1.5 (0.28) 0.023 
CSF Aβ, pg/ml 650 (218) 948 (548) 758 (375) 788 (330) 775 (258) 0.299 
Temporoparietal GM 78.62 

(5.07) 
79.95 (6.18) 76.69 (5.44) 78.01 (7.12) 71.78 (0.78) 0.121 

Hippocampal GM 4.4 (0.51) 4.55 (0.49) 4.27 (0.54) 4.2 (0.61) 4.06 (0.12) 0.702 
Global GM 312.22 

(16.7) 
322.25 (22.35) 318.38 

(18.11) 
318.42 (24.79) 296.94 (8.93) 0.964 

CR       
CR residuals – temporoparietal 

GM 
0.61 (0.94) 0.97 (0.83) 0.18 (1.02) 0.25 (0.88) 0.47 (0.72) 0.590 

CR residuals – hippocampal 
GM 

0.53 (0.93) 0.80 (0.83) 0.12 (0.93) 0.35 (0.83) 0.09 (0.80) 0.079 

CR residuals – global GM 0.84 (0.96) 1.05 (0.77) 0.14 (0.98) 0.31 (0.83) 0.43 (0.39) 0.179 

Sample sizes are presented with percentages relative to the group in parentheses. GM volumes are scaled to TIV. Values for variables are presented as percentages (for 
sex and APOE ε4 genotype) or means with standard deviation in parentheses. Missing values are excluded. Subtypes in prodromal AD participants are compared using 
Mann–Whitney U tests, apart from sex and APOE ε4 prevalence which were compared using Chi-squared tests. Amyloid-positive CN participants were not compared 
due to low number of participants in the typical subtype. 
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However, the subtypes in both samples did not significantly differ within 
respective diagnostic groups with respect to years of education – a 
common proxy measure of CR (Stern et al., 2020). Alternative variants 
of CR residuals based on hippocampal and global GM volumes did not 
show significant differences between the subtypes. Higher CR residuals 
predicted a slower decline in general cognitive performance and in ex-
ecutive function. Results were suggestive of a potential difference in 
protective effect of CR between the subtypes. Specifically, the typical 
subtype seemed to benefit somewhat more from higher CR levels than 
the limbic-predominant subtype with respect to the longitudinal exec-
utive function and global cognitive performance, although the effects 
were not statistically significant. Further research would be required to 
confirm these findings and explore potential mechanisms underlying 
them. Furthermore, we observed differences in longitudinal CR, pri-
marily CR residuals based on hippocampal and global GM volumes, 
between the hypometabolic subtypes in the main ADNI sample. This 
result provided support for the link between these sources of heteroge-
neity in AD. Replication analyses in the ADNI3 sample provided only 
limited support of results from the main ADNI sample. As in the main 
ADNI sample, baseline CR residuals and education did not differ be-
tween the typical and the limbic-predominant subtypes in ADNI3. Other 
longitudinal analyses in the ADNI3 sample did not replicate findings 
from main ADNI sample. However, this is inconclusive likely due to the 
limited data available in the replication sample. 

Current findings demonstrating protective effects of CR are generally 
in accordance with the previous literature (Nelson et al., 2021). How-
ever, specific differences between the hypometabolic subtypes are 

Fig. 2. Hypometabolic FDG-PET patterns of subtypes in the main ADNI sample. Voxel-wise hypometabolic patterns of the typical and limbic-predominant 
subtypes were compared to Aβ-negative CN group (n = 120) in (A) AD dementia participants and (B) Aβ-positive CN and prodromal AD participants. FDG-PET 
scans were scaled to the pons reference signal, age, sex and years of education were used as covariates. Statistical parametric maps of the group differences were 
converted into Z-scores. 

Table 3 
Hazard ratios for progression of subtypes of participants with prodromal AD to 
dementia in the main ADNI sample and in the ADNI3 sample.   

Main ADNI sample ADNI3 sample 

Variable HR CI z- 
statistic 

HR CI z- 
statistic 

CR residuals – 
temporoparietal 
GM 

0.54 * * 0.35, 
0.82 

-2.85 0.23 0.01, 
3.92 

-1.01 

Limbic- 
predominant 
subtype 

0.52 * 0.30, 
0.89 

-2.40 0.09* 0.01, 
1.00 

-1.96 

CR residuals 
× Limbic- 
predominant 
subtype 

1.22 0.72, 
2.09 

0.74 0.85 0.04, 
20.54 

-0.10 

Age 1.03 0.99, 
1.07 

1.37 1.03 0.85, 
1.26 

0.34 

Sex 0.79 0.48, 
1.31 

-0.91 0.80 0.09, 
6.74 

-0.21 

APOE ε4 2.28 * * 1.25, 
4.14 

2.70 0.73 0.05, 
10.00 

-0.23 

Observations 204   46   
Number of events 70   8   

Hazard ratios (HR) are presented with z-statistics. * p < 0.05, * * p < 0.01, 
* ** p < 0.001. 
Patients who did not progress to dementia within the observation period or did 
not have follow-up CDR scores were censored. 
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harder to interpret in the context of past research. In our previous study, 
the limbic-predominant subtype of AD participants included a subclus-
ter showing minimal hypometabolism, as suggested by the hierarchical 
dendrogram structure (Levin et al., 2021). Additionally, in the current 
study this subtype tended to have similar or higher temporoparietal GM 
volume within respective diagnostic groups, compared to the typical 
subtype. Previous studies considered that a more pronounced neuro-
degeneration in an AD subtype can correspond to a higher CR because it 
would allow a person to maintain a specific level of clinical severity 
despite a subtype of relatively more pronounced neurodegeneration, 
and the other way around – a subtype with less pronounced neuro-
degeneration would show lower CR (Ferreira et al., 2020; Persson et al., 
2017; Poulakis et al., 2022). Applied to the current study, this inter-
pretation could predict that a subtype with relatively lower neuro-
degeneration within, for example, the prodromal AD or AD dementia 
groups would demonstrate lower measures of CR than other participants 
within the corresponding diagnosis groups. We did not find lower edu-
cation in the limbic-predominant subtype, but the baseline comparisons 
suggested somewhat lower average CR residuals (although 
non-significantly). It should be noted, that selection of specific measures 
of neurodegeneration and cognitive performance can have an impact on 
the CR residuals in such baseline comparisons, and the assessment of 
longitudinal progression is likely more informative. 

Our current study primarily focused on comparisons of previously 
defined hypometabolic subtypes of AD. One potential direction for 
future research would be to conduct analysis looking at further sub-
divisions of the subtypes. Identification of more granular AD dementia 
subtypes that demonstrate reliably higher CR or lower CR than average, 
in a manner similar to a previous study that examined subtypes of AD 
resilient to tau pathology (Duong et al., 2022), could contribute to better 
assessment of individual risk. 

We observed different rates of decline of CR residuals between the 
hypometabolic subtypes in the main ADNI sample. The limbic- 
predominant subtype showed a slower rate of decline with respect to 
CR residuals in the main ADNI sample, with a caveat that the effect was 
not statistically significant for the residuals based on the 

temporoparietal GM volume. Present findings suggest that the typical 
subtype as identified in Aβ-positive CN and prodromal AD individuals 
may be more vulnerable to the depletion of CR. Future research should 
reconcile this possibility with characteristics of subtypes identified in 
AD dementia participants and consider longitudinal contributions of 
differences in protective factors such as CR. An alternative interpreta-
tion of the subtype differences with respect to the longitudinal change of 
CR could be that these differences themselves are caused by the differ-
ences in the patterns of neuropathological change. However, evaluation 
of this possibility would require a different analytical approach than in 
the current study. In combination with the finding that the limbic- 
predominant subtype showed a slower longitudinal decrease in tem-
poroparietal GM volume (Supplementary table 10), this also raises a 
question about a possible contribution of differences in brain mainte-
nance (Stern et al., 2020). Future research in this area could benefit from 
using a functional measure that would more directly assess mechanisms 
underlying the CR concept. Another potential future approach to better 
evaluate and interpret such individual and subtype differences in CR 
could be to define CR as trajectories of cognitive decline that are better 
or worse than expected given observed cerebral damage, ideally also 
examining the continuity of subtypes in Aβ-positive CN, prodromal AD 
and AD dementia participants. 

We addressed the possibility that the CR residual measure could have 
reflected primarily subtype differences linked to the specific brain areas 
affected by the neuropathological processes but did not reflect the real 
CR difference between the subtypes. Thus, we obtained alternative 
variants of CR residuals using the hippocampal GM and global GM 
volumes instead of temporoparietal GM. Analyses using these alterna-
tive CR residuals yielded similar results (Table 4) suggesting that the 
selection of the brain area for extracting GM was likely not the driver of 
subtype differences in CR change. We also repeated the longitudinal 
regression comparing CR residuals’ trajectories between the subtypes in 
the prodromal AD group only and confirmed that the subtype differ-
ences in longitudinal CR residuals change were not driven primarily by 
the Aβ-positive CN group (Supplementary table 9). 

Table 4 
Mixed effects regression models of longitudinal cognitive decline and its relationship with subtypes and CR residuals in the combined CN and prodromal AD group in 
the main ADNI sample.   

Memory function composite score Executive function composite score MMSE score  

Estimate CI t- 
statistic 

Estimate CI t- 
statistic 

Estimate CI t- 
statistic 

Intercept -0.154 -0.309, 
− 0.001 

-1.953 0.210 -0.028, 
0.449 

1.714 27.689 * ** 27.167, 
28.214 

102.761 

Age -0.131 * ** -0.194, 
− 0.067 

-4.005 -0.401 * ** -0.499, 
− 0.303 

-7.945 -0.311 * * -0.526, 
− 0.096 

-2.805 

Sex 0.285 * ** 0.17, 0.4 4.824 0.038 -0.142, 
0.217 

0.410 0.167 -0.215, 
0.549 

0.850 

APOE ε4 -0.129 * -0.201, 
− 0.103 

-2.123 -0.226 * -0.287, 
− 0.165 

-2.386 -0.336 -0.729, 
0.058 

-1.663 

Follow-up time, years -0.152 * ** 0.551, 0.786 -6.066 -0.226 * ** 0.26, 0.623 -7.246 -1.232 * ** -1.58, 
− 0.884 

-6.905 

CR residuals – temporoparietal GM 0.668 * ** 0.179, 0.462 11.072 0.442 * ** -0.021, 
0.416 

4.733 0.711 * ** 0.302, 1.119 3.385 

Limbic-predominant subtype 0.321 * ** -0.248, 
− 0.01 

4.414 0.198 -0.411, 
− 0.041 

1.760 0.373 -0.113, 
0.857 

1.496 

Follow-up time × Age -0.004 -0.033, 
0.063 

-0.371 0.015 0.014, 0.133 1.093 0.030 -0.136, 
0.197 

0.353 

Follow-up time × CR residuals 0.015 -0.034, 
0.075 

0.614 0.073 * 0.039, 0.173 2.394 0.635 * ** 0.291, 0.979 3.591 

Follow-up time × Limbic-predominant 
subtype 

0.021 -0.216, 
0.056 

0.746 0.106 * * -0.425, 
− 0.005 

3.067 0.451 * 0.058, 0.844 2.238 

CR residuals× Limbic-predominant subtype -0.080 -0.027, 
0.018 

-1.146 -0.215 * -0.012, 
0.042 

-1.987 -0.132 -0.601, 
0.338 

-0.546 

Follow-up time × CR residuals × Limbic- 
predominant subtype 

0.002 -0.051, 
0.056 

0.085 -0.059 -0.125, 
0.007 

-1.750 -0.376 -0.763, 
0.012 

-1.887 

Unstandardized estimates are presented with t-statistics. * p < 0.05, * * p < 0.01, * ** p < 0.001. Age variable was centered and rescaled. Random intercepts and 
slopes are included to account for multiple measurements. 
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Fig. 3. Longitudinal cognitive trajectories in Aβ-positive CN and prodromal AD participants depending on CR residuals in the main ADNI sample. Pre-
dicted values of domain-specific cognitive scores were obtained from mixed effects regressions models which included age, sex and APOE ε4, and an interaction of 
age with the time variable as covariates, as well as random intercepts and slopes to account for multiple measurements. Ribbons around the regression lines represent 
95% confidence intervals for the predicted values. Low, medium and high CR residual values were selected as mean values for the lower, medium and higher tertiles 
of the CR residual distribution respectively. 
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4.1. Potential limitations 

A general limitation of this study, as with other studies applying 
proxy or residual measures of CR, is that CR is not assessed directly. 
Rather, it likely captures a number of protective and risk factors that 
may influence the relationship between observed neuropathology and 
cognitive performance in addition to the mechanisms underlying indi-
vidual CR more specifically (Stern et al., 2020). A more direct assess-
ment of brain processes relevant to CR could be possible using functional 
imaging approaches (Stern et al., 2020). 

A relevant limitation of the residual-based approach has been dis-
cussed in a recent study by Elman and colleagues (Elman et al., 2022). 
Specifically, measures of CR operationalized via residual scores tend to 
correlate with the original dependent variables used in the regression 
models for obtaining the residual scores – in our case the ADNI-MEM 
scores. Interpretation of standardized residual scores as measures of 
CR therefore may be limited and should account for the likely contri-
bution of initial levels of cognitive performance to the variance of the CR 
measure. In the current study, we primarily focused on group compar-
isons of the typical and the limbic-predominant subtypes within the 
prodromal AD group and within the combined group of Aβ-positive CN 
and prodromal AD. Our finding that the typical and the 

limbic-predominant subtypes in prodromal AD showed similar levels of 
CR residuals was unlikely to be confounded by variance in the levels of 
initial cognitive performance. The subtypes showed similar cognitive 
performance, and the lack of differences in CR at baseline was supported 
by a similar finding using the proxy CR measure of education. Thus, the 
effect of the interaction term including the CR residuals and the subtype 
on rates of clinical progression and cognitive decline is still informative 
about potential group level differences in CR. By including these inter-
action terms, we tested whether the subtypes differed with respect to the 
protective effect of CR residuals despite similar levels of baseline 
cognitive performance and CR residuals. Similarly, we used longitudinal 
regressions in Aβ-positive CN and the prodromal AD participants to 
assess whether subtypes interacted with CR residuals in analyses pre-
dicting cognitive decline. Slower cognitive decline due to higher CR 
residuals could potentially be attributed to the differences in initial in-
dividual cognitive performance. However, the interaction terms 
including time, CR residuals and subtype suggested that the typical 
subtype benefited more from higher baseline CR residuals. Finally, we 
analyzed the longitudinal progression of CR residuals themselves. Re-
sults indicated that for the typical subtype CR residuals declined faster 
than for the limbic-predominant subtype. Our findings suggesting 
diverging longitudinal trajectories of CR residuals in the subtypes are 
likely informative beyond differences in the longitudinal cognitive 
decline and have implications for both subtypes and CR. Specifically, 
although the subtypes initially demonstrated similar CR, the typical 
subtype tended to show progressively lower cognitive performance than 
predicted via a regression model based on a baseline sample of 
Aβ-positive CN, prodromal AD and AD dementia groups and given the 
degree of GM atrophy and demographic variables. Thus, the subtype 
here represents a factor that could potentially account for the variance in 
cognitive performance that is not sufficiently explained by the longitu-
dinal atrophy. An alternative analytical approach to comparisons of 
subtypes with respect to longitudinal trajectories of cognitive perfor-
mance change in response to neurodegeneration could be to evaluate 
these effects within one longitudinal model. However, due to several 
complexities of this potential approach such as the limitation of analysis 
to participants with sufficient longitudinal data, as well as the difficulty 
of applying an identical CR estimation in a separate sample for repli-
cation, here we focused on the more classical approach using CR re-
siduals. To summarize, the recent criticism of the residual-based 
approach for operationalizing CR may be applicable to findings in par-
ticipants with higher baseline CR residuals. However, key results from 
comparisons of the two main subtypes with respect to baseline and 
longitudinal CR residuals are likely still relevant to understanding the 
relationship between the subtypes and CR. 

Another potential drawback of the current study was the limited 
available data in the replication sample, including follow-up data, which 
limited longitudinal statistical testing in this sample. The main challenge 
in replicating the present analysis was the required combination of FDG- 
PET, amyloid, longitudinal cognitive and MRI data obtained in various 
diagnostic groups. Optimization of the current approach to facilitate 
future research is possible, such as a change in the subtyping approach to 
using atrophy patterns assessed via MRI to remove the need for FDG- 
PET. 

Finally, the current study used time since baseline as a measure 
reflecting disease progression in longitudinal regression analyses. 
Although this measure is often used in similar analyses, this approach 
could be improved by better accounting for individual disease course, 
for example via estimation of time since disease onset. 

5. Conclusion 

Here, we evaluated CR in subtypes of AD-related neurodegeneration 
established previously based on spatial patterns of hypometabolism. Our 
measure of CR was associated with education and with slower cognitive 
decline, with a somewhat stronger effect of the levels of CR for the 

Table 5 
Mixed effects regression model of CR residuals in the typical and the limbic- 
predominant subtypes in Aβ-positive CN and prodromal AD participants in the 
main ADNI sample.   

CR residuals – temporoparietal GM  

Estimate CI t- 
statistic 

Intercept 0.515 * * 0.167, 0.862 2.887 
Age -0.049 -0.192, 0.094 -0.672 
Sex -0.079 -0.341, 0.184 -0.585 
APOE ε4 -0.543 * ** -0.808, 

− 0.279 
-4.029 

Scanner change 0.164 -0.327, 0.653 0.657 
Follow-up time, years -0.127 * -0.226, 

− 0.028 
-2.500 

Limbic-predominant subtype 0.269 -0.056, 0.596 1.606 
Follow-up time × Age -0.026 -0.072, 0.02 -1.105 
Follow-up time × Limbic-predominant 

subtype 
0.108 -0.001, 0.217 1.942 

Unstandardized estimates are presented with t-statistics. * p < 0.05, * * 
p < 0.01, * ** p < 0.001. Age variable was centered and rescaled. Random in-
tercepts and slopes are included to account for multiple measurements. Typical 
subtype acts as a reference in comparison with the limbic-predominant subtype. 

Fig. 4. Longitudinal trajectories of CR residuals in subtypes in Aβ-positive 
CN and prodromal AD participants in the main ADNI sample. Predicted 
values of residuals were obtained from mixed effects regressions model with 
age, sex, APOE ε4, a variable indicating a change in the scanner model as 
covariates and an interaction of age with the time variable, as well as random 
intercepts and slopes to account for multiple measurements. Ribbons around 
the regression lines represent 95% confidence intervals for the predicted values. 
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typical subtype in analyses of cognitive decline. Baseline CR – as 
assessed by education and by a residual approach – did not support a 
consistent advantage of a specific subtype, with an exception for the AD 
group where the limbic-predominant subtype had somewhat lower 
values of CR residuals. Results suggested that longitudinal CR declined 
faster for the typical subtype, supporting the hypothesized link between 
subtype heterogeneity and CR. These findings highlight the importance 
of considering individual differences in longitudinal CR trajectories. 
Current results also may inform a better understanding of subtype dif-
ferences. Further research on CR, as well as on the interplay between CR 
and subtype heterogeneity, could benefit from more direct assessments 
of mechanisms underlying CR, as well as from modeling change in CR 
based on longitudinal cognitive data. 
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