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A B S T R A C T   

Human mitochondria are complex and highly dynamic biological systems, comprised of over a thousand parts 
and evolved to fully integrate into the specialized intracellular signaling networks and metabolic requirements of 
each cell and organ. Over the last two decades, several complementary, top-down computational and experi-
mental approaches have been developed to identify, characterize and modulate the human mitochondrial sys-
tem, demonstrating the power of integrating classical reductionist and discovery-driven analyses in order to de- 
orphanize hitherto unknown molecular components of mitochondrial machineries and pathways. To this goal, 
systematic, multiomics-based surveys of proteome composition, protein networks, and phenotype-to-pathway 
associations at the tissue, cell and organellar level have been largely exploited to predict the full complement 
of mitochondrial proteins and their functional interactions, therefore catalyzing data-driven hypotheses. 
Collectively, these multidisciplinary and integrative research approaches hold the potential to propel our un-
derstanding of mitochondrial biology and provide a systems-level framework to unraveling mitochondria- 
mediated and disease-spanning pathomechanisms.   

1. Introduction 

Mitochondria are essential organelles for cellular and organismal life 
in virtually all eukaryotes (Fig. 1). Present-day human mitochondria 
originated from the integration of an endosymbiotic α-proteobacterium 
into a host cell, therefore exchanging their independence for a semi- 
autonomous life [1,2]. By the late 1990s, comparative genomics ana-
lyses of α-proteobacteria genomes and quantitative two-dimensional 
gels of highly purified mitochondria suggested that the mammalian 
mitochondrial proteome consists of ~1,000–1,500 distinct proteins [3, 
4]. The majority of those proteins derive from the eukaryotic genome, 
whereas the prokaryotic genome was significantly reduced during the 
transition from endosymbiotic bacterium to organelle [2] (Fig. 2A). To 
date, only a handful of protein-coding genes – thirteen in mammals – are 
still retained in the mitochondrial DNA (mt-DNA) of almost all eu-
karyotes. Therefore, most of the mitochondrial proteome is encoded 
from the nuclear genome, translated in the cytosol, and then targeted 
and imported into the organelle. 

Strikingly, only 1% of mammalian mitochondrial proteins are 

allocated to ATP synthesis, highlighting that the organelle’s functions 
reach far beyond energy production (Fig. 1). Indeed, mitochondria are at 
the core of multiple cellular pathways, including the biosynthesis of 
precursors for cholesterol, estrogen, testosterone and hemoglobin; the 
regulation of redox and ion homeostasis; the activation of antiviral re-
sponses and cell death. Adding an additional layer of complexity, 
mitochondrial functions are tied to the specialized tasks and physiology 
of different cell types, tissues, and organisms [5]. For instance, only 
between 40–70 % of the human mitochondrial proteome is conserved in 
commonly used model systems such as unicellular eukaryotes (e.g. 
S. cerevisiae) and invertebrates (e.g. C. elegans, D. melanogaster) (Fig. 2B). 
Furthermore, over 15 % of the mitochondrial system shows 
tissue-specificity [6] and profound differences even among cell types of 
the same tissue [6,7]. 

As a consequence of their dual genetic origin and pleiotropic roles, 
mitochondria need to tune their biogenesis and activity to the metabolic 
requirements of each cell. To fulfil this task, the organelle engages in bi- 
directional signaling with other subcellular compartments by remodel-
ing shape, size, motility, metabolism, protein composition – and more – 
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throughout cell development, differentiation, and proliferation [8,9]. In 
neurons, for example, mitochondria travel along the axon from the cell 
body to the synapses and backwards. Transport, positioning, and 
docking of the organelle at specific locations represent important 
mechanisms to provide local ATP supply and to buffer cytosolic calcium 
(Ca2+) for proper axonal branching, local protein translation, neuronal 
polarization, and synaptic transmission [10]. Furthermore, mitochon-
dria can directly and promptly engage in physical and functional 
inter-organelle cross-talk, mediating the biosynthesis and exchange of 
metabolites and the homeostasis of several ions [11]. In light of all ev-
idence, a crucial question arises: How can we tackle such a complex 
system? Understanding mitochondrial function and dysfunction be-
comes extremely challenging when taking a one-component-at-a-time 
approach. Advances in ‘omics’ technologies such as whole-genome 
editing, functional genomics, proteomics, and bioinformatics have 
recently allowed assessing mitochondrial function by holistic and 
systems-wide research strategies that integrate more than one tech-
nique, model system and discipline (Fig. 3). Several reviews have delved 
into specific applications of mitochondria systems biology for compiling 
mitochondrial parts lists, characterizing their tissue heterogeneity and 
evolutionary origins, and for identifying disease genes and patho-
mechanisms [5,12–19]. Here, we attempt to provide a comprehensive 
overview of the current state-of-the-art experimental and computational 
tools for studying human mitochondria. 

2. De novo identification of mitochondrial proteins 

An essential first step towards understanding mitochondrial func-
tions is to achieve a complete knowledge of the mitochondrial proteome 
parts list, which is referred to as the subset of the whole-cell proteome 
localizing specifically to the organelle. To that end, top-down systems- 
level approaches have been instrumental for large-scale and unbiased 
prediction of mitochondrial proteins from different organs and 

organisms. Below, we present several key computational and experi-
mental strategies that have catalyzed the identification of mitochondria- 
localized proteins. 

2.1. In silico strategies 

Several freely available and user-friendly databases can be queried 
for supporting evidence of a protein’s mitochondrial localization 
(Table 1). The Mitochondria Protein Atlas [20], for example, provides 
manually curated and updated inventories of experimentally validated 
human mitochondrial proteins, including information on their 
sub-mitochondrial localization, function, structure, interactions, and 
involvement in human diseases. Besides repositories of known 
mitochondria-localized proteins, numerous in silico approaches have 
been developed to identify novel mitochondrial proteins based on the 
prediction of specific targeting signals for sorting proteins into the 
organelle, as well as a variety of complementary clues on protein pri-
mary and secondary structures, physicochemical properties, sequence 
motifs, and homology to proteins with a known mitochondrial locali-
zation in other species. Indeed, all nuclear-encoded mitochondrial pro-
teins are directed to and imported into sub-mitochondrial compartments 
based on the recognition of mitochondrial targeting signals (MTSs) by 
specific translocator complexes [21,22]. As an example, soluble matrix 
and inner membrane (IMM) proteins often contain within the first one 
hundred residues a presequence that is cleaved by mitochondrial pep-
tidases for retention into the organelle or for membrane insertion. Many 
attempts have been made to predict mitochondrial protein localization 
by analyzing the biochemical properties of N-terminal MTSs that usually 
exhibit biased amino acid composition, internal protease recognition 
sites, and show positively charged amphiphilicity. In a study by Vaca 
Jacome et al. [23], 356 proteins were found with a cleavable N-terminal 
presequence by systematic trimethoxyphenyl phosphonium 
(TMPP)-based labelling of U937 human monocytic mitochondria 

Fig. 1. Complexity of the mitochondrial system. 
Mitochondria play a pleiotropic role in cell biology and 
physiology, which is reflected by the complexity and 
heterogeneity of their proteome, with over 1500 com-
ponents that vary in both genetic and evolutionary 
origin and show tissue and cell type-specific expression. 
Mitochondrial diversity allows the system to meet the 
unique metabolic and physiological demands of each 
organ. Therefore, it is not surprising that more than 
300 human proteins have been already linked to over 
190 different disease phenotypes in the OMIM data-
base, certainly an underestimation given that 20–40 % 
of the mitochondrial proteome remain completely 
uncharacterized [14,19]. 
ROS, reactive oxygen species; NO, nitric oxide; CKD, 
chronic kidney disease; NFLD, Non-Alcoholic Fatty 
Liver Disease.   
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coupled to liquid chromatography with tandem mass spectrometry 
(LC–MS/MS). In a subsequent survey, Calvo et al. [24] identified cleaved 
N-terminal presequences out of 327 mouse kidney and liver mitochon-
drial proteins through a subtiligase-based protein biotinylation 
approach. Although those N-proteome analyses of isolated mitochon-
drial fractions also included false positives due to, for example, 
co-purification of other organelles, they highlighted that at least 30 % of 
the mammalian proteome might be targeted to mitochondria via 
cleavable N-terminal presequences. Besides, other mitochondrial import 
mechanisms also exist that involve the recognition of C-terminal or, 
rarely, internally located MTSs, especially for outer membrane (OMM) 
or intermembrane space (IMS) proteins [21]. Thus, several computa-
tional approaches aiming at systematically identifying MTSs over whole 
organism proteomes have been developed for the automated discovery 
of mitochondrial proteins (Table 1). The vast majority of available in 
silico tools employ supervised machine learning algorithms. The latter 
are trained to discriminate between mitochondrial and 
non-mitochondrial proteins using reference sets of true positive (pro-
teins unambiguously localized to mitochondria) and true negative 
(proteins convincingly annotated to other subcellular compartments) for 
benchmarking. Most common models predict mitochondrial protein 
localization using as input either known biochemical features of MTSs or 
directly the overall protein amino acid sequence. Among those, PSORTII 
[25], TargetP 2.0 [26], Predotar [27], MitoFates [28], and TPpred3 [29] 
focus on the identification of cleavable N-terminal presequences. Given 
that the biochemical properties of mitochondrial N-terminal pre-
sequences are well known, those models can reach a high sensitivity 
(true positive rate) but their predictive power remains limited, consid-
ering that not all mitochondrial proteins contain a MTS. Among overall 
sequence-based approaches (e.g., ngLOC [30], DeepLoc [31], LocTree3 
[32], and CELLO II [33]), SubMitoPred [34] and DeepMito [35] also 
allow predicting the specific localization of a protein into 
sub-mitochondrial compartments (OMM, IMS, IMM, and matrix). Alto-
gether, prediction accuracy greatly varies across different in silico tools, 
depending on machine learning algorithms, training and testing data-
sets, and biological features input for learning, making it advisable to 
compare results from different queries. 

2.2. Experimental strategies 

Major advances in the sensitivity and throughput of mass 

spectrometry (MS) and imaging technologies coupled to genome editing 
have made possible to survey to systematically identifying novel mito-
chondrial proteins. One such endeavor is the Cell Atlas database, which 
is part of the Human Protein Atlas (HPA, www.proteinatlas.org) [36], an 
open-access resource including the annotation of expression and sub-
cellular localization for 12,390 proteins across a panel of 26 human cell 
lines. By using fluorescence microscopy of native proteins with an 
immunologically detectable epitope, 1,098 proteins could be annotated 
as mitochondria-localized at high-resolution, of which 46 % were 
independently validated by additional experimental strategies (e.g., 
gene silencing, fluorescent protein-tagging, different antibodies) or by 
evidence from external databases. Overall, immunofluorescence 
(IF)-based approaches offer the advantage to analyze subcellular and 
spatio-temporal protein distribution in situ and in single cells, thus also 
enabling the identification of cell-to-cell protein variability and 
multi-organelle localization. However, due to the lack of available an-
tibodies for all human proteins, the number of truly localized mito-
chondrial proteins might be currently underestimated. As a 
complementary approach, organellar proteomics, using 
mitochondria-enriched fractions as input material for state-of-the-art 
MS-based analyses, have proved instrumental to nearly double the 
number of known yeast [12,37], mouse [6,38], and human mitochon-
drial proteins [39–41]. Several protocols are available to obtain highly 
pure mitochondrial preparations [42], which mainly differ in the 
methods used for selective disruption of the plasma membrane (e.g., 
sonication, mechanical homogenization, nitrogen cavitation) and 
organelle enrichment (e.g., differential centrifugation, high-affinity 
magnetic immunocapture followed by ultracentrifugation on a density 
gradient). In 2008, using Percoll density gradient purified mitochondria, 
Pagliarini et al. [6] performed a systematic and comprehensive survey of 
mitochondrial protein expression across 14 mouse tissues by 
reversed-phase LC–MS/MS. Altogether, over 3,800 proteins were 
identified, with an average of 1,500 expressed in mitochondrial frac-
tions from each tissue. Unexpectedly, at least 15 % of the organelle parts 
list showed tissue specific expression, suggesting that while a core set of 
mitochondrial proteins perform ubiquitous tasks, the rest must fulfil the 
specific functional and metabolic requirements of each organ. After-
wards, studies from Fecher et al. [7] and Bayraktar et al. [43] demon-
strated that such diversity across tissues does not simply derive from 
global changes in bulk mitochondrial proteomes but reflects cell 
type-specific heterogeneity in mitochondrial protein sets from the same 

Fig. 2. Evolutionary origin and conservation of the human mitochondrial proteome. (A) Percentage of present-day human mitochondrial proteome with alpha- 
proteobacteria, prokaryotic, and eukaryotic origin. (B) Percentage of human mitochondrial proteins with orthologs in each species. The list of human mitochondrial 
proteins was obtained from Malty et al. [19] and Ensembl Compara v101 (Blastp e-value of 0.01) was used for homology inference. 

H.C. Delgado de la Herran et al.                                                                                                                                                                                                            

http://www.proteinatlas.org


Cell Calcium 95 (2021) 102364

4

organ. By engineering a reporter mouse line, named MitoTag, that ex-
presses an OMM-targeted green fluorescent protein (GFP) in a Cre 
recombinase-dependent manner, Fecher et al. systematically dissected 
mitochondrial proteome variability among three different cell types of 
the cerebellum. Here, the GFP-OMM epitope was used as a handle for 
immunocapturing tagged mitochondria directly from major inhibitory 
(PC, Purkinje cells) and excitatory (GC, granule cells) neurons, and as-
trocytes within their tissue context. Strikingly, comparative LC–MS/MS 
analysis of cell type-specific mitochondrial fractions showed that only 
about 85 % of the identified proteins were shared among PC, GC and 
astrocytes. The rest reflected differentially regulated mitochondrial 
pathways and functions, providing a set of markers for monitoring cell 
type-specific mitochondrial changes in healthy and diseased mouse and 
human brains. Using a similar experimental strategy, Bayraktar et al. 
profiled both proteome and metabolome of hepatocyte mitochondria 
within liver tissue. A reporter mouse model (also called MITO-Tag) that 
expressed an OMM-targeted HA epitope tag under the control of the 
Albumin promoter was exploited to specifically and rapidly immuno-
capture mitochondria (10 min after tissue homogenization). A total of 
511 proteins and a variety of hepatocyte metabolites were found to be 
highly enriched in mitochondria compared to whole-liver proteome and 
metabolome. Altogether, results from both studies highlighted the util-
ity of Mito-Tag mouse models as tools for characterizing the mito-
chondrial system in vivo and upon physiological and pathological 
perturbations. Furthermore, Mito-Tag mice can be employed to isolate 
mitochondria from virtually any cell type, without the need for cell 
sorting and lengthy purification protocols. However, they require the 
lysis of tissue and mitochondrial samples, which inevitably results in 
substantial distortion of the in vivo mitochondrial physiological state, 
compared for example to microscopy-based analyses. Nevertheless, both 
approaches are unable to survey dynamic changes in protein composi-
tion and distribution in situ and simultaneously for all mitochondrial 
proteins, at either tissue or cell type-specific levels. To this goal, syn-
thetic biology strategies have recently opened the way for spatially and 
temporally resolved snapshots of mitochondrial proteomes within living 

cells by combining the strengths of microscopy and MS technologies 
[44]. A series of studies from the Ting group profiled the composition of 
individual mitochondrial sub-compartments by targeting the ascorbate 
peroxidase APEX to either the matrix [45], IMS [46] or OMM [47] of 
human embryonic kidney (HEK) cells. In presence of biotin-phenol and 
H2O2, APEX catalizes within 1 min the generation of phenoxyl radicals 
that can covalently react to electron-rich amino acids while the cell is 
still intact. Those radicals are short-lived, highly reactive, 
membrane-impermeant, and have a small labeling radius, leading to 
high spatial resolution. Biotin-labelled proteins are then recovered by 
streptavidin-based enrichment on cell extracts and identified by tandem 
MS-based proteomics. This approach was especially instrumental for 
mapping the IMS proteome, which cannot be otherwise characterized by 
traditional biochemical approaches based on density centrifugation. As 
a result, the Ting group identified a total of 495, 127, and 137 matrix, 
IMS, and OMM proteins, respectively, of which roughly half had pre-
viously unknown sub-mitochondrial localization, providing a rich 
resource of orphan proteins and proteins without a previous functional 
link to mitochondria. However, the approach has been only validated in 
cells and organs ex vivo [48,49], questioning its utility for in vivo tagging 
of mitochondrial proteomes. 

2.3. Integrative biology strategies 

The aforementioned genome and proteome-scale approaches in 
biochemistry, genetics, imaging and bioinformatics have undoubtedly 
led to the identification of novel human mitochondrial proteins. How-
ever, their predictive power was hampered by limited specificity and 
coverage, as each method suffered from intrinsic methodological limi-
tations and was biased towards different subsets of mitochondrial pro-
teins. As an example, nowadays MS-based proteomics can quantify over 
6000 proteins from nanograms of a whole-cell extract [50,51]. If on the 
one side the ever-increasing resolution and detection limits of mass 
spectrometers make deep organellar proteome analysis an extremely 
powerful discovery tool, on the other discriminating between true 

Fig. 3. Systems-level approaches to study mitochondria. Defining and functionally characterizing the mitochondrial parts list involve systematic and integrative 
strategies that combine large-scale computational and experimental approaches with traditional biochemical, genetic and physiological analyses of mitochondrial 
function in different model organisms. 
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mitochondria-resident and contaminant proteins that either co-sediment 
or are physically interacting with the organelle remains challenging. 
Unfortunately, minimizing contamination by maximizing the purity of 
mitochondrial preparations can only offer a partial solution at the risk of 
compromising organelle’s integrity. On the contrary, computational 
searches for cleavable, N-terminal targeting signals yield highly specific 
lists of mitochondrial proteins but show limited sensitivity, given that 
not all mitochondria-resident proteins contain a pre-sequence. 
Furthermore, experimental and in silico-derived catalogs of mitochon-
drial proteins have shown modest overlap [13,17]. Therefore, it is 
plausible that the systematic integration of all data types could 
compensate for the shortcomings of each individual approach and in-
crease true positive rate. The latter hypothesis was tested in the years 

2004 [37] and 2006 [52] by the Steinmetz group to predict mitochon-
drial proteins in S. cerevisiae. In two consecutive studies, the authors 
performed machine-learning based integration of over twenty compu-
tational and experimental genome-wide datasets, interrogating different 
biological properties of the mitochondrial system, from evolutionary 
conservation and gene regulation, to protein abundance and physical 
protein-protein interactions (PPI). The model was trained to discrimi-
nate between a positive reference set of known yeast mitochondrial 
proteins and the remaining yeast proteome in order to rank all datasets 
according to their power in identifying true mitochondria-localized 
proteins. Among all, IF-based analyses of sub-cellular localization by 
protein-tagging, MS on isolated mitochondria, and orthology mapping 
to known mitochondrial proteins in other species showed the highest 

Table 1 
Systematic in silico and experimental approaches for identifying mitochondrial proteins.  

Tool Method Description Predicted human 
mitochondrial proteins 

Access location Year Ref. 

COMPUTATIONAL 
PSORTII Machine learning Subcellular protein localization analysis. 

Prediction of mt-proteins is based on the 
biochemical features of N-terminal TS and 
presence of consensus CS 

1712 https://psort.hgc.jp/form2.html 1999 [25] 

ngLOC Machine learning Subcellular protein localization analysis. 
Prediction of mt-proteins is based on amino 
acid sequence 

725 http://genome.unmc.edu/ngLOC/inde 
x.html 

2012 [30] 

LocTree3 Machine learning Subcellular protein localization analysis. 
Prediction of mt-proteins is based on amino 
acid sequence and homology 

1035 https://rostlab.org/services/loctree3/ 2014 [32] 

DeepLoc Machine learning Subcellular protein localization analysis. 
Prediction of mt-proteins is based on amino 
acid sequence 

1553 http://www.cbs.dtu.dk/services 
/DeepLoc/ 

2017 [31] 

SubMitoPred Machine learning Prediction of mitochondrial and sub- 
mitochondrial protein localization based on 
amino acid sequence and Pfam domains 

Search based on the 
user input data 

http://proteininformatics.org/mkum 
ar/submitopred/ 

2018 [34] 

DeepMito Machine learning Prediction mitochondrial and sub- 
mitochondrial protein localization based on 
amino acid sequence 

254 (IMM), 124 (IMS), 
499 (Matrix), 172 
(OMM) 

http://busca.biocomp.unibo.it/deep 
mito/ 

2020 [35] 

MitoFates Machine learning Prediction of mt-protein localization based on 
the biochemical features of N-terminal TS and 
presence of consensus CS 

1847 http://mitf.cbrc.jp/MitoFates/cgi-bin/ 
top.cgi 

2015 [28] 

TargetP 2.0 Machine learning Subcellular protein localization analysis. 
Prediction of mt-proteins is based on the 
biochemical features of N-terminal TS 

648 http://www.cbs.dtu.dk/services 
/TargetP/ 

2019 [26] 

TPpred3 Machine learning Subcellular protein localization analysis. 
Prediction of mt-proteins is based on the 
biochemical features of N-terminal TS and 
presence of consensus CS 

Search based on the 
user input data 

https://tppred3.biocomp.unibo.it/tpp 
red3 

2015 [29] 

Predotar Machine learning Subcellular protein localization analysis. 
Prediction of mt-proteins is based on the 
biochemical features of N-terminal TS 

1426 https://urgi.versailles.inra.fr/predot 
ar/ 

2004 [27] 

CELLO II Machine learning Subcellular protein localization analysis; 
prediction of mitochondrial proteins is based 
on amino acid sequence and homology 

Search based on the 
user input data 

http://cello.life.nctu.edu.tw/ 2006 [33] 

Human MitoCarta 
3.0 

Machine learning 
and manual 
curation 

Prediction of mt-proteins based on systematic 
data integration 

1136 https://www.broadinstitute.org/mit 
ocarta/mitocarta30-inventor 
y-mammalian-mitochondrial-protein 
s-and-pathways 

2020 [54] 

Mitominer 4.0 Machine learning Prediction of mt-protein based on systematic 
data integration 

1626 http://mitominer.mrc-mbu.cam.ac. 
uk/release-4.0/begin.do 

2018 [55] 

Mitochondrial 
Protein Atlas 

Manual curation Database of human mt-proteins 911 http://lifeserv.bgu.ac.il/wb/jeichle 
r/MPA/ 

2017 [80] 

MitoProteome Manual curation Database of human mt-proteins 3625 http://www.mitoproteome.org/ 2004 [81] 
HMPDb Automated data 

retrieval 
Database of human mt-proteins 1465 https://bioinfo.nist.gov/hmpd/Search. 

html 
2016 [82] 

EXPERIMENTAL 
N-terminome Biochemical identification of human proteins with N- 

terminal, cleavable presequence 
356 Supplementary Table 7 2015 [23] 

Matrix and IMM Biochemical Proximity Labelling and MS 495 Supplementary Table 1 2013 [45] 
IMS Biochemical Ratiometric Proximity Labelling and MS 127 Supplementary Table 2 2014 [46] 
OMM Biochemical Ratiometric Proximity Labelling and MS 137 Supplementary File 1a 2017 [47] 
Human Protein 

Atlas 
Imaging Database of subcellular protein localization 1098 https://www.proteinatlas.org/h 

umanproteome/cell/organelle 
2015 [83] 

Abbreviations: mt, mitochondrial; TS, targeting sequence; CS, cleavage site; MS, mass-spectrometry; IMM, inner mitochondrial membrane; IMS, intermembrane space; 
OMM, outer mitochondrial membrane. 
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sensitivity and specificity, in contrast to transcriptome analysis. As ex-
pected, data integration outperformed the predictive power of each in-
dividual dataset and yielded a comprehensive and accurate inventory of 
the yeast mitochondrial proteome, including 91 % of the reference set 
and an additional 346 candidates, of which nearly half were still 
uncharacterized [52]. Later on, the same approaches have been applied 
to predict new mitochondrial proteins in mammals. For example, 
Pagliarini et al. [6] used a naïve Bayes algorithm to combine six 
genome-scale datasets of mitochondrial localization with MS-based an-
alyses of mitochondria isolated from 14 mouse tissues and large-scale IF 
experiments of GFP-tagged proteins tagging to compute a likelihood 
score of mitochondrial localization for each mouse protein. At a cut-off 
of 10 % false discovery rate (FDR), the resulting inventory of 1098 
mouse proteins, termed MitoCarta v1.0, was estimated to be 85 % 
complete and containing nearly 300 genes without previous mitochon-
drial annotation in the Gene Ontology (GO) database. A human Mito-
Carta of 1013 proteins was then generated based on sequence homology 
and updated twice (MitoCarta v2.0 [53] and v3.0 [54]) to a final list of 
to 1136 human mitochondrial proteins by manual literature curation, 
including sub-mitochondrial compartment and pathways annotations. 
Using a different machine-learning method (support vector machines), 
Smith et al. [55] developed an integrated mitochondrial protein index 
(IMPI) from the integration of 56 datasets from a variety of resources, 
including MitoCarta v2.0, MS of purified cell fractions, GFP-tagging and 
microscopy, and computational prediction of MTSs. The resulting 
database, named MitoMiner (IMPI version Q2 2018) [55], contains 1626 
human genes that encode for mitochondrial proteins, 442 are novel 
candidates, and roughly two-third overlap with MitoCarta v2.0. Overall, 
both MitoCarta and MitoMiner provide the most specific and compre-
hensive catalogs of mammalian mitochondrial proteins to date and 
represent valuable platforms to investigate tissue-specific expression of 
mitochondrial proteins and their links to disease. 

Integrative biology approaches have also proved successful in 
unraveling the genetic identity of whole mitochondrial complexes, as 
exemplified by the discovery of the mitochondrial calcium uniporter 
components [56] (Fig. 4A). Ca2+ handling by mitochondria was first 

described more than 50 years ago, when DeLuca & Engstrom [57] and 
Vasington & Murphy [58] independently reported that mitochondria 
isolated from rat kidney could rapidly uptake millimolar amounts of 
Ca2+ from the extra-mitochondrial space by passive Ca2+ transport 
down its electrochemical gradient. Mitochondrial Ca2+ uptake was 
attributed to a Ca2+ uniporter located in the IMM, which was later 
shown to be a highly selective Ca2+ channel [59]. The mitochondrial 
calcium uniporter channel, here referred to as MCUC, was dependent on 
the pH gradient and the negative potential established by the respiratory 
chain across the inner mitochondrial membrane and inhibited by 
nanomolar concentrations of ruthenium red and its derivative Ru360 
[60]. However, despite the biophysical properties of mitochondrial Ca2+

uptake have been characterized for decades, the genetic identity of 
MCUC has evaded traditional biochemical strategies that aimed at 
purifying it from animal tissues, as well as genome-wide RNA interfer-
ence (RNAi)-based loss of function screens. Interestingly, besides rat 
kidney, MCUC-mediated Ca2+ uptake was measured in mitochondria 
from virtually all mammalian tissues and in several species from other 
kingdoms (e.g., protozoa and plants), yet, despite rigorous, repeated 
attempts, it was never observed in mitochondria from S. cerevisiae [61]. 
Those evidence were used by Perocchi et al. [62] to define a “physio-
logical signature” of MCUC, being high capacity, located to the IMM, 
powered by the mitochondrial membrane potential, and inhibited by 
ruthenium red. The authors hypothesized that human genes encoding 
for MCUC should exhibit a “phylogenetic signature” matching the 
physiological profile across taxa, namely present in vertebrates and 
kinetoplastids, but absent in yeast. By integrating clues from compara-
tive physiology, evolutionary genomics and MitoCarta, they predicted 
18 human proteins fulfilling the above criteria. RNAi against these top 
MCUC candidates identified a previously uncharacterized gene, 
CBARA1, as the first uniporter component, which was renamed Mito-
chondrial Calcium Uptake 1 (MICU1). Silencing MICU1 abolished 
mitochondrial Ca2+ uptake in human cells and mouse liver and 
conserved calcium-binding, EF-hands domains were found to be essen-
tial for its activity, suggesting that the protein could act as a Ca2+

sensing regulatory subunit of MCUC and opening the way to the full 

Fig. 4. Integrative, multiomics approaches to identify and deorphanize human mitochondrial proteins. Examples of in silico and experimental approaches 
developed to (A) identify de novo mitochondrial proteins involved in Ca2+ uptake [62], (B) chart intra and inter-organelle functional associations [74], (C) 
reconstruct signaling cascades regulating mitonuclear stress response pathways [79]. 
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molecular characterization of the uniporter channel. 

3. From proteins to functions: deorphanizing the unknown 

Approximately 20–40 % of predicted human mitochondrial proteins 
still remain functionally uncharacterized to date, namely, no informa-
tion can be found in PubMed or in other manually curated data sources 
and no associations are available from experimental evidence in the 
gene ontology (GO) database [14,19,63]. Moreover, a number of true 
mitochondrial proteins may have been overlooked, due to the complex 
and dynamic nature of the mitochondrial proteome, with more than 200 
dually-localized components and roughly one-third of the proteome 
distributed in a tissue-specific manner. To fill this gap, several compu-
tational and experimental approaches have been developed to predict 
protein-to-protein and gene-to-phenotype associations based on the 
reconstruction of biological networks, whereby functional inference can 
be obtained for known and uncharacterized proteins that are closely 
linked. 

3.1. In silico strategies 

Clues about the function of an orphan protein are often inferred 
based on the “guilt-by-association” principle: the underlying assumption 
is that a target protein is likely to play a functional role in the same 
biological process of its neighbors. Experimental, computational, or 
combined experimental/computational analyses have been employed to 
map functional associations, including direct physical links between 
proteins in a complex, interactions between enzymes in a pathway, or 
regulatory networks between transcription factors and their target 
genes. One of the most comprehensive and unbiased source of functional 
associations is the STRING (Search Tool for the Retrieval of Interacting 
Genes/Proteins) database [64], which currently includes over 2000 
million interactions between 24.6 million proteins across more than 
5000 organisms. STRING enables predicting PPI through machine 
learning-based integration of complementary evidence types, such as 
correlated gene expression profiles (co-expression) across a large set of 
samples and conditions, shared patterns of presence and absence of 
homologs in different species (co-evolution), co-occurrence in auto-
mated text mining analyses, physical interactions in large-scale high 
throughput affinity purification screens, and previous knowledge in 
manually curated databases. Functional links are further inferred 
through homology transfer across thousands of organisms. To this goal, 
S. cerevisiae has served as the model organism of choice for global 
mapping of protein networks, largely because of the abundance and 
quality of diverse high-throughput PPI datasets. Yeast two-hybrid 
screens, tandem affinity purifications, and protein-fragment comple-
mentation assays resulted in an en masse detection of binary PPI and 
stable physical protein complexes for over 70 % of the yeast proteome 
and were used to generate the first global model of a mitochondrial 
protein network [52]. Here, the Steinmetz group employed STRING to 
place roughly 90 % of yeast mitochondrial proteins in a functional 
context through the systematic retrieval of over 9000 linkages. Hierar-
chical average-linkage clustering based on confidence scoring of 
network associations yielded 164 functionally distinct modules, con-
taining known and orphans mitochondrial proteins, as well as 
extra-mitochondrial proteins not physically localized to the organelle 
but still critical to its function. This module map was shown to be more 
accurate and comprehensive than publically available annotation of 
protein complexes and metabolic pathways based on a single species and 
data type. Importantly, it provided the first clues to the function of over 
150 uncharacterized yeast mitochondrial components and allowed 
surveying properties of the mitochondrial system that would not be 
easily deduced from its parts list. As an example, by overlaying onto the 
module map genome-wide expression profiles and mutant growth phe-
notypes under fermentable and non-fermentable conditions, the authors 
could spotlight several module-to-phenotype correlations leading to the 

identification of novel functional groups involved in oxidative meta-
bolism and cell viability. Importantly, most yeast mitochondrial mod-
ules were highly conserved to humans and five were enriched in disease 
genes, allowing investigating disease susceptibility of mitochondrial 
functional processes and prioritizing candidate genes for putative 
mitochondrial disorders [17]. A decade later, Yim et al. [65] extended 
similar integrative strategies to generate global mitochondrial inter-
actomes for different species based on manual curation of annotated 
functional associations and PPI. As a result, the authors developed 
MitoXplorer, a gene expression and mutant data mining platform that 
users can query to analyze how mitochondrial networks remodel in 
response to various experimental and disease conditions. Likely owing 
to the mosaic evolutionary origin of the mitochondrial proteome, pre-
diction of functional associations based on comparative genomics has 
proved instrumental for the de novo genetic underpinning of several 
mitochondrial processes, the deorphanization of mitochondrial proteins, 
as well as the identification of novel components of mitochondrial 
protein complexes and pathways. The study from Gabaldon et al. [66] 
on the evolutionary history of the NADH:ubiquinone oxidoreductase 
(Complex I) represented one of the first examples of how evolutionary 
genomics and phylogenetic analyses could be exploited to predict pre-
viously unidentified subunits of mitochondrial protein complexes. By 
charting the distribution of mammalian Complex I subunit orthologs 
across 17 eukaryotic species from various phylogenetic groups, 
Gabaldón et al. identified NDUFAF2 as a previously unknown compo-
nent of Complex I and disease gene in human progressive encephalop-
athy. Three years later, the Mootha group applied a similar approach to 
profile the phylogenetic distribution of all MitoCarta protein orthologs 
across 42 sequenced eukaryotes, leading to the prediction of novel 
candidates for Complex I assembly and inherited Complex I deficiency in 
humans [6]. In 2011, two studies provided a prime example of the 
power of combining comparative genomics with in silico predictions of 
functional associations to deorphanize mitochondrial proteins, leading 
to the discovery of the pore-forming, and Ca2+-conducting subunit of 
MCUC [67,68]. Building up on the discovery of MICU1, Baughman et al. 
[67] searched for MICU1 co-evolving and co-expressed genes across 500 
organisms and 81 mouse cell types and tissues, respectively, whose 
proteins would be equally abundant in mitochondria of 14 mouse tis-
sues. Independently, De Stefani et al. [68] looked for MitoCarta proteins 
with at least two predicted transmembrane domains, ubiquitously 
expressed in mammalia tissues, conserved in kinetoplastids and lacking 
orthologs in S. cerevisiae. Both studies spotlighted a poorly characterized 
protein, CCDC109A, which also co-immunoprecipitated with MICU1 in 
human cells. Silencing of CCDC109A abrogated mitochondrial Ca2+

uptake, whereas its overexpression enhanced ruthenium red-sensitive 
Ca2+ influx, reduced cytosolic Ca2+ transients, and sensitized cells to 
apoptotic challenges. In addition, highly conserved residues within the 
putative pore-forming domain linking the two transmembrane regions 
were found necessary for Ca2+ permeation and for conferring sensitivity 
to ruthenium red. Finally, its expression in planar lipid bilayers was 
sufficient to reconstitute ion channel activity in solutions containing 
only Ca2+ as the permeant ion, confirming the role of CCDC109A as the 
MCUC pore-forming component and thereof renamed MCU (Mitochon-
drial Calcium Uniporter). 

Currently, several computational tools are available for the system-
atic prediction of protein function based on phylogenetic profiling, 
likely owing to substantial progress in sequencing and annotation of 
whole genomes. One such a discovery tool, named ProtPhylo (www.prot 
phylo.org), was generated by Cheng et al. [69] to identify 
protein-to-protein and phenotype-to-protein functional associations. 
Here, phylogenetic profiles were computed for over 9.7 million 
non-redundant protein sequences across 2048 organisms in all three 
domains of life (1678 bacteria, 115 archaea and 255 eukaryotes) by 
using multiple orthology inference algorithms. ProtPhylo then rank all 
proteins within the organism of interest based on the similarity of their 
phylogenetic profiles to the query protein and allows user to prioritize 
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the number of testable hypotheses based on complementary evidence of 
PPI, subcellular localization, protein domains and membrane spanning 
regions. Considering the ever-increasing amount of large-scale, unbiased 
datasets surveying the mitochondrial system, databases such as STRING 
and novel user-friendly computational platforms hold the promise to 
increase both accuracy and coverage of protein networks for the auto-
mated prediction of mitochondrial protein function. 

3.2. Experimental strategies 

Being able to confidently assign proteins to annotated complexes and 
biological processes can provide clues to their function. However, only 
27 % and 56 % of the human mitochondrial proteome can be func-
tionally linked in either macromolecular assemblies or molecular 
pathways based on automated data retrieval and manual curation of 
literature by CORUM 3.0 (Comprehensive Resource of Mammalian 
Protein Complexes) [70] and KEGG (Kyoto Encyclopedia of Genes and 
Genomes) [71] databases, respectively. Therefore, it is of outmost 
importance to develop experimental strategies to generate 
high-coverage functional networks of predicted mitochondrial parts 
lists, e.g. by screening for physical PPI and genetic interactions. Most of 
the experimental analyses performed so far have defined stable and 
transient PPI between mitochondrial proteins of interest using purified 
mitochondrial samples as starting material for either blue native poly-
acrylamide gel electrophoresis (BN-PAGE) or affinity purification in 
combination with western blotting and MS. Only a few studies, though, 
have applied those techniques for a systematic and unbiased recon-
struction of mitochondrial interaction networks (Fig. 4B). One such 
example is the complexome profiling performed by Heide et al. [72] on 
intact rat heart mitochondria. BN-PAGE was employed as a mild, 
nondestructive method to separate native, soluble and 
membrane-bound complexes up to 30 MDa from enriched heart mito-
chondrial fractions based on charge, mass, and structure. A total of 464 
proteins were identified by LC–MS/MS analysis of 60 even gel slices, of 
which 85 % were previously known to be mitochondria-localized. Based 
on the relative abundance and specific migration profile in different gel 
slices, all identified proteins were hierarchically clustered to define the 
molecular composition of several protein assemblies, including very 
large and abundant multiprotein complexes and assembly in-
termediates, such as those of the oxidative phosphorylation (OXPHOS) 
system. As a result, an orphan protein, TMEM126B, was identified as a 
novel subunit of the mitochondrial Complex I assembly factor complex, 
providing a proof-of-principle to the direct application of complexome 
profiling for protein function prediction. Interestingly, several proteins 
were detected in a number of different slices, likely representing tran-
sient intermediates of macromolecular complexes and reflecting the 
ability of such an approach to shed light not only on the protein 
composition of the final stable complex but also onto the dynamics of its 
assembly. 

A further step towards a comprehensive and accurate characteriza-
tion of mitochondrial protein complexes was made possible by 
combining cross-linking mass spectrometry (XL-MS) with organelle- 
wide analyses. In XL-MS, small organic molecules containing two reac-
tive groups at either end of a spacer arm (cross-linkers) are employed to 
chemically join functional groups of specific amino acids by a covalent 
bond. After cleavage by tryptic digestion and MS analysis, residue-to- 
residue cross-links are identified by peptide sequencing. Therefore, be-
sides protein complex composition, XL-MS also enables locating native 
inter and intra-molecular contacts between proteins. Moreover, owing 
to the constraints introduced by the length of the spacer arm, architec-
tures and conformations of protein complexes can also be probed, a task 
that is otherwise experimentally challenging given that roughly a third 
of the mitochondrial proteome is assembled into macromolecular 
membrane complexes. Recently, Liu et al. [73] applied XL-MS to intact 
mouse heart mitochondria, mapping over 3,000 unique connections 
between 359 mitochondrial proteins in MitoCarta v2.0. Notably, 60 % of 

the detected cross-links were formed between distinct proteins, reflect-
ing the high protein density environment of intact mitochondria. 
Overall, the interactome showed high sensitivity, covering 75 % of an-
notated mitochondrial protein complexes in CORUM, and provided in 
situ evidence for the assembly of OXPHOS components in super com-
plexes. Moreover, contrary to the analysis of mitochondrial complex-
osomes by BN-PAGE, XL-MS of intact mitochondria allowed to probe the 
spatial distribution of protein interactions in all sub-mitochondrial 
compartments, thanks to the use of membrane permeable cross-links. 
However, organelle-wide XL-MS approaches still suffers from limited 
depth, as the captured cross-links mostly involve highly abundant pro-
teins. Other conceptually similar techniques based on the distance 
proximity of proteins in situ have recently provided deep coverage of 
mitochondrial interactomes within the cellular context. As an example, 
Antonicka et al. [74] used the proximity-dependent biotinylation assay, 
BioID [75], to map potential interactors of 100 mitochondrial protein 
baits in HEK-293 cells. Baits, including both known and poorly char-
acterized mitochondrial components and spanning all mitochondrial 
sub-compartments, were fused to a mutant Escherichia coli biotin ligase 
BirAR118G (known as BioID), which biotinylates neighboring proteins 
(preys) within an estimated radius of 10 nm. MS-based detection of 
biotinylated proteins from each bait and of background labeling by 
matrix and IMS-targeted BioIDs was then employed to identify 
high-confidence, specific proximity interactions. As a result, the authors 
defined a mitochondrial network of over 15,000 unique associations 
between 100 baits and 1465 enriched preys. Notably, of those, only 
roughly 50 % were annotated as mitochondria-localized by Mitocarta 
v2.0. Most of the non-mitochondrial preys were proximal to 
OMM-located baits facing the cytosolic environment, consisting of 
proteins annotated as having multiple localizations in the HPA database 
and likely involved in interoganelle contact sites. Next, clustering based 
on correlated patterns of connectivity across all baits predicted several 
distinct modules for the matrix, IMS/IMM and OMM sub-compartments, 
with clear functional annotations based on GO terms. Reassuringly, 
those included known mitochondrial protein complexes such as the 
small and large mitochondrial ribosomes and assembly intermediates of 
the OXPHOS system, as well as proteins involved in mitochondrial 
fusion and fission. Importantly, several proteins of unknown function 
were also included in the modules map, validating the potential of this 
resource for the functional characterization of orphan mitochondrial 
proteins. Furthermore, clustering of non-mitochondrial preys across 
OMM baits showed that distinct subsets of mitochondrial proteins might 
mediate the specific cross-talk of mitochondria with other organelles, 
such as the ER and the peroxisome. Two studies have further explored 
proximity labeling to specifically map ER-mitochondria contact sites in 
HEK-293 T cells using modified, “split” versions of either BioID or its 
derivative TurboID, which requires only 1–10 min of labeling time 
(compared to 16 h for BioID-based labeling). In both systems, named 
Contact-ID [76] and Split-TurboID [77], the enzyme is split into two 
inactive fragments, each containing half of the FRB-FKBP dimerization 
system and facing the cytosol from either the ER or the OMM. When 
brought to proximity by a PPI or, as in the following examples, by 
organelle membrane-membrane apposition, and in presence of rapa-
mycin, a functional biotin ligase is reconstituted that upon biotin 
addition catalyzes spatially restricted biotinylation. Altogether, 
Contact-ID and Split-TurboID-based proteomic profiling of 
ER-mitochondria contacts identified roughly one-hundred proteins, 
including annotated components of mitochondrial-associated mem-
branes (MAMs), as well as proteins with known OMM or ER membrane 
localization. The candidate lists were enriched in biological processes 
that are consistent with previously reported regulatory roles of 
ER-mitochondria contacts in Ca2+ signaling, sterol metabolism, and 
mitochondrial fission. Among many novel ER and OMM-localized pro-
teins and ER-mitochondria contact site candidates, several were also 
experimentally validated. Unexpectedly, although both Contact-ID and 
Split-TurboID-derived datasets showed high specificity when compared 
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to lists of known MAMs and based on GO term enrichment analysis, they 
only shared 15 % of the proteins. This modest overlap is likely arising 
from differences in construct design and labeling time, resulting in the 
biotinylation of proteins at closer or wider distance between the two 
organelles. Nevertheless, both approaches validated proximity labelling 
as a valuable tool for profiling not only functional relationships within 
an organelle but also with other cellular structures. 

Besides PPI profiling, genome-wide loss-of-function screens upon 
genetic as well as environmental perturbations have also proved effec-
tive in characterizing the biological role of mitochondrial proteins 
(Fig. 4C). As an example, given the dual genetic origin of the mito-
chondrial proteome, understanding the molecular basis of mitonuclear 
signaling pathways regulating mitochondrial processes (e.g., OXPHOS 
assembly) and how those remodel to buffer environmental changes re-
mains an outstanding question of great translation value. To define an 
integrated mitochondrial stress footprint, Quirós et al. [78] applied a 
multiomics approach in HeLa cells challenged by four different stressors, 
doxycycline, actinonin, FCCP, and MitoBlock-6, which impair mito-
chondrial translation, OXPHOS proteins stability, mitochondrial mem-
brane potential, and protein import, respectively. Notably, they found 
that the mitochondrial unfolded protein response, one of the 
best-characterized retrograde stress responses in invertebrates, was not 
activated under the conditions used. Instead, all stressors induced a 
pronounced decrease of mitochondrial ribosomal proteins, OXPHOS 
components, and epigenetic regulators, that was substantially depen-
dent from changes at proteome rather than the transcriptome level. At 
the same time, the expression of genes involved in the biosynthesis of 
amino acid, in particular of serine, and carbon metabolism was 
up-regulated, suggesting the activation of alternative cataplerotic 
pathways to convert and replenish tricarboxylic acid cycle intermediates 
for the synthesis of glycolytic intermediates. These findings were 
consistent with stress-induced changes at the metabolome level, and 
altogether highlighted a compensatory response aimed at rewiring 
cellular metabolism and preventing oxidative damage through the 
synthesis of key metabolites and lipids. De novo motif analysis in the 
common upregulated gene sets showed that half of the co-regulated 
genes were targets of the transcription factor ATF4, a key component 
of the cellular integrated stress response (ISR), whose transcript and 
protein levels were also found to be upregulated upon stress induction. 
Based on these results, ATF4 was proposed to act as the main molecular 
effector of the mammalian mitonuclear response and mitochondrial 
stress signature, by inducing the expression of cytoprotective genes 
while attenuating global translation. However, the precise mitochon-
drial signaling pathway relaying mitochondrial stress and malfunction 
to the nucleus remained unaddressed. Further insights were gained by 
performing a genome-wide random mutagenesis screen on haploid 
HAP1 cells that expressed the C/EBP homologous protein CHOP as a 
fusion protein with mNeon and were challenged with three distinct 
mitochondrial stressors, tunicamycin, 2-cyano-3,12-dioxo-oleana-1,9 
(11)-dien-28-oic acid (CDDO), or Carbonyl cyanide m-chlorophenyl 
hydrazone (CCCP) [79]. CHOP is a transcription factor of the ISR, whose 
activation by ATF4 acts as a cellular checkpoint through the initiation of 
apoptotic and non-apoptotic cell death programs. By sequencing muta-
tions in cell populations with either an enhanced or diminished CHOP 
expression in all conditions, Fessler et al. [79] identified a poorly 
characterized mitochondrial protein, DELE1, as a global positive regu-
lator of CHOP induction, and thus of ISR. Follow-up experiments clearly 
validated DELE1 as a hit and demonstrated the existence of a proteolytic 
signaling axis, whereby mitochondrial stress would induce proteolysis of 
DELE1 by OMA1 with the consequent release of the processed form of 
DELE1 to the cytosol and interaction with components of the ISR 
pathway. 

4. Perspectives 

The identification and functional characterization of the 

mitochondrial system represents an extraordinarily important milestone 
for mitochondrial biology and human diseases. Although major progress 
has been made in compiling accurate and exhaustive lists of 
mitochondria-localized proteins, still after a century from the discovery 
of mitochondria, 20–40 % of the system remains functionally orphan, 
even in well-studied model organisms such as budding yeast. Further-
more, mitochondrial protein networks mediating signal transduction in 
and out of the organelle are almost completely uncharted. This gap 
greatly hampers the understanding, diagnosis and treatment of 
mitochondria-related pathologies, given that mitochondrial dysfunction 
has been linked to an extremely wide spectrum of disease phenotypes, 
including the decreased activity of metabolic enzymes, impaired respi-
ratory capacity, and increased oxidative damage. Corroborating this 
notion over 300 genes encoding for mitochondrial proteins have already 
been implicated in a wide range of human diseases (as in the Online 
Mendelian Inheritance in Man, OMIM, database), from metabolic 
syndrome-related disorders (e.g., diabetes and obesity) to neurodegen-
erative diseases (e.g., Parkinson‘s and Alzheimer‘s diseases). How can 
impairment on ubiquitous mitochondria-mediated processes result in 
such diverse disease outcomes? The answer lies in the tissue and cell 
type-specificity of mitochondrial proteomes, networks, and intracellular 
cross-talks. To this goal, all recently developed systems-wide approaches 
to investigate mitochondrial biology - and more yet to come – hold the 
promise to aid in the identification of potential candidates for 
mitochondrial-related diseases, the understanding of disease patho-
mechanisms and possible new pharmacological targets. 

CRediT authorship contribution statement 

Hilda Carolina Delgado de la Herran: Conceptualization, Writing - 
original draft, Writing - review & editing, Visualization. Yiming Cheng: 
Formal analysis. Fabiana Perocchi: Conceptualization, Writing - review 
& editing, Supervision, Project administration, Funding acquisition. 

Declaration of Competing Interest 

The authors report no declarations of interest. 

Acknowledgments 

FP, HCD, and YC acknowledge support from the Munich Center for 
Systems Neurology (SyNergy EXC 2145 /ID 390857198) and the ExNet- 
0041-Phase2-3 (“SyNergy-HMGU”) through the Initiative and Network 
Fund of the Helmholtz Association. The authors would like to thank Dr. 
Arduino for help on figure design. 

References 

[1] A.A. Pittis, T. Gabaldón, Late acquisition of mitochondria by a host with chimaeric 
prokaryotic ancestry, Nature 531 (2016) 101–104, https://doi.org/10.1038/ 
nature16941. 
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S. Reichert, I. Koch, I. Wittig, U. Brandt, Complexome profiling identifies 
TMEM126B as a component of the mitochondrial complex I assembly complex, Cell 
Metab. 16 (2012) 538–549, https://doi.org/10.1016/j.cmet.2012.08.009. 
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