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Abstract
The worldwide prevalence of Parkinson’s disease (PD) has been constantly increasing in the last decades. With rising life 
expectancy, a longer disease duration in PD patients is observed, further increasing the need and socioeconomic importance 
of adequate PD treatment. Today, PD is exclusively treated symptomatically, mainly by dopaminergic stimulation, while 
efforts to modify disease progression could not yet be translated to the clinics. New formulations of approved drugs and 
treatment options of motor fluctuations in advanced stages accompanied by telehealth monitoring have improved PD patients 
care. In addition, continuous improvement in the understanding of PD disease mechanisms resulted in the identification of 
new pharmacological targets. Applying novel trial designs, targeting of pre-symptomatic disease stages, and the acknowl-
edgment of PD heterogeneity raise hopes to overcome past failures in the development of drugs for disease modification. In 
this review, we address these recent developments and venture a glimpse into the future of PD therapy in the years to come.

Keywords  Parkinson’s disease · Disease modification · Symptomatic treatment · Healthcare · Therapy development

Abbreviations
aSyn	� Alpha-synuclein
CSAI	� Continuous subcutaneous apomorphine 

infusion
DBS	� Deep brain stimulation
DMT	� Disease-modifying therapy
EMA	� European Medicines Agency
FDA	� Food and Drug Administration
GBA	� Glucocerebrosidase
GPI	� Globus pallidus internus
LCIG	� Levodopa–carbidopa intestinal gel
LECIG	� Levodopa–entacapone–carbidopa intestinal 

gel
LRRK2	� Leucine-rich repeat kinase 2
MRgFUS	� MR-guided focused ultrasound
PD	� Parkinson’s disease

PRS	� Polygenic risk scores
RCTs	� Randomized controlled trials
SSRI	� Selective serotonin reuptake inhibitor
SNRI	� Serotonin norepinephrine reuptake inhibitor
TCA​	� Tricyclic antidepressant
STN	� Subthalamic nucleus
VIM	� Nucleus ventralis intermedius thalami

Introduction

A change in the therapeutic landscape has been achieved 
for many chronic or previously incurable diseases over the 
last decade. Antisense oligonucleotide or gene replacement 
therapy for patients with spinal muscular atrophy (Weiß 
et al. 2022) and the recent approval of aducanumab and 
lecanemab for patients with Alzheimer’s disease (Rabino-
vici 2021; van Dyck et al. 2023) are only selected exam-
ples for recent breakthrough developments. In the case of 
Parkinson’s disease (PD), many disease-modifying thera-
pies (DMTs) have advanced from preclinical into clinical 
testing, but none of these approaches has yet been able to 
demonstrate a disease-modifying effect in clinical trials. 
However, new formulations of established dopaminergic 
drugs, device-aided applications, and new drug targets 
for the treatment of motor fluctuations in advanced stages 
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have further improved the care of patients with PD. With 
nearly 150 registered clinical trials for disease-modifying 
and symptomatic therapies in the ClinicalTrials.gov data-
base in 2022 (McFarthing et al. 2022), recent advances in 
biomarker development (Espay et al. 2017b), and increas-
ing implementation of digital tools in the healthcare of PD 
patients (Hassan et al. 2020), the field of future PD therapies 
is as vibrant as ever.

In this narrative review, we cover advances in the treat-
ment of motor symptoms in early and later stages of the 
disease and non-motor symptoms categorized by symptom 
groups, then discuss recent approaches of disease modifi-
cation. Thereafter, we address the implementation of bio-
marker-based or genetic stratification of the PD population 
and sensor-based clinical monitoring into future treatment 
routine for PD patients. We emphasize the role of biomark-
ers in premotor diagnosis and target engagement during 
clinical trials investigating disease modification. We cover 
the existing evidence through author knowledge and selec-
tive PubMed searches (last search performed January 10, 
2023) using the search terms: “biomarker”, “disease modi-
fication”, “early diagnosis”, “treatment monitoring”, “motor 
symptoms”, “non-motor symptoms”, “neurodegeneration”, 
“Parkinson’s disease”, “precision medicine”, “stratification”, 
“symptomatic treatment”, “synucleinopathies”, “telehealth”, 
“wearables”.

Symptomatic therapy

Early PD

In current practice, initial PD-specific drug treatment 
focuses on motor symptoms, mostly by oral administration. 
Available options include levodopa and dopa decarboxy-
lase inhibitors, non-ergot dopamine agonists, inhibitors of 
the monoamine oxidase B or, less frequently, amantadine 
or anticholinergics. Treatment is then tailored to the sever-
ity of the symptoms, age, and pre-existing conditions of 
the patient (Fox et al. 2018). Response to initial therapy is 
usually satisfactory; nevertheless, further efforts are being 
made to optimize treatment in early PD stages. Tavapadon, a 
novel D1/D5 dopamine receptor partial agonist, is currently 
investigated in several phase 3 studies (NCT04201093, 
NCT04223193, NCT04542499, NCT04760769) to evaluate 
effects on motor functions in early and later stage patients 
with and without motor fluctuations (Table 1). Two earlier 
phase 2 studies for this compound had been terminated by 
the sponsor due to insufficient efficacy in advanced stages of 
PD, but the results still indicated a significant improvement 
in motor functions in early PD, while being generally well 
tolerated by patients (Riesenberg et al. 2020). Opicapone, an 
inhibitor of catechol-O-methyltransferase, already approved 

by EMA and FDA, is currently investigated in a phase 3 
study to further assess possible benefits for patients with 
early PD without motor fluctuations (NCT04978597). A 
low-dose combination of two approved compounds, prami-
pexole and rasagiline (P2B001), is evaluated in patients 
with early PD. A phase 2 trial indicated a good clinical effi-
cacy without an increased rate of adverse events (Olanow 
et al. 2017). The results of a phase 3 study are pending 
(NCT03329508).

Advanced PD

Advanced-stage PD is characterized by insufficient motor 
control including motor fluctuations, such as dyskinesia 
and OFF periods, despite optimized oral dopaminergic 
medication (Soileau et al. 2022). In everyday clinical rou-
tine, the 1-2-5 criteria can be used for the identification of 
advanced PD patients, referring to the presence of at least 
1 h of troublesome dyskinesia, 2 h of OFF periods, and the 
intake of at least 5 doses of oral levodopa (Antonini et al. 
2018b). Mechanistically, variable dopamine plasma levels 
due to pulsatile oral medication, erratic gastric emptying, 
and decreasing neuronal buffer capacity can result in motor 
fluctuations (Antonini et al. 2018a; Dijk et al. 2020). There-
fore, symptomatic treatment in the advanced stage needs 
regular adaptation and new symptomatic options are needed 
to further improve control of motor fluctuations and increas-
ingly debilitating non-motor symptoms.

As OFF states can occur unheralded and independ-
ent from medication intake, on-demand treatment of OFF 
states is a growing field including the application of new 
formulations of well-known drugs. Orally inhaled levodopa 
(CVT-301) recently received marketing authorization by 
FDA and by EMA as a “rescue agent” for the treatment of 
patients during recurring OFF states. In addition, a novel 
sublingual film formulation of apomorphine was recently 
approved by the FDA for on-demand treatment in OFF 
state. Clinical studies reported an overall reduction of OFF 
state and a higher likelihood of achieving ON state for these 
two formulations, while being generally well tolerated, 
with cough, upper respiratory infections, and dyskinesia as 
main side effects of CVT-301 (LeWitt et al. 2019; Farb-
man et al. 2020) and oropharyngeal side effects, transient 
nausea, somnolence and dizziness in sublingual apomor-
phine (Olanow et al. 2020). Oral levodopa in combina-
tion with a decarboxylase inhibitor is mainly prescribed in 
immediate-release (IR) and controlled-release (CR) formula-
tions. Currently, novel extended-release formulations (ER), 
designed to dissolve at different rates, are investigated. A 
recently completed phase 3 study with IPX-203 showed a 
significant, albeit small, reduction of OFF state in treated 
patients (Hauser et al. 2022). A similar oral formulation, 
IPX-066, had already received approval by FDA in 2015 
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after proving to reduce duration of OFF state and the occur-
rence of dyskinesia in PD patients with motor fluctuations, 
while being generally well tolerated (Hauser et al. 2013). 
However, marketing authorization for the EU was withdrawn 
at the request of the marketing authorization holder in 2019. 
WD-1603, another oral ER formulation of levodopa/carbi-
dopa, is currently under investigation in a phase 2 study 
(NCT05036473). Already marketed in Japan, zonisamide 
has been discussed as suitable add-on therapy especially 
for patients in advances stages. Zonisamide is a reversible 
MAO-B inhibitor and T-type calcium-channel antagonist. 
In RCTs conducted in the Japanese population, it reduced 
OFF-time without increasing troublesome dyskinesia and a 
positive effect on tremor has been postulated (Li et al. 2020). 
Currently, there are no ongoing clinical trials to evaluate 
efficacy in other populations.

An antagonist of the dopamine D3 receptor, mesdopetam, 
is currently being evaluated for its effects on dyskinesia 
in a phase 2b study (NCT04435431). Previous studies in 
rodent models and a phase 1 study indicated a possible anti-
dyskinetic and antipsychotic effect without deterioration 
of motor functions due to its physicochemical properties 
similar to a dopamine receptor agonist (Waters et al. 2020; 
Sjöberg et al. 2021). Targeting serotonergic terminals has 
been proposed as promising target for the treatment of dys-
kinesia (Politis et al. 2014; Di Luca et al. 2022), therefore 
buspirone/zolmitriptan (JM-010), agonists of 5-HT1A and 
5-HT1B/D, respectively (NCT04377945, NCT03956979), 
and NLX-112, a 5-HT1A receptor agonist (NCT05148884), 
are currently investigated. Other oral approaches include 
AV-101/L-4-chlorokynurenine with antagonistic effects 
on the NMDA receptor (NCT04147949), CPL500036, a 
PDE10A inhibitor (NCT05297201), and dipraglurant, a 
negative allosteric modulator of glutamate receptor type 5 
(mGluR5; NCT04857359).

Advanced PD leads to an increased impairment of motor 
and cognitive functions associated with a greater incidence 
of falls, which may result in injuries, reduced mobility, qual-
ity of life, and life expectancy (Fasano et al. 2017). A recent 
Cochrane review including 156 randomized controlled tri-
als (RCTs) with 7939 participants showed a small to large 
effect of different forms of physical exercise and interven-
tions on motor function and quality of life in PD patients, 
i.e., aqua-based, endurance, gait/balance, functional, and 
multi-domain training (Ernst et al. 2023). As of January 6th, 
2023, 95 active or recruiting trials are listed in the clinical-
trials.gov registry to assess the effect of different forms of 
physical activity or support by assistance devices. Currently 
investigated pharmacologic approaches for the prevention 
of falls in PD patients include transdermal rivastigmine, 
a cholinergic drug (phase 3: NCT04226248), oral TAK-
071, an allosteric modulator of the muscarinic M1 recep-
tor (phase 2: NCT04334317), and pirepemat, modulating 

cortical catecholaminergic levels (phase 2: NCT05258071; 
Rein-Hedin et al. 2021).

For oral treatment of moderate to severe tremor resistant 
to usual PD medication, suvecaltamide, a T-type calcium-
channel modulator, is currently evaluated in a recently initi-
ated phase 2 study (NCT05642442).

Three well-established device-aided therapies have been 
used in advanced PD since the 1990s and 2000s: deep brain 
stimulation (DBS), Levodopa–carbidopa intestinal gel 
(LCIG), and continuous subcutaneous apomorphine infu-
sion (CSAI). The latter two avoid fluctuating plasma drug 
levels by continuously and directly delivering dopaminer-
gic medication into the small intestine (LCIG) or subcu-
taneously (CSAI) (Dijk et al. 2020), while DBS directly 
influences locomotor circuits of the basal ganglia (Okun 
2012). Randomized trials have proven safety and signifi-
cant efficacy on motor fluctuations of these device-aided 
therapies (Deuschl et al. 2006; Katzenschlager et al. 2018; 
Olanow et al. 2014; Schuepbach et al. 2013; Williams et al. 
2010). Recently, jejunal application of levodopa/carbidopa 
and entacapone (LECIG) in a 4:1:4 ratio via a portable 
pump could achieve similar levodopa plasma levels with an 
intestinal levodopa dosage reduction of 35% compared to 
LCIG (Senek et al. 2020, 2017). An ongoing observational 
study (NCT05043103) will provide further long-term out-
comes of LECIG in the next years. A main drawback of 
approved device-aided therapies lies in their invasiveness. 
In an explorative setting (NCT04778176), oral levodopa/
carbidopa delivered continuously via a tooth-attached pump 
system (DopaFuse) reduced fluctuations of plasma levodopa 
levels compared to standard levodopa/carbidopa, improved 
ON-time without severe dyskinesia and OFF-time, while 
being well tolerated (SynAgile Corporation 2022). In addi-
tion, two new subcutaneous application approaches avoid 
invasive surgery and are potentially reversible (Rosebraugh 
et  al. 2021a). A novel levodopa/carbidopa formulation 
(ND0612) with optimized aqueous solubility and stability 
can be delivered via a portable pump system (LeWitt et al. 
2022; Olanow et al. 2021). In a 8:1 levodopa/carbidopa 
ratio, several phase 1 and 2 trials proved stable, dosage-
proportional and thereby steerable levodopa plasma levels 
(LeWitt et al. 2022; Giladi et al. 2021), resulting in signifi-
cant decreases in OFF-time and ON-time with troublesome 
dyskinesia, while increasing ON-time without troublesome 
dyskinesia (NCT02577523; Olanow et al. 2021). Due to 
the relatively large infusion volume, infusion site reactions 
(mostly mild and reversible nodules, erythema, hematoma, 
infection in up to 95% of all patients) are the most common 
side effects (Olanow et al. 2021; Giladi et al. 2021), resulting 
in a relevant dropout rate in the 1-year interim analysis of 
the phase 2 open-label study (NCT02726386; Poewe et al. 
2021). A multicenter, double-dummy-controlled phase 3 
trial of ND0612 (NCT04006210) is ongoing. In parallel, 
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subcutaneous foslevodopa/foscarbidopa (phosphorylated 
levodopa/carbidopa prodrugs, ABBV-951) has been evalu-
ated in a multicenter phase 3 trial (NCT04380142; Soileau 
et al. 2022) and showed significant improvement of motor 
fluctuations in advanced PD: the mean reduction in OFF-
time (1.79 h) and the mean increase in ON-time without 
troublesome dyskinesia (1.75 h), each compared to oral 
levodopa/carbidopa alone, were equivalent to the clinical 
benefits documented for LCIG (respective values 1.91 h 
and 1.86 h; Olanow et al. 2014). Foslevodopa/foscarbidopa 
attained high chemical stability and > tenfold aqueous solu-
bility compared to levodopa/carbidopa, thereby avoiding 
large infusion volumes and enabling high plasma levels of 
levodopa/carbidopa after subcutaneous application (Soi-
leau et al. 2022; Rosebraugh et al. 2021a, 2021b). Similar 
to ND0612, mostly mild infusion site reactions were the 
predominant side effect. Additional phase 3 trials (e.g., 
NCT04750226, NCT03781167) will provide more safety 
and efficacy data of foslevodopa/foscarbidopa.

A promising novel approach for advanced and/or tremor-
dominant PD patients is MR-guided focused ultrasound 
(MRgFUS). MRgFUS combines focused high-intensity 
ultrasound, administered via multiple stereotactic transduc-
ers on the skull, with MR thermography and allows non-
invasive thermocoagulative target lesioning with submillim-
eter precision and without classical risks of open surgery 
(Moosa et al. 2019; Martínez-Fernández et al. 2021; Xu et al. 
2021). Unilateral thalamotomy (Nucleus ventralis interme-
dius thalami; VIM) is the most common MRgFUS target for 
tremor-dominant, medication-refractory PD. A randomized, 
sham-controlled, prospective trial (NCT01772693) showed 
62% tremor reduction on the contralateral hemibody (Bond 
et al. 2017). Since 2017, unilateral VIM-thalamotomy is an 
FDA-approved technique in the United States. The main 
drawback is the insufficient control of ipsilateral tremor 
and other PD cardinal symptoms, mainly bradykinesia and 
rigidity (Martínez-Fernández et al. 2021). Recently, a pilot 
study showed a maintenance of stable levodopa dosage and 
sufficient tremor control by unilateral thalamotomy for at 
least 6 months in early-stage tremor-dominant PD patients, 
thereby potentially enlarging the target group for thalam-
otomy (Golfrè Andreasi et al. 2022). Less evidence exists 
for other targets in MRgFUS. Unilateral MRgFUS of the 
subthalamic nucleus (STN; subthalamotomy) lead to signifi-
cant reduction of PD cardinal symptoms in a randomized, 
sham-controlled, double-blind trial of markedly asymmet-
ric PD patients (NCT03454425) (Martínez-Fernández et al. 
2020) and bilateral subthalamotomy is currently investigated 
in a feasibility study (NCT03964272). Focused ablation of 
the globus pallidus internus (GPI; pallidotomy) reduced 
dyskinesia in a pilot study (NCT02263885, Eisenberg et al. 
2020) and improved motor function while reducing dyski-
nesia in patients with motor fluctuations (NCT03319485; 

Krishna et al. 2023). MRgFUS pallidothalamic tractotomy 
reduces pallidal overinhibition without ablation of the thala-
mus, showed promising results in case series (Gallay et al. 
2019), and is currently investigated in two open-label tri-
als (NCT04728295, NCT04996992). Mostly transient side 
effects of MRgFUS comprise paraesthesia, gait disturbance, 
hemiparesis and—in case of subthalamotomy and pal-
lidotomy—hemichorea, speech and visual deficits (Moosa 
et al. 2019; Martínez-Fernández et al. 2021). Randomized 
controlled trials are needed to provide further evidence for 
clinical outcomes of MRgFUS in PD, including bilateral 
application.

Non‑motor symptoms

Non-motor symptoms can occur in all stages of PD, have 
a negative impact on the quality of life, and are associated 
with poor long-term outcomes (Weintraub et al. 2022). They 
include neuropsychiatric conditions, autonomic dysfunc-
tions, disorders of sleep, and pain. Non-motor symptoms, 
especially neurocognitive symptoms, depression and pain, 
impact quality of life more heavily than motor symptoms 
(Tarolli et al. 2020). Pharmacological therapies of motor 
symptoms sometimes present themselves with beneficial 
effects on non-motor symptoms, therefore sparing adjunctive 
therapies and reducing polypharmacy. However, non-motor 
symptoms show a distinct interdependence (Marinus et al. 
2018) and therapeutic effects on individual symptoms often 
overlap with effects on other symptoms of this spectrum. A 
good example is safinamide. Safinamide, a selective, revers-
ible MAO-B inhibitor that also reduces glutamate release by 
blocking voltage-dependent sodium channels and modulat-
ing calcium channels, was approved in 2015 as add-on ther-
apy to levodopa in advanced PD patients with motor fluctua-
tions. There is evidence to suggest that safinamide also has 
beneficial effects on sleep, fatigue, mood, and pain (Stocchi 
et al. 2022) and it is currently investigated in advanced PD 
patients for its effect on sleep quality (NCT03968744).

Depression and anxiety affect approximately 45% of PD 
patients, sometimes preceding motor symptoms (Lemke 
et al. 2004). Treatment includes non-pharmacologic meas-
ures, i.e., cognitive behavioral therapy, physical exercise, 
and first-line pharmacological use of mainly selective sero-
tonin reuptake inhibitors (SSRI), serotonin norepinephrine 
reuptake inhibitors (SNRI), and tricyclic antidepressants 
(TCA) with mixed evidence of efficacy in previous RCTs 
(Bomasang-Layno et al. 2015; Weintraub et al. 2022). TCAs 
display a disfavored safety profile with special concern for 
PD patients, because orthostatic hypotension, constipa-
tion, confusion, and delirium, particularly in demented 
patients, are known side effects (Starkstein and Brockman 
2017). Non-pharmacological interventions, such as cogni-
tive behavioral therapy and multimodal interventions, e.g., 
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cognitive-based mindfulness therapy, showed promising and 
robust effects (Starkstein and Brockman 2017). Substances 
currently evaluated in clinical trials include a comparison 
of nortriptyline and escitalopram, a TCA and a SSRI (phase 
3: NCT03652870), vortioxetine, a modulator of serotonin 
receptors and transport (phase 4: NCT04301492), psilocy-
bin, a psychoactive alkaloid (phase 2: NCT04932434), and 
intravenous ketamine (phase 2: NCT04944017).

Psychosis affects up to 60% of PD patients at some point 
in the course of the disease (Weintraub et al. 2022). Clozap-
ine and quetiapine (off-label) are currently the main drug 
treatments of PD psychosis due to their low risk of wors-
ening extrapyramidal symptoms (Seppi et al. 2019). Still, 
medication with atypical antipsychotics may lead to an 
increased mortality and severe adverse effects in PD patients 
(Ballard et al. 2015). The oral 5-HT2c receptor inverse ago-
nist/antagonist, pimavanserin, received marketing authoriza-
tion by the FDA in 2016. Pimavanserin intake resulted in a 
reduction of psychosis symptoms and prevention of relapse 
in PD psychosis without worsening of motor or cognitive 
functions. Notable adverse effects in studies mainly com-
prised headaches, constipation, edema, hallucinations, and 
urinary tract infections. Due to QTc prolongation in some 
patients, additional pharmacovigilance is required (Tariot 
et al. 2021; Abler et al. 2022; Cummings et al. 2014; Isaac-
son et al. 2021). Currently, two phase 4 studies for com-
parison of treatments with quetiapine or pimavanserin are 
recruiting in the US (NCT04373317, NCT05590637). In 
addition, there is evidence of improvement of depressive 
symptoms in a completed phase 2 study (DeKarske et al. 
2020). Its effect on impulse control disorders in PD will 
be assessed in another phase 2 study (NCT03947216). A 
further phase 2 study assesses the effects of ondansetron 
treatment, an antagonist at 5-HT3 receptors, on hallucina-
tions (NCT04167813).

Cognitive impairment is common in PD with mild cog-
nitive impairment being present in more than 10% of PD 
patients and increases over the course of the disease. PD 
with dementia is estimated to develop in more than 70 
percent of patients after 10 years of disease progression 
(Litvan et al. 2011). Current standard for pharmacologic 
symptomatic therapy primarily consists of cholinesterase 
inhibitors. Other pathways currently under assessment in 
clinical trials include modulation of the NMDA recep-
tor (phase 2: NCT04470037, NCT05318937), agonism 
at the beta-2-adrenoreceptor (phase 2: NCT04739423, 
NCT05104463), antagonism at the adenosine A2A recep-
tor (phase 2: NCT05333549) and antioxidative effects 
(NCT05084365). An oral formulation of ANAVEX2-73 
(blarcamesine), modulating the sigma-1-receptor, was 
found to improve motor and cognitive functions in a 
phase 2 trial and its extension study (NCT03774459, 
NCT04575259, Barwicki 2022, 2023). Furthermore, 

infusions of GRF6021, a human plasma protein fraction, 
displayed satisfactory safety profile and improved quality 
of live and cognitive functions (phase 2: NCT03713957, 
Rawner 2021).

Constipation is an early and common non-motor symp-
tom in PD. ENT-1, an oral compound inhibiting forma-
tion of α-synuclein aggregates, reduced constipation and 
additionally improved cognitive and psychosis-related 
outcome measures (Camilleri et  al. 2022). Further cur-
rently assessed substances for constipation include pyri-
dostigmine (NCT05603715) and probiotic interventions 
(NCT05204641), also evaluating the potential impact of 
the latter on disease progression or depression and anxi-
ety (NCT03575195, NCT03968133, NCT04871464, 
NCT05568498, NCT05576818).

After improving insomnia in patients with Alzheimer’s 
disease (Herring et al. 2020), orally administered suvorex-
ant, inducing antagonism at the orexin receptor, is investi-
gated for its effect on insomnia (NCT02729714). In addition, 
continuous subcutaneous application of apomorphine was 
shown to improve sleep disturbances in PD patients with 
motor fluctuations (Cock et al. 2022). Oral GABAB ago-
nist valiloxybate is assessed for possible improvements in 
excessive daytime sleepiness and sleep quality with already 
promising results in healthy subjects (NCT05056194, Xiang 
and Rappaport 2021).

Due to the complex involvement of the dopaminergic sys-
tem in pain,  subcutaneous apomorphine (NCT04879134) 
or oral opicapone (NCT04986982, Chaudhuri et al. 2022) 
will be investigated for the treament of pain in PD patients. 
As previous studies in PD could not establish a significant 
effect, another phase 2 study is evaluating the use of canna-
bis oil preparations in PD patients (NCT03639064).

Disease modification

Although symptomatic treatment has strikingly improved 
over the last decades, DMT bear the hope to modulate dis-
ease progression at its roots and would therefore alter our 
therapeutic landscape significantly. In the following, we 
will give a brief overview on disease-modifying targets cur-
rently investigated and then focus on promising therapies in 
advanced stages of development (Table 2). Some approaches 
for disease modification target specific proteins (LRRK2 or 
GCase) or organelles (mitochondria or lysosomes), while 
others focus on the reduction of aSyn pathology, broadly 
accepted to be relevant in the majority of sporadic PD 
patients, by influencing aSyn-production, turnover, aggrega-
tion, cell-to-cell propagation, or else influence downstream 
mechanisms such as neuronal survival or immunomodula-
tion (Vijiaratnam et al. 2021).
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Alpha‑synuclein

Aggregated aSyn exerts its toxic effects via reducing syn-
aptic vesicles motility, promoting lysosomal and mitochon-
drial dysfunction, and impairing protein transport from the 
endoplasmic reticulum to the Golgi apparatus and autophagy 
(Wong and Krainc 2017). Therefore, DMTs that focus on 
reducing or mitigating the aSyn burden have been of highest 
interest. One of the oldest approaches for disease modifi-
cation by targeting aSyn pathology focuses on specifically 
engaging aggregated aSyn and interfering with cell-to-cell 
transmission by immunotherapy. In 2005, first beneficial 
histopathological effects of immunization with human 
aSyn have been proposed (Masliah et al. 2005) and many 
follow-up studies provided evidence that either immuniza-
tion against aSyn or treatment with aSyn-specific monoclo-
nal antibodies are suitable to reduce phenotypic and neuro-
pathological alterations in in vitro and in vivo PD models 
(Masliah et al. 2011; Shahaduzzaman et al. 2015; Schofield 
et al. 2019; Höllerhage et al. 2022). In the case of active 
immunization (vaccination) two approaches have advanced 
to clinical trials. On the one hand, PD01A and PD03A 
both completed phase 1 in PD patients (NCT01568099; 
NCT02267434) and ACI-7104, an optimized formulation of 
PD01A, was announced to proceed to phase 2 (AC Immune 
SA 2021). On the other hand, UB-312, having completed 
phase 1 (NCT04075318) just recently (Yu et al. 2022), 
proceeded to phase 2 in patients with α-synucleinopathies 
(NCT05634876) and will start patient recruitment in 2023. 
PD01A and UB-312 presumably act in a comparable way by 
providing a C-terminal epitope and generating an immune 
response specific against aSyn oligomers. In terms of pas-
sive immunotherapy, results have been inconclusive so far. 
Cinpanemab (BIIB054), an N-terminal, aggregate-spe-
cific antibody, was not able to provide evidence for clini-
cal efficacy in phase 2 (change of MDS-UPDRS I-III after 
52 weeks; NCT03318523) and its development has been 
terminated (Lang et al. 2022). Prasinezumab (PRX002), 
a C-terminal antibody, missed its primary endpoint in the 
phase 2 trial (change of MDS-UPDRS I-III after 52 weeks; 
NCT03100149), yet showed a trend to slow decline in 
motor function (MDS-UPDRS part III). Therefore, effi-
cacy of prasinezumab is currently investigated in the open-
label extension of this trial and in an additional phase 2b 
study over 18 months (NCT04777331) (Pagano et al. 2021, 
2022). Two additional antibodies, MEDI1341 (also known 
as TAK-341) and Lu AF82422 completed phase 1 trials in 
healthy volunteers and patients with PD (NCT04449484 and 
NCT03611569, respectively), both being C-terminal and 
binding monomeric and aggregated aSyn. Both antibodies 
are currently investigated in phase 2 trials in patients with 
MSA (NCT05526391, NCT05104476, respectively).
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aSyn-selective antisense oligonucleotides have been 
shown to reduce aSyn expression in a mouse model of 
PD and enhanced neurotransmitter release (Alarcón-
Arís et  al. 2018). A phase 1 trial currently investigates 
intrathecal administration of antisense oligonucleotide 
ION464 targeting aSyn-coding mRNA (SNCA mRNA) in 
patients with Multiple System Atrophy (MSA), another 
α-synucleinopathy, and might therefore be potentially rel-
evant for PD patients in the future (NCT04165486).

Very recently, two small molecules with potential to 
inhibit the formation of presumably toxic aSyn oligomers 
have been investigated: anle138b, an orally administered 
diphenyl-pyrazole, potent to modulate aSyn aggregate for-
mation and even to disintegrate aSyn oligomers, has shown 
a favorable safety and tolerability profile in healthy sub-
jects (NCT04208152; Levin et al. 2022) and has completed 
the recruitment process in a phase 1 trial in PD patients 
(NCT04685265), with results expected in 2023. In parallel, 
NPT200-11, also known as UCB0599, binds to the C-ter-
minus of the aSyn monomer and inhibits dimer formation 
leading to reduced cortical aSyn pathology and neuroinflam-
mation while improving motor function in a mouse model 
overexpressing human aSyn (Wrasidlo et al. 2016; Price 
et al. 2018). Oral UCB0599 has provided reasonable safety/
tolerability profile with favorable pharmacokinetics in PD 
patients (NCT04875962; Smit et al. 2022) and has advanced 
to a phase 2 trial (NCT04658186) with an extension study 
planned (NCT05543252).

Neuroinflammation

A pro-inflammatory immune phenotype, characterized by 
innate and adaptive immune cell activation, increase of cir-
culating pro-inflammatory cytokines, blood–brain barrier 
permeability and peripheral immune cell infiltration of the 
central nervous system has been identified as hallmark of 
PD. Immunomodulatory or anti-inflammatory approaches 
may therefore represent promising disease-modifying tar-
gets (Tansey et al. 2022; Caldi Gomes et al. 2022). Some 
anti-inflammatory efforts have failed to provide satisfactory 
efficacy to date (e.g., NSAIDs (Poly et al. 2019), simvastatin 
(Stevens et al. 2022), verdiperstat (Biohaven Pharmaceuti-
cal Holding Company Ltd. 2021)). Modulation of microglia 
activation may represent another promising target. Fasudil, 
a neuroprotective Rho-kinase inhibitor (Tatenhorst et al. 
2016) reducing pro-inflammatory cytokines (Zhao et al. 
2015) and regulating microglia activation (Zhang et al. 
2013), just recently completed recruitment as DMT for 
amyotrophic lateral sclerosis (ALS, NCT03792490) and 
will be evaluated in its oral formulation in patients with 
tauopathies (NCT04734379) and PD patients (EudraCT: 
2021-003879-34; authors note). Furthermore, the disease-
modifying potential of azathioprine, which reduces T and B 

lymphocyte proliferation and therefore attenuates inflamma-
tory response, will be evaluated in more rapidly progressing 
PD patients (EudraCT: 2018-003089-14; Greenland et al. 
2020). Patients will be selected by a previously established 
prognostic model, based on age and clinical evaluation 
(higher UPDRS-ME axial score and lower animal fluency 
score; Velseboer et  al. 2016). GLP-1 receptor agonists, 
approved as treatment for type 2 diabetes, have shown 
promising preclinical results by reducing neuroinflammation 
(Chen et al. 2018) and decreasing aSyn burden (Zhang et al. 
2019). Different GLP-1 receptor agonists are currently eval-
uated with exenatide being the most advanced. Exenatide-
PD3 (NCT04232969) will investigate an extended-release 
formulation of subcutaneous exenatide over 2 years in PD 
patients with differences in MDS-UPDRS part III as primary 
outcome.

Mitochondria

Two relevant genes for the development of early onset PD 
are Parkin and PINK1, and mutations result in recessively 
inherited PD, both leading to compromised neuronal abil-
ity to remove damaged mitochondria (mitophagy), leading 
to increased amount of dysfunctional mitochondria, release 
of mitochondrial damage-associated molecular patterns 
(mitoDAMPs), and neuroinflammation (Borsche et al. 2021). 
While two DMTs targeting mitochondrial dysfunction (ino-
sine and pioglitazone) did not alter disease progression in 
PD in phase 2 and 3 trials (NINDS Exploratory Trials in 
Parkinson Disease (NET-PD) FS-ZONE Investigators 2015; 
Schwarzschild et al. 2021), ursodeoxycholic acid is currently 
investigated in a phase 2 trial (NCT03840005). Notably, bile 
acid tauroursodeoxycholic acid (TUDCA) in combination 
with sodium phenylbutyrate has been evaluated as neuropro-
tective agent in Alzheimer’s disease (Becky Gohsler 2021) 
and was just recently approved by the FDA for patients with 
Amyotrophic lateral sclerosis (Paganoni et al. 2022).

Leucine‑rich repeat kinase 2 (LRRK2)

Another promising target for DMTs is leucine-rich repeat 
kinase 2 (LRRK2). The LRRK2 Gly2019Ser mutation is 
the most common cause of autosomal-dominant PD and 
common variants in LRRK2 modulate the risk to develop 
PD. Inhibitors of LRRK2 promote autophagy (Manzoni 
et al. 2013), reduce neuroinflammation, and are therefore 
promising candidates for preventing neurodegeneration 
(Daher et al. 2015). DNL151 (also known as BIIB122), 
an orally administered LRRK2 inhibitor, has passed phase 
1 and its disease-modifying efficacy is currently evalu-
ated in PD patients with known LRRK2 mutation in up to 
180 weeks (NCT05418673) and sporadic PD patients with-
out LRRK2 mutation in up to 144 weeks (NCT05348785). 
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In parallel, BIIB094, an intrathecally administered LRRK2 
antisense oligonucleotide, is tested for safety and toler-
ability in sporadic PD patients in 18 global study centers 
(NCT03976349).

Glucocerebrosidase (GBA)

In the European population, the most relevant genetic risk 
factor for PD are variants of GBA, the gene encoding for 
glucocerebrosidase. Mutations increase PD risk ranging 
from threefold to 15-fold, depending on the variant (Day 
and Mullin 2021). While homozygous or compound het-
erozygous GBA mutations lead to the lysosomal storage 
disorder Gaucher’s disease, ~ 10% of European PD patients 
harbor GBA variants (Skrahina et al. 2021). Mutated glu-
cocerebrosidase disrupts glycosphingolipid homoeostasis, 
leads to lysosomal dysfunction, and aSyn aggregation (Do 
et al. 2019). A glucocerebrosidase gene therapy (PR001) 
administered into the cisterna magna has been of highest 
interest for treatment of Gaucher’s disease (NCT04411654, 
NCT05487599), but will also be evaluated in PD patients 
with at least one known GBA mutation (NCT04127578). 
Efforts to increase the activity of glucocerebrosidase have 
yielded promising results. Ambroxol, acting as a chaperone 
of the lysosomal enzyme glucocerebrosidase, displayed good 
target engagement, increased glucocerebrosidase and aSyn 
levels in CSF, and lead to improvement in MDS-UPDRS 
part III in an open-label study in patients with and without 
GBA mutation (NCT02941822). Ambroxol has furthermore 
advanced into a multicenter, placebo-controlled phase 3 trial 
in PD patients (NCT05778617).

Regenerative or restorative therapies

At the borderline between symptomatic and disease-modify-
ing therapies, there are two approaches to counteract or even 
reverse neuron loss in the brains of PD patients, but without 
interfering with the underlying pathology. Early works on 
cell replacement therapies by transplantation of dopamin-
ergic neurons derived from fetal mesencephalon into the 
putamen displayed promising results including long-term 
survival of grafted neurons (Olanow et al. 2009) yet double-
blind trials showed only mild clinical effects in younger or 
less severely affected patients (Olanow et al. 2003; Freed 
et al. 2001). This approach, which relies on fetal tissue, 
presents many challenges for translation to large patient 
numbers. Recent approaches try to overcome this by utiliz-
ing dopaminergic progenitor cells derived from embryonic 
stem cell lines as grafts (NCT05635409, NCT04802733). 
Another approach to prevent loss of dopaminergic terminals 
in the striatum and neuron loss in the substantia nigra is 
by administration of neurotrophic factors (e.g., glial cell-
derived neurotrophic factor (GDNF), neurturin), known 

to activate signaling cascades critical for neuron survival 
and neurite outgrowth (Olanow et al. 2015). However, bio-
availability in the brain is a major concern for tropic factors 
requiring an intrathecal or surgical administration. Previous 
controlled clinical trials failed to translate promising pre-
clinical data into clinical settings (Lang et al. 2006; Olanow 
et al. 2015). Currently a GDNF gene transfer approach using 
adeno-associated viral vectors (AAV2-GDNF) is evaluated 
in open-label phase 1 trials in PD patients (NCT04167540, 
NCT01621581) with results indicating an acceptable safety 
profile of the MRI-guided putaminal infusion (Rocco et al. 
2022).

Trial design and biomarkers

Aside from the selection of interventional targets in rep-
resentative preclinical models, adequate trial designs with 
sufficient duration, representative measures of clinical dis-
ease progression, and a minimum of confounding by symp-
tomatic effects will help to overcome past failures in disease-
modifying trials (Vijiaratnam et al. 2021). One promising 
trial design is the delayed-start design: in a RCT investigat-
ing disease-modifying effect of rasagiline (NCT00256204), 
patients with PD were randomly assigned to either rasa-
giline (1 mg or 2 mg) for 72 weeks or placebo treatment 
for 36 weeks, followed by rasagiline (1 mg or 2 mg) for 
36 weeks. This trial setup enables to distinguish between 
symptomatic effects (difference in symptom severity is only 
present before switch of the delayed-start group to verum) 
and disease-modifying effects (differences in symptom 
severity continue to be present to the end of the trial). Bio-
markers for target engagement have been established but are 
not applied in a wider scale. For example, antibodies against 
aSyn were shown to reduce unbound serum aSyn by up to 
97% (Jankovic et al. 2018) and LRRK2 inhibitor BIIB122 
reduced concentrations of LRRK2 and phosphorylation 
(pT73) of Rab10 (Jennings et al. 2023), a direct substrate of 
LRRK2. So far, there are no biomarkers of histopathological 
disease progression available as readout for clinical trials of 
disease modification; however, promising approaches will be 
covered in the biomarker section of this article.

One pill fits all versus precision medicine

In current medical practice, we acknowledge the variability 
of clinical presentations of PD patients and tailor sympto-
matic treatment accordingly. Numerous studies attempting to 
identify PD subtypes have focused on clinical markers, but 
our increasing knowledge of disease heterogeneity suggests 
that molecular heterogeneity should be considered as well 
(Mestre et al. 2021; Espay et al. 2017a). Identification of 
both clinical and molecular subgroups could enable tailored 
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individual therapeutic solutions (Cholerton et  al. 2016; 
Espay et al. 2017b; Titova and Chaudhuri 2017). Molecu-
lar stratification can be performed based on (a) pathogenic 
mutations that affect a particular molecular pathway, (b) 
the identification of clusters of common genetic variants in 
genes associated with specific disease-associated pathways, 
or (c) biomarkers that indicate the level of function/dysfunc-
tion of disease-associated pathways in sporadic PD patients.

Several monogenic causes for PD have been identified 
(Blauwendraat et al. 2020). These findings have for exam-
ple implicated dysfunction of mitophagy and autophagy in 
the pathogenesis of PD (Nguyen et al. 2019; Singleton and 
Hardy 2019). Mendelian PD is thought to potentially serve 
as a model for the identification of biomarkers representing 
underlying pathophysiology and for the development of tar-
geted therapies (Hockey et al. 2015; Mortiboys et al. 2013; 
Peterschmitt et al. 2022). Efforts like the Rostock Interna-
tional PD (ROPAD) and the LRRK2/Luebeck International 
PD (LIPAD) studies aim at genetic classification and deep 
phenotyping of PD patients and healthy carriers of patho-
genic variants (Skrahina et al. 2021; Usnich et al. 2021). 
Initial ROPAD data showed a remarkable genetic diagnostic 
yield with the identification of disease-associated variants in 
approximately 14% of 1360 screened PD patients. Variants 
in GBA (in 8.5% of all patients screened), LRRK2 (3.1%), 
and compound heterozygous PRKN variants (0.8%) were 
identified most frequently. These patients could be included 
in clinical trials focusing on genetic subgroups, for example 
with the LRRK2-Inhibitor BIIB122 (NCT05418673) (see 
section on “disease modification”).

In most PD patients, however, a disease-causing muta-
tion cannot be found. Nevertheless, common genetic vari-
ants modify the risk to develop PD with smaller effect sizes. 
Identified common variants have linked PD to numerous 
pathways including lysosomal function, the immune system 
and metabolism (Fernández-Santiago and Sharma 2022). 
Polygenic risk scores (PRS) compile common low-risk vari-
ants and have been shown to be associated with disease risk, 
age of onset and disease progression (Dehestani et al. 2021; 
Paul et al. 2018; Pihlstrøm et al. 2022). For patient stratifica-
tion, it may also be possible to use pathway-specific PRS, 
which consist of variants related to particular pathways, 
such as mitochondrial PRS and autophagy-lysosomal PRS 
(Bandres-Ciga et al. 2020; Billingsley et al. 2019; Dehestani 
et al. 2022). While pathway-specific PRS may be indica-
tive of an underlying disease process, it seems more intui-
tive to use direct markers of current pathway function (e.g., 
31Phosphorus-Magnetic resonance spectroscopy imaging for 
mitochondrial dysfunction in PD patients, NCT03815916) 
to define clinically relevant and mechanistically anchored 

disease subgroups (Rosen and Zeger 2019; Prasuhn et al. 
2020).

Mitochondria-associated blood biomarkers do not nec-
essarily reflect mitochondrial dysfunction in neurons or, 
more specifically, dopaminergic neurons. Expression pat-
terns often are tissue-specific and mtDNA copy number in 
blood has been shown to be very variable (Pyle et al. 2016; 
Davis et al. 2020; Müller-Nedebock et al. 2022). Imaging 
studies using phosphorus magnetic resonance spectroscopy 
(31P-MRS) to explore in vivo mitochondrial function in PD 
patients have shown contrasting results to date (Dossi et al. 
2019). A seemingly promising approach is the investigation 
of skin fibroblasts, which can be directly patient-derived 
and studied as individual readout in vitro. Using a combi-
nation of cellular assays, RNA-sequencing based pathway 
analysis and genotyping, distinct subgroups of PD patients 
with mitochondrial and lysosomal dysfunction could be 
identified (Carling et al. 2020). Other biomarkers related 
to autophagy and lysosomal function have shown incon-
sistent results (Xicoy et al. 2019). In sporadic PD, reduced 
heatshock cognate-70 (Hsc70) levels in peripheral blood 
mononuclear cells (PBMC) were suggested as a marker 
of chaperone-mediated autophagy dysfunction, but large-
scale studies are still missing (Papagiannakis et al. 2015; 
Sala et al. 2014). Specific GBA variants are associated with 
variable but consistent reduction in glucocerebrosidase 
(GCase) activity (Alcalay et al. 2015; Lerche et al. 2021). 
In sporadic PD, several studies demonstrated a significant 
reduction of GCase activity while some did not find a dif-
ference compared to controls (Atashrazm et al. 2018; van 
Dijk et al. 2013; Xicoy et al. 2019). Therapies aiming to 
enhance GCase function in GBA-PD could also be beneficial 
for sporadic PD patients with reduced GCase activity (Heijer 
et al. 2021). Inflammatory biomarkers such as IL-6, IL-10, 
IL-1β, tumor necrosis factor and others have been shown to 
be increased in blood and CSF of patients with PD (Harms 
et al. 2021; Qin et al. 2016; Zimmermann and Brockmann 
2022). The extent of inflammation is associated with the 
clinical presentation in patients with LRRK2-associated PD 
and disease progression in sporadic PD (Brockmann et al. 
2017; Williams-Gray et al. 2016). Inflammatory markers in 
CSF and blood often are not correlated, change over time 
and are also present in patients with other neurodegenerative 
disorders and, therefore, not disease specific (Zimmermann 
and Brockmann 2022). Still, PD patients with above average 
contribution of neuroinflammation to their disease may be 
the ones benefiting most from immunomodulatory therapies.

Overall, clinical and molecular subgroups should be more 
intensively used for the design of targeted clinical trials and 
could result in more specific therapeutic options for PD 
patients.
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Device‑assisted therapeutic monitoring

The success of symptomatic and disease-modifying 
therapy is based on regular assessment of symptom bur-
den, side effects, and treatment adherence. Still, 40% of 
patients with PD in Europe and the US are not evaluated 
by neurologists or movement disorder specialists (Dorsey 
et al. 2018), and access to specialized care is particularly 
limited in rural areas or developing countries (Dorsey 
and Bloem 2018). In addition, the evaluation of symp-
toms of PD patients is largely limited to short episodes 
of in-clinic visits and outpatient consultations as well 
as patient-completed symptom diaries and subjective 
reports. Relevant aspects might not be captured in these 
contacts due to symptom fluctuations, rare occurrences, 
or relevant differences between supervised assessments 
and symptoms in daily life (Warmerdam et al. 2020).

Device-assisted digital assessments during inpatients 
visits can help objectify clinical evaluation, measure 
treatment response, and help overcome interrater vari-
ations. For example, digital motion biomarkers enable 
measurement of discreet movement disturbances not 
visible during routine examination (e.g., smoothness of 
gait and jerk of foot, Kuhner et al. 2019). In parallel to 
cardinal motor features, machine learning-based speech 
analyses were able to identify early and mid-stage PD 
patients with high accuracy (Suppa et al. 2022). To quan-
tify therapy effects, markerless motion capture systems 
help improve motivation and outcome during neuroreha-
bilitation (Knippenberg et al. 2017).

In addition, remote sensor-based assessments are 
becoming increasingly important to measure motor 
symptoms in a natural environment, and real-word stud-
ies have shown feasibility and acceptance of tools such 
as wearable sensors, smartphone apps, and smartwatches 
(Adams et al. 2021; Bendig et al. 2022; Powers et al. 
2021). Most wearable sensors contain accelerometers 
and gyroscopes and are placed on one or more locations 
on variable parts of the body such as trunk, upper, or 
lower extremities. Depending on the device, measure-
ments of bradykinesia, dyskinesia, tremor, gait, falls, 
or overall physical activity are possible (Ancona et al. 
2022) Positive effects on clinical outcome have been 
shown when experts were supported by wearable sensors 
in their clinical decision making (Woodrow et al. 2020; 
Isaacson et al. 2019). Moreover, wearable sensors have 
also been included in recent trials to measure at home 
functioning as a secondary outcome (NCT04739423, 
NCT04380142). To establish the use of wearable sensors 
into the daily clinical routine, large-scale RCTs validating 
assessments in real world conditions and giving evidence 
of benefits of sensor-based assessments over the current 

clinical standards in terms of therapeutic effects, quality 
of life, or cost-effectiveness are needed (Del Din et al. 
2021). Among others, the Movement Disorder Society has 
developed a roadmap for the implementation of digital 
outcome measures to overcome the current limitations 
(Espay et al. 2019).

Early diagnosis and biomarker development

There is a growing need for objective biomarkers that 
allow earlier diagnosis, the quantification of disease-
relevant molecular processes, and treatment response 
for DMTs (The Parkinson Progression Marker Initiative 
(PPMI) 2011).

Clinical measures (e.g., MDS-UPDRS) provide an esti-
mate of symptom severity and—used in the right setting—
valid measure for clinical disease progression as outcome 
parameters in clinical studies of new DMTs. However, 
clinical scores are heavily biased by symptomatic effects, 
do not capture subclinical effects on molecular processes, 
or effects of potential DMTs in pre-symptomatic subjects. 
Some efforts in the detection of preclinical symptoms 
with have been made, and data suggest the potential of 
wearable accelerometer devices to identify prodromal PD 
(Schalkamp et al. 2022).

Structural and functional neuroimaging has been 
used in aiding diagnosis of unclear phenotypes as well 
as monitoring of therapeutic effects in drug trials as out-
come measure. Structural and volumetric MRI findings 
are subtle in early PD and often not be detectable by con-
ventional MRI. Morphometry analyses revealed reduced 
gray matter volumes in different cortical and subcortical 
regions to inconsistent extend. These findings enable dif-
ferentiation between PD patients and controls or other 
neurodegenerative disorders with varying accuracy (Saeed 
et al. 2017). Functional neuroimaging with different radio-
ligands by single photon emission computed tomography 
(SPECT), however, enables to quantify the integrity of 
the nigrostriatal system. Occurrence of early non-motor 
symptoms of PD such as hyposmia and constipation corre-
late with abnormal dopamine transporter (DAT) binding in 
123Iβ-CIT SPECT imaging (Jennings et al. 2014). Reduc-
tion in DAT binding accompanies disease progression and 
correlates moderately with MDS-UPDRS scores (Simuni 
et al. 2018). DAT scan has shown feasible as secondary 
or exploratory outcome for trials investigating DMTs. In 
a trial comparing levodopa and pramipexole in early PD 
patients, patients who received pramipexole showed less 
reduction in 123Iβ-CIT uptake compared to the levodopa 
group, which also correlated with UPDRS scores (Parkin-
son Study Group 2002). Patients with normal DAT scans 
and early non-motor symptoms have been shown to be 
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less likely to convert to PD than patients with changes in 
DAT scan (Batla et al. 2014; Lee et al. 2021). In addition, 
nigrostriatal integrity can also be evaluated by positron 
emission tomography (PET, e.g., by 18F-dopa), but PET 
imaging also harbors promising applications for measur-
ing glucose metabolism (18F-FDG), microglia-mediated 
neuroinflammation (e.g., 11C-(R)-PK11195), and protein 
(e.g., aSyn) accumulation (Saeed et al. 2017; Capotosti 
2022). With the development of novel imaging markers, 
in vivo measurements of pathophysiological hallmarks can 
accompany clinical findings in symptom severity and are 
crucial for further development of DMTs.

Liquid biomarkers that reflect key pathological hall-
marks of PD such as intracellular aggregation and inter-
cellular spread of pathological forms of aSyn (Goedert 
et  al. 2013; Yang et  al. 2022) allow stratification of 
patients by their molecular diagnosis and are important 
for the success of α-synucleinopathy targeted treatments. 
So far, the measurement of total aSyn concentrations in 
the cerebrospinal fluid (CSF) has been unsatisfactory 
for the diagnosis of PD or as disease progression marker 
(Ohrfelt et  al. 2009; Mollenhauer et  al. 2008, 2017; 
Compta et al. 2015; Majbour et al. 2016; Eusebi et al. 
2017). Total aSyn levels likely do not reflect the complex 
pathophysiology of α-synucleinopathy (Tofaris 2022; 
Stefanis et al. 2019). A more accurate measurement of 
disease-specific aSyn was achieved by isolation of neu-
ron-derived extracellular vesicles from serum (Jiang et al. 
2020, 2021), even in combination with a seeded aggrega-
tion assay (Kluge et al. 2022). The measurement of dis-
ease-specific forms of aSyn such as oligomers or aggre-
gates seem most promising to detect α-synucleinopathy 
even early in disease development. Real‐time quaking‐
induced conversion (RT‐QuIC) exploits the aggrega-
tion properties of aSyn (Stefanis et al. 2019; Brandel 
et al. 2015). This assay can detect aSyn aggregation in 
the CSF of PD and dementia with Lewy bodies (DLB) 
patients with high sensitivity and specificity (Fairfoul 
et al. 2016; Groveman et al. 2018; Manne et al. 2019; 
Bongianni et al. 2019). Importantly, aSyn aggregation 
properties were detected in prodromal PD patients with 
clinical syndromes that preceded Parkinsonism or cogni-
tive decline with high sensitivity of over 95%, meaning 
that RT-QuIC could potentially enable an early diagnosis 
(Rossi et al. 2020). In the large Parkinson's Progression 
Markers Initiative cohort of 1123 participants, 99% of PD 
patients with olfactory disfunction showed seeded aggre-
gation and healthy controls were correctly identified with 
a specificity of 96% (Siderowf et al. 2023). RT‐QuIC has 
also been tested in symptomatic and non-symptomatic 
patients carrying a LRRK2 mutation, a common genetic 
risk factor for familial and sporadic PD, and seeding 
propensity was shown in a subset of patients (Garrido 

et al. 2019). RT-QuIC could therefore help to identify 
candidates to receive disease-modifying drugs even in 
an asymptomatic phase of disease. RT-QuIC from a nasal 
swab is especially promising since it enables less inva-
sive biosampling (Perra et al. 2021; Stefani et al. 2021). 
Seeded aggregation assays may also be interesting to 
detect PD in subjects without initial evidence of dopa-
mine deficit by imaging (Russo et al. 2021). Currently 
available RT-QuIC essays enable a qualitative analysis 
with either a negative or positive result. However, quan-
tification of seeded oligomers in a positive sample could 
additionally help to monitor longitudinal changes over the 
course of a disease or in response to a treatment (Russo 
et al. 2021; Majbour et al. 2022).

Disease-unspecific biomarkers reflect downstream 
effects of pathology and could be proposed for the assess-
ment of disease progression. While neurofilaments are 
not elevated in CSF and serum in idiopathic PD compared 
to age matched controls (Hansson et al. 2017; Marques 
et al. 2019), higher neurofilament levels in PD correlate 
with progressive motor dysfunction or cognitive decline 
(Lin et  al. 2019; Aamodt et  al. 2021). Neurofilament 
levels are increased in atypical parkinsonian syndromes 
compared to PD (Herbert et al. 2015; Hall et al. 2012; 
Hansson et al. 2017; Marques et al. 2019). Therefore, 
combining neurofilaments with α-synucleinopathy spe-
cific biomarkers could be used to stratify patients by indi-
vidual rate of progression and diagnosis into treatment 
trials.

In patients with PD-associated dementia, Alzheimer’s 
like pathology including extracellular β-amyloid plaques 
as well as intracellular hyperphosphorylated tau (p-tau) 
deposition are seen in two-thirds of autopsied cases 
(Jellinger 2012; Smith et al. 2019). Levels of β-amyloid 
and p-tau181 in CSF have been shown to correlate with 
cognitive decline in nondemented people and patients 
with Alzheimer’s dementia, PD dementia, and vascular 
dementia (Fagan et al. 2007; Skillbäck et al. 2015). Low 
levels of β-amyloid in CSF have been associated with 
cognitive impairment in PD, while data for p-tau is incon-
sistent (Compta et al. 2009, 2013). Most studies show 
that plasma p-tau levels do not associate with cognitive 
decline in PD (Lin et al. 2018; Pagonabarraga et al. 2022; 
Batzu et al. 2022). However, higher plasma p-tau levels 
seem to predict Alzheimer’s disease pathology in demen-
tia with Lewy bodies and PD dementia (Gonzalez et al. 
2022). A prognostic value for cognitive decline in PD 
has been shown for CSF β-amyloid and neurofilaments 
(Siderowf et al. 2010; Bäckström et al. 2022). Predict-
ing cognitive decline in PD can be a valuable tool for 
communicating prognosis to patients as well as clinical 
management and inclusion into clinical trials.
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The accumulation of iron in the substantia nigra is a 
known feature in PD and increases in the disease course 
(Lhermitte et al. 1924; Dexter et al. 1989). Early studies 
on iron levels in PD provided inconclusive evidence on 
the ability to discriminate between healthy controls and 
patients with PD (Mariani et al. 2013; Medeiros et al. 
2016; Lucio et al. 2019). An elemental cluster includ-
ing six different elements (including iron) identified 
PD patients with high sensitivity and specificity (Maass 
et al. 2018). Further, the iron and ferritin CSF levels show 
inverse changes in a longitudinal cohort of patients with 
PD indicating their potential as a progression marker 
(Maass et  al. 2021). Warranting further validation in 
independent cohorts, change of iron and ferritin levels in 
response to DMT might, therefore, be used as surrogate 
marker to evaluate effects on disease progression.

In ALS, NfL already is an established biomarker for 
disease progression and also predicts phenoconversion 
in pre-symptomatic mutation carriers (Benatar et  al. 
2018). This feature is used in the ATLAS trial (Benatar 
et al. 2022): ATLAS uses pre-symptomatic gene muta-
tion carriers of SOD1 to identify people at risk and sub-
mit them to therapy with the antisense oligonucleotide 
Tofersen. Tofersen was shown to decrease SOD1 and NfL 
levels in the CSF of treated patients in phase 1–2 and 
3 trials (Miller et al. 2020, 2022) although no advan-
tage of decline in the clinical scores was shown within 
the 24-week follow-up of the phase 3 trial. For the ini-
tial studies, however, only symptomatic patients were 
included. ATLAS now aims at slowing the course of the 
disease once a threshold of NfL is reached and before 
clinical symptoms are present. While a biomarker with 

Fig. 1   A PD therapy currently starts after the development of motor 
symptoms and diagnosis is made based on clinical symptoms. Symp-
tomatic treatment (ST) is started and initially leads to good symptom 
control. With increasing disease progression and symptom burden, 
ST is adapted. B In the future, biomarker-based risk stratification will 
help identify people at risk with subclinical manifestations. Disease-
modifying therapy (DMT) will be started in a premotor or prodromal 

phase, e.g., in a progression marker-based subset of people with high 
risk of phenoconversion. Clinical PD diagnosis could include a com-
bination of clinical symptoms and biomarkers. Symptomatic therapy 
(ST) will be started and adapted by symptom severity as experienced 
by the patient and established clinical scales with the help of digital 
health applications. DMT will be adapted to the disease stage using 
biomarker-based stratification
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similar properties is lacking for PD, studies are conducted 
recruiting patients with premotor symptoms of the disease 
such as Rapid-eye-movement (REM) sleep behavior dis-
order (RBD). Even though RBD is not present in all PD 
patients and some patients develop RBD in later stages of 
the disease, RBD is considered as one of the earliest and 
most specific prodromal signs of an α-synucleinopathy 
(Miglis et al. 2021). Rasagiline (NCT05611372) and ide-
benone (NCT04152655) are currently assessed for their 
impact on the progression time from RBD to PD.

Taken together, there are several promising fluid-
biomarker candidates covering different aspects of the 
disease. While aSyn might be a parameter for measuring 
the pathological hallmark of the disease, NfL, iron, and 
ferritin levels have the potential to predict the progres-
sion of the disease, while β-amyloid and potentially p-Tau 
are promising to forecast cognitive impairment. While 
CSF might be the most relevant biomaterial for neuro-
degenerative diseases and is helpful as diagnostic tool, 
evaluation of easily accessible biomaterial might be of 
special relevance for longitudinal assessment. All these 
biomarkers have the potential to provide a more accurate 
diagnosis and differentiate subtypes of PD, and therefore 
will ultimately benefit clinical trial recruitment as well as 
the selection and monitoring of new therapies. Discovery 
and validation of new biomarkers will be crucial in refin-
ing these processes and thereby aid development of new 
disease-modifying therapies. In addition, identification 
of biomarkers predicting phenoconversion even before 
prodromal signs are present and will be crucial for trials 
testing disease-modulating substances early in the course 
of the disease.

Conclusion

The therapeutic landscape in PD is highly dynamic. 
Although symptomatic treatments already today allow 
very good symptom control in earlier disease stages, more 
advanced stages of PD are still challenging. A big medical 
need exists in the area of non-motor symptoms, but it is con-
trasted by a vibrant clinical trial landscape. The development 
of disease-modifying therapies will fundamentally change 
the therapeutic landscape in the future. In addition, it can be 
assumed that with the increasing use of biomarkers, therapy 
will be more targeted to the individual patient. This will pave 
the way for future therapies to be applied not only in symp-
tomatic patients, but also to develop therapeutic strategies 
that start at the pre-symptomatic stage and can thus delay 
the onset of the disease and mitigate its progression (Fig. 1).
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