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Abstract
Purpose According to the World Health Organization classification for tumors of the central nervous system, mutation status 
of the isocitrate dehydrogenase (IDH) genes has become a major diagnostic discriminator for gliomas. Therefore, imaging-
based prediction of IDH mutation status is of high interest for individual patient management. We compared and evaluated 
the diagnostic value of radiomics derived from dual positron emission tomography (PET) and magnetic resonance imaging 
(MRI) data to predict the IDH mutation status non-invasively.
Methods Eighty-seven glioma patients at initial diagnosis who underwent PET targeting the translocator protein (TSPO) 
using  [18F]GE-180, dynamic amino acid PET using  [18F]FET, and T1-/T2-weighted MRI scans were examined. In addition 
to calculating tumor-to-background ratio (TBR) images for all modalities, parametric images quantifying dynamic  [18F]FET 
PET information were generated. Radiomic features were extracted from TBR and parametric images. The area under the 
receiver operating characteristic curve (AUC) was employed to assess the performance of logistic regression (LR) classifiers. 
To report robust estimates, nested cross-validation with five folds and 50 repeats was applied.
Results TBRGE-180 features extracted from TSPO-positive volumes had the highest predictive power among TBR images 
(AUC 0.88, with age as co-factor 0.94). Dynamic  [18F]FET PET reached a similarly high performance (0.94, with age 0.96). 
The highest LR coefficients in multimodal analyses included  TBRGE-180 features, parameters from kinetic and early static 
 [18F]FET PET images, age, and the features from  TBRT2 images such as the kurtosis (0.97).
Conclusion The findings suggest that incorporating  TBRGE-180 features along with kinetic information from dynamic 
 [18F]FET PET, kurtosis from  TBRT2, and age can yield very high predictability of IDH mutation status, thus potentially 
improving early patient management.
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Introduction

Gliomas are the most common primary brain tumors, 
accounting for a significant proportion of central nervous 
system malignancies in adults [1]. They are characterized by 
their heterogeneity in terms of histology, genetics, and clini-
cal behavior, which presents a serious challenge for accurate 
diagnosis, prognosis, and treatment planning [2]. In recent 
years, molecular markers have emerged as critical prognostic 
and predictive factors in glioma patients [3]. One of the most 

important molecular alterations is a spectrum of mutations 
in the isocitrate dehydrogenase (IDH) genes, particularly 
IDH1 and IDH2 [4–6]. IDH-mutant gliomas are associ-
ated with a more favorable prognosis and better response to 
certain targeted therapies compared to their IDH wild-type 
counterparts [7–10]. Therefore, IDH mutation status has 
been incorporated into the latest World Health Organiza-
tion (WHO) classification of central nervous system tumors 
(WHO CNS 5) as a key molecular marker [3]. IDH mutation 
status is typically determined through molecular testing on 
tissue samples obtained invasively by stereotactic biopsy or 
surgical resection. However, since these procedures carry 
inherent risks, non-invasive methods for predicting IDH Extended author information available on the last page of the article
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mutation status might present a valuable tool in early patient 
management [11–14]. Thus, non-invasive prediction of IDH 
mutation status holds significant potential for tailoring per-
sonalized patient care strategies.

Among the non-invasive imaging modalities, positron 
emission tomography (PET) and magnetic resonance imag-
ing (MRI) have shown promise in providing valuable infor-
mation about glioma biology. MRI, with its superior soft 
tissue contrast, is the diagnostic gold standard providing 
information on lesion composition and extent [15]. Con-
trast-enhanced (CE) T1-weighted MRI is routinely used for 
tumor visualization, since, for example, the presence of ring 
enhancement is indicative of a fast-growing glioblastoma 
exhibiting blood-brain barrier disruption around necrotic 
tissue in the tumor center [16]. Additionally, T2-weighted 
MRI sequences reveal edema and tumor invasion into the 
surrounding brain parenchyma, further aiding in glioma 
characterization [17]. However, MRI lacks sensitivity and 
specificity for describing biological properties on a molecu-
lar level. This can be improved using PET imaging with radi-
olabeled tracers allowing to visualize and quantify specific 
molecular targets in vivo, such as amino acid metabolism, 
cellular proliferation, and inflammation [18]. Amino acid 
PET using  [18F]FET, for instance, shows elevated uptake in 
regions of increased amino acid metabolism, such as active 
tumor tissue and infiltrative tumor margins [19]. Aside from 
delineating active tumor,  [18F]FET PET has proven its utility 
in identifying intratumoral heterogeneity and differentiating 
tumor recurrence from pseudoprogression [20, 21]. Despite 
being less tumor-specific, PET imaging using radioligands 
targeting the translocator protein (TSPO), which is upregu-
lated not only in tumor cells but also in activated microglia 
or macrophages, has demonstrated correlations with histo-
logic tumor grade, specific transcriptional glioma subtypes, 
and survival [22–27]. A recent study revealed that there is no 
correlation between PET information and relative contrast 
enhancement on T1-weighted MRI [28]. This finding sug-
gests that the blood-brain barrier permeability, as assessed 
using CE MRI, appears not to be the driving factor for spe-
cific PET signal of  [18F]FET and  [18F]GE-180 PET. Moreo-
ver, the study demonstrated the complementary nature of 
these imaging modalities.

The diagnostic relevance of the different modalities for 
glioma assessment is increasingly being exploited by the 
application of radiomic analyses [29]. Radiomic features 
may provide valuable information about tumor phenotypes 
and microenvironment by reflecting various aspects of tumor 
biology, such as shape, heterogeneity, vascularity, or cellular 
density. PET- and MRI-derived radiomics have been suc-
cessfully employed in various applications [29].

Given the potential of PET, MRI, and radiomics in 
glioma assessment, this study aimed to compare and 
evaluate the predictive value of radiomics derived from 

TSPO PET, static and dynamic  [18F]FET PET, and T1- and 
T2-weighted MRI for determining the IDH mutation sta-
tus in glioma patients at the time of initial diagnosis. We 
hypothesized that specific radiomic features derived from 
different imaging modalities could serve as biomarkers for 
IDH mutation status prediction, allowing for non-invasive 
and accurate molecular classification of gliomas. Our find-
ings contribute to the growing body of evidence on the 
potential of multimodal imaging and radiomics in improv-
ing the management of glioma patients, with the ultimate 
goal of facilitating personalized treatment strategies.

Material and methods

Patients

In this study, glioma patients at initial diagnosis who 
received dual PET and MRI scans prior to any therapeu-
tic intervention were included consecutively. Multimodal 
imaging included TSPO PET using  [18F]GE-180, amino 
acid PET using  [18F]FET, T1-weighted MRI with and 
without contrast agent, and T2-weighted MRI. All scans 
were performed before any therapeutic intervention with 
on average 4 ± 6 days between both PET scans and 9 
± 10 days between PET and MRI scans. Tissue samples 
for histopathological and molecular genetic classification 
(e.g., mutation of the IDH1/2 gene, codeletion of chro-
mosomes 1p and 19q) were obtained using either stereo-
tactic biopsies or tumor resection. Biopsy extraction was 
conducted with the guidance of imaging techniques, also 
taking into account PET information. The classification 
was performed according to the WHO grading system for 
tumors of the central nervous system revised in 2021 [3]. 
The tissue samples extracted at the Department of Neuro-
surgery of the LMU University Hospital, LMU Munich, 
were evaluated at the Center for Neuropathology and Prion 
Research, LMU Munich, and the Department of Neuropa-
thology of the University Hospital Regensburg.

Furthermore, TSPO binding affinity status was derived 
by assessing the presence of a polymorphism in the gene 
encoding the TSPO. The genotyping was performed at 
the Department of Psychiatry of the University Hospital 
Regensburg as previously described [30], allowing for a 
categorization of the patients as low-, mixed-, or high-
affinity binders (LAB, MAB, HAB) [31–33].

All patients gave written informed consent to the data 
analysis. The study was approved by the local ethics com-
mittee (Ethikkommission der Medizinischen Fakultät der 
LMU München, approval number 17-457, approval date 
September 25, 2017).
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Imaging

Both PET modalities were acquired on the same PET/
CT scanning device (Biograph 64, Siemens Healthineers, 
Erlangen, Germany) at the Department of Nuclear Medi-
cine of the LMU University Hospital, LMU Munich. Care-
ful positioning including a band for fixing the head was 
utilized to reduce motion artifacts while avoiding patient 
discomfort. PET/CT scanning protocols started with 
a low-dose CT for attenuation correction. PET images 
were acquired in list mode and reconstructed using the 
OSEM3D algorithm with 4 iterations, 21 subsets, 5-mm 
Gaussian post-reconstruction filter, matrix size 168 × 168 
× 109, and voxel size 2.036 × 2.036 × 2.027  mm3. Stand-
ard corrections were applied, which included correction 
for attenuation, random and scattered coincidences, dead 
time, and decay.

Production of  [18F]GE-180 (S-N,N-diethyl-9-[2-18F-
fluoroethyl]-5-methoxy 2,3,4,9-tetrahydro-1H-carbazole-
4-carboxamide) was performed using a FASTlab synthe-
sizer and single-use disposable cassettes (GE Healthcare, 
The Grove Centre, Amersham, UK) as described before [30, 
34]. After intravenous bolus injection of 182 ± 15 MBq 
 [18F]GE-180, the emission scan was acquired 60–80 min 
post-injection (p.i.) [35]. Static images were reconstructed 
for quantification of TSPO ligand uptake.

On another day,  [18F]FET (O-(2-18F-fluoroethyl)-l-tyros-
ine) PET data were acquired in list mode 0–40 min after 
intravenous bolus injection of 179 ± 18 MBq. Dynamic  [18F]
FET PET data were reconstructed using the following time 
frames: 6 × 10 s, 4 × 30 s, 1 × 2 min, 3 × 5 min, 2 × 10 min. 
The standardized processing workflow included frame-wise 
motion correction to an early summation image (0–3 min 
p.i.) using the PMOD Fusion tool (v4.1, PMOD Technolo-
gies, Zurich, Switzerland) with standard settings for rigid 
matching of different modalities (human changing: trilinear 
interpolation, normalized mutual information dissimilarity, 
sample rate start 5.2 mm and final 4.0 mm, function tol-
erance 1.0E−4, no smoothing). This was followed by the 
extraction of early 5–15 min p.i. and late 20–40 min p.i. 
summation images.

Additionally, MRI scans were performed. This included 
an axial T2-weighted sequence and T1-weighted sequences 
before  (T1native) and after  (T1CE) intravenous injection of 
contrast agent (0.1 mmol/kg gadobenate dimeglumine, Gd-
BOPTA, MultiHance; Bracco Imaging, Milan, Italy).  T1native 
images were solely used for MRI-based tumor segmentation 
and not for IDH mutation status prediction.

Before further processing and analysis of multimodal 
data,  [18F]GE-180 PET and MRI images were registered 
and resampled to the late static  [18F]FET PET image using 
the PMOD Fusion tool using the standard rigid matching 
settings for different modalities as specified before.

Generation of parametric images

Static PET and MRI images were normalized as described 
previously using a healthy background signal [28, 36], thus 
yielding tumor-to-background ratio images  (TBRGE-180, 
 TBRFET5-15,  TBRFET20-40,  TBRT1CE,  TBRT2). Dynamic  [18F]
FET PET information was parametrized semi-quantita-
tively using the time-to-peak  (TTPSUV,  TTPTBR) and late 
slope  (SlopeSUV,  SlopeTBR) of each voxel’s original and 
background-normalized time-activity curve (TAC SUV, TAC 
TBR). As described previously [37, 38], the  TTPSUV/TBR was 
estimated voxel-wise as the maximal TAC SUV/TBR value after 
3 min p.i. with subsequently decreasing kinetics (excluding 
initially high tracer concentrations in blood). According to 
the reconstructed time frames, the TTP categories are as 
follows: < 5 min, 5–10 min, 10–15 min, 15–20 min, 20–30 
min, 30–40 min p.i. The late slope was derived for each 
voxel by linear fitting of the last three time frames (15–40 
min p.i.). All resulting static and parametric images served 
as input for the extraction of radiomic features.

Delineation of tumor volumes

For volume-based radiomics, the choice of segmentation 
method is crucial and may potentially have a huge impact on 
model performances. Since the chosen tumor volume highly 
impacts the derived radiomic features, a standardization of 
segmentation methods for a specific machine learning model 
is crucial. Therefore, we evaluated the model performances 
for two different tumor definition approaches: (1) tumor 
definition in each modality itself to be independent of the 
availability of other modalities and (2) whole tumor volume 
defined using MRI including active tumor, necrotic tissue, 
and peritumoral edematous/invaded tissue visible in T2/
FLAIR. Tumor volumes within each modality were defined 
semi-automatically according to the procedure detailed in 
[28]. This comprises an initial manual definition of a con-
fining volume by simultaneously taking into account infor-
mation from all modalities. This volume is defined with 
a large safety margin around tumor tissue visible in each 
modality, while strictly excluding vessels, healthy ventri-
cles, and areas outside the brain such as the skull or mucous 
membranes. This confining volume was applied to keep 
all extracted tumor volumes within the boundaries of the 
confining volume. The clinically established and biopsy-
proven iso-contour threshold of 1.6 was applied for tumor 
segmentation in  TBRFET20-40 images [39]. In analogy to 
 TBRFET20-40, a threshold of 1.6 was applied for  TBRGE-180. 
Since for  TBRGE-180 no optimal biopsy-proven threshold is 
available, results for the additional iso-contour thresholds 
1.3 and 1.8 are provided in the supplementary information. 
Deep learning–based delineation of tumor volumes in MRI 
images was performed using the BraTS toolkit [40] with 



 European Journal of Nuclear Medicine and Molecular Imaging

the model provided by Isensee et al. [41]. Since the BraTS 
toolkit requires T1-weighted MRI images with and without 
contrast enhancement, T2-weighted MRI, and also a FLAIR 
sequence as input, the tool Glioma_GAN was applied for 
artificial generation of the missing FLAIR sequences [42]. 
Segmentation results comprise (a) the “active tumor” 
describing hyper-intensity in CE when compared to native 
T1-MRI and also when compared to healthy appearing white 
matter in CE T1-MRI; (b) necrotic (fluid-filled) and non-
enhancing (solid) tumor; and (c) peritumoral edematous/
invaded tissue additionally visible in T2/FLAIR [43]. The 
whole tumor volume, comprising areas a–c, was employed 
as the suspicious volume evident in FLAIR/T2 images, here-
after referred to as the “T2 volume.”

Radiomic extraction

Radiomics were derived from the suspicious volume deline-
ated in each modality. This reduced the number of included 
patients in cases where the tumor was not visible in the 
respective modality. Since all gliomas tend to show an 
alteration in FLAIR/T2 images, while they are occasionally 
not detectable in PET or CE MRI, additionally, T2 volumes 
were applied to all modalities (Fig. 1).

Radiomic features were extracted with the Python (ver-
sion 3.10) package PyRadiomics (version 3.0.1 [44]) of 
which most features comply with the definitions published 
by the Image Biomarker Standardization Initiative (IBSI) 
[45]. All default first-order (n = 18), texture (n = 75), and 
shape (n = 14) features provided by PyRadiomics were 
extracted from each modality separately. Resampling was 
performed to the isotropic voxel size of 2.036 × 2.036 × 
2.036. The size of intensity bins was fixed for all modali-
ties to the average interquartile range (IQR) divided by 4 
[46, 47]. To take into account the typical prevalence of 
IDH wild-type and IDH mutant gliomas within a standard 
population [48], a weight of 0.6 was applied to the aver-
age IQR/4 from IDH wild-type gliomas, while the average 
IQR/4 from IDH mutant gliomas received a weight of 0.4. 
This yielded the following bin widths: 0.15 for  TBRFET5-15, 
0.13 for  TBRFET20-40, 0.16 for  TBRGE-180, 0.08 for  TBRT1CE, 
and 0.17 for  TBRT2. A bin width of 5.1 min was chosen 
for discretization of TTP values, allowing to distinguish all 
considered TTP categories.

Machine learning pipeline

In addition to the evaluation of IDH wild-type prediction 
performance using the entire cohort, this study also 
addresses the question whether a correct classification is 
possible even within the subgroup of gliomas without ring 
enhancement on CE MRI, as ring enhancement alone is 
already indicative of an aggressive IDH wild-type glioma.

First, the individual modalities were compared using uni-
variate and multivariate performance scores, considering 
radiomic features from each modality separately. Addition-
ally, multimodal models were applied to evaluate the added 
value of combining data from different modalities.

All machine learning procedures were implemented using 
Python (version 3.10) and scikit-learn package (version 
1.2.2). Logistic regression (LR) classifiers were trained to 
optimize the area under the receiver operating characteris-
tic curve (AUC). To report reliable performance measures, 
fivefold 50-repeated cross-validation (CV) was used. The 
resulting AUCs are presented as mean ± standard deviation 
calculated from the values of the individual CV splits. The 
imbalance of input data was taken into account by using 
stratified splits and applying LR in balanced mode. Strati-
fication of splits results in equal distributions of the class 
labels in each fold, and in balanced mode, sample weights 
are automatically adjusted according to class frequencies. 
L1 regularization, employed with Liblinear solver, was uti-
lized to prevent overfitting and to perform inherent feature 
selection. The LR classifiers’ other settings were left at the 
default values defined in scikit-learn. The machine learning 
pipeline comprised the following steps: (1) robust standardi-
zation of features by subtracting the median and scaling to 

Fig. 1  Steps of the processing workflow: (1) acquisition of multi-
modal data (dynamic  [18F]FET PET, static TSPO PET, contrast-
enhanced T1-weighted MRI, and T2-weighted MRI); (2) definition of 
tumor volumes either using suspicious volume delineated within each 
modality itself or applying FLAIR/T2 volumes to each modality; (3) 
radiomic extraction; and (4) machine learning application



European Journal of Nuclear Medicine and Molecular Imaging 

the interquartile range; (2) exclusion of features with zero 
variance; (3) only for combination with clinical parameters: 
selection of features with nonzero LR coefficients, only for 
multimodal analyses: selection of n features with highest 
univariate AUC for each modality; and (4) LR classifica-
tion. This pipeline was inserted into a grid search routine 
for hyperparameter tuning (n for multimodal analyses in step 
3, grids 3, 5, 10; inverse regularization strength C adjusting 
the L1 penalty in step 4, grids 0.1, 0.3, 0.5, 0.8, 1.0) using 
fivefold CV within the inner loop of the nested CV scheme. 
Nested CV has the advantage that robust unbiased perfor-
mance scores can be reported (Fig. 2). No further manual 
adaption of the machine learning pipeline was performed, 
thus ensuring no leakage of information from the test set 
into the comparison of modalities and multimodal models.

Results

Patient characteristics are presented in Table 1. The subgroup 
without ring enhancement excluded mainly IDH wild-type 
gliomas. One IDH mutant WHO grade 4 astrocytoma 
also presented with ring enhancement in T1-weighted 
MRI and was therefore excluded from subgroup analyses. 
The AUC values of each individual model are presented 
in supplementary information.

Comparison of modalities

A comparison of AUCs obtained for each modality is pro-
vided in Fig. 3 for modality volumes and in Fig. 4 for T2 
volumes. The outcomes are displayed for the two groups: 
gliomas without ring enhancement and the entire cohort. 
Alongside the cross-validated AUCs derived from logis-
tic regression with first-order and texture features as input 
parameters, we also present the LR results when including 
age as an additional feature, as well as the univariate AUCs 
obtained when only considering mean intensity as a feature. 
Figure 5 shows the multimodal information for one exem-
plary IDH mutant and one IDH wild-type glioma.

Fig. 2  Nested cross-validation: Hyperparameter tuning is performed 
within the inner resampling loop using fivefold cross-validation. This 
yields its own optimal parameter set P

i
 for each split i ∈ {1,… , n} 

of the outer resampling loop with n = 5 × 50 = 250 for fivefold 
50-repeated CV. P

i
 is then used to train on the training set of split i . 

The trained model M
i
 is then evaluated on the independent test set 

of split i to yield the respective estimated error E
i
 (i.e., performance 

score). The error E obtained from averaging all splits of the outer 
loop provides a more robust estimate of the generalization error than 
when only one independent test set is used

Table 1  Patient characteristics

Subgroup without 
ring enhancement

All

Number of patients 58 87
Sex (f; m) 27; 31 37; 50
Age (mean ± SD) 53 ± 16 y 57 ± 16 y
Age range 16–84 y 21–84 y
Procedure for diagnosis (biopsy; 

surgery)
40; 18 64; 23

IDH status (IDH wild type; IDH 
mutant)

31; 27 59; 28
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When comparing the performances of radiomic features 
derived from TBR images of the different modalities, LR 
yielded the highest cross-validated AUC for the model using 
 TBRGE-180 features derived from original modality volumes 
(Fig. 3a) for all patients (0.88 ± 0.11) and the subgroup 
without ring enhancing gliomas (0.86 ± 0.12). Features 
derived from modality volumes of late static  TBRFET20-40 

images (Fig. 3a) resulted in the overall lowest AUC (all 0.71 
± 0.14, not ring enhancing 0.59 ± 0.20), which could be 
improved by the utilization of early static information from 
 TBRFET5-15 images (all 0.86 ± 0.12, not ring enhancing 0.79 
± 0.16).

When further considering kinetic information (Figs. 3b 
and 4b), radiomic features derived from TTP and slope 

Fig. 3  Results for TBR (a) and parametric (b) images obtained for 
modality volumes are presented for the entire cohort (red) and for the 
subgroup of gliomas without ring enhancement (blue). In addition to 
cross-validated AUCs from logistic regression with first-order and 

texture features as input parameters (plain boxes), also the logistic 
regression (LR) results when including age as an additional feature 
(dashed boxes) and the univariate AUCs obtained when using simple 
mean values (markers connected by dashed lines) are shown

Fig. 4  Results for TBR (a) and parametric (b) images obtained for suspicious volumes visible in T2-weighted MRI images (automatic segmenta-
tion using BraTS toolkit) are presented as described in Fig. 3
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images reached very high LR-AUCs even when using fea-
tures extracted from T2 volumes (maximal AUC for the 
entire cohort with  TTPTBR 0.94 ± 0.06, and for not ring 
enhancing gliomas 0.91 ± 0.08).

The performance of simple mean values (depicted by 
markers connected with dashed lines in Figs.  3 and 4) 
could be enhanced by incorporating more complex radi-
omic features extracted from T2 volumes in the case of 
 TBRFET20-40,  TBRFET5-15, and  TBRT2. This improvement was 
also observed when evaluating the performance of features 
derived from  TBRGE-180 images using original volumes. 
Interestingly, especially for parametric images containing 
kinetic information, simple mean values achieved the same 
high cross-validated performance as multivariate models.

Considering patient age in multivariate models of each 
modality significantly increased performances (dashed 
boxes in Figs. 3 and 4). The highest AUC was obtained for 
 SlopeTBR extracted from T2 volumes for the entire cohort 
(0.96 ± 0.04) and for  SlopeSUV extracted from T2 volumes 
for gliomas without ring enhancement (0.92 ± 0.09). The 
performance of the LR model using features calculated from 
TSPO-positive volumes of  TBRGE-180 images reached 0.94 
± 0.08 for all patients and 0.90 ± 0.11 for the subgroup of 
gliomas without ring enhancement. Interestingly, the results 
confirmed that high age alone is already indicative of an 

IDH wild-type glioma (all 0.86 ± 0.09, not ring enhancing 
0.82 ± 0.12).

Including binding affinity status did not improve the IDH-
prediction performance of TSPO PET. Further inclusion of 
shape features in multivariate models could partly improve 
classification performance. When looking at shape features 
alone, features derived from TSPO PET images yielded the 
highest LR-AUCs (all 0.87 ± 0.08, not ring enhancing 0.79 
± 0.13).

Sex‑specific radiomic pattern analysis

Significant differences between female and male features 
were found especially for parameters derived from  SlopeTBR 
images (Mann-Whitney U-test results in supplementary 
information). For features derived from  TBRGE180 images, 
no significant differences were found for IDH wild-type 
gliomas and only few significant differences for IDH mutant 
gliomas. Additionally, the models of each modality were 
re-evaluated by taking into account only female or only male 
patients. Sex-specific analyses showed a better performance 
of features derived from  TBRGE180 images using modality 
volumes for female patients and using T2 volumes for male 
patients. Average LR coefficients predominantly showed 
similar tendencies between female and male patients. 

Fig. 5  Two example patients presenting with characteristic intensity 
distributions within the different modalities. The IDH mutant glioma 
(a) shows only moderate PET uptake, an increasing kinetic (blue: 
 TTPSUV > 30 min p.i.,  SlopeSUV > 0) in dynamic  [18F]FET PET, and 
a low cluster prominence as extracted from  TBRGE180 images. The 

IDH wild-type glioma (b) has high PET uptake with an early peak 
(red:  TTPSUV < 15 min p.i.,  SlopeSUV < 0) and high cluster promi-
nence. The images showing cluster prominence extracted from 
 TBRGE180 images were generated using voxel-wise feature calculation 
of PyRadiomics with radius set to 2 voxels (kernel size 5 × 5 × 5)
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However, for some features, the average LR coefficients 
differed between female and male patients (supplementary 
information). AUCs of the models trained on all data could 
not or only slightly be improved by further considering sex 
information as an input feature of the model. Sex alone was 
not able to predict IDH mutation status (all 0.53 ± 0.12, not 
ring enhancing 0.51 ± 0.13).

Multimodal analyses

In multimodal LR analyses, the remarkable performance 
obtained for kinetic  [18F]FET PET or  TBRGE-180 param-
eters could not be substantially outperformed (Table 2). 
Multimodal analyses of parameters derived from original 
tumor volumes yielded an AUC of 0.97 ± 0.07 for the entire 
cohort and 0.94 ± 0.11 for gliomas without ring enhance-
ment. When T2 volumes were applied, the AUCs reached 
0.96 ± 0.05 for the entire cohort and 0.94 ± 0.07 for gliomas 
without ring enhancement.

The features with the highest LR coefficients differed 
when applying modality or T2 volumes. For modality vol-
umes, parameters derived from  TBRGE-180 images and the 
kurtosis (first order) from T2 images yielded the highest 
LR coefficients, followed directly by age and several param-
eters derived from kinetic  [18F]FET PET images. For T2 
volumes, the highest coefficients were not only dominated 
by parameters from kinetic  [18F]FET PET images, but also 
comprised  TBRGE-180 features, the  TBRT1CE feature High 
Gray Level Zone Emphasis, age, and features extracted from 
 TBRT2 images.

Discussion

In our study, we aimed to assess the predictive capabilities 
of different imaging modalities and features for identifying 
IDH mutation status in glioma patients. The results revealed 
that  TBRGE-180 features extracted from TSPO-positive vol-
umes exhibited the highest AUCs among TBR images of 
all modalities. This finding suggests that  TBRGE-180 could 
be a reliable and promising marker for distinguishing IDH 
mutation status for TSPO-positive gliomas, i.e., 84% of all 

included patients. The superior performance of TSPO PET 
might be attributed to the fact that TSPO expression is cor-
related with tumor aggressiveness [49]. Moreover, aggres-
sive glioblastomas are usually associated with an increased 
inflammatory component, which is depicted by the compos-
ite signal of TSPO PET primarily emanating from tumor 
cells within the central tumor core and increasingly from 
neuroinflammatory tissue within the encompassing micro-
environment [27, 50]. Moreover, dynamic  [18F]FET PET 
demonstrated remarkably high AUCs for parameters derived 
from  [18F]FET-positive volumes (i.e., 86% of patients) and, 
notably, from whole tumor volumes as captured by MRI 
sequences (i.e., all patients). This indicates the potential 
of dynamic  [18F]FET PET in providing valuable informa-
tion for IDH mutation status prediction, not only for PET-
positive gliomas but also when assessing tumors with low 
or even photopenic signal in PET images [51]. Our results 
highlight the value of static TSPO PET in predicting IDH 
mutation status, particularly in situations where dynamic 
 [18F]FET PET data have not been acquired. While TSPO 
PET is not intended to replace the well-understood and 
well-established  [18F]FET PET, its high performance has 
further been demonstrated in terms of survival prediction 
even among homogeneous molecular entities [25, 26]. Con-
sequently, it emerges as a vital supplementary non-invasive 
tool for optimizing early patient management at the point of 
initial diagnosis. Similar tendencies as for the entire cohort 
have been found for the challenging subgroup of gliomas 
without ring enhancement on CE T1-weighted MRI, how-
ever, with slightly lower AUCs.

One important limitation of TSPO PET is that a supe-
rior performance is only evident when using TSPO-positive 
volumes. To be able to evaluate all glioma patients, also T2 
volumes have been applied to each modality, where kinetic 
 [18F]FET PET parameters remained highly significant. 
When combining features derived from TBR images using 
T2 volumes with age, even parameters extracted from  TBRT1 
and  TBRT2 yielded high AUCs (all 0.92 and 0.93, not ring 
enhancing 0.83 and 0.88, respectively) above the level of age 
alone (all 0.86, not ring enhancing 0.82). This performance 
was slightly exceeded when features were extracted from 
 TBRGE-180 images utilizing original volumes (all 0.94, not 

Table 2  Best AUCs achieved by utilizing either first-order mean values, multivariate analyses taking into account features from a single modal-
ity without/with age inclusion, or multimodal analyses incorporating age

Patient group All Not ring enhancing

Volumes from Modality T2 MRI Modality T2 MRI

First-order mean 0.96 ± 0.05 0.92 ± 0.06 0.95 ± 0.07 0.95 ± 0.06
Unimodal 0.94 ± 0.08 0.94 ± 0.06 0.89 ± 0.12 0.91 ± 0.08
Unimodal and age 0.96 ± 0.06 0.96 ± 0.04 0.92 ± 0.10 0.92 ± 0.04
Multimodal and age 0.97 ± 0.07 (n = 66) 0.96 ± 0.05 (n = 87) 0.94 ± 0.11 (n = 37) 0.94 ± 0.07 (n = 58)
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ring enhancing 0.90) and outperformed markedly when fea-
tures were derived from T2 volumes applied to parametric 
 [18F]FET PET images (all 0.96, not ring enhancing 0.92).

Consistent with the comparison of models for the separate 
modalities, multimodal analyses revealed that the highest LR 
coefficients comprise  TBRGE-180 features, parameters from 
kinetic  [18F]FET PET images, age, and the first-order param-
eter kurtosis from  TBRT2 images. Interestingly, the inclusion 
of patient age in multivariate models significantly improved 
predictive performance. This observation highlights the 
potential influence of age-related molecular alterations in 
glioma tumorigenesis, which may further impact treatment 
decisions and patient outcomes.

Our results are comparable to the findings by Lohmann et al. 
[52], who found for a subgroup of 56 patients that standard slope 
(AUC = 0.74) and TTP (AUC = 0.80) parameters derived from 
average time-activity curves outperform simple mean values 
(AUC = 0.50) and texture features derived from  TBRFET20-40 
images (AUC < 0.67). With a combination of standard kinetic 
and texture parameters from  TBRFET20-40 images, the maximal 
accuracy reached 82% using fivefold CV and cherry picking 
of the best parameter combination after model evaluation. Our 
results are also in accordance with a previously published study 
evaluating radiomics extracted from static  [18F]FET PET and 
from several MRI sequences. Here, radiomics extracted from 
contrast-enhanced T1-weighted MRI images yielded a higher 
AUC for IDH prediction than radiomics from  [18F]FET PET 
(0.84 vs. 0.64) and a model including all features reached an 
AUC of 0.79 [53]. We extended these analyses by also account-
ing for texture features derived from parametric images quan-
tifying kinetic information and additionally simultaneously 
considering and comparing radiomics derived from TSPO PET 
and T1- and T2-weighted MRI images, thus reaching markedly 
higher IDH prediction performances, which also surpass the 
published performance of the clinically established minimal 
time-to-peak (0.80, no CV) [54].

Despite the promising results, our study has some limi-
tations. The sample size may affect the generalizability of 
the findings, and further validation in larger cohorts is war-
ranted. The number of glioma patients is limited due to the 
unique situation that simultaneous dual PET and MRI data 
at initial diagnosis are included. This enables a direct com-
parison of the different modalities using the identical patient 
cohort. Beyond internal validation using robust unbiased 
performance scores from nested cross-validation, external 
validation is of high importance for assessing the generaliz-
ability of the model. This applicability to other scanning 
devices should be addressed in follow-up studies also con-
sidering image or feature harmonization approaches [55, 56]. 
Moreover, larger cohorts are needed to systematically assess 
whether the observed differences are indeed attributable to 
sex-specific properties and if separate models for female 
and male patients are required, as suggested by Papp et al. 

[57]. Additionally, the choice of segmentation method for 
tumor delineation can influence radiomic feature extraction 
and subsequent predictions. Therefore, standardization and 
robustness of the segmentation process are essential in future 
studies to ensure consistency and reproducibility of results.

The ability to integrate information from multiple imag-
ing modalities provides a comprehensive view of the tumor 
microenvironment, contributing to a more accurate predic-
tion of IDH mutation status. This non-invasive approach 
not only facilitates safer and less burdensome assessments 
for patients but also holds promise in advancing the field 
of precision medicine by guiding personalized treatment 
strategies. Moving forward, the next step in this research 
would involve the application of deep learning methods, 
which have the advantage of leveraging entire images with-
out the need for explicit tumor segmentation. Deep learning 
algorithms have shown promise in various medical imaging 
applications and could potentially enhance the accuracy of 
IDH mutation status prediction in glioma patients.

Conclusions

In conclusion, our study demonstrates that  TBRGE-180 fea-
tures derived from TSPO-positive volumes, kinetic informa-
tion from dynamic  [18F]FET PET, kurtosis from T2 images, 
and age are important biomarkers for IDH prediction and 
even allow for an IDH mutation status prediction in glioma 
patients without ring enhancement on T1-weighted MRI. 
The high performance reached by non-invasive imaging 
holds promise for improving molecular classification and 
guiding personalized treatment strategies in glioma patients. 
Future investigations with larger and more diverse cohorts, 
as well as prospective validation, are necessary to establish 
the clinical utility of these findings.
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