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Abstract

Objective: Cortical gray matter (GM) atrophy plays a central role in multiple sclerosis

(MS) pathology. However, it is not commonly assessed in clinical routine partly because

a number of methodological problems hamper the development of a robust biomarker

to quantify GM atrophy. In previous work, we have demonstrated the clinical utility of

the “mosaic approach” (MAP) to assess individual GMatrophy in themotor neuron dis-

ease spectrum and frontotemporal dementia. In this study, we investigated the clinical

utility of MAP in MS, comparing this novel biomarker to existing methods for comput-

ing GM atrophy in single patients. We contrasted the strategies based on correlations

with established biomarkers reflectingMS disease burden.

Methods:We analyzed T1-weightedMPRAGEmagnetic resonance imaging data from

465 relapsing-remittingMS patients and 89 healthy controls.We inspected how varia-

tions of existing strategies to estimate individual GM atrophy (“standard approaches”)

as well as variations of MAP (i.e., different parcellation schemes) impact downstream

analysis results, both on a group and an individual level.We interpreted individual cor-

tical disease burden as single metric reflecting the fraction of significantly atrophic

datapointswith respect to the control group. In addition,weevaluated the correlations

to lesion volume (LV) and ExpandedDisability Status Scale (EDSS).

Results:We found that theMAPmethod yielded highest correlationswith both LV and

EDSS as compared to all other strategies. Although the parcellation resolution played

a minor role in terms of absolute correlations with clinical variables, higher resolu-

tions provided more clearly defined statistical brain maps which may facilitate clinical

interpretability.

Conclusion:This study provides evidence thatMAPyields high potential for a clinically

relevant biomarker in MS, outperforming existing methods to compute cortical dis-

ease burden in single patients. Of note, MAP outputs brain maps illustrating individual

cortical disease burdenwhich can be directly interpreted in daily clinical routine.
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1 INTRODUCTION

1.1 Relevance of appreciating cortical disease
burden in multiple sclerosis patients and the “MAP”
approach

Multiple sclerosis (MS) is a debilitating disorder of the central ner-

vous system (CNS) which remains incurable until today (Lassmann,

2018). Themost prominent pathological substrate ofMSpathology are

lesions to the white matter (WM) of the CNS, which present as hyper-

intensities on T2-weighted FLAIR magnetic resonance images (MRI).

Although WM lesion load does explain variance in terms of clinical

disease burden—in particular cognitive functioning (Engl et al., 2020;

Mollison et al., 2017) and its progression are negatively correlatedwith

cognitive decline (Todea et al., 2020)—it has become clear that it does

not capture the entirety of the clinical state (Barkhof, 2002; Popescu

et al., 2013). Advances in neuroimaging methods allowed to identify

another and at least partly independent anatomical substrate, namely,

the shrinking and/or decay of CNS cells, or atrophy (Eshaghi et al.,

2018; Filippi & Rocca, 2010; Vrenken & Geurts, 2007). Atrophy has

been shown to be even more closely related to disability progression

thanWM lesion load (Bakshi et al., 2001; de Stefano et al., 2003; Sailer

et al., 2003).

In our previous work, we have suggested to estimate individual gray

matter (GM) cortical atrophy based on rating single subject’s parceled

cortical thickness (CT) data and evaluating the single “mosaics” with

respect to healthy controls (HC) (Tahedl, 2020). In a series of studies,

we have evaluated and demonstrated the utility of mosaic approach

(MAP) for assessing clinically relevant cortical disease burden inmotor

neuron diseases (MND) and frontotemporal dementia (FTD) (see, Sec-

tion 1.4). In this study, we aim to probe the clinical utility ofMAP inMS,

comparing this novel biomarker to existingmethods for computingGM

atrophy in single patients.

1.2 Assessing individual deep gray matter and
white matter disease burden

Atrophy of both deep GM nuclei as well as cortical atrophy reflect

aspects of MS disability but might cover distinct features (Eijlers et al.,

2019). However, both forms of atrophy do inform the clinical state,

such that taking into account both markers—in addition to the well-

established biomarker WM lesion load, as discussed above—should

provide a more complete assessment of the individual patient’s clini-

cal state and might allow for more accurate prognoses. For effective

clinical translation, such abiomarker needs to be readily acquirable and

interpretable in a personalizedmanner.

ForWM lesions and deepGMatrophy, the assessment of an individ-

ual estimate is relatively straightforwardusing advancedneuroimaging

methods: In order to quantifyWM lesion load (and thus allowing long-

termmonitoring), (half-)automated software-supportedmethods have

been developed that can be applied to single subjects’ T1w/T2-FLAIR

data sets which output volume estimates of the individual lesion load

with high accuracy (Mortazavi et al., 2012; Schmidt et al., 2012). Sim-

ilarly, automated segmentation methods exist that provide reliable

volume estimates for distinct deepGMnuclei (Fischl et al., 2002, 2004;

Mendelsohn et al., 2023).

1.3 Assessing individual cortical disease burden

UnlikeWM lesion load and subcortical volumetry, GM atrophy is much

harder both to quantify and to interpret on a single-patient level (Amiri

et al., 2018). In terms of quantification, one problem is that cell dam-

age or death induces a complex process of tissue restructuring which

can hardly be reflected by a singular metric (Tsouki &Williams, 2021).

Therefore, the neuroimaging community has suggested awide number

of metrics to quantify cortical GM changes, including the absolute CT

(e.g., Fischl & Dale, 2000), its volume (e.g., Gaser et al., 2022) as well as

“hybrids” suchasGMconcentration (most famously via thevoxel-based

morphometry [VBM], VBM, approach, e.g., Ashburner&Friston, 2000).

All of these metrics have been demonstrated to mirror disease burden

in MS on the group level; nevertheless, attempts to engineer metrics

from them that can be applied to single subjects remain a challenge

(Amiri et al., 2018).

1.4 Challenges of existing methods for
single-patient assessment of GM atrophy

The problem of constructing clinically relevant biomarkers for cortical

atrophy is aggravated by the fact that neuroimaging pipelines regularly

offer to adjust a wide range of parameters in both pre- and postpro-

cessing of data which can impact downstream analysis results (Cash

et al., 2015; Gunter et al., 2003; Popescu et al., 2016) and impede

widespread adoption and generalization. The rationale behind many

of those parameters is to increase statistical power of the analysis—it

needs to be emphasized that in neuroimaging, the cortex is typically

represented as hundreds of thousands of distinct data points. This

requires rigorous control of the multiple comparisons problem, which

can easily hamper statistical power if using common correction meth-

ods such as suggested byBonferroni (Simes, 1986).Oneway to address

this problem is to smooth the data before running statistics to reduce

the variability between neighboring data points (Jo et al., 2007)—
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however, notice that there is no clear consensus on the extent of

“optimal” smoothing. Another strategy is to choose from less rigorous

family-wise error rate (FWER) correction methods, tailored to neu-

roimaging data, such as threshold-free cluster enhancement (TFCE,

Smith &Nichols, 2009) or employ alternative approaches, for example,

the false discovery rate (FDR, Benjamini & Hochberg, 1995; Genovese

et al., 2002).

1.5 Employing a mosaic approach (MAP) to assess
clinically relevant cortical disease burden

The above list of choices to identify cortical GM changes is far from

being complete but indicates howonemight easily get overwhelmedby

the abundant number of possible combinations throughout data anal-

ysis. Moreover, there is no clear directive on how adjustment of the

technical details and their combinations impacts downstream results,

which in turn hampers interpretability. This might be one reason why

the development of a readily accessible biomarker for interpreting

single-patient GM atrophy is still lacking inMS.

To overcome this gap, we have developed the “MAP” (Tahedl, 2020),

which assesses individual cortical disease burden for distinct brain

regions (“mosaics”). The primary outcome variable of MAP is a single

number reflecting the fraction of potentially atrophic cortex (referred

to as “thin-patch fraction”). In a series of studies, we have evaluated

and demonstrated the utility of MAP for assessing clinically relevant

cortical disease burden in MND and FTD: More specifically, we could

demonstrate that MAP reflects both the cross-sectional as well as

the longitudinal progression of clinical disability in amyotrophic lateral

sclerosis (ALS), asmeasuredby theALSFunctionalRatingScale, revised

(Tahedl et al., 2021). Moreover, we could show that MAP accurately

reflects the histopathologic involvement of cortical disease burden: By

contrasting (1) a purely upper motor neuron—that is, purely cortical—

condition, namely, primary progressive lateral sclerosis (PLS), (2) a

mixed upper-/lower motor neuron condition (ALS), and (3) a primary

lowermotor neuron condition (poliomyelitis survivors), we could show

that this degree of cortical involvement is captured by MAP—both

cross-sectionally and longitudinally (Tahedl et al., 2022). Furthermore,

we have investigated the clinical utility of MAP outside of MND and

applied it to the FTD spectrum, where we could also demonstrate its

clinical utility for single patients (McKenna et al., 2022).

1.6 MAP—a novel biomarker for assessing
individual atrophy also in MS?

Our previous investigations into MND and FTD motivate us to inter-

rogate the utility of MAP also in MS, given the need for an individual

cortical biomarker in that condition as outlined above. In this study,

we provide a thorough investigation of MAP utility in MS. Impor-

tantly, we focus our study on comparisons with existing strategies

to compute individual cortical disease burden (which we refer to as

“standard approaches”) and technical variations of those (including

smoothing and statistical correction methods, Figure 1). We also con-

sider variations of MAP by contrasting different parcellation schemes

and varying the resolution of the respective partitioning. We appreci-

ate both effects on individual- and group-level statistical comparisons

between the methods. Moreover, we validate the clinical utility of the

approaches based on their associations with correlations to third met-

rics reflecting clinical disease burden in MS, namely, WM lesion load

and ExpandedDisability Status Scale (EDSS) scores, which both reflect

at least partly independent and complementary information on theMS

disease course/progression (Sormani et al., 2014). With this careful

inspection, we aim to explore the benefits of MAP for assessing clini-

cally relevant cortical disease burden for single MS patients, thereby

extending MAP generalizability beyond MND and FTD. Indeed, MAP

outputs brain maps that illustrate single-subject cortical involvement,

which can be used for personalized assessment and monitoring in MS

clinical routine.We end our investigationwith a demonstration of such

single-subject visualization.

2 METHODS

2.1 Subjects

In total, 465 relapsing-remitting MS (RRMS) patients and 89 HC were

included in this study (Table 1). Patients were diagnosed according to

the 2017 revisions of the MacDonald criteria (Thompson et al., 2018).

3DT1wMPRAGE imageswere acquired at theKlinikum rechts der Isar

of the Technical University of Munich on one of two 3.0 T whole body

PhilipsMRI scanners (1)AchievadStream, (2) Ingeniawith identical scan-

ning parameters: 267 sagittal slices, field of view = 240 × 252 mm2,

spatial resolution=1.00mm3, repetition time=9ms, echo time=4ms,

flip angle = 8◦, and acquisition time = 2 min 25 s. Moreover, demo-

graphic data, including age and gender were recorded. For patients,

additionally disease duration, EDSS scores and the dominant hand

were assessed at a time point close to the MR session (±1 week) by a

certified neurologist. All subjects had given informed consent to the

use of their data for research purposes. The study procedures fol-

lowed safety guidelines for MRI research at the Technical University

of Munich, which are in line with the Declaration of Helsinki and were

approved by the local ethics committee. Demographic variables includ-

ing age means and gender distributions between RRMS and HC were

performed usingWelch’s two-sample t-tests andChi-squared testwith

Yate’s continuity correction.

2.2 Neuroimaging data analysis

2.2.1 Preprocessing

The idea of this study was to evaluate and compare three differ-

ent commonly used strategies for assessing GM variations, as well as

to document impacts of smoothing and methods to correct for the

multiple comparisons problem (Figure 1). As such, we preprocessed
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F IGURE 1 Study objective. The current work contrasted different strategies for assessing graymatter (GM) variations in relapsing-remitting
multiple sclerosis (RRMS) patients. In specific, we compared different metrics for calculating GMdifferences (cortical thickness [CT], GM
concentration via VBM, GM volume via CAT12), smoothing (no smoothing, σ= 2/3/4mm), and correctionmethods for multiple comparisons
(threshold-free cluster enhancement [TFCE]- vs. false discovery rate [FDR]-correction). In addition, we considered themosaic approach (MAP), a
method to assess CT differences based on parcellation the cortex into smaller subregions and, for individual patients, calculating whether or not
that parcel was significantly thin as compared to a healthy control (HC) control group.We evaluated both group-level comparisons (by inspecting
statistical output maps between the combinations) as well as individual-level comparisons (by investigating which combination correlated best
with lesion volume [LV] on the one hand and expanded disability status score [EDSS] on the other hand). CAT12, computational anatomy toolbox,
version 12 (used for calculating GM volume); VBM, voxel-basedmorphometry (used for estimating GM concentration).

structural data for all subjects using three different analysis pipelines

to calculate (a) CT, (b) VBM, which reflect aspects related to GM

concentration, and (c) GM volume (using the computational anatomy

toolbox [CAT12]). To calculate CT, we startedwith a full image segmen-

tation and surface reconstruction using FreeSurfer’s recon-all pipeline

(Dale et al., 1999; Fischl, 2012; Fischl et al., 1999). These data were

then converted to theCIFTI format to improve visualization and down-

stream data handling (Dickie et al., 2019). The main output from this

pipeline for our study was a file which estimates CT at each of 32k

vertices per hemisphere for each subject. VBM was calculated within

FMRIB’s Software Library (FSL) (Jenkinson et al., 2012), after running

its structural processing algorithm fsl_anat. We calculated voxelwise

VBM maps for each patient within FSL (using the software’s standard

recommendations, Good et al., 2002). Finally, GMvolumewas assessed

using the CAT12 toolbox from the SPM12 software package, also fol-

lowing the manual’s standard guidelines (Schmidt et al., 2012). Both

VBMandCAT12datawere thenwarped to theMNI1522mmstandard

space to enhance group-level comparisons. Finally,WM lesion segmen-

tationwas performedusing the lesion growth algorithmof LST toolbox,

which outputs an estimate of a given subject’s total lesion volume (LV),

among others.

2.3 Smoothing

One goal of this study was to document effects of different smooth-

ing factors on the preprocessed data on statistical comparisons. In

brief, the rationale behind smoothing is to account for inaccuracies in

spatial registration as well as increase the signal-to-noise ratio (SNR,

e.g., Hopfinger et al., 2000, who published a comprehensive analysis of
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TABLE 1 Demographic details of the study populations.

RRMS patients HC Group differences (W+/C2++)

Total number of subjects 465 89 n.a.

Age [y, mean± SD] 40.14± 9.94 37.36± 15.06 W: t(103.16)= 1.67,

p= .10

Sex, F/M 305/160 59/30 C2 : χ2(1,N= 554)= 3.27e− 5,

p= .995

Dominant hand, R/L 408/57 n.a. n.a.

Average whole brain cortical thickness [mm,

mean± SD]

2.35± 0.09 2.41± 0.11 W: t(113.31)=−4.60,

p< .001*

Lesion volume [mL, mean± SD] 5.39± 8.41 n.a. n.a.

EDSS score [median (IQR)] 1.50 (2.00) n.a. n.a.

Disease duration [y, mean± SD] 8.65± 5.16 n.a. n.a.

Note: + =Welch two-sample t-tests were performed to test differences of age and years of education between all patients versus HC, ++ = Chi-square tests

were performed to test differences of sex and handedness frequencies between all patients versus HC.

Abbreviations: C2, Chi-square test; EDSS, expanded disability status score; F, female; HC, healthy control; L, left-handed;M,male;ml, milliliter;MRI,magnetic

resonance imaging; MS, multiple sclerosis; N, sample size; n.a., not applicable; R, right-handed; RRMS, relapsing-remitting MS; SD, standard deviation; W,

Welch two-sample t-test; y, years.
*Significant at an alpha-level of p≤ .05.

smoothing effects on fMRI data). In total, we contrasted four different

smoothing factors, namely, (a) no smoothing (σ=0mm), (b)σ=2mm, (c)

σ = 3 mm, and (d) σ = 4 mm. Notice that commonly, smoothing factors

are provided as full-width at half maximum (FWHM) Gaussian ker-

nels, which can be directly calculated from sigma by multiplying with a

factor of approximately 2.3548, such that, for example, σ=2mm trans-

lates into a Gaussian kernel FWHM = 4.7096 mm. We applied those

smoothing factors to the outputs of all three structural preprocessing

pipelines,whereasweused tools fromWorkbench (Glasser et al., 2013;

Marcus et al., 2011) for the surface-based CT data and tools from FSL

(Jenkinson et al., 2012) for smoothing volumetric-based data, that is,

VBM and CAT.

2.4 Cortical parcellation

As specified above, one rationale behind smoothing is to boost SNR

and therefore statistical power. Alternatively, one can increase power

by reducing the number of statistical comparisons, for example, by

averaging across neighboring data points (Tahedl, 2020). This “parcel-

lationmethod” has been suggested previously forCTdata andhas been

demonstrated toyield clinically relevant information for variousneuro-

logical conditions such as ALS (Tahedl et al., 2021) and FTD (McKenna

et al., 2022). However, these studies did not interrogate effects of dif-

ferent CT parcellation schemes but have used a cortical parcellation

of N = 1000 “patches” (in total for both hemisphere), using predefined

and roughly equally sized atlas regions (Schaefer et al., 2018). Here, we

considered 10 different parcellation schemes (from N = 100 to 1000

patches in steps of N = 100), as well as no parcellation (i.e., each ver-

tex is its own “patch,” such that N = 59,234 patches). The parcellation

schemes were taken from work by Schaefer et al. (2018), analogous to

the original studies suggesting the parcellationmethod.

2.5 Group-level statistics

2.5.1 Study design: “Standard approaches”

We were interested in effects of different “standard approaches”

to assess GM variations both on group-level statistical comparisons

as well as individual-versus-group statistical comparisons. All statis-

tics (but for the CT parcellation, see below) were run within FSL

using it is randomize tool (notice that CT data were converted tem-

porarily to NIFTI data using tools from Workbench to ensure com-

parability with FSL algorithms). For all three standard approaches

of assessing GM alterations, we limited our contrasts to a GM cor-

tical mask (see Figure 2A). We used general linear models (GLM),

corrected for age and gender, for both group-level and individual-

versus-group statistics. For the group-level statistics, we set up the

design matrix as a two-group difference comparison, whereas for

the individual-versus-group comparisons we set up the design matrix

as “Singleton-versus-Group” or “Prediction-Interval-Test” (following

FSL’s recommendations/terminology on setting up GLMs), which is

basically the same test as specified for the group contrast when one

group has exactly one subject in it, that is, in our case the respective

RRMS patient (which was tested against N = 89 HC and run for each

patient separately). Both comparisonswere adjusted for the covariates

age andgender. Asweweremerely interested inGMvariations indicat-

ing atrophy, we ran one-sided testing and considered only the contrast

MS<HC.
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(a) (b) (c) (d)

F IGURE 2 Group-level comparison of cortical thickness (CT). Contrasting CT between relapsing-remittingmultiple sclerosis (RRMS) and
healthy control (HC) for different neuroimaging parameters, we found that family-wise error (FWE)-correction yields “cleaner” output maps as
compared to false discovery rate (FDR)-corrected statistical maps (compare left vs. right columns on A–D). In addition, no smoothing (a) almost
suppressed any significant results for FWE-correction, smoothing kernels of σ= 2mm (b), 3 mm (c), and 4mm (d) produced clearly definedmaps of
graymatter (GM) variations, centered around the left, and right insular/temporal cortices. TFCE, threshold-free cluster enhancement.

2.5.2 Correction for multiple comparisons:
“Standard approaches”

We contrasted two common ways to account for multiple testing for

standard approaches, namely, (a) TFCE and (b) FDR. Although TFCE

can be directly applied with FSL’s randomize (notice that we used the

algorithm’s default settings, that is, 5000 permutations, among oth-

ers), FDR-correction canbe runon thep-mapsuncorrected formultiple

comparisons, which can be also output from randomize. Also, for latter

correction, we used FSL’s default settings (i.e., voxelwise-thresholding

at p≤ .05, 5000 permutations).

2.5.3 Study design: mosaic approach (MAP)

The study design for the MAP, that is, parcellating CT data and eval-

uating it with respect to HC, deviated from the standard approaches

given the rationale behind this strategy (which was to assess whether

a single subject’s patch is “significantly thin” as compared to a refer-

ence group). As suggested in the original MAP paper (Tahedl, 2020),

we started by averaging all vertices for each patch (of all 10 parcella-

tions) and subjects. TheHC group served as the reference group. Then,

each subject’s patch (both for patients and HC) was compared against

that reference group using nonparametric statistical permutation test-

ing with in-house software written in MATLAB, version R2022b (The

MathWorks), correcting for FWE (Nichols & Holmes, 2002). In brief,

we started by computing z-scores for each patch and patient, by rat-

ing each of a given patient’s patch versus those of the HC group. These

z-scores were then converted to p-values using a permutation proce-

dure to correct for the FWER: In brief, we shuffled the data (combing

the patient and their controls) under the null hypothesis of no differ-

encebetweenHCandpatient and calculated the respective z-scores on

each iteration (for each patch separately to account for the physiolog-

ical differences of thickness across the cortex, Tahedl, 2020). For each

patient, we applied an exhaustive permutation procedure, combining

all 89 HC and the respective patient. This resulted in a personalized,

nonparametric null distribution for each patient and patch. The p-value

was then defined as ratio between all z-scores in the null distribu-

tion smaller than the observed patient’s z-score and the number of

iterations.We set the pFWER-value to pFWER ≤ .05.

2.6 Assessing clinical relevance for individual
data

One major focus of this study was to evaluate which of the analyzed

strategies for assessing GM variations yielded clinically relevant infor-

mation on an individual patient level. As such, we set up a correlation

analyses which analyzed the association between the respective anal-

ysis strategy (i.e., each combination of GM metrics, smoothing factor

and correction method, as well as MAP) and two clinical variables that

cover both structural disease burden (by incorporating LV as DV), as

well as functional deficits (by considering EDSS scores as DV). We set

up separate correlation analyses for the GMmetrics/clinical variables.

Notice that to quantify GM changes for a single subject, we used a

scalar for each patient as metric of interest which was simply the ratio

of all voxels/vertices (smoothed data) or patches (MAP) which were

found to be significantly “thin”—suggestive of atrophy—by the above-

specified methods (notice that the reference for that ratio calculation

was the cortical mask shown in Figure 2a).

To assess differences between the alternative methods employed,

we ran analyses of variance (ANOVA) in each step of the analy-

sis stream as shown in Figure 1, that is, we tested three specific

hypotheses with regard to correlation with the dependent clinical

variables LV/EDSS: (1) GM changes are not equally correlated to LV

and EDSS (testing for differences of correlations with the dependent
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variables, regardless of the strategy for computing GM changes). (2)

There is a difference of the “approach” (testing for differences of [any]

standard approach vs. [any] MAP parcellation scheme). (3) Smooth-

ing/parcellation in generalmakes a difference (testing no smoothing vs.

any smoothing for the standard approaches and no parcellation vs. any

parcellation forMAP).

Where applicable, we followed up significant ANOVA results in post

hoc pairwise comparison using Tukey’s Honest Significant Difference

(HSD) tests with adjusted p-values, correcting for FWER. These cor-

relation analyses, ANOVAs, and Tukey HSD tests were all run within

RStudio (using R version 4.2.2, 2022, RStudio Team, 2022), which was

also used for figure conception.

2.7 Data availability statement

All presented group-level outputs, statistical maps, variable distribu-

tions, post hoc statistics, and additional information on data processing

pipelines can be requested from the corresponding author. However,

individual patient clinical and neuroimaging data cannot be made

available.

3 RESULTS

3.1 Demographics

Adequate age-matching of theRRMSandHCgroupwas suggested by a

nonsignificant comparison of agemeans between the two groups using

the Welch two-sample t-test (t(103.16) = 1.67, p = .10, see Table 1).

Similarly, the distribution of gender among the study groups did not

change significantly in a Chi-square test (χ2(1, N = 554) = 3.27e−5,

p = .995). The mean disease duration in the RRMS group was 8.65

years (SD ± 5.16). RRMS patients had thinner cortices as opposed

to HC (t(113.31) = −4.60, p < .001). LV was on average 5.39 mL

(SD ± 8.41 mL) in the RRMS group and the median EDSS score was

1.50 (IQR= 2.00), suggesting a relatively preserved patient group from

a clinical perspective.

3.2 Qualitative group comparisons suggest high
sensitivity of cortical thickness to detect gray matter
changes

Comparing the group contrasts qualitatively between the RRMS and

HC groups with respect to the metric used for assessing GM atrophy

(i.e., CT: Figure 2, VBM: Figure 3, CAT12: Figure 4), we noted that CT

(Figure 2) resulted in most data points of significant changes in the

RRMS group throughout the cortex, for all levels of smoothing. VBM

suggests GM changes in a very sharply defined region around the right

insula (Figure 3), whereas CAT12 failed to yield any significantly differ-

ent data points for the default alpha threshold (except for a few single

voxels at the right insular cortex for no smoothing, Figure 4). Only at

a more liberal alpha threshold (p ≤ .20) did we find “significant” vox-

els between the study groups,which roughlymatchedwith the location

found in the VBM contrast.

3.3 Focused gray matter changes of the right
temporal/insular cortices are found using different
methods

As noted above, the VBM contrast (Figure 4) suggested a very sharply

defined affected GM region in the RRMS group around in right insu-

lar cortex. Similarly, the liberally thresholded CAT12 contrast yielded

a region close to the one described in VBM with a slightly more lat-

eral location, making borders with the temporal lobe. Also, especially

the TFCE-corrected results of the CT comparison yield focused GM

changes around the bilateral temporal/insular cortices; however, the

affected areas found with CT contrasts covered wide parts of the

cortex, including bilateral parietal, frontal, and visual areas.

3.4 Smoothing enhances cleanliness but might
have an optimum

In terms of smoothing, the qualitative comparisons of the different

group contrasts (cf. columns in Figures 2–4, respectively) suggested

mainly two things: (1) Smoothing, in general, seems to slightly enhance

statistical power in that it results in a greater numberof statistically dif-

ferent data points, regardless of the metric and/or correction method

applied. (2) Statistical power and extent of smoothing seem not to

be linearly correlated, that is, ever-more smoothing does not guaran-

tee higher statistical power. This is evident, for example, in the VBM

contrast comparing σ = 3 mm, Figure 3c, versusσ = 4 mm, Figure 3d.

When using σ = 4 mm, the significant result constituted fewer data

points, and those data points yielded higher p-values than for σ=3mm.

This suggests an optimum of smoothing with loss of statistical power

for both increases and decreases of smoothing extent from that

optimum.

3.5 TFCE-correction outputs relatively more and
cleaner results as compared to FDR

Comparing correction methods for multiple comparisons on assessing

GM differences between the groups, we noted that TFCE seems supe-

rior in terms of statistical power. Two main observations support this

claim: (1) FDR-corrected p-values for VBM and CAT12 data did not

yield any significant data points at all (and are therefore not shown

in Figures 3 and 4) and (2) when FDR-correction did show significant

differences as with CT data (Figure 2, right columns), the results were

much more spread across the cortex and not as clearly defined as

TFCE-corrected results for all levels of smoothing.
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8 of 16 TAHEDL ET AL.

(a) (b) (c) (d) (e)

F IGURE 3 Group-level comparison of voxel-basedmorphometry (VBM). Contrasting VBMbetween relapsing-remittingmultiple sclerosis
(RRMS) and healthy control (HC) for different neuroimaging parameters, we found that false discovery rate (FDR)-correction (not shown)
suppressed any significant results for all levels of smoothing. Therefore, we only show family-wise error (FWE)-correctedmaps here. Part (a)
shows the cortical mask to which we limited our statistical comparisons. All levels of smoothing suggested that a region in the deep right temporal
lobe around the parahippocampal gyrus was affected in RRMS as compared to HC. However, although no smoothing (b) and extreme smoothing (e)
showed relatively little significant voxels, moderate smoothing (c and d) yieldedmore clearly defined problematic regions in RRMS. The statistical
maps are show on theMNI152 2mm standard template at voxel location 36-60-17. GM, graymatter; TFCE, threshold-free cluster enhancement.

(a) (b) (c) (d)

F IGURE 4 Group-level comparison of graymatter (GM) content. Contrasting CAT12 between relapsing-remittingmultiple sclerosis (RRMS)
and healthy control (HC) for different neuroimaging parameters, we found that false discovery rate (FDR)-correction (not shown) suppressed any
significant results for all levels of smoothing. Therefore, we only show family-wise error (FWE)-correctedmaps here. However, also
FWE-correction suppressed almost any significant results at the alpha-level p≤ .05 (left columns in a–d). The only exceptions were a few
significant voxels for no smoothing (a) at the right insular cortex (red circle). As we chose amore liberal threshold (p≤ .20, right columns in a–d), we
found this same region to be affected for all levels of smoothing, supplemented bymore regions in the right temporal/insular cortex (orange
circles). However, notice that more smoothing (d) also introduced noisy regions (cf. yellow circles in the axial slices of b–c). The statistical maps are
show on theMNI152 2mm standard template at voxel location 27-56-44 for pFWER ≤ .05 (left columns) and at 25-63-28 for pFWER ≤ .20 (right
columns). CAT12, computational anatomy toolbox, version 12 (used for calculating GM content); TFCE, threshold-free cluster enhancement.
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TAHEDL ET AL. 9 of 16

F IGURE 5 Group-level comparison of themosaic approach (MAP). We investigatedMAP, a strategy to assess graymatter (GM) variation
based on identifying, for single relapsing-remittingmultiple sclerosis (RRMS) patients, which cortical parcels (averaged across all data points
constituting that parcel) of a predefined parcellation scheme varied significantly from a healthy control (HC) control group.We ran nonparametric
group-level statistics on these individual statistical maps for 10 different parcellation schemes as well as no parcellation (leftmost column).
Although no parcellation produced a rather noisy map, the parceled data suggested GMdamage in widespread cortical regions, focused around
the bilateral temporal/insular cortices as well as the Somatomotor cortices. Moreover, higher resolution parcellation (i.e., moving rightwards in the
figure) producedmore clearly defined output maps.

3.6 MAP yields qualitatively similar results as
compared to standard approaches

As we inspected the group-level comparisons of MAP (Figure 5), we

made threemain observations: (1) As the resolution of theMAPparcel-

lation increased (i.e., the more parcels the cortex was divided into), the

results became finer (e.g., compareN= 100 in Figure 5withN= 1000).

However, no parcellation (i.e., treating each vertex as its own parcel,

which is analogous to N = 59,234 parcels or “no smoothing”) output

a rather random map, which is clinically hard to interpret. Finally, (2)

the topography of the affected region stays similar as the parcellation

gets finer and is similar to the “standard approach” non-parceled CT

group contrast (Figure 2), with affected regions throughout the cortex

including temporal/insular cortices.

3.7 MAP yields highest correlations with clinical
variables

Onemain rationale of this study was to evaluateMAP versus standard

approaches for their clinical relevance. We defined “clinical relevance”

twofold, namely, (1) LV, to cover structural damage and (2) EDSS, to

cover functional deficits. As we compared all combinations of GM

metrics/smoothing/correction methods (Table 2), we made three main

observations according toour hypotheses (Figure 6, Table 2): (1) In gen-

eral, GM variation was stronger associated with LV as compared to

EDSS score (F(3,66) = 41.32, p < .001); compare general level of cor-

relations values in Figure 6a vs. b. (2) MAP yielded higher correlations

to both LV and EDSS as any of the standard approach combinations

(ANOVA: F(3,66) = 24.64, p < .001; post hoc Tukey HSD: MAP vs. CT:

padj = .005,MAP vs. VBM: padj < .001, andMAP vs. CAT12: padj < .001).

(3) For the “standard approaches,” there was no statistical difference

for smoothing (F(1,46) = .388, p = .54). Similarly, for MAP, the ANOVA

suggested no significant difference for the specific parcellation scheme

used (F(10,11)= .03, p= 1.00).

4 DISCUSSION

In the present study, we sought to compare different neuroimag-

ing strategies for assessing cortical GM variations in RRMS patients

as compared to HC. We centered our analysis around a previously

suggested method to appreciate individual cortical disease burden

in MND and FTD, namely, the MAP, which is based on estimating

individual cortical burden with respect to referencing CT data with

respect to HC. We evaluated the utility of MAP in MS by compar-

ing its performance against existing approaches to compute individual

cortical disease burden (“standard approaches”): Specifically, we inves-

tigated three aspects of calculating GM variability, namely, (1) the

neuroimaging metric per se (we contrasted three commonly used GM

metrics in the neuroimaging community, CT, and GM concentration

(via VBM) and GM volume), (2) the smoothing factor (no smooth-

ing and σ = 2/3/4 mm), and (3) the correction method for multiple

comparisons (FWER vs. FDR corrections). We ran group comparisons

between RRMS and HC groups and qualitatively compared the result-

ing statisticalmaps. In addition to these “standard approaches,”we also

consideredMAP, a recently introduced method for assessing GM vari-

ation as CT differences on an individual patient’s level (Tahedl, 2020;

Tahedl et al., 2021), which is based on subdividing the cortex into sev-

eral subregions, then averaging across all data points constituting that

parcel and hence checking for an individual patient whether or not

that parcel’s observed CT significantly varies from a HC population.

In total, we contrasted 10 such parcellation schemes (ranging from

N = 100 to 1000 parcels in steps of 100, as well as no parcellation).

Wecomputedgroup-level statistics on the individual patient’s parcella-

tions using nonparametric statistical testing and inspected qualitative
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10 of 16 TAHEDL ET AL.

TABLE 2 Correlation values of individual study.

Outcome variable Graymatter metric Correctionmethod

Smoothing (sigma)/

parcellation number Correlation (Pearson’s r)

LV CT FWE 0 .525

LV CT FWE 2 .513

LV CT FWE 3 .471

LV CT FWE 4 .469

LV CT FDR 0 .502

LV CT FDR 2 .49

LV CT FDR 3 .472

LV CT FDR 4 .456

LV VBM FWE 0 .265

LV VBM FWE 2 .485

LV VBM FWE 3 .457

LV VBM FWE 4 .405

LV VBM FDR 0 .209

LV VBM FDR 2 .453

LV VBM FDR 3 .401

LV VBM FDR 4 .364

LV CAT12 FWE 0 .235

LV CAT12 FWE 2 .224

LV CAT12 FWE 3 .207

LV CAT12 FWE 4 .205

LV CAT12 FDR 0 .188

LV CAT12 FDR 2 .142

LV CAT12 FDR 3 .134

LV CAT12 FDR 4 .137

LV MAP Perm 0 .583

LV MAP Perm 100 .505

LV MAP Perm 200 .529

LV MAP Perm 300 .53

LV MAP Perm 400 .537

LV MAP Perm 500 .54

LV MAP Perm 600 .547

LV MAP Perm 700 .552

LV MAP Perm 800 .549

LV MAP Perm 900 .558

LV MAP Perm 1000 .55

EDSS MAP Perm 0 .369

EDSS MAP Perm 100 .327

EDSS MAP Perm 200 .346

EDSS MAP Perm 300 .354

EDSS MAP Perm 400 .349

EDSS MAP Perm 500 .359

EDSS MAP Perm 600 .355

EDSS MAP Perm 700 .367

(Continues)
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TAHEDL ET AL. 11 of 16

TABLE 2 (Continued)

Outcome variable Graymatter metric Correctionmethod

Smoothing (sigma)/

parcellation number Correlation (Pearson’s r)

EDSS MAP Perm 800 .368

EDSS MAP Perm 900 .374

EDSS MAP Perm 1000 .374

EDSS CT FWE 0 .126

EDSS CT FWE 2 .137

EDSS CT FWE 3 .137

EDSS CT FWE 4 .132

EDSS CT FDR 0 .129

EDSS CT FDR 2 .129

EDSS CT FDR 3 .117

EDSS CT FDR 4 .129

EDSS VBM FWE 0 .158

EDSS VBM FWE 2 .271

EDSS VBM FWE 3 .245

EDSS VBM FWE 4 .234

EDSS VBM FDR 0 .156

EDSS VBM FDR 2 .235

EDSS VBM FDR 3 .196

EDSS VBM FDR 4 .212

EDSS CAT12 FWE 0 .03

EDSS CAT12 FWE 2 .028

EDSS CAT12 FWE 3 .019

EDSS CAT12 FWE 4 .028

EDSS CAT12 FDR 0 −.023

EDSS CAT12 FDR 2 .003

EDSS CAT12 FDR 3 .001

EDSS CAT12 FDR 4 .006

Note: Highest correlation values for EDSS and LV aremarked in bold.

Abbreviations: CAT12, computational anatomy toolbox, version 12; CT, cortical thickness; EDSS, expanded disability status score; FDR, false discovery rate;

FWE, family-wise error; LV, lesion volume;MAP, mosaic approach; Parc, parcellation; Perm, permutation; VBM, voxel-basedmorphometry.

differences between MAP and the “standard approaches” and effects

of more high-resolution parcellation schemes. Finally, we investigated

differences of the analyzed strategies (including all combinations of

standard approaches as well as MAP) on correlations to clinically rel-

evant outcome variables on for individual patient’s, namely, LV and

EDSS. For the (qualitative) group comparisons, we showed that CT

produced most sensitive statistical maps, showing widespread GM

changes in the RRMS group. VBM and CAT12 only indicated very

focused changes around the temporal/insular cortices, which how-

ever was only detectable with a more liberal alpha threshold for

some combinations. For the individual analysis, it turned out that the

MAP method yielded higher correlations than any combination of the

standard approaches for both LV and EDSS. However, LV was higher

correlated to GM changes as compared to EDSS scores. Although an

ANOVA suggested no differences for the specific parcellation scheme

applied for MAP, from a qualitative point of view, higher resolution

parcellation schemes output sharper defined individual atrophy maps

and might therefore be more interesting for clinical interpretation.

Another aspect whichmakesMAP interesting for clinical application is

its potential for straightforward visualization of personalized atrophy

maps (e.g., Figure 7).

4.1 Widespread gray matter atrophy in multiple
sclerosis with a focus of right temporal regions

Although this study was primarily of methodological interest, we

want to briefly discuss the atrophy patterns identified. In particu-

lar, the CT comparisons indicated widespread cortical atrophy in the

RRMS patient group as compared to HC. This is in line with previous
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12 of 16 TAHEDL ET AL.

F IGURE 6 Comparingmethods to assess graymatter (GM) changes for clinical relevance. We sought to assess which combination of
“standard approach” strategies to calculate GM variations (i.e., cortical thickness [CT], voxel-basedmorphometry [VBM], CAT12 || smoothing of
σ= 0/2/3/4mm || correction for multiple comparisons as threshold-free cluster enhancement [TFCE] or false discovery rate [FDR]) and/or the
mosaic approach (MAP), that is, a method based on parcellating the cortex and calculating which of those parcels deviated from a control
population for single patients, yielded highest correlations with two clinically relevant variables, namely, lesion volume (a) expanded disability
status scores (EDSS) (b).We found that theMAP yielded higher correlations than any combination of the standard approaches for both lesion
volume (LV) (green crosses in a) and EDSS (green crosses in b), whereas the benefits for higher resolution parcellation schemes are neglectable in
terms of such quantitative clinical relevance (as opposed to qualitative relevance as demonstrated in this figure, where higher resolution
parcellation scheme producesmore sharply defined and thus clinically interpretable output maps). Among the standard approaches, family-wise
error (FWE)-correction (red symbols) produced higher correlations versus FDR-correction (blue symbols). In terms of smoothing, we found that
smoothing in general improved correlations, ever-more smoothing impaired the results (cf. moving right-ward on the subpanels). CT (circles) was
observed to correlate higher with LV, whereas VBM (triangles) yielded higher correlations with EDSS, and both thosemetrics exceeded GM
content (i.e., CAT12, squares). In general, GM variation was stronger correlated with LV as compared to EDSS scores (comparemean levels of all
symbols in a vs. b). CAT12, computational anatomy toolbox, version 12 (used for calculating GM content); HC, healthy controls; RRMS,
relapsing-remittingmultiple sclerosis.

F IGURE 7 Visualizing themosaic approach (MAP) for individual patients. In addition to theMAP producingmore clinically relevant maps of
affected graymatter (GM) for single relapsing-remittingmultiple sclerosis (RRMS) patients versus healthy control (HC) (e.g., Figure 6), this method
is well-suited for visualizing individual maps of GMdamage. Here, we show the results for amildly affected 36-year old female patient (EDSS= 1.5,
LV= 0.88mL). Even for this clinically mildly affected patient, especially the higher resolutionmaps (i.e., moving rightwards on the figure) suggest
established GMdamage, focused on the right temporal and premotor cortices. EDSS, expanded disability status score; LV, lesion volume.

studies demonstrating both baseline and progressive widespread cor-

tical atrophy in MS (Bergsland et al., 2012; Hidalgo de la Cruz et al.,

2021; Narayana et al., 2012; Sailer et al., 2003; Tillema et al., 2016;

Tsagkas et al., 2020). Intriguingly, recent work suggests that the topo-

graphical patterns of atrophy are nonrandom but that there is an

anatomical organization principle to atrophy patterns (Steenwijk et al.,

2016). Of note, the locations ofWM lesions, more specifically the con-

nected cortical somata, have been found to be strongly correlated

(Bussas et al., 2022). Interestingly, we found such widespread differ-

ences primarily using CT methods; cortical GM content and volume

methods suggested a focus on the temporal cortex. Interestingly, tem-

poral atrophy is related to cognitive decline inMS (Tillema et al., 2016),

and—via the association to the limbic system—is affected in the early

disease course (Audoin et al., 2010). This is in line with the present
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study’s patient population who yield relatively short disease duration

(8.65 years ± 5.16), which suggests that the CT parcellation method

is more sensitive to detect subtle differences as opposed to the stan-

dard approaches, whichmight become clinically relevant later on in the

disease course.

4.2 The potential of MAP as a clinically relevant
biomarker in MS and beyond

The main takeaway from this study is that we provide evidence that a

clinically relevant biomarker for MS is particularly constructable from

parcellated CT data, as realized in the MAP method, which can be (1)

easily calculated, (2) applied to, and (3) interpreted for single patients.

All of these three characteristics are fundamental for clinical trans-

lation of biomarker. Of note, we provide evidence that MAP—that

is, referencing single subject’s high-resolution parcellation scheme of

the CT data and interpreting distinct patches with respect to a refer-

ence group—yields higher correlations with external clinical metrics,

namely, LV and EDSS, and might therefore be a promising strategy

for quantifying and interpreting GM atrophy in individual patients

usingMRI. These observations suggest the generalizability of theMAP

method—which we have previously shown to be clinically relevant in

MND and FTD (McKenna et al., 2022; Tahedl et al., 2021, 2022)—also

toMS, where it might help fill the need for a personalized biomarker to

appreciate single-patient cortical involvement (Amiri et al., 2018).

4.3 Limits

Although the results of the current study are promising for helping

the advancement of MAP a biomarker for estimating cortical dis-

ease burden, it comes with certain limits and should therefore be

interpreted with caution. First of all, we want to emphasize that we

are far from considering all documented strategies and correction

methods for assessing GM atrophy and therefore we cannot claim to

demonstrate MAP as “the ideal” biomarker. Moreover, our statistical

comparisons might suffer from an overall relatively small HC refer-

ence group (N = 89), which results in discretely distributed p-values in

permutation testing, aswedid, here,whichmight in turn hamper statis-

tical power (Nichols & Holmes, 2002). Also note that the original MAP

method suggests to further subdivide the HC reference groups into

smaller age- andgender-matches subgroups (Tahedl et al., 2021),which

we could not provide with the present reference group for its sample

size, as outlined above.Note that in thepresent study,weused an inter-

nal reference group to compute MAP, that is, patient and control data

were acquired at the same scanner using the same scanning parame-

ters. However, evidence from our previous work suggests that MAP

is also valid when using control data from external reference groups

acquired using different scanning parameters, such as theHCP (Tahedl,

2020) or the CamCAN repository (Tahedl et al., 2021). Indeed, recent

evidence further supports the validity of using external reference data

to assess single subject T1w data, which might however require a criti-

calmassof large-scale control data sets (Bethlehemet al., 2022). Larger

and more variable reference groups allow for testing with less dis-

crete distributions of p-values and hence enhance statistical power.

However, latter two limits might also be interpreted as a strength of

the study’s results since the fact that we did find differences suggests

strong effect sizes. Moreover, controlling for documented effects on

GMestimation related to technical influences, such asTI or the scanner

itself (Biberacher et al., 2016; Durand-Dubief et al., 2012), could not

be accounted for in this data set and needs to be further investigated

specifically for MAP. Importantly, the reliability of MAP needs to be

further evaluated, although some longitudinal reports for this method

exist, which at least provide some first evidence of validity of MAP

for monitoring clinical progression in ALS and PLS (Tahedl et al., 2021,

2022). Finally, and fundamental for any MS biomarker, is that a metric

purely based on cortical disease burden cannot reflect the complexity

of the pathology, which—as outlined throughout this manuscript—

manifests widespread throughout the CNS, including WM, deep GM,

and spinal cord. Nevertheless, we provided evidence that the purely

cortical biomarker MAP does transfer clinically relevant information

in MS and is therefore a candidate biomarker for monitoring aspects

of MS disease state/progression as well as serving as a target for clin-

ical trials. Future studies will need to further refine and investigate

MAP to help its translation into daily neuroradiological clinical routine,

both for MS and other conditions with cortical involvement—including

MND and FTD, for which the method was already adopted—especially

in terms of longitudinal reliability and validity, to reach the critical

need for a personalized biomarker reflecting single-patient cortical

involvement (Amiri et al., 2018).

5 CONCLUSIONS

The present study investigated different methods to assess cortical

disease burden for individual MS patients. We found that the mosaic

approach or “MAP”—a relatively novel biomarker based on estimat-

ing cortical disease burden using CT estimations from high-resolution

parcellation schemes—yields high potential for a clinically relevant

biomarker in MS, outperforming existing methods to compute corti-

cal disease burden in single patients. Of note, MAP outputs brain maps

illustrating individual cortical disease burden which can be directly

interpreted in daily clinical routine.
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