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Abstract

Fibrillar protein aggregates are the pathological hallmark of a group of age-dependent

neurodegenerative conditions, including Alzheimer’s and Parkinson’s disease. Aggre-

gates of the microtubule-associated protein Tau are observed in Alzheimer’s disease

and primary tauopathies. Tau pathology propagates from cell to cell in a prion-like

process that is likely subject to modulation by extracellular chaperones such as Clus-

terin. We recently reported that Clusterin delayed Tau fibril formation but enhanced

the activity of Tau oligomers to seed aggregation of endogenous Tau in a cellular

model. In contrast, Clusterin inhibited the propagation of α-Synuclein aggregates asso-
ciatedwithParkinson’s disease. These findings raise thepossibility of amechanistic link

between Clusterin upregulation observed in Alzheimer’s disease and the progression

of Taupathology.Herewe review thediverse functions ofClusterin in the pathogenesis

of neurodegenerative diseases, focusing on evidence that Clusterin may act either as a

suppressor or enhancer of pathology.
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INTRODUCTION

The formation of protein aggregates within and around neurons is

a signature of age-dependent neurodegenerative diseases (NDs) and

dementias. Insoluble fibrillar (amyloid-like) deposits together with sol-

uble, oligomeric aggregate species are considered major toxic agents

driving pathology.[1,2] The aggregates consist of specific disease pro-

teins as the main component: α-Synuclein in Parkinson’s disease (PD)
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and other synucleinopathies, mutant Huntingtin in Huntington’s dis-

ease, amyloid-β (Aβ) inAlzheimer’s disease (AD), andTau in tauopathies

including AD.[1] Aggregate pathology typically initiates in disease-

specific brain regions, such as the substantia nigra in PD or the hip-

pocampus in AD. Extensive evidence indicates that the aggregates of

certain disease proteins (e.g., α-Synuclein and Tau) may then propa-

gate from cell to cell in a prion-like process that underlies disease

progression.[3,4] In this process, preexistent aggregate seeds catalyze

the aggregation of normal versions of the same protein through a tem-

plating mechanism[5] (Figure 1), resulting in a disease-specific pat-

tern of aggregate propagation through interconnected regions of the

brain.[6] However, unlike the humanprion disease, there is currently no

evidence to suggest that the aggregates found in other NDs are infec-

tious and transmissible between individuals or species, hence the use

of the term ‘‘prion-like’’.[7]
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F IGURE 1 Role of chaperones in amyloid protein aggregation and prion-like, transcellular aggregate propagation. Native proteins in the donor
cell (left) unfold or misfold, populating aggregation-prone states. Primary nucleation of amyloid fibril formationmay involve oligomer formation.
Oligomers are also generated at the surface of preexistent fibrils through secondary nucleation. Intracellular molecular chaperones (green)
interfere with amyloid aggregation at different stages, by preventing misfolding, oligomerization, primary and secondary nucleation, fibrilization
and fibril elongation. Chaperonesmay bind to oligomers or fibrils neutralizing their interactive surfaces (green thin arrows), suppressing aggregate
toxicity. Chaperones can also promote fibril fragmentation, forming seeds that can further propagate and template aggregation (red thin arrow).
Transcellular aggregate propagationmay involve the release of aggregates by donor cells directly into the extracellular space, secretion in
exosomes or ectosomes, or transport through intercellular nanotubes. Free seedmaterial in the extracellular space is substrate of extracellular
chaperones such as Clusterin, with different outcomes: Clusterin may neutralize seeds of α-Synuclein (α-Syn), but stabilize seeds of Tau.[14]
Aggregate seeds can be internalized from the extracellular space by recipient cells (right) through endocytosis, possibly in complex with
chaperone.[14] Aggregate seedsmay damage endolysosomal membranes and escape to the cytosol to induce aggregation of endogenous, native
protein. This templating process may be interfered with by intracellular chaperones

The prion-like spreading of pathological aggregates involves the

transport of seed aggregates between cells, either through tubular

intercellular connections, by secretion of seeds in exosome vesicles

or upon release into the extracellular space and uptake by recipient

cells[3,8] (Figure 1). Multiple mechanisms of aggregate spreading may

coexist, but the appearance of seeding-competent aggregates in free

form in the extracellular space iswell documented through their detec-

tion in cerebrospinal fluid (CSF).[9–12] Thus, it is plausible that aggre-

gate propagation is subject to modulation by extracellular chaperones

and quality control factors.[13] Using a cellular model of Tau aggre-

gate propagation, we recently found that the abundant extracellu-

lar chaperone Clusterin, while delaying Tau fibril formation, markedly

enhanced Tau aggregate seeding by stabilizing highly potent, solu-

ble seed species.[14] The pathophysiological relevance of these find-

ings remains to be established, but given its frequent upregulation

in AD,[15–17] Clusterin may conceivably contribute to promoting Tau

pathology.

Here we review possible roles of the extracellular chaperone Clus-

terin in the pathogenesis and progression of neurodegeneration with

a focus on AD and tauopathies. We discuss the effects of Clusterin on

protein aggregation and toxicity, as well as its functions in aggregate

clearance by glial cells and in suppressing neuroinflammation. As pro-

posed previously,[18–20] Clusterin appears to be a Janus-faced chaper-

one, acting either as a suppressor or enhancer of pathology, dependent

on specific disease context.

CLUSTERIN, AN UNUSUAL CHAPERONE

Clusterin (also known as ApoJ), encoded by the CLU gene, is a ubiq-

uitously expressed extracellular chaperone and apolipoprotein in all

vertebrates. It is abundant in plasma ( ̴100 to 200 μg/ml; 2 to 4 μM)

and CSF ( ̴ 2 to 6 μg/ml; 50 to 100 nM).[13,15,17,21–23] The name Clus-

terin derives from its identification as a cell-aggregating factor in ram

rete testis.[24] Clusterin is translated as a precursor protein of 449

amino acids containing a 22 amino acid signal peptide that is cleaved

during translocation into the endoplasmic reticulum (ER) (Figure 2A).

Once in the oxidizing environment of the ER, formation of five disul-

fide bonds followed by N-glycosylation generates pre-secretory Clus-

terin (psClu). psClu is then transferred to the Golgi apparatus where

it is further processed and cleaved by a furin-like protease resulting in

two chains (α and β) of ̴ 35 kDa, which remain disulfide-linked.[19,25]

The mature heterodimeric Clusterin is then secreted to the extracel-

lular space, with glycans comprising ̴ 30% of its mass[19] (Figure 2A).

Experimental structure determination of Clusterin has not succeeded

thus far, probably due to heterogeneity in glycosylation state and a
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F IGURE 2 Biogenesis of Clusterin and predicted structure. (A) Clusterin is synthesized as a precursor protein of 449 amino acids containing a
22 amino acid signal peptide (brown) that is cleaved during translocation into the endoplasmic reticulum (ER). Once in the ER, N-glycosylation
(gray circles) and formation of five intramolecular disulfide bonds (black lines) is thought to occur, resulting in pre-secretory Clu (psClu).
Subsequently, psClu is transferred to the Golgi apparatus where the N-glycans are further processed and psClu is cleaved by a furin-like protease,
resulting in two chains of similar size (α and β chains, light and dark green, respectively), which remain linked by the disulfide bonds. Themature
glycosylated heterodimeric Clusterin is then secreted to the extracellular space. Numbers represent amino acid positions. Modified from ref.[14]
(B) Predicted 3D-structure of Clusterin[27,28] (https://alphafold.ebi.ac.uk/entry/P10909). The structural model predicted with AlphaFold2 is
shown in ribbon representation in rainbow colors. The signal peptide is not represented. N- and C-termini are indicated. Disulfide bonds are
represented as spheres (silver, 1–5), N-glycosylation sites (N-Glyc) as sticks (magenta) and the Furin-like protease cleavage site in white. (C)
Surface conservation of the predicted Clusterin structure. The similarity score was calculated with the program ESPript[140] based on the
alignment of 10 representative Clu sequences and is shown as a color gradient frommagenta (invariant residue) to cyan (no conservation). Mainly
structurally important residues appear to be conserved

tendency of the protein to self-associate.[24,26] AlphaFold2[27,28] pre-

dicts an elongated, mostly α-helical structure of psClu, in which the

two chains are linked via five disulfide bridges in a globular domain at

one end of a central, mixed anti-parallel coiled-coil bundle (Figure 2B).

The regions containing the cysteines involved in disulfide bond forma-

tion are well conserved, while other parts of the protein are more vari-

able (PFAMnumber PF01093)[29] (Figure 2C). The predicted structure

agrees with the experimentally determined disulfide topology, and all

asparagine residues known to be glycosylated[30] are exposed to the

solvent. Consistently, the furin cleavage site maps to a long accessible

loop segment.

Clusterin is an ATP-independent chaperone with functional prop-

erties of a ‘‘holdase’’, similar to so-called small heat shock pro-

teins (sHSP).[31] Holdase chaperones bind and stabilize folding

intermediates and misfolded proteins against aggregation, but do

not actively promote refolding. Clusterin has been shown to pre-

vent or slow the formation of amorphous aggregates and amy-

loid fibrils as demonstrated for Aβ, α-Synuclein, Tau, and several

other proteins.[13,14,32–37] Clusterin has been proposed to interact

with client proteins via an as yet undefined ‘‘molten globule’’-like

domain(s).[38] In addition to its chaperone capacity, Clusterin func-

tions in sperm maturation,[39] cell differentiation,[40] regulation of

cell death and survival mechanisms,[41] and as an anti-inflammatory

inhibitor of the complement system.[42,43] Moreover, it is often over-

looked that Clusterin is an apolipoprotein (ApoJ) that has been iden-

tified in plasma high-density lipoprotein particles, suggesting a role

in lipid and cholesterol metabolism.[44] Indeed, together with ApoE,

Clusterin is one of the major apolipoproteins in the brain parenchyma,

but its role in lipid metabolism in the central nervous system (CNS) is

not well understood.[45] Although Clusterin lipidation status does not

seem to affect amyloid binding, it may modify the affinity of Clusterin

for cell surface receptors involved in uptake.[46,47]

While Clusterin is mainly located in the extracellular space, sev-

eral reports described the presence of intracellular Clusterin (iClu)

under specific stress conditions.[34,41,48–50] An increase in iClu levels

has been observed in neurons upon exposure to Aβ oligomers and has

been suggested to play a role in mediating Aβ toxicity.[51] The bio-

genesis and regulation of iClu has mainly been studied in certain can-

cer cells where it is abundant,[41] but its biogenesis is not well under-

stood. Although alternative splicing and alternative initiation codons

have been implicated, the mRNA species for these Clusterin isoforms

are of very low abundance. Rather, iClu appears to be generated pre-

dominantly by retrotranslocation from the ER or Golgi apparatus to

the cytosol under stress conditions. The differences in size and glyco-

sylation pattern found in iClu species are therefore likely to reflect dif-

ferentmaturation stages along the secretory pathway.[50] It is possible

that prematurely retro-translocated iClu retains chaperone activity, at

least partially, contributing to intracellular proteostasis.[26,34,50]

Clusterin expression is regulated by hormones, growth factors,

and cytokines. The CLU promoter contains multiple transcription

factor motifs, including a heat shock element from the cytosolic

heat shock response.[52,53] In addition, CLU is also regulated epi-

genetically by DNA methylation and histone deacetylation, and by

micro-RNAs.[53]

The wide range of ascribed functions and its complex regulation

make Clusterin a puzzling and enigmatic player in neurodegeneration.
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CLUSTERIN IN ALZHEIMER’S DISEASE

Researchovernearly threedecadespaints a complexpictureof the role

ofClusterin inADwith both neuroprotective and pathology-enhancing

effects having been reported.[14,18–20,32,35,46,51,54–64] AD is the most

common cause of dementia, characterized by two neuropathological

hallmarks: the deposition of extracellular amyloid plaquesmainly com-

posed of Aβ and the formation of intracellular neurofibrillary tan-

gles of the microtubule-associated protein Tau.[65] Clusterin has been

found to colocalize with both types of deposits.[35,66–68] Indeed, the

CLU gene ranks third among the genetic risk factors for late-onset

AD (LOAD), with genome wide association studies having identified

several single nucleotide polymorphisms (SNPs) linked to AD.[18,69–71]

While some rare, non-synonymous mutations have been suggested to

affectClusterin secretion,[72] other variantsmayaffectCLUalternative

splicing[73] and regulatory elements,[74–76] with complex effects on

Clusterin expression. LOAD risk variants of CLU have been associated

with either unchanged,[16,17] increased[73,75] or decreased[22,77] Clus-

terin levels in the brain, plasma or CSF of AD patients when compared

to AD patients with a normal CLU gene. Despite this complexity, there

is agreement that the LOAD risk variants of CLU are associated with

increased Aβ deposition[78] and accelerated cognitive decline.[79,80]

Interestingly, CLU variants have also been linked to changes in brain

connectivity and structure in healthy individuals, effects that could

precede clinical phenotypes.[81,82] Critical insights into themechanism

by which CLU variants promote LOAD may be gained using patient-

derived induced pluripotent stem cells (iPSCs) that can be differenti-

ated into neurons and other brain cells.

Importantly, Clusterin levels are often increased in the brain, CSF

and plasma of AD patients independent of the presence of CLU vari-

ants.Moreover, elevatedClusterin correlateswith greater severity and

more rapid disease progression.[15–17] Local Clusterin expression has

been observed to be associated with regional Aβ deposition[83,84] and
possibly with Tau pathology.[84] Remarkably, in healthy middle-aged

adults, a high level of plasma Clusterin is associated with a lower vol-

ume of the entorhinal cortex, a brain region that atrophies early in AD,

suggesting that plasma Clusterin may serve as a biomarker for preclin-

ical AD.[85] However, these findings leave open the question whether

elevated Clusterin levels are a consequence of pathology or a promot-

ing factor. Both the chaperone functionofClusterin inmodulating amy-

loid aggregation, toxicity and clearance, aswell as its anti-inflammatory

effect have the capacity tomodulate neurodegenerative pathology.

EFFECTS OF CLUSTERIN ON Aβ AND TAU
AGGREGATION

Clusterin has been detected in association with various disease

aggregates.[13] While its colocalization with Aβ deposits in the extra-

cellular spacehasbeen studiedextensively,[66,67] thephysiological con-

sequences of these interactions are not well understood. In support

of a beneficial effect, Clusterin was shown to inhibit Aβ aggregation

in vitro[32,54–57] and peripheral administration or overexpression of

Clusterin reduced total Aβ plaque load in AD mouse models.[46,58–60]

On the other hand, CLU knock out (KO) mouse models of AD dis-

played a reduction in oligomeric Aβ aggregates and plaques,[20,61]

especially at early stages of pathogenesis,[62] pointing to a possible

pro-amyloidogenic role of Clusterin. However, it has not been ruled

out that the loweroligomer concentration resulted fromcompensatory

effects in response to the CLU KO. Indeed, upregulation of multiple

pathways related to neurodegeneration has been reported in iPSC

derived CLUKOneurons[51] and in a CLUKOmousemodel.[86]

Amyloid fibrils form through a process of nucleation-dependent

polymerization[2,87] (Figure 1). Various intermediate aggregate species

have been characterized, including structurally ill-defined soluble

oligomers and prefibrillar species.[2,87] A key question with particu-

lar relevance in disease is to determine which of these species exert

direct cellular toxicity and/or propagate the pathological conforma-

tion as seeds in a prion-like manner. While soluble oligomers are

widely considered highly interactive and cytotoxic, insoluble aggre-

gates contribute to pathology by sequestering key cellular proteins and

physically displacing organelle structures.[2,88] Chaperones, includ-

ing Clusterin, can act at different stages of the aggregation pathway,

thereby modulating the levels of aggregate species and their toxicity.

They may interfere with primary nucleation by binding to misfolded

monomers or small oligomers, or inhibit fibril elongation by blocking

fibril ends. Chaperones may also block secondary nucleation, a pro-

cess in which oligomer formation is catalyzed on the surface of pre-

formed fibrils[89,90] (Figure 1). Prevention of aggregation is generally

cell-protective: binding of chaperones may shield exposed hydropho-

bic surfaces of oligomeric or prefibrillar aggregate species, thereby

impeding their ability to engage in aberrant interactionswith key cellu-

lar factors or disrupt cellularmembranes.[37,91,92] However, chaperone

intervention in the aggregation pathway, either by binding monomers,

intermediates or mature fibrils, may also shift the dynamic equilibrium

between aggregation intermediates, potentially promoting the accu-

mulation of toxic species or stabilizing seeding-competent aggregates.

Clusterin has been shown to inhibit primary and secondary nucleation

of Aβ oligomers, as well as fibril elongation,[32,54,57] thereby reducing

toxicity.[46,58,59,63] On the other hand, Clusterin has also been reported

to promote the formation of rare toxic oligomers[56,64] and to enhance

fibril formation when present at a very low molar ratio relative to its

substrate[32] (Figure 3).

Less is known about the potential role of Clusterin in Tau aggrega-

tion and toxicity, despite the fact that Tau pathology strongly corre-

lates with the severity of AD.[93] Tau is a microtubule-associated pro-

tein encoded by the MAPT gene that functions in maintaining micro-

tubule stability. Six different isoforms of Tau, generated by alternative

splicing, are expressed in the human CNS. They differ in the number of

N-terminal 29 amino acid inserts (0N, 1N, or 2N) and of microtubule-

binding repeat domains (3Ror 4R).[94] Accumulation of hyperphospho-

rylated Tau in neurons facilitates the formation of fibrillar aggregates

associated with AD and tauopathies (so-called neurofibrillary tangles

and neuropil threads). Specific tauopathies are linked with different

fibril conformations in which the repeat domains and the 10 to 13

amino acids following them adopt distinct amyloid folds.[95] In healthy
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F IGURE 3 Differential effects of Clusterin on Aβ, Tau, and α-Synuclein (α-Syn) aggregates. Clusterin (CLU, red, mainly secreted by astrocytes)
may interact with Aβ oligomers and deposits andwith Tau and α-Synuclein aggregates that have been released into the extracellular space.
Clusterin levels are elevated in AD, facilitating its interaction with these aggregates. Aβ-Clusterin complexes may be internalized by brain cells via
receptor-mediated endocytosis using potential Clusterin receptors, including LRP1, HSPGs, VLDLR, ApoER2, Plexin A4 (neurons, astrocytes and
microglia), LRP2 (neurons and astrocytes), and TREM2 (microglia), followed by lysosomal degradation. This function of Clusterin is mainly
beneficial, but may also facilitate the uptake of potentially toxic Aβ oligomers that Clusterin is unable to neutralize.[20,32,56,61,62,64] Tau aggregates
may be stabilized by Clusterin in a seeding-competent state.[14] These complexes may also be internalized in the sameway as Aβ complexes by
receptor-mediated endocytosis using Clusterin receptors. In addition, glial cells take up aggregates by phagocytosis.When the lysosomal system is
overwhelmed, degradation of Tau-Clusterin complexes becomes inefficient. Tau seedsmay escape from endocytic vesicles and template
aggregation of native Tau in neurons.[14] Incomplete digestion of aggregates by glial cells can lead to their secretion via exosomes, promoting
spreading. In contrast, Clusterin neutralizes α-Synuclein seeds and therefore, α-Synuclein-Clusterin complexes are unable to template aggregation
of endogenous α-Synuclein[14]

cells, quality controlmachineries including chaperonesHSP40, HSP70,

HSP90, and sHSPs normally function in preventing Tau aggregation,

but thesemechanisms apparently fail in disease.[96]

Clusterin has been shown to interfere with Tau aggregation in

vitro by extending the lag phase of fibril formation and slowing fibril

elongation.[14,35,36] However, as Tau aggregation is an intracellular

process, it would be unlikely to be affected by secreted Clusterin.

Yet intracellular Clusterin, accumulating under stress conditions,

could have a role in modulating Tau aggregation, consistent with a

recent study reporting aggravated Tau pathology in CLU KO mice.[35]

Regardless of a possible direct effect on aggregation of intracellular

Tau, we have recently made the surprising observation that Clusterin

can bind and stabilize Tau oligomers competent in seeding aggregates

of endogenous Tau upon uptake by neurons and cells in culture.[14]

This effect was specific to Tau, as Clusterin neutralized aggregate

seeds of α-Synuclein.
For Clusterin acting as a possible enhancer of the prion-like spread-

ing of Tau pathology, Tau aggregates have to be accessible in the extra-

cellular space. Tau and other neurodegenerative disease proteins may

reach the extracellular environment via release from dying cells or

upon active secretion by neurons, which may occur through a trans-

synaptic mechanism[8] or in a manner facilitated by chaperones, such

as the HSP40 protein DnaJC5.[97,98] Indeed, seeding-competent Tau

species have been detected in the CSF of AD patients[10,11] and Clus-

terin binding to Tau in patient brain has been reported.[68,99,100] Of

note, the concentrations of Clusterin used in the in vitro experiments
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demonstrating stabilization of Tau aggregate seeds[14] were substan-

tially higher (in the micromolar range) than those in CSF (nanomolar)

and thus further studies using CSF samples from AD patients will be

useful in assessing the effect of Clusterin on Tau aggregation and seed-

ing under more physiologically relevant conditions.

ROLE OF CLUSTERIN IN AGGREGATE CLEARANCE

Soluble extracellular waste, including oligomeric and prefibrillar amy-

loid species, is removed from the brain by various clearance systems.

Extracellular proteins such as Aβ can be degraded by extracellular pro-
teases or internalized by glial cells or neurons, followed by degradation

via the lysosomal pathway. In addition, clearance ofAβ and possibly Tau
through the blood brain barrier is an important mechanism to prevent

aggregate accumulation in the brain.[101]

Glial cells, such as microglia and astrocytes, have a pivotal role in

brain homeostasis, supporting neuronal function and survival. They

are also key regulators of inflammation in the CNS, a condition

often associated with neurodegenerative pathologies (see below).

Reactive microglia and astrocytes are located near Aβ plaques and

Tau inclusions[102] and are thought to mediate aggregate clearance

through phagocytosis as well as fluid-phase and receptor mediated

endocytosis, while neurons internalize oligomers and fibrillar species

of Aβ and Tau only through endocytosis[103–109] (Figure 3). Notably,

a fraction of internalized aggregates may escape from the endolyso-

somal pathway to the cytoplasm where they can act as seeds in tem-

plating aggregation of endogenous native protein[14,110,111] (Figure 1

and 3). Accordingly, glial cells are thought to be involved in propagat-

ing aggregation of Tau, Aβ and α-Synuclein.[103,112–118] The role of glial
cells in aggregate propagation could relate to failed attempts at degra-

dation, as incomplete degradation of aggregates has been suggested to

promote spreading.[103,114]

Clusterin binds to extracellular aggregates and promotes their

clearance via receptor mediated endocytosis.[14,99,119,120] Accord-

ingly, high levels of Clusterin have been suggested to be beneficial in

PD,[14,37,121] consistent with findings that Clusterin efficiently inter-

feres with aggregate seeding of α-Synuclein and its toxic effects[14,37]

(Figure 3). In contrast, a fraction of Clusterin-Tau complexes was found

to escape from endosomes upon uptake by HEK cells and cultured

neurons to induce the aggregation of endogenous Tau[14] (Figure 3).

The mechanism of Clusterin internalization is not yet clear. Multiple

potential receptors expressed on brain cells have been implicated in

mediating Clusterin uptake, including scavenger receptors,[119] hep-

aran sulfate proteoglycans (HSPGs),[120] apolipoprotein E receptor 2

(ApoER2), very low density lipoprotein receptor (VLDLR),[122] trigger-

ing receptor expressed on myeloid cells 2 (TREM2),[47] Plexin A4,[123]

and low density lipoprotein receptor-related proteins 1 and 2 (LRP1

and LRP2)[124–127] (Figure 3). TREM2 and PLXNA4 (encoding Plexin

A4) are both also risk factors for LOAD.[69,128] TREM2 variants linked

to LOAD present with impaired binding and uptake of Clusterin-Aβ
complexes, suggesting a protective role of TREM2 in Aβ clearance

via Clusterin.[47] Recent research has identified LRP1 as an endocytic

receptor for Tau uptake.[108,129] Interestingly, while LRP1 was shown

to efficiently bind and internalize monomeric Tau for lysosomal degra-

dation, it promoted seeding of endogenous Tau aggregation by uptake

of pathological Tau forms.[129] Stabilization of Tau seeds by Clusterin

may conceivably exacerbate this effect.

In summary, receptormediated-endocytosis of Clusterin-client pro-

tein complexes by neurons and glial cells may effectively clear α-
Synuclein and Aβ aggregates, but in the case of Tau may be asso-

ciated with the detrimental side effect of promoting aggregate

propagation.

FUNCTION OF CLUSTERIN IN
NEUROINFLAMMATION

While the neuroinflammatory response contributes to homeostasis

maintenance in the brain, a turning point in AD pathology is the tran-

sition from the physiological role of inflammation to chronic, maladap-

tive activation triggered by Aβ and Tau aggregation.[130] Several risk

genes for LOAD, including CLU, are involved in regulating the immune

response, providing support for the critical role of neuroinflamma-

tion in AD pathogenesis.[131] An upregulation of inflammation-related

genes in thebrain is generally observedduring normal aging, consistent

with age being the primary risk factor for developing AD.[130]

Microglia and astrocytes are key mediators of neuroinflamma-

tion in the CNS. These cells undergo transcriptional, morphologi-

cal, and functional changes and release pro- or anti-inflammatory

cytokines in response to external stimuli, such as the presence of

protein aggregates.[132] Clusterin is mainly expressed in the brain

by astrocytes[133] (Figure 3) and its expression is positively regu-

lated by several cytokines, including the anti-inflammatory TGF-β[134]

and the pro-inflammatory IL-1β,[135] which are secreted by activated

microglia.[132] Thus, inflammation is likely one of the triggers of Clus-

terin overexpression in AD. Interestingly, Clusterin in turn seems to

directly activate microglia, which would result in a positive feedback

loop contributing to maintaining the chronic state of microglial activa-

tion observed in AD.[136] Interestingly, activated microglia appear to

be more efficient in Tau internalization and promoting spreading than

quiescent microglia,[105,113] and microglial activation correlates with

propagation of Tau pathology.[137]

Clusterin exerts anti-inflammatory effects mainly by suppress-

ing complement activation.[42,43] Because synapse pruning by astro-

cytes and microglia during development involves the complement

system,[138] upregulationof complement proteins inADhasbeen asso-

ciated with synapse loss and cognitive decline.[139] Accordingly, inhibi-

tion of the complement system by Clusterin may be neuroprotective.

In support of this interpretation, astroglial overexpression of Clusterin

rescued synapse loss in CLU KO mice and reduced Aβ pathology and

synaptic deficits in the 5x familial AD (5xFAD)mousemodel.[60]

While similar basic mechanisms underlie the cellular pathology of

several neurodegenerative diseases associated with protein aggrega-

tion, the specific effects of Clusterin—whether protective or poten-

tially harmful—may vary. The general trend of Clusterin to be elevated
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in these diseases and its colocalization with amyloid aggregates sug-

gest that Clusterin is broadly involved in neurodegeneration.

CONCLUSIONS

The abundant extracellular chaperone Clusterin has become of major

interest in recent years, especially due to its association with AD, a

connection that remains incompletely understood. Clusterin is upreg-

ulated in AD and several other neurodegenerative diseases where it

colocalizes with the pathognomonic amyloid deposits. Clusterin mod-

ulates disease mechanism in a complex manner, including aggrega-

tion prevention, promoting aggregate clearance and anti-inflammatory

effects. However, these protective functions may eventually fail, for

instance when clearance mechanisms are overwhelmed, then possi-

bly allowing undesired activities of Clusterin in stabilizing seeding-

competent aggregates to come to the fore. Our recent findings from

cell culture models indicate that while Clusterin efficiently interferes

with α-Synuclein aggregation and aggregate propagation, it can poten-
tiate the seeding-activity of Tau aggregates, enhancing the conversion

of endogenous Tau into toxic aggregates upon uptake of Clusterin-

bound Tau seeds by recipient cells (Figure 3). These results in combina-

tion with previous findings support the view that Clusterin is a Janus-

faced chaperone,[18–20] having both beneficial functions in suppressing

aggregation and potentially detrimental activities in promoting aggre-

gate pathology, dependent on specific disease context. Future stud-

ies employing organoids and animal models will be required to define

the effect of Clusterin on Tau aggregate spreading in disease. These

experimental models will also help to understand the contribution of

different brain cell types, such as glial cells, to aggregate spreading.

Finally, cellular and animal models combining Aβ plaques and Tau tan-

gles would provide most relevant insight into the complex role of Clus-

terin in AD.
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