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Abstract
Background The current diagnostic workup for chronic dizziness in elderly patients often neglects neuropsychological 
assessment, thus missing a relevant proportion of patients, who perceive dizziness as a subjective chief complaint of a con-
comitant cognitive impairment. This study aimed to establish risk prediction models for cognitive impairment in chronic 
dizzy patients based on data sources routinely collected in a dizziness center.
Methods One hundred patients (age: 74.7 ± 7.1 years, 41.0% women) with chronic dizziness were prospectively character-
ized by (1) neuro-otological testing, (2) quantitative gait assessment, (3) graduation of focal brain atrophy and white matter 
lesion load, and (4) cognitive screening (MoCA). A linear regression model was trained to predict patients’ total MoCA 
score based on 16 clinical features derived from demographics, vestibular testing, gait analysis, and imaging scales. Addi-
tionally, we trained a binary logistic regression model on the same data sources to identify those patients with a cognitive 
impairment (i.e., MoCA < 25).
Results The linear regression model explained almost half of the variance of patients’ total MoCA score (R2 = 0.49; mean 
absolute error: 1.7). The most important risk-predictors of cognitive impairment were age (β = − 0.75), pathological Romb-
erg’s sign (β = − 1.05), normal caloric test results (β = − 0.8), slower timed-up-and-go test (β = − 0.67), frontal (β = − 0.6) 
and temporal (β = − 0.54) brain atrophy. The binary classification yielded an area under the curve of 0.84 (95% CI 0.70–0.98) 
in distinguishing between cognitively normal and impaired patients.
Conclusions The need for cognitive testing in patients with chronic dizziness can be efficiently approximated by available 
data sources from routine diagnostic workup in a dizziness center.
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Introduction

Current classifications of vestibular disorders almost exclu-
sively list peripheral neuro-otological disorders such as 
bilateral vestibulopathy as a cause of chronic dizziness [1, 

2], while central or higher vestibular network pathologies 
are implicated less often [3]. Accordingly, routine workup of 
dizzy patients presently focusses on quantification of func-
tion of peripheral vestibular afferents and reflexes (such 
as the vestibulo-ocular reflex). However, especially in an 
elderly population, a relevant proportion of dizzy patients 
has no sufficient explanation of their symptoms based on 
peripheral vestibular function tests only. Recently, a syn-
drome called Dizziness in Cognitive Impairment (DCI) was 
shown to account for up to one third of cases with chronic 
dizziness in patients above the age of 60 years [4]. In this 
syndrome, a specific presumably neurodegenerative pattern 
with a selective effect on parieto-insular multisensory ves-
tibular and cognitive networks was identified as the potential 
pathophysiological correlate. Several previous studies have 
reported a prevalence of dizziness of 30–50% in patients 
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with various dementia syndromes [5, 6]. Despite this obvi-
ous interrelation, the simultaneous appraisal of dizziness and 
cognitive impairment in clinical route diagnostics is often 
neglected [6, 7]. The primary reasons for this shortcom-
ing may be firstly that routine cognitive screening of elderly 
dizzy patients might be too time-consuming and secondly 
that there are to date no validated questionnaires or rating 
scales available, which are sufficiently sensitive to detect 
both vestibular and cognitive complaints [7].

A potential solution for this drawback may be to combine 
data sources from clinical routine testing to establish predic-
tion models for cognitive impairment in chronic dizziness. 
The most promising candidates are likely demographic fac-
tors (mostly age) [8], vestibular function testing [9], gait and 
posture assessment, as well as neuroimaging [4]. Studies in 
age cohorts, for example, were able to link measurements 
of postural stability and gait with cognitive function and 
even neurodegenerative alterations [10, 11]. Growing evi-
dence indicates that cognitively impaired patients display 
an altered gait pattern including reduced speed especially 
in dual-task conditions as well as an increased variability of 
time-related gait parameters [11]. These gait pattern changes 
can even precede cognitive decline and are therefore consid-
ered as early risk markers for dementia [12].

The main aim of the current study was thus to assess 
the predictive value of routine data sources, such as demo-
graphic parameters, vestibular tests, gait and posture assess-
ment, as well as neuroimaging separately and in combina-
tion, for the prediction of cognitive function and impairment 
in patients with chronic dizziness. Using this approach, we 
aimed to identify readily available risk markers for cognitive 
dysfunction in patients with chronic dizziness, which should 
indicate the need for a dedicated follow-up neuropsychologi-
cal testing. This could help to improve current standards of 
practice in the differential diagnosis of elderly patients with 
chronic dizziness.

Materials and methods

Participants and study design

In this prospective cohort study, 100 patients (age > 60 years, 
age: 74.7 ± 7.1 years, 41.0% women), who presented to the 
German Center for Vertigo and Balance Disorders (LMU 
Munich, Germany) with the chief complaint of chronic diz-
ziness, vertigo or balance disorders (thereafter referred to 
under the umbrella term “dizziness”, detailed symptoms in 
supplement), were recruited consecutively over a period of 
3 months and were thoroughly characterized by (1) neuro-
otological examination (including video head impulse 
testing (vHIT), caloric testing, Romberg’s test); (2) in-
laboratory quantitative gait assessment  (GAITRite® sensor 

carpet, functional gait assessment—FGA, timed-up-and-go 
test—TUG); (3) grading of routine brain magnetic resonance 
(MR) or computer tomography (CT) images regarding white 
matter lesion load and focal brain atrophy using established 
visual rating scales; and (4) Montreal Cognitive Assessment 
(MoCA) score as a cognitive screening test (Fig. 1). Neuro-
otological diagnoses were made following the established 
International Classification of Vestibular Disorders (ICVD) 
for unilateral or bilateral vestibulopathy, Menière's disease, 
benign paroxysmal positional vertigo, vestibular paroxys-
mia, and vestibular migraine [1].

Neuro‑otological testing

Experienced technicians conducted horizontal vHIT 
testing using a lightweight video-oculography device 
 (EyeSeeCam®, Fürstenfeldbruck, Germany) with an inte-
grated digital high-speed camera. The vHIT gain was cal-
culated as a ratio of eye per head acceleration at 60 ms to 
evaluate the function of the vestibulo-ocular reflex (VOR) 
in the high-frequency range. Additionally, for caloric testing 
both ears’ external auditory canals were irrigated once with 
20 ml cold (30 °C) and once with 20 ml warm (44 °C) water. 
The maximum slow phase velocity (mSPV in °/s) of caloric 
nystagmus was determined to quantify VOR function in the 
low-frequency range. A stabilometer platform was used to 
conduct the posturographic examination  (Kistler®, Winter-
thur, Switzerland) in accordance with previously established 
protocols [13]. The Romberg’s quotient (RQ) (i.e., the ratio 
of postural sway path with eyes closed to that with eyes 
open) was then calculated in anterior–posterior (AP) and 
medio-lateral (ML) axes, and was considered pathological 
if the ratio in any of the two axes was ≥ 2 [14]. Alternatively, 

Fig. 1  Illustration of the study concept. The main objective of the 
current study was to evaluate single and combined routine assess-
ment categories in chronic dizzy patients for their potential to predict 
cognitive function and classify patients as cognitively unimpaired 
and impaired individuals. For this purpose, linear and binary logis-
tic regression analyses were performed based on feature categories to 
predict the absolute MoCA score of individual patients (continuous 
prediction) and to identify those patients with an explicit cognitive 
impairment (MoCA < 25; binary classification)
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in patients without a posturography analysis (n = 42), an 
increase of body sway in Romberg’s test with eyes closed 
was clinically rated as pathological by experienced neuro-
otologists. Ocular and cervical vestibular evoked myogenic 
potentials (oVEMPs and cVEMPs) were not performed 
routinely.

Quantitative gait analysis

Gait patterns were assessed using a 6.7 m long pressure-
sensitive gait carpet  (GAITRite®, CIR Systems, Havertown, 
USA) with a sampling frequency of 120 Hz during walking 
at preferred speed and during walking with a cognitive dual 
task (serial 7). Patients walked in total four times across 
the carpet in each gait condition to collect enough strides 
for further analysis. Additionally, cognitive dual task costs 
during walking were evaluated as follows: first, by the per-
centage change of speed during dual task walking compared 
to single task walking (locomotor costs), and second, by the 
change of frequency for correct numerical operations dur-
ing dual task walking vs. sitting (cognitive costs). For the 
timed-up-and-go (TUG) test, patients were seated on a chair 
and asked to stand up on verbal command, walk 3 m, turn 
around, walk back to the chair and sit down. All subjects 
also received a functional gait assessment (FGA) consisting 
of a 10-item clinical gait performance evaluation with an 
overall score ranging from 0 to 30, with 30 being the best 
possible score.

Neuroimaging: visual rating scales

In the routine brain MR- or CT-images, white matter lesion 
load and focal brain atrophy were assessed using the follow-
ing established visual rating scales: the FAZEKAS scale for 
cerebral microvascular lesions (0–3) [15], the global corti-
cal atrophy—frontal scale (GCA-F) (0–3), mesiotemporal 
atrophy (MTA)-scale (0–4), KOEDAM-scale for parieto-
occipital atrophy (0–3) [16, 17], the insula opercular atrophy 
(IOA) scale (0–3) [4]. Focal brain atrophy was dichotomized 
for further data analysis into normal and abnormal based on 
suggestions from previous studies, i.e. scores of ≥ 2 in GCA-
F, KOEDAM, IOA or MTA-scale (for patients < 75 years) 
and scores of ≥ 3 in MTA-scale (for patients ≥ 75 years) 
[18–20]. In the same way, FAZEKAS grades ≥ 2 were inter-
preted as abnormal [21].

Neuropsychological tests and symptom 
questionnaires

A standardized neuropsychological screening test using 
MoCA was performed with all participants. Patients with 
total MoCA scores < 25 were classified as cognitively 
impaired [22]. The Beck Depression Inventory II (BDI-II) 

[23], the European Quality of Life-5 Dimensions-5 Levels 
(EQ-5D-5L) questionnaire [24], and the Dizziness Handicap 
Inventory (DHI) [25] were assessed to evaluate the poten-
tial effect of confounders such as depression, perceived 
health-related disability and symptom severity on cognitive 
performance.

Statistical analysis

Descriptive statistics and univariate analysis using a combi-
nation of parametric (i.e., ANCOVA and Student’s t test) and 
non-parametric tests (i.e., Quade- and  Chi2-tests) were per-
formed in SPSS (Version 27.0, IBM Corp., USA) to test for 
differences in clinical features between cognitively impaired 
(MoCA < 25) and normal patients. Age was considered as a 
covariate to control for age differences between both groups. 
Normal distribution was assessed using Q–Q plot diagrams 
and histograms. Results were considered significant at 
p < 0.05. In general, only patients with a complete data set 
were included in the final analysis. For single missing data 
(about 1% of all data) multiple imputation was applied.

Linear and logistic regression was performed to generate 
models for the prediction of cognitive function and impair-
ment (i.e., MoCA score) or a classification of cognitively 
impaired vs. normal patients, respectively. Regression analy-
sis was done using python programming language Version 
3.8 and the open-source module scikit-learn for statistical 
testing and machine learning. Linear regression with regu-
larization was performed using Least Absolute Shrinkage 
and Selection Operator (LASSO), which penalizes the 
regression model via L1-norm and in effect shrinks the 
effect of non-contributing features to zero. A tenfold nested 
cross-validation (CV) was performed for model selection 
and hyperparameter tuning. The complete dataset was ini-
tially split into training (80%) and test (20%) sets. Starting 
from the training set, the outer CV measured the perfor-
mance of each model, while the inner was used to tune the 
model hyperparameters by minimizing the mean squared 
error (MSE) in each fold of the outer CV. The model with 
the best performance (i.e., minimum MSE) was then trained 
on the whole training set in a tenfold CV and its performance 
was assessed on the remaining test set.

Logistic regression with L2-norm regularization 
was performed for binary classification of cognitively 
impaired vs. normal patients. Model performance was 
tested using a tenfold CV and evaluated by the area-
under-the-curve (AUC) of a receiver-operating-charac-
teristic (ROC). Binary classification models were trained 
and evaluated separately for 4 different feature sets 
(demographics, clinical vestibular testing, gait param-
eters, imaging parameters) as well as for the entire fea-
ture set (age, gender, cardiovascular risk factors (CVRF), 
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Romberg sign, caloric excitability, vHIT gain, preferred 
speed, dual task speed costs, cognitive costs, TUG, FGA, 
FAZEKAS, GCA-F, MTA, KOEDEM, IOA scale).

Results

Patient characteristics and clinical features

While the cognitively impaired group was older than the 
cognitively healthy group (p < 0.001, Student’s t test), no sig-
nificant differences were observed regarding other collected 
demographic features (Table 1). Neuro-otological diagnoses 
as defined by ICVD (see methods) were significantly more 
prevalent in the group of patients with MoCA ≥ 25 (Table 1). 
Peripheral vestibular results, with the exception of the left-
sided vHIT gain, differed significantly across the two cogni-
tive groups (mean mSPV right/left: p = 0.03/p = 0.04, vHIT 
gain right/left: p = 0.017/p = 0.268, ANCOVA, vHIT refixa-
tion saccades: p = 0.028) and tended to be lower towards 
higher MoCA scores. Patients with cognitive dysfunction 
also displayed more pronounced balance deficits compared 
to the cognitively normal group (p = 0.017, Chi-square test) 
(Table 2). The two groups, however, did not differ regard-
ing either walking speed in preferred and dual task condi-
tions or dual task locomotor and cognitive costs (p ≥ 0.06, 
ANCOVA). Cognitively impaired subjects took longer to 
perform the TUG test and scored less in the FGA than cog-
nitively normal patients (p = 0.03, p = 0.023, respectively, 
ANCOVA). Imaging markers also indicated a higher preva-
lence of pathological cortical atrophy for all lobes and white 
matter lesion load towards lower MoCA scores (p ≤ 0.008, 
Chi-square test) (see Fig. 2 and Table 2).

Prediction models

Considering all available clinical features in a binary logis-
tic regression model yielded an AUC of 0.84 (95% CI 
0.70–0.98) in distinguishing between MoCA groups < 25 
and ≥ 25. Solely considering features from the demograph-
ics category yielded an AUC of 0.70 (95% CI 0.50–0.90), 
from the clinical vestibular testing category an AUC of 0.70 
(95% CI 0.56–0.84), from the gait assessment category an 
AUC of 0.66 (95% CI 0.48–0.84), and from the brain imag-
ing category an AUC of 0.71 (95% CI 0.56–0.86) (Fig. 3A).

All 16 clinical features from the four assessment cat-
egories (i.e., demographics, vestibular tests, gait analysis 
and brain imaging) with at least three features per category 
were included to establish a linear regression model that 
should predict the total MoCA score of individual patients. 
The obtained linear model included 12 clinical features 
and yielded a R2 value of 0.49 with a mean absolute error 
(MAE) of 1.7 and thereby explained nearly 50% of cognitive 
variance in our cohort (Fig. 3B). Romberg’s sign, caloric 
response, age and TUG had the highest predictive value, 
while FAZEKAS, dual task cost cognitive, IOA and FGA 
had the lowest standardized coefficient values (Fig. 3C).

Discussion

Dizziness in Cognitive Impairment (DCI) has recently been 
described as a common syndrome in elderly patients with 
chronic dizziness, balance problems and instability of stance 
and gait [4]. However, testing for cognitive impairment is 
still often neglected in the current diagnostic algorithms for 
dizzy patients. Therefore, we aimed to establish a predic-
tion model for cognitive function and impairment in elderly 
patients, based on commonly available clinical features 

Table 1  Comparison of 
demographics and clinical 
neuro-otological diagnoses 
among MoCA groups

*p < 0.05
a Mean ± standard deviation, Student’s t test (two-sided p value)
b Frequencies, Chi-square test
c Median ± interquartile (IQ) range, Quade test. Multiple diagnoses were possible

MoCA < 25 (n = 45) MoCA ≥ 25 (n = 55) p value

Agea 77.7 ± 5.0 72.3 ± 7.6  < 0.001*
Gender  Fb 35.6% 45.5% 0.599
CVRFc 1 ± 1 1 ± 2 0.356
Neuro-otological  diagnosisb 31.1% 54.5% 0.034*
 Acute unilateral peripheral vestibulopathy 13.3% 14.5% 0.447
 Bilateral vestibulopathy 8.9% 25.5% 0.070
 Menière's disease 0% 3.6% 0.069
 Vestibular migraine 4.4% 3.6% 0.570
 Benign paroxysmal positional vertigo 4.4% 7.3% 0.705
 Vestibular schwannoma 0% 5.4% 0.068
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from demographics, vestibular and gait assessment, as well 
as brain imaging. We demonstrate that prediction models 
considering features from all four routine assessment cat-
egories yielded a high and robust classification of cognitive 
impairment with an AUC of 0.84 ± 0.14 and were able to 
explain about 50% of the cognitive variance in our patient 
cohort. We further show that considering clinical features 
from one routine assessment category only, considerably 
limits model performance. The proposed model could help 
to appropriately and efficiently select dizzy patients in need 
of neuropsychological testing and training.

Rationale behind the model feature selection

The machine learning approach in this study selected fea-
tures well discussed for their potential in the prediction of 
the risk of cognitive decline. The parameters with a sig-
nificant effect in the model ranked from highest to lowest 
predictive contribution are age > CVRF (demographics), 
Romberg’s sign > caloric response (vestibular), TUG > dual 

task cost velocity > FGA > dual task cost cognitive (gait) and 
GCA-F > MTA > IOA > FAZEKAS (imaging).

Demographic factors such as older age as well as CVRF 
are associated not only with vascular but also neurodegen-
erative dementia [26–28]. Previous studies were able, for 
instance, to show the influence of older age on fluid cogni-
tion (i.e., the ability to process and learn new information 
and adapt to new circumstances) such as processing speed, 
working memory and executive cognitive function [8].

Vestibular contribution to cognitive functioning has been 
attracting increasing attention in recent years. For instance, 
brain networks involved in postural stability such as the 
cingulo-opercular, fronto-parietal, and somatosensory-motor 
networks are known to play a substantial role in normal 
cognitive performance [29]. Therefore, it is plausible that 
patients with morphological or vascular cortical patholo-
gies within these shared brain networks not only exhibit a 
dynamic balance disturbance but also cognitive dysfunction, 
as shown in the recently described DCI syndrome [4]. Kido 
et al. for example, showed that postural instability is related 

Table 2  Comparison of 
patients’  vestibular testing, 
in-laboratory gait assessment, 
imaging markers, across MoCA 
groups

*Marks significant results
a Mean ± standard deviation, ANCOVA
b Median ± interquartile range, Quade-test
c Frequencies,  Chi2 test
d Frequencies of pathological white matter lesion load (i.e., FAZEKAS ≥ 2) and pathological brain lobe 
atrophy,  Chi2 test

MoCA < 25 (n = 45) MoCA ≥ 25 (n = 55) p value

Vestibular  testinga,b,c

 Average caloric excitability (in °/s)a 17.8 ± 10.5 15.0 ± 10.0 0.031*
 Right ear mean caloric response (in °/s)a 15.8 ± 10.0 13.2 ± 10.4 0.030*
 Left ear mean caloric response (in °/s)a 19.6 ± 11.5 16.3 ± 11.3 0.040*
 vHIT gain  righta 93.0 ± 25.2 80.3 ± 30.1 0.017*
 vHIT gain  lefta 91.1 ± 25.5 84.0 ± 31.6 0.268
 vHIT refixation saccades  totalb 5 (11.1%) 18 (32.7%) 0.028*
 RQ in ML-axisb 1.16 ± 2.03 (n = 23) 0.74 ± 0.94 (n = 34) 0.083
 RQ in AP-axisb 1.02 ± 1.25 (n = 23) 1.00 ± 0.72 (n = 35) 0.349
 Pathological Romberg’s  signc 66.7% 38.2% 0.017*

In-laboratory quantitative gait  assessmenta

 PS: velocity (in m/s) 0.78 ± 0.18 0.91 ± 0.22 0.060
 DTC: velocity (in m/s) 0.57 ± 0.18 0.68 ± 0.25 0.248
 Costs: locomotor − 27.2 ± 16.3 − 24.7 ± 21.8 0.841
 Costs: cognitive − 30.68 ± 30.94 − 19.88 ± 27.91 0.349
 TUG 10.14 ± 3.74 8.29 ± 3.25 0.030*
 FGA 19.44 ± 4.61 22.20 ± 4.64 0.023*

Imagingd

 FAZEKAS 48.9% 34.5% 0.002*
 Mean GCA-F 44.4% 23.6%  < 0.001*
 Mean KOEDAM 46.7% 36.4% 0.008*
 Mean MTA 37.8% 14.5% 0.006*
 Mean IOA 84.4% 60%  < 0.001*
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to pathological cognitive decline and also neurodegenerative 
diseases [10]. In line with the recent study introducing the 
DCI syndrome [4], the degree of caloric response in the cur-
rent study displayed a negative correlation with the MoCA 
scores (i.e., the lower the caloric response, the higher the 
MoCA scores). A possible explanation for this observation 
could be that lower caloric responses filter out patients with 

clear peripheral vestibular deficits leaving those with central 
pathologies, which in case of cortical affection of the mul-
tisensory vestibular processing network can also manifest 
with a concomitant cognitive dysfunction [4]. In addition, 
central pathologies may display a higher caloric response, 
based on disinhibition of cortico-cerebellar networks. At first 
sight, the finding of reduced peripheral vestibular function in 

Fig. 2  Features from vestibular tests, gait and brain imaging between 
MoCA groups. Average caloric response (A), vHIT gain (B), Romb-
erg’s quotient (C), functional gait assessment (FGA) (D), timed-up-
and-go test (TUG) (E), preferred gait speed (F), dual task locomotor 

(MOT) and cognitive (COGN) costs (G), frequency of pathological 
imaging findings (H). *p < 0.05. ML medio-lateral, AP anterior–pos-
terior, GCA_F global cortical atrophy-frontal scale, IOA insula oper-
cular atrophy scale, MTA mesiotemporal atrophy scale
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Fig. 3  Evaluation of the performance of the regression models 
for prediction of cognitive impairment. A Results from the binary 
logistic regression analysis to classify cognitively impaired patients 
(MoCA < 25) with respective ROC-analysis curves (mean ± SD, 
shaded area) and area under the curve (AUC) outcomes once based 
on the complete set of clinical features and once considering only fea-
tures from one category. B and C Results from the linear regression 
analysis to predict the total MoCA score of patients. B Scatter plot 
of true vs. predicted MoCA values (grey dots indicate training cases 

and black dots validation cases). The linear regression model yielded 
a R2 value of 0.49 with a mean absolute error (MAE) of 1.7. C Stand-
ardized coefficient values of the 12 clinical features (stratified by the 
four clinical categories) included in the linear model. CVRF cardio-
vascular risk factors, DT dual task, FGA functional gait assessment, 
GCA_F global cortical atrophy-frontal scale, IOA insula opercular 
atrophy scale, MTA mesiotemporal atrophy scale, TUG  timed-up-and-
go test
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cognitively unimpaired patients seems to partially contradict 
the previously reported deficits in visuo-spatial domains in 
patients with bilateral vestibulopathy [30]. However, these 
deficits in single cognitive subdomains are rather mild 
and may not be reflected optimally by MoCA screening. 
Importantly, the current study does not claim any causality 
between vestibular test results and the cognitive status, but 
only reports markers associated with presence of a cognitive 
impairment.

Gait patterns have also been shown to give insights into 
cognitive dysfunction and higher cortical and subcortical 
network pathologies [11]. A complex network of brain 
regions is involved in the control of locomotion and varies 
depending on gait speed and cognitive demand [31]. Cog-
nitively impaired patients exhibit higher locomotor costs in 
dual-task conditions and an increased variability of time-
related gait parameters [11]. These gait pattern changes even 
precede cognitive decline and might therefore be used as 
risk markers for early identification of dementia [12]. This 
condition has been previously termed motor cognitive risk 
syndrome [32]. The TUG test is also associated with cog-
nitive functions, especially executive control, memory and 
processing speed [33]. Similarly, Pavlou et al. also depicted 
a correlation of cognitive function with FGA as well as dual 
task costs in chronic dizzy patients [34].

Brain imaging parameters such as focal cortical brain 
atrophy and white matter lesion load are well-known predic-
tors for cognitive impairment [4]. Among the included visual 
atrophy scales, the GCA-F (addressing frontal lobe atrophy) 
is well-ascribed to higher cognitive functions including but 
not limited to language, working memory, problem solv-
ing, decision-making and behavior [35]. The MTA scale, 
on the other hand, assesses mesio-temporal atrophy, a well-
established region for episodic and long-term memory and, 
more recently, for perception and attention [36]. There is 
also growing evidence highlighting the role of the insula in 
general cognitive functions such as language, perception, 
attention and working memory [4].

Comparison with other cognition prediction models

The prediction models from this study performed com-
parably and even superior to other previously reported 
algorithms in the risk prediction of cognitive impairment, 
although differences in patient collectives limit a direct com-
parison. A gait feature-based model for detecting cognitive 
dysfunction in the elderly utilizing a single wearable inertia 
sensor yielded an AUC of 0.73–0.88 [37]. A standardized 
evaluation of multiple cognition prediction algorithms based 
on imaging data showed that the best AUC achieved was 
about 0.79 [38]. In comparison, our study revealed an AUC 
of 0.66 for a combination of gait parameters and an AUC of 
0.71 for a set of semi-quantitative white-matter lesion and 

atrophy imaging parameters (Fig. 3A). A recently proposed 
machine learning algorithm for detecting cognitive impair-
ment based on multiple features reflecting demographic, 
clinical, psychological and lifestyle aspects achieved an 
AUC of 0.73–0.83 [39, 40]. In our binary logistic regres-
sion model, the combination of different feature categories 
resulted in a superior predictive value (AUC of 0.84). It 
should be noted that we applied features to the model, which 
were already available from routine data sources and could 
be quantified without major data preprocessing. The pro-
posed models therefore should be suitable for application in 
a clinical setting of risk prediction. A combination of feature 
sources was superior to single feature source for our cohort.

Conclusions

The most important risk predictors of cognitive impairment 
in elderly dizzy patients, aside from the usual demographic 
factors, are postural instability, normal peripheral vestibular 
test results, impaired gait performance, higher frontal, insu-
lar and temporal focal brain atrophy, and white matter lesion 
load. We think that the proposed models may help clinicians 
to efficiently identify elderly patients with otherwise unex-
plained chronic dizziness at risk of DCI syndrome, to apply 
advanced cognitive testing for the differential diagnosis and 
appropriate neuropsychological training and drug treatment.
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