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A B S T R A C T   

Automated segmentation of brain white matter lesions is crucial for both clinical assessment and scientific 
research in multiple sclerosis (MS). Over a decade ago, we introduced an engineered lesion segmentation tool, 
LST. While recent lesion segmentation approaches have leveraged artificial intelligence (AI), they often remain 
proprietary and difficult to adopt. As an open-source tool, we present LST-AI, an advanced deep learning-based 
extension of LST that consists of an ensemble of three 3D U-Nets. 

LST-AI explicitly addresses the imbalance between white matter (WM) lesions and non-lesioned WM. It em-
ploys a composite loss function incorporating binary cross-entropy and Tversky loss to improve segmentation of 
the highly heterogeneous MS lesions. We train the network ensemble on 491 MS pairs of T1-weighted and FLAIR 
images, collected in-house from a 3T MRI scanner, and expert neuroradiologists manually segmented the utilized 
lesion maps for training. LST-AI also includes a lesion location annotation tool, labeling lesions as periven-
tricular, infratentorial, and juxtacortical according to the 2017 McDonald criteria, and, additionally, as 
subcortical. We conduct evaluations on 103 test cases consisting of publicly available data using the Anima 
segmentation validation tools and compare LST-AI with several publicly available lesion segmentation models. 

Our empirical analysis shows that LST-AI achieves superior performance compared to existing methods. Its 
Dice and F1 scores exceeded 0.62, outperforming LST, SAMSEG (Sequence Adaptive Multimodal SEGmentation), 
and the popular nnUNet framework, which all scored below 0.56. Notably, LST-AI demonstrated exceptional 
performance on the MSSEG-1 challenge dataset, an international WM lesion segmentation challenge, with a Dice 
score of 0.65 and an F1 score of 0.63—surpassing all other competing models at the time of the challenge. With 
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increasing lesion volume, the lesion detection rate rapidly increased with a detection rate of >75% for lesions 
with a volume between 10 mm3 and 100 mm3. Given its higher segmentation performance, we recommend that 
research groups currently using LST transition to LST-AI. To facilitate broad adoption, we are releasing LST-AI as 
an open-source model, available as a command-line tool, dockerized container, or Python script, enabling diverse 
applications across multiple platforms.   

1. Introduction 

Multiple sclerosis (MS) is a complex chronic inflammatory disease of 
the central nervous system. Clinically, MS typically manifests through 
neurological deficits which are mainly driven by inflammatory demye-
linating lesions occurring in brain white matter and in the spinal cord 
and by neurodegeneration (axonal and neuronal loss). To date, inflam-
matory white matter lesions are a hallmark of MS and their identifica-
tion on magnetic resonance imaging (MRI) plays a crucial role in the 
diagnosis and follow-up of MS (Filippi et al., 2018; Thompson et al., 
2018a; Thompson et al., 2018b). In addition, the location of lesions 
within the brain plays a role in diagnosing MS, as lesions in periven-
tricular, juxtacortical, and infratentorial regions are part of the MS 
diagnostic criteria by indicating dissemination in space. Lesions in the 
subcortical region are additionally considered to monitor disease pro-
gression (Thompson et al., 2018a). 

In clinical routine and research, the gold standard of lesion identi-
fication and segmentation is manual segmentation by trained neurora-
diological experts. However, this constitutes a time-consuming task with 
both relevant inter- and intra-rater variability, thereby hampering 
studies with large datasets aiming to improve our understanding of MS. 

In past years, many algorithms and tools have been developed and 
published to accurately automate lesion segmentation (Ashtari et al., 
2022; Cerri et al., 2021; Gentile et al., 2023; Hashemi et al., 2022; 
Kamraoui et al., 2022; Krishnan et al., 2023; La Rosa et al., 2020; Li 
et al., 2018; McKinley et al., 2021; Ronneberger et al., 2015; Schmidt 
et al., 2012; Valverde et al., 2019) and provide holistic MRI analysis and 
reporting (Brune et al., 2020; Thakur et al., 2022; Tripoliti et al., 2019). 
As one of the early contributions to this field, we published the Lesion 
Segmentation Toolbox (LST), which has since been applied in numerous 
scholarly publications (Schmidt et al., 2012). While early segmentation 
algorithms have been designed primarily using statistical and early 
machine learning models such as Support Vector Machines, Gaussian 
Mixture Models or engineered by using manually selected features 
(Schmidt et al., 2012), more recent approaches incorporate learning- 
based features via encoder/decoder model stages (Cerri et al., 2021) 
or learn these end to end in fully convolutional models in (semi-) su-
pervised settings (Commowick et al., 2018). With the advent of artificial 
intelligence (AI), automated lesion segmentation tools based on con-
volutional neural networks (CNN) have become increasingly popular 
and indeed provide similar or higher segmentation accuracy than earlier 
machine learning-based methods (Diaz-Hurtado et al., 2022; Li et al., 
2018; Ma et al., 2022; Zeng et al., 2020). This is also reflected in the 
rankings of published MS lesion segmentation challenges, e.g., MICCAI 
2016 (Commowick et al., 2018) and ISBI 2015 (Carass et al., 2017). 
While CNN-based models often outperform earlier models in challenges, 
they only excel with a sufficient number of training data, as they are 
designed to learn priors and features automatically and do not incor-
porate manual feature selection. Consequently, they are especially prone 
to overfitting to the training data. Moreover, and in contrast to earlier 
machine learning models, CNNs are comparatively harder to regularize, 
as they have higher model and learning capacity, larger number of 
model parameters and thus more complex loss landscapes. Therefore, a 
large performance gap between training set and test set is often 
noticeable and highlights the need to evaluate the performance of CNN- 
based models on heterogeneous external test data. Overcoming this gap 
and generalizing segmentation models in order to be applicable to data 
from multiple protocols and centers is one of the main on-going 

challenges for AI-based approaches. In this context, some AI-based ap-
proaches that have previously been published are optimized towards 
transferability: Valverde et al. have provided nicMSlesions, a CNN-based 
lesion segmentation method that is able to adjust to a new image domain 
by retraining their model on a single image (Valverde et al., 2019). An 
important CNN-based architecture is the U-Net, which has been applied 
in many previous lesion segmentation studies (Ashtari et al., 2022; 
Hashemi et al., 2022; Krishnan et al., 2023; La Rosa et al., 2020; Ron-
neberger et al., 2015). Furthermore, recent studies successfully trained 
their models on one dataset and tested it on another external dataset, for 
which the MICCAI 2016 (Commowick et al., 2021) and ISBI 2015 
(Carass et al., 2017) datasets were often selected (Cerri et al., 2021; 
Gentile et al., 2023; Kamraoui et al., 2022; Krishnan et al., 2023; Li et al., 
2022; McKinley et al., 2021). Hence, the research field is moving to-
wards more generalized segmentation tools, which is an important step 
towards clinical applicability of these methods. 

In this study, we introduce a deep learning-based extension of LST. 
The main contributions can be outlined in three aspects: 1) We provide 
an open-source lesion segmentation tool (with network weights) that is 
easy to use and maintained; 2) The tool has been validated on external 
datasets; 3) Lesion segmentation performance is comparable to or better 
than state-of-the-art. We carefully explain our selection of model ar-
chitecture and describe the training and test set used, and show how our 
composite loss function allows us to optimize our model for generaliz-
ability on MRIs of unseen test centers. We also compare the performance 
of our model against existing MS lesion segmentation algorithms. To 
facilitate studies and applications in MS research, we provide this 
enhanced toolkit as open source to the imaging community (https://gith 
ub.com/CompImg/LST-AI). 

2. Methods 

2.1. Datasets 

In the following section, we characterize and define training and test 
set, including details on image acquisition. With regard to in-house data, 
we respected the Code of Ethics of the World Medical Association 
(Declaration of Helsinki) for experiments involving humans (World 
Medical Association, 2001); the study was approved by the local ethics 
committee. 

For the training set, we used an in-house dataset consisting of 491 
paired 3D Fluid-Attenuated Inversion Recovery (FLAIR) and 3D T1- 
weighted (T1w) images acquired on a 3.0 T Achieva scanner (Philips 
Medical Systems, Best, The Netherlands) to train both our proposed LST- 
AI segmentation model and the nnUNet baseline. Testing and evaluation 
of segmentation performance of all methods was conducted on multiple 
datasets. The test set includes four publicly available datasets: (i) msisbi: 
ISBI 2015 training data (Carass et al., 2017) (https://smart-stats-tools.or 
g/lesion-challenge-2015); (ii) msljub: dataset published by Laboratory 
of Imaging Technologies (Lesjak et al., 2018) (https://lit.fe.uni-lj.si/en/ 
research/resources/3D-MR-MS/); (iii) mssegtest: MICCAI 2016 chal-
lenge test dataset (Commowick et al., 2021) (https://shanoir.irisa.fr/sh 
anoir-ng/welcome) and (iv) mssegtrain: MICCAI 2016 challenge 
training dataset (Commowick et al., 2021) (https://shanoir.irisa.fr/shan 
oir-ng/welcome). One case (msseg-test-center07-08) was removed from 
the mssegtest dataset because it included incorrect ground truth data. In 
total, the test set consists of 103 images from 87 subjects (note that the 
publicly available ISBI dataset is a longitudinal dataset). Further 
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characteristics of the datasets, including the number of lesions, the total 
lesion volume, and the mean lesion volume are provided in Table 1. 
Details on image acquisition are provided in Table 2. 

2.2. Preprocessing 

To guarantee fair comparisons across all baselines, we standardize 

Table 1 
Characteristics of the datasets. One in-house (training) dataset was used, as well as the public datasets msisbi from the ISBI 2015 challenge (Carass et al., 2017), msljub 
published by the Laboratory of Imaging Technologies (Lesjak et al., 2018), and mssegtest and mssegtrain which are the testing and training datasets from the MICCAI 
2016 challenge, respectively (Commowick et al., 2021).  

Dataset #subjects #scans age 
(years) 
mean 
+/- sd 

female / 
male 

diagnosis 
(number of 
images) 

number of 
lesions 
i) mean +/- sd 
ii) median (IQR) 

total lesion volume 
(mm3) 
i) mean +/- sd 
ii) median (IQR) 

mean lesion 
volume (mm3) 
i) mean +/- sd 
ii) median (IQR) 

publication link 

in-house 
traininga 

491 491 34.3 +/- 
9.5 

330/161 RRMS (422) 
CIS (66) 
ON (3) 

i) 25.54 +/- 
30.59 
ii) 15.0 
(6.0–33.0) 

i) 3492.96 +/- 
7300.31 
ii) 1244.0 
(419.5–3767.5) 

i) 150.81 +/- 
387.97 
ii) 73.5 
(47.0–130.8) 

N/A N/ 
A 

msisbi 5 21 43.5 +/- 
10.3 

4/1 RRMS (4) 
PPMS (1) 

i) 45.95 +/- 
20.92 
ii) 41.0 
(34.0–47.0) 

i) 12889.76 +/- 
11095.38 
ii) 7354.0 
(3678.0–18425.0) 

i) 255.25 +/- 
168.73 
ii) 175.1 
(119.1–371.3) 

(Carass et al., 
2017) 

(1) 

msljub 30 30 39.3 +/- 
10.1 

23/7 RRMS (24) 
SPMS (2) 
PRMS (1) 
CIS (2) 
Unspecified (1) 

i) 111.23 +/- 
106.68 
ii) 92.0 
(31.25–125.0) 

i) 17336.87 +/- 
16115.41 
ii) 14046.5 
(1758.0–28430.25) 

i) 178.47 +/- 
170.36 
ii) 117.9 
(49.1–208.0) 

(Lesjak et al., 
2018) 

(2) 

mssegtest 37 37 46.8 +/- 
10.3 

29/8 N/A i) 44.89 +/- 
42.11 
ii) 29.0 
(13.0–64.0) 

i) 12672.73 +/- 
15099.75 
ii) 7348.0 
(1453.0–17271.0) 

i) 275.8 +/- 
272.36 
ii) 190.9 
(120.4–328.4) 

(Commowick 
et al., 2021) 

(3) 

mssegtrain 15 15 41.6 +/- 
9.8 

8/7 N/A i) 41.67 +/- 
30.21 
ii) 39.0 
(18.0–56.5) 

i) 20729.87 +/- 
20606.48 
ii) 12366.0 
(3783.0–33198.5) 

i) 643.33 +/- 
904.95 
ii) 237.1 
(125.1–752.3) 

(Commowick 
et al., 2021) 

(3) 

Abbreviations: CIS: clinically isolated syndrome, IQR: interquartile range, N/A: not applicable/available, ON: optic neuritis, PPMS: primary progressive multiple 
sclerosis, RRMS: relapsing-remitting multiple sclerosis, sd: standard deviation, SPMS: secondary progressive multiple sclerosis. 
(1) https://smart-stats-tools.org/lesion-challenge-2015. 
(2) https://lit.fe.uni-lj.si/en/research/resources/3D-MR-MS/. 
(3) https://shanoir.irisa.fr/shanoir-ng/welcome. 
aFor stringency, all patients were reclassified according to the 2017 McDonald criteria (Thompson, Banwell, et al., 2018). 

Table 2 
Acquisition settings of the datasets.  

Dataset scanner field 
strength 

sequence voxel size #scans 

in-house 
training 

Achieva, Philips Medical 
Systems 

3.0 T T1w: TR = 9 ms, TE = 4 ms, FA = 8◦ (MPRAGE) 1x1x1 mm3 491 
FLAIR: TR = 10000 ms, TE = 140 ms, TI = 2750 ms 0.9x0.9x1.5 mm3  

msisbi Philips Medical Systems 3.0 T T1w: TR = 10.3 ms, TE = 6 ms, FA = 8◦ (MPRAGE) 0.82x0.82x1.17 mm3 21 
FLAIR: TE = 68 ms, TI = 835 ms 0.82x0.82x2.2 mm3  

msljub Siemens Magnetom Trio 3.0 T T1w: TR = 2000 ms, TE = 20 ms, TI = 800 ms, FA = 120◦ (turbo inversion 
recovery magnitude) 

0.42x0.42x3.3 mm3 30 

FLAIR: TR = 5000 ms, TE = 392 ms, TI = 1800 ms, FA = 120◦ 0.47x0.47x0.8 mm3  

mssegtest Siemens Verio 3.0 T T1w: TR = 1900 ms, TE = 2.26 ms, FA = 9◦ 1x1x1 mm3 10 
FLAIR: TR = 5000 ms, TE = 400 ms, TI = 1800 ms, FA = 120◦ 0.5x0.5x1.1 mm3 

General Electrics Discovery 3.0 T T1w: TR = [7.5,8] ms, TE = 3.2 ms, FA = 10◦ 0.47x0.47x0.6 mm3 8 
FLAIR: TR = 9000 ms, TE = [140,145] ms, TI = [2355, 2362] ms, FA = 90◦ 0.47x0.47x0.9 mm3 

Siemens Aera 1.5 T T1w: TR = 1860 ms, TE = 3.37 ms, FA = 15◦ 1.08x1.08x0.9 mm3 9 
FLAIR:TR = 5000 ms, TE = 336 ms, TI = 1800 ms, FA = 120◦ 1.03x1.03x1.25 mm3 

Ingenia, Philips Medical 
Systems 

3.0 T T1w: TR = 9.4 ms, TE = 4.3 ms, FA = 8◦ 0.74x0.74x0.85 mm3 10 
FLAIR:TR = 5400 ms, TE = 360 ms, TI = 1800 ms, FA = 90◦ 0.74x0.74x0.7 mm3  

mssegtrain Siemens Verio 3.0 T T1w: TR = 1900 ms, TE = 2.26 ms, FA = 9◦ 1x1x1 mm3 5 
FLAIR: TR = 5000 ms, TE = 400 ms, TI = 1800 ms, FA = 120◦ 0.5x0.5x1.1 mm3 

Siemens Aera 1.5 T T1w: TR = 1860 ms, TE = 3.37 ms, FA = 15◦ 1.08x1.08x0.9 mm3 5 
FLAIR:TR = 5000 ms, TE = 336 ms, TI = 1800 ms, FA = 120◦ 1.03x1.03x1.25 mm3 

Ingenia, Philips Medical 
Systems 

3.0 T T1w: TR = 9.4 ms, TE = 4.3 ms, FA = 8◦ 0.74x0.74x0.85 mm3 5 
FLAIR:TR = 5400 ms, TE = 360 ms, TI = 1800 ms, FA = 90◦ 0.74x0.74x0.7 mm3 

Abbreviations: FA: flip angle, FLAIR: fluid-attenuated inversion recovery, TE: echo time, TI: inversion time, TR: repetition time, T1w: T1-weighted. 
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preprocessing across all datasets and methods. Firstly, we register (rigid 
registration) all images to the MNI ICBM152 nonlinear atlas version 
2009 template (https://www.mcgill.ca/bic/neuroinformatics/brain-at 
lases-human) using the Greedy command line tool (Yushkevich et al., 
2006, 2016; Yushkevich, 2023). This atlas registration both ensures a 
consistent voxel resolution (1x1x1 mm3) and image orientation, pre-
processing steps well established for deep learning segmentation models 
(Kofler et al., 2020; Pati et al., 2022). Subsequently, we use the deep 
learning-based HD-BET brain extraction tool to generate skull-stripped 
images (Isensee et al., 2019). Next, the shape of the skull-stripped im-
ages is cropped to the size that is required for the 3D Unets and in-
tensities are normalized to [0;1]. Considering the controversy 
surrounding the role of bias field correction in CNN-based architectures 
(de Raad et al., 2021; Menze et al., 2021), it was not included in the 
preprocessing pipeline of LST-AI. To benchmark methods in its intended 
environment, we opt for non-skull-stripped images for SAMSEG, as well 
as the legacy algorithms of LST, the Lesion Prediction Algorithm (LST- 

LPA) and the Lesion Growth Algorithm (LST-LGA), which perform 
optimally with whole-brain data. Consequently, we omit the HD-BET 
skull-stripping, cropping, and intensity normalization preprocessing 
steps for these specific baselines while retaining them for others. 

To prevent freely chosen preprocessing steps from affecting the 
lesion segmentation performance, this standardized preprocessing 
(including skull-stripping) is also integrated into our LST-AI toolbox, 
making it a streamlined approach. 

2.3. Lesion segmentation 

In this section, we first describe the proposed lesion segmentation 
tool followed by benchmark methods that have been applied in many 
studies and to which the proposed tool is compared. Finally, we outline 
the manual lesion segmentation workflows employed across the 
different datasets. 

Fig. 1. The different processing steps of the holistic LST-AI tool are presented. First, a pair of T1w and FLAIR images is warped to MNI space, then skull-stripped, 
cropped, and intensity-normalized during preprocessing. The resulting images are used as input for the three 3D U-Nets of the ensemble network. Each U-Net 
provides a lesion probability map. To generate the binary lesion map, the three lesion probability maps are averaged and a threshold is subsequently applied. Finally, 
the binary lesion map is warped back to the subject image space (original space of the FLAIR image). 

Fig. 2. Architecture of the 3D U-Nets which constitute the ensemble network of LST-AI. They comprise two channels (one for T1w images and one for FLAIR images) 
and consist of 5 encoder and 5 decoder blocks. Strided convolutions (stride 2) are used for downsampling and transposed convolutions are used for upscaling. 
Encoder and decoder blocks are connected via skip connections. 
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2.3.1. LST-AI ensemble network 
The LST-AI tool encompasses preprocessing, lesion segmentation 

and, optionally, lesion location annotation. An overview of the work-
flow is shown in Fig. 1. 

The preprocessing functionality included in LST-AI is outlined in 
section 2.2. Specifically, the T1w and FLAIR images are warped to the 
MNI ICBM152 template, then skull-stripped, center cropped to shape 
(192, 192, 192), and, finally, intensities were normalized to [0;1]. 

With respect to the model architecture, LST-AI is based on an 
ensemble of three 3D U-Nets. Each U-Net is built upon the 3D U-Net 
(Çiçek et al., 2016) architecture and inspired by nnUNet (Isensee et al., 
2021). It is composed of 5 encoder and 5 decoder blocks. Each of these 
blocks is built from two convolution blocks (3D convolution, instance 
normalization, leaky ReLU activation) and skip connections between 
respective encoder and decoder blocks (see Fig. 2). In encoder blocks, 
downsampling is implemented via strided convolutions with stride 2, 
while transposed convolutions are used for upscaling in decoder blocks. 
Following the architectural choices in nnUNet (Isensee et al., 2021), we 
employ deep supervision layers in the training with the intuition of 
allowing gradients to flow deeper into the networks’ layers (Wang et al., 
2015). The number of deep supervision layers differed for the three U- 
Nets: one U-Net included one deep supervision layer and the two other 
U-Nets included two deep supervision layers to allow for some vari-
ability in the ensemble predictions. For the loss function, we used a 
combination of Tversky loss (Salehi et al., 2017) (with higher penali-
zation of false-negative lesion omissions) and binary cross-entropy in the 
deep supervision layers, and a combination of Dice loss and binary cross- 
entropy in the full-resolution output. During training, we randomly 
chained intensity (random Gaussian noise, random Gaussian smoothing, 
random gamma adjustment) and geometry augmentations (random flips 

and crops). Each model was trained for a total of 1000 epochs, using the 
stochastic gradient descent optimizer (with Nesterov momentum) and a 
polynomial learning rate decay, starting at 1e-2. This training scheme 
has been adapted from nnUNet and was shown to generalize well in the 
medical segmentation decathlon (Antonelli et al., 2022). In total, three 
training runs were started from scratch to create an ensemble of three 
models, a technique previously reported (H. Li et al., 2018). 

For the final segmentation output, the preprocessed T1w and FLAIR 
images are used as input for each one of the 3D U-Nets which generate 
three lesion probability maps. The final binary lesion map is obtained by 
averaging the three lesion probability maps and subsequent thresh-
olding (default threshold of 0.5). This workflow, including the ground 
truth lesion segmentation mask, is illustrated in Fig. 3, using an example 
of the msljub dataset (subject 05). 

As an additional feature, the tool can optionally label lesions ac-
cording to their location, i.e., periventricular (PV), juxtacortical (JC), 
subcortical (SC), or infratentorial (IT). To this end, the same MNI 
ICBM152 nonlinear T1 atlas used above is first registered deformably 
(using Greedy) to the skull-stripped T1w image in MNI space. The 
resulting transformation is applied to a manually labeled anatomical 
mask indicating different brain regions (inter alia: ventricles for PV la-
beling, infratentorial region for IT labeling, cortex for JC labeling, and 
subcortical region for SC labeling), which is thereby registered to the 
skull-stripped T1w image in MNI space. The anatomical mask is shown 
in Fig. 4. Next, each individual lesion from the binary lesion segmen-
tation map is dilated using a cube as footprint (3x3x3 mm3), and 
assigned to the region with which it overlaps by at least one voxel (e.g., 
if a dilated lesion overlaps with the ventricles of the anatomical mask it 
is labeled as PV). During this step, lesions are checked to overlap with 
the four brain regions sequentially so that each lesion can be attributed 

Fig. 3. Rationale behind the ensemble network of LST-AI. First, the three 3D U-Nets generate a lesion probability map. The mean of the three outputs is calculated 
and thresholded to generate the final binary lesion map. On the right-hand side, we show a slice of a FLAIR image and the corresponding manual segmentation (i.e., 
the ground truth). The orange arrow and circle highlight a false positive present in the lesion probability map of 3D U-Net 1, but not in the other lesion probability 
maps. The light blue arrow and circle highlight a false positive present in the lesion probability map of 3D U-Net 2, but not in the other lesion probability maps. The 
green arrow and circle highlight a false negative lesion in the lesion probability map of 3D U-Net 3, which is detected by 3D U-Net 1 and 2. Note how the output of the 
ensemble network is more accurate than the output of the individual networks, as it does not show the false positives and false negatives. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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to only one category. The order of checks is PV, IT, JC, and, finally, SC. 
By this choice, large lesions overlapping with the inner ventricles and 
the cortical ribbon are classified as PV (as PV lesions are commonly the 
largest). In the resulting lesion map, the lesions are labeled according to 
their location (PV: label = 1, JC: label = 2, SC: label = 3, IT: label = 4). 
Finally, the labeled lesion map is transformed to the original space of the 
FLAIR image with the inverse of the affine transformation, which was 
computed earlier, resulting in location-annotated lesion maps in the 
original subject space as well as in the MNI space. 

We intend to target a diverse user base and provide LST-AI as a set of 
standalone command line tools and as a dockerized application, 
including all model checkpoints and required preprocessing tools 
(Greedy and HD-BET). As LST-AI can be used in similar ways as Free-
surfer/FSL command line tools or nicMSlesions (docker), we give the 
opportunity to conveniently integrate our tool into existing workflows. 

For accelerated performance, we recommend using our tool in a 
GPU-enabled environment but we also provide a fallback method for 
CPU-only usage. Depending on the exact hardware setup, typical 
execution time varies between tens of seconds (GPU) and 1–2 min on a 
CPU-only system. We provide LST-AI’s functionality for three different 
workflows: segmentation-only, lesion location annotation-only, or both. 
Moreover, labels can be exported in the original subject space or in the 
MNI ICBM152 template space. 

Moreover, we make our source code available, allowing the com-
munity to adapt and tailor our tools for different application scenarios, 
by modifying preprocessing tools or using the checkpoints for pre- 
training of custom models. We intend to continuously maintain and 
update our tool in the github repository. In conclusion, while we have 
high confidence in the generalization capabilities of LST-AI, we want to 
emphasize that it is explicitly designed for research and non-clinical 

purposes. It has not undergone the necessary certification or licensing 
for clinical applications. 

2.3.2. Benchmark methods 
Evaluation of the performance of the proposed tool is realized 

through comparison to other publicly available lesion segmentation 
methods. This includes the widely used LST version 3.0.0 (https://www. 
applied-statistics.de/lst.html) with its lesion growth algorithm (LGA) 
(Schmidt et al., 2012) and lesion prediction algorithm (LPA) (Vander-
becq et al., 2020), to which our proposed tool presents a complemen-
tary, AI-based lesion segmentation method. Additionally, a trained 
nnUNet and the recently published SAMSEG lesion segmentation tool 
implemented in Freesurfer version 7.3.2 (Cerri et al., 2021) are used for 
comparison.  

• LST-LGA (Schmidt et al., 2012): This method requires T1w and 
FLAIR images that are not skull-stripped. Before applying the LST- 
LGA tool, T1w and FLAIR images are preprocessed as described in 
section 2.2. Additionally, images are denoised using the CAT12 
(Gaser et al., 2022) denoising filter implemented in SPM12 
(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). Then, the 
LST-LGA lesion segmentation algorithm is applied. First, using the 
methods implemented in SPM12, bias field correction is applied to 
the FLAIR image, and the T1w image is segmented into white matter, 
grey matter, and cerebrospinal fluid. Based on the FLAIR intensities, 
lesion belief maps are generated for each tissue class. The lesion 
belief map of grey matter is then thresholded (default threshold of 
0.3 as suggested in Schmidt et al., 2012), which results in seeds that 
are used for the lesion growth model. Thereby, lesion seeds are 
expanded according to FLAIR hyperintensities, eventually producing 
a lesion probability map. Finally, a binary lesion map is generated 
after thresholding the lesion probability map (threshold of 0.5).  

• LST-LPA (Vanderbecq et al., 2020): This method requires only FLAIR 
images that are not skull-stripped. Preprocessing is identical to the 
LST-LGA workflow and includes registration to MNI and denoising. 
Similarly, bias correction is applied, and a lesion belief map is 
generated based on FLAIR intensities. The LST-LPA algorithm is a 
binary regression model that combines the lesion belief map and 
fixed parameters, which had been learned through logistic regression 
during the development of the tool in order to calculate the lesion 
probability map. The binary lesion map is again generated by 
applying a threshold to the lesion probability map (threshold of 0.5).  

• nnUNet (Isensee et al., 2021): The U-Net’s early achievements in 
deep learning for biomedical segmentation have led to extensive 
research in refining its architecture for specialized tasks. Building on 
this, Isensee et al. (2021) have introduced an innovative framework 
that automates the selection of hyperparameters and data augmen-
tation techniques based on the specific dataset employed. To provide 
this baseline, we format our training set according to nnUNet’s 
convention and train the model for 1000 epochs with five-fold cross- 
validation. We select the stronger 3D U-Net baseline in contrast to a 
2D U-Net baseline, and use the full-resolution model as a baseline.  

• SAMSEG (Cerri et al., 2021): This method, Sequence Adaptive 
Multimodal SEGmentation, requires only one MRI contrast image 
but it also accepts multiple contrasts. Here, we use T1w and FLAIR 
image pairs that are not skull-stripped as input. As recommended by 
the authors (Cerri et al., 2021), preprocessing is minimal, with im-
ages only being registered to MNI space using Greedy (Yushkevich 
et al., 2016). During the segmentation process, a deformable prob-
abilistic atlas is used as segmentation prior and is iteratively fitted to 
the input data. Thereby, voxels are assigned to the brain structures 
with highest probability, including lesions. The binary lesion map is 
obtained by only selecting the voxels with lesion labels and setting all 
other voxel values to zero.  

• DeepLesionBrain (Kamraoui et al., 2022): The DeepLesionBrain 
tool is an online lesion segmentation tool. It consists of multiple 3D 

Fig. 4. MS-specific anatomical mask indicating four different brain regions: 
ventricles outlined in light gray (used to label lesions as periventricular), cortex 
outlined in dark gray (used to label lesions as juxtacortical), subcortical region 
outlined in gray (used to label lesions as subcortical), or infratentorial region 
(not visible in the image). Note that lesions are dilated using a 3x3x3 mm3 cube 
before overlaying with the anatomical mask, which is how lesions can overlap 
with ventricle or cortex regions, resulting in lesions labeled as periventricular or 
juxtacortical, respectively. 
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U-Nets using a hierarchical specialization learning strategy; it con-
sists of one generic network intended for the whole brain and many 
locally specialized networks targeting different brain regions. The 
goal of this strategy is to learn global features as well as locally 
specific features. The tool is publicly accessible through an online 
platform (https://www.volbrain.net/services/DeepLesionBrain). It 
was trained with 43 in-house images and 15 images from the 
“mssegtrain” dataset (also part of our test dataset and in the same 
domain as “mssegtest”); we, therefore, evaluated the tool only with 
the “msisbi” and “msljub” datasets. 

For region-specific analyses, all binary lesion maps are annotated 
with the method implemented in the LST-AI tool. In effect, each lesion is 
labeled according to its location (i.e., PV, JC, IT, or SC). 

2.3.3. Manual segmentation 
We make use of multiple datasets. Therefore, the workflows of 

manual segmentation, i.e., generation of ground truth lesion maps, 
differ. We describe the manual segmentation protocols of the different 
datasets and refer to the corresponding publications:  

• in-house training: The training data were first pre-segmented using 
LST-LGA. Segmented lesions were manually reviewed and, based on 
FLAIR images, corrected by one out of four experienced neuroradi-
ologists using ITK-SNAP (Yushkevich et al., 2006). All lesion masks 
were eventually reviewed by one senior neuroradiologist. The 
manual lesion segmentation protocol is also described in another 
publication using the same dataset (Hapfelmeier et al., 2023).  

• msisbi: All images were manually delineated by two raters. Since no 
consensus was available, we arbitrarily selected the lesion maps of 
one of the two raters as ground truth (rater 2). Protocol details have 
been described in the original publication (Carass et al., 2017).  

• msljub: All images were delineated by three raters using a semi- 
automated approach. A consensus segmentation was obtained 
through revision of the combined lesion maps by all three raters; a 
detailed protocol is available in the original publication (Lesjak et al., 
2018).  

• mssegtest & mssegtrain: All images were manually delineated by 
seven raters, from which a consensus was constructed. Details on the 
protocol and consensus construction are available in the original 
publication (Commowick et al., 2021). 

2.4. Evaluation 

To assess the effectiveness of the LST-AI lesion segmentation tool, we 
compare its results with manual segmentations and other available tools 
in multiple external datasets to evaluate the performance and general-
izability. These external sets encompass various acquisition protocols, 
scanners, and originate from different centers. For consistency, we use 
images and lesion maps in MNI space. Our evaluation covers lesion 
segmentation and detection methods, applying a minimum lesion vol-
ume threshold of 3 mm3 corresponding to 3 MNI-space voxels. 

2.4.1. Lesion segmentation 
Regarding lesion segmentation evaluation, we rely on the anima-

SegPerfAnalyzer tool from the Anima evaluation toolbox (http 
s://anima.irisa.fr/), which was also used in the MICCAI 2016 MS 
lesion segmentation challenge (Commowick et al., 2018). It requires 
pairs of ground truth (i.e, manually segmented) and automatically 
segmented lesion maps. This toolbox computes various metrics to 
analyze the segmentation performance at both the voxel and lesion 
level. Regarding voxel-wise analysis, we were interested in the Dice 
Similarity Coefficient (DSC): 

DSC =
2TP

2TP + FP + FN
(1) 

the positive predictive value (PPV): 

PPV =
TP

TP + FP
(2) 

and the sensitivity: 

sensitivity =
TP

TP + FN
(3)  

where TP denotes the true positives, FP the false positives, FN the false 
negatives. In addition, we extracted the average surface distance (ASD) 
with the animaSegPerfAnalyzer tool: 

ASD =
1

n + n′ [
∑n

x=1
d(x, S′) +

∑n′
x′=1

d(x′, S)] (4)  

with d(x, S′) = min‖x − x′||2 (5)  

where n and n’ are the number of points x and x’ on the surface S of the 
manual segmentation and the surface S’ of the automated segmentation, 
respectively, and d() is the minimal Euclidean distance between a 
point x on surface S and the surface S′. 

These metrics are calculated for each image, then averaged within 
each dataset, and finally averaged across all datasets. Thereby, we 
provide an overall score across different scanners and centers as well as 
individual scores for each dataset. 

As an additional step, we construct one array by concatenating all 
images and calculate the DSC across all lesions of all datasets. We will 
refer to these analyses, neglecting subject-wise information, as first-level 
analyses (and to those based on subject-wise performance measures as 
second-level analyses). Thereby, we avoid the per-subject lesion load 
bias that is introduced when one score is calculated per image. For 
example, missing a small lesion in an image with only this missed lesion 
(DSC = 0) would have more weight than missing a similar lesion in an 
image with many other detected lesions (DSC > 0). 

We further investigate whether the performance of lesion segmen-
tation varies across brain regions to identify the drivers of the metric 
values and possible location-dependent variabilities of LST-AI segmen-
tation performance. To this end, we use the location-annotated lesion 
maps and generate binary lesion maps for each region by only selecting 
lesion voxels labeled as part of the corresponding region. Using the 
above evaluation metrics, first-level analysis is conducted for each re-
gion and results from different regions and the whole brain are 
compared to each other. 

2.4.2. Lesion detection 
In addition to the previous metrics, which quantify the accuracy of 

lesion segmentation at the voxel level, it is important to evaluate lesion 
segmentation methods with regard to their ability to detect lesions. In 
particular, this aspect is crucial in MS, since its diagnosis relies on the 
detection of lesions (and not on the exact measurement of their volume). 
To this end, we extract the following scores from the animaSegPerfA-
nalyzer tool: SensL, the lesion detection sensitivity; PPVL, the positive 
predictive value for lesions; F1 score, a metric which considers both 
lesion detection sensitivity and positive predictive value for lesions. 
SensL and PPVL are calculated according to equations (3) and (2), 
respectively (on the lesion level rather than on the voxel level). The F1 
score is calculated as follows: 

F1 = 2*
SensL*PPVL

SensL + PPVL
=

2TP
2TP + FP + FN

(6)  

which is equal to the equation (1) and can therefore be considered as a 
lesion-wise DSC. 

The Anima evaluation toolbox also offers the animaDe-
tectedComponents tool that can be used to investigate the detection of 
each lesion individually. For each image, the tool generates a list with 
lesions that are present in the manually segmented lesion map. It 
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indicates, for each lesion, the volume in the manually segmented lesion 
map and whether it was detected by the automated segmentation 
method. This enables the assessment of the increase or decrease of lesion 
detection in relation to lesion volumes. Both tools (animaSegPerfAna-
lyzer and animaDetectedComponents) consider a lesion in the manual 
segmentation as detected if it overlaps with at least 10 % with the lesion 
voxels in the automatically generated lesion map. 

3. Results 

We evaluate LST-AI in multiple aspects; we report both voxel-wise 
and lesion-wise scores, as both volume and number are established 
measures of lesion load. We start with lesion segmentation (3.1) across 
the whole brain and across subjects (second-level analyses). We then 
report the performance across lesions (first-level analyses) both across 
brain regions (3.2) and in relation to lesion size (3.3). DeepLesionBrain 
is only evaluated with the “msisbi” and “msljub” datasets (also see 

2.3.2); results are reported in section 3.1 and in the supplementary 
material but not in the results on the segmentation performances across 
all test datasets (Table 3, sections 3.2 and 3.3). 

3.1. Second-level lesion segmentation across the whole brain 

Lesion segmentation evaluation is conducted across all datasets as 
well as for each dataset individually. An overview of the results of each 
segmentation method across all datasets is provided in Table 3. Deep-
LesionBrain is only tested in the “msisbi” (DSC = 0.61+/-0.13; 
F1 = 0.54+/-0.10) and “msljub” (DSC = 0.55+/-0.21; F1 = 0.37+/- 
0.15) datasets (also see 2.3.2). Its performance was virtually equal to 
LST-AI in the “msisbi” dataset (DSC = 0.61+/-0.13; F1 = 0.57+/-0.12) 
but lower in the “msljub” dataset (DSC = 0.74+/-0.10; F1 = 0.70+/- 
0.10). A table with all Anima metrics and results per dataset for each tool 
is included in the supplementary material. In Fig. 5, we present the 
lesion maps (session 01 of subject 02 of the msisbi dataset) of the 
different segmentation methods applied in this study. 

Table 3 
The results of the lesion segmentation evaluation (second-level analysis across 
all test datasets) of each segmentation tool are presented.  

Tool voxel-wise lesion-wise 

DSC PPV sensitivity ASD F1 SensL PPVL 

LST-AI 0.67 
+/- 
0.14 

0.73 
+/- 
0.15 

0.66 +/- 
0.17 

0.37 
+/- 
1.12 

0.63 
+/- 
0.15 

0.70 
+/- 
0.19 

0.64 
+/- 
0.20 

LST- 
LGA 

0.42 
+/- 
0.22 

0.80 
+/- 
0.21 

0.32 +/- 
0.20 

1.43 
+/- 
2.81 

0.22 
+/- 
0.15 

0.20 
+/- 
0.14 

0.41 
+/- 
0.26 

LST-LPA 0.44 
+/- 
0.22 

0.79 
+/- 
0.15 

0.34 +/- 
0.20 

1.35 
+/- 
2.21 

0.23 
+/- 
0.14 

0.25 
+/- 
0.15 

0.34 
+/- 
0.23 

nnUNet 0.51 
+/- 
0.20 

0.90 
+/- 
0.07 

0.38 +/- 
0.18 

1.36 
+/- 
4.18 

0.46 
+/- 
0.19 

0.40 
+/- 
0.21 

0.64 
+/- 
0.21 

SAMSEG 0.55 
+/- 
0.20 

0.72 
+/- 
0.21 

0.49 +/- 
0.19 

1.46 
+/- 
4.57 

0.38 
+/- 
0.18 

0.32 
+/- 
0.18 

0.57 
+/- 
0.21 

Abbreviations: ASD: average surface distance, DSC: Dice similarity coefficient, 
PPV: positive predictive value, PPVL: lesion-wise positive predictive value, 
SensL: lesion-wise sensitivity. 
The metrics were calculated for each image in the test datasets, and values were 
subsequently averaged across all images. The averages are reported as mean +/- 
standard deviation. 

Fig. 5. Binary lesion maps generated by the different lesion segmentation methods applied in this study. As reference, the first row shows the underlying FLAIR 
image as well as the manual segmentation (which is the ground truth). Each method provides slightly different lesion maps, and, in the slice presented here, LST-AI 
appears to be the most accurate. 

Table 4 
The results of the LST-AI lesion segmentation evaluation (second-level analysis) 
of each test dataset are presented. The metrics were calculated for each image in 
the respective test dataset, and values were subsequently averaged across all 
images. The averages are reported as mean +/- standard deviation.  

Dataset voxel-wise lesion-wise 

DSC PPV sensitivity ASD F1 SensL PPVL 

All 
datasets 
n = 103 

0.67 
+/- 
0.14 

0.73 
+/- 
0.15 

0.66 +/- 
0.17 

0.37 
+/- 
1.12 

0.63 
+/- 
0.15 

0.70 
+/- 
0.19 

0.64 
+/- 
0.20 

msisbi 
n = 21 

0.61 
+/- 
0.13 

0.72 
+/- 
0.11 

0.54 +/- 
0.15 

0.41 
+/- 
0.66 

0.57 
+/- 
0.12 

0.55 
+/- 
0.15 

0.61 
+/- 
0.13 

msljub 
n = 30 

0.74 
+/- 
0.10 

0.80 
+/- 
0.07 

0.70 +/- 
0.14 

0.21 
+/- 
0.88 

0.70 
+/- 
0.10 

0.62 
+/- 
0.13 

0.83 
+/- 
0.11 

mssgtest 
n = 37 

0.65 
+/- 
0.16 

0.68 
+/- 
0.19 

0.68 +/- 
0.16 

0.59 
+/- 
1.60 

0.63 
+/- 
0.17 

0.83 
+/- 
0.14 

0.55 
+/- 
0.22 

mssegtrain 
n = 15 

0.67 
+/- 
0.16 

0.72 
+/- 
0.16 

0.67 +/- 
0.19 

0.12 
+/- 
0.24 

0.61 
+/- 
0.15 

0.77 
+/- 
0.23 

0.53 
+/- 
0.09 

Abbreviations: ASD: average surface distance, DSC: Dice similarity coefficient, 
PPV: positive predictive value, PPVL: lesion-wise positive predictive value, 
SensL: lesion-wise sensitivity. 
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The proposed method outperforms the benchmark methods in all 
categories except PPV and PPVL. LST-LGA, LST-LPA, and the nnUNet 
yield higher PPV values (PPV = 0.79–0.90) than LST-AI (PPV = 0.73), 
and only the nnUNet yields a PPVL value as high as LST-AI 
(PPVL = 0.64). Notably, LST-AI achieves higher DSC and F1 scores 
(DSC = 0.67 +/- 0.14; F1 = 0.63 +/- 0.15) compared to the other 
methods (DSC = 0.42–0.55; F1 = 0.22–0.46), indicating superior seg-
mentation performance both on a voxel-wise and on a lesion-wise level. 
The lowest ASD is also obtained with LST-AI, indicating more accurate 
lesion contouring compared to the benchmark methods. Overall, the 
results show that LST-AI is able to identify more true lesions while 
increasing the fraction of correctly identified lesions among all 
segmented lesions compared to the benchmark methods. 

Evaluating datasets individually (Table 4), we observe the most 
variability across datasets in ASD. 

3.2. First-level segmentation across brain regions 

In the PV region, LST-AI shows slightly higher first-level DSC scores 
than the other methods. The difference in terms of first level DSC scores 
is more pronounced in the other three regions, with only LST-AI 
reaching DSC > 0.47 (other methods: DSC = 0.03–0.31). Similarly, 
the highest first-level DSC score within the whole brain is obtained with 
LST-AI. The results of the different lesion segmentation methods are 
presented in Table 5 and Fig. 6. 

Table 5 
The first-level Dice similarity coefficient (across all test datasets) of each segmentation tool in different brain regions are presented in this table.  

tool Periventricular Infratentorial Juxtacortical Subcortical Whole brain 

LST-AI  0.78  0.49  0.57  0.48  0.77 
LST-LGA  0.62  0.12  0.16  0.09  0.58 
LST-LPA  0.65  0.03  0.12  0.15  0.61 
nnUNet  0.64  0.31  0.31  0.23  0.63 
SAMSEG  0.70  0.26  0.21  0.24  0.66  

Fig. 6. First-level Dice similarity coefficient (DSC) (across all test datasets) of each lesion segmentation tool are provided for lesions in different brain regions: all 
lesions in the whole brain, infratentorial lesions, juxtacortical lesions, periventricular lesions, and subcortical lesions. 
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3.3. First-level lesion detection in relation to lesion size 

The lesion volume distribution of the test set is illustrated in Fig. 7. 
The distribution shows a fast and steep decline with the most frequent 
lesions being small. This is critical as there is no commonly accepted 
minimum lesion volume (Grahl et al., 2019); moreover, accurate manual 
lesion segmentation is challenging, cumbersome, and sometimes over-
whelming, even for expert readers. In Fig. 8, we illustrate the accuracy of 
lesion detection in relation to lesion volume. For this, we divided lesions 
into groups according to their size: 3–10 mm3, 11–100 mm3, 
101–1000 mm3, 1001–10000 mm3, and larger than 10000 mm3. Small 
lesions (>3 mm3 and < 10 mm3) show a lower detection rate. With 
increasing lesion size, the detection rate increases for all methods, with 
LST-AI showing the steepest incline. Hence, the advantage of LST-AI also 
applies to small lesions. 

4. Discussion 

We propose LST-AI, a new deep learning-based segmentation method 
for white-matter lesions in MS. It is built from an ensemble of three 3D 
U-Nets. Using LST-AI and a pair of T1w and FLAIR MRI images as input, 
it is possible to accurately segment lesions. We analyze the segmentation 
performance on multiple external datasets, thereby showing that LST-AI 
generalizes to data from different centers and scanners without 
retraining. We also compare our method to benchmark methods for 
validation and find excellent lesion segmentation performance of our 
method. In addition, LST-AI can label lesions according to their location, 
thereby providing further possibilities for lesion characterization in MS. 

LST-AI is pre-trained on an in-house dataset consisting of 491 images 
and does not need to be retrained before it is applied to new data. This 
makes it possible to use the tool even in smaller centers, where data is 
scarce and only small cohorts are available. Valverde et al., 2019, have 
previously optimized retraining on small datasets, as their tool only 
requires a single case to adapt their model to new datasets. They also 

validated their method on the ISBI 2015 test dataset and achieved a 
mean DSC of 0.58 (Valverde et al., 2019). In general, high-performing 
segmentation models in the ISBI 2015 challenge were CNN-based 
(trained on ISBI 2015 training dataset) and reported DSC scores 
ranging between 0.50 and 0.68 (Ma et al., 2022; Zhang & Oguz, 2021). 
However, assessing generalizability of segmentation models requires 
validation on external datasets. This has been done in recent studies, 
which used different train and test set pairings, including in-house and 
publicly available data such as ISBI 2015 and MICCAI 2016 data (e.g., 
train on in-house data and test on MICCAI 2016 data) (Billot et al., 2021; 
Cerri et al., 2021; Gentile et al., 2023; Kamraoui et al., 2022; Li et al., 
2022; McKinley et al., 2021; Rakić et al., 2021). Overall, using train and 
test sets from different image domains led to lower and more variable 
DSC scores. For example, in the study by Kamraoui et al. (2022), the 
segmentation performance on the ISBI 2015 test dataset drops when 
models are trained on in-house data (DSC = 0.13–0.48) compared to 
when they are trained on the ISBI training dataset (DSC = 0.64–0.67). 
On the MICCAI 2016 dataset, however, the models trained on the in- 
house training dataset showed robust and high DSC scores (0.65–0.72) 
(Kamraoui et al., 2022). This highlights the impact of differing image 
domains in train and test sets and the need for validation on multiple test 
datasets, which can provide a more realistic representation of a model’s 
generalizability. In this study, image domain heterogeneity is simulated 
by the validation of our method on multiple datasets, which were also 
part of MS lesion segmentation challenges of the ISBI 2015 conference 
and the MICCAI 2016 conference (Carass et al., 2017; Commowick et al., 
2018, 2021). While our model achieves similar scores (mean DSC of 0.61 
and 0.65 for ISBI 2015 and MICCAI 2016, respectively) as the top- 
performing models in both challenges, we want to emphasize that, in 
contrast to the participating models, our model is not specifically trained 
on the corresponding training datasets provided in the challenges. These 
two scores are also close to the inter-rater DSC scores of the expert 
segmentation used in the challenges (DSC of 0.63 and 0.66–0.76 in ISBI 
2015 and MICCAI 2016, respectively) (Carass et al., 2017; Commowick 

Fig. 7. This graph shows the distribution of lesions per volume. The bars and numbers indicate how many lesions are in each volume group. We divided the lesions 
into groups with a volume range of 10 mm3 and the first bar from the left shows the number of lesions with a volume between 3 mm3 and 10 mm3. 
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et al., 2021). Other studies investigating the generalizability of their 
model on external data reported similar DSC scores in the range of 
0.48–0.72 (Cerri et al., 2021; Kamraoui et al., 2022; McKinley et al., 
2021; Rakić et al., 2021). Regarding LST-AI, the DSC scores for the three 
external datasets (range: 0.61–0.74) underline the good generalization 
of our model and its reliable application to multicenter data acquired 
with different scanners and protocols. Overall, results from both second- 
and first-level analyses show high segmentation performance of LST-AI 
on unseen data. In contrast, the lower performance of the other methods, 
e.g., the pre-trained nnUNet, suggests the need for adaptation of these 
methods through retraining. We believe that using an ensemble 
approach including multiple pre-trained U-Nets translates into robust-
ness against performance variability of individual 3D U-Nets and, 
therefore, generalizes better across different imaging protocols and 
centers. Of note, the mean PPVL values of the benchmark methods are 
comparable to those of LST-AI and the PPV values of the benchmark 

methods even exceed those of LST-AI. However, this appears to happen 
at the expense of sensitivity, where LST-AI clearly outperforms the other 
methods at the voxel and lesion level. Given that the Tversky loss, which 
is designed to reduce false negatives (and thus increase sensitivity), is 
used in the model, this behavior was expected. Compared to the litera-
ture, lesion-wise sensitivity of LST-AI on MICCAI 2016 data 
(SensL = 0.83) and ISBI 2015 data (SensL = 0.55) is in the same range as 
previously reported values (Carass et al., 2017; Commowick et al., 2018; 
Kamraoui et al., 2022; Krishnan et al., 2023; Ma et al., 2022; Zhang & 
Oguz, 2021). With regard to clinical applicability of automated lesion 
segmentation tools, the sensitivity is crucial as diagnosing and moni-
toring MS relies on the detection of (new) lesions. A newly published 
method, namely BIANCA-MS (Gentile et al., 2023), has also been vali-
dated using the MICCAI 2016 test dataset and yielded results similar to 
ours in terms of DSC and false positives (in terms of lesion detection). 
However, the median number of false negatives was equal to 11(IQR: 

Fig. 8. These graphs illustrate the proportion of lesions that are detected in each volume group. We divided the lesions into groups according to their volume (on the 
logarithmic scale): 3–10 mm3, 11–100 mm3, 101–1000 mm3, 1001–10000 mm3, and larger than 10000 mm3. A) shows the number of lesions distribution across the 
volume groups; B) − F) show the lesion detection ratios of LST-AI, LST-LGA, LST-LPA, nnUNet, and SAMSEG for the different lesion volumes. Note, how the detection 
rate increases with increasing lesion volume for each segmentation, whereby LST-AI yields the highest detection rates. The detection rate is given in %. 
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18) for BIANCA-MS, whereas LST-AI yields a median number of false 
negatives equal to 4 (IQR: 8), again highlighting the high sensitivity of 
our proposed method towards lesion detection. 

In MS, lesion location within the brain may play an important role in 
identifying different disease patterns (Pongratz et al., 2023). In the LST- 
AI toolbox, a method is included which is able to classify lesions into 
four categories according to their location (PV, IT, JC, and SC). This 
makes it possible to seamlessly analyze the lesion load in different brain 
regions relevant to MS. When looking at the segmentation performance 
in the four different brain regions, it stands out that, among all methods 
included in this publication, LST-AI shows the highest (first-level) DSC 
score in all regions. The increased lesion segmentation performance in 
the JC region is a particularly relevant finding, since segmentation of 
lesions close to the cortex based on T1w and FLAIR images has always 
been a challenge in MS. Also, juxtacortical lesions are thought to be very 
specific for MS and are strongly associated with clinical disability 
(Calabrese et al., 2012), making their detection very important. 

We also investigated the lesion detection in relation to lesion volume 
and we found that LST-AI has a higher lesion detection sensitivity for 
small lesions than the benchmark methods. Similarly to previous reports 
by Commowick et al. (2018) and Rakić et al. (2021), we also found that 
it is particularly hard to detect small lesions (<10 mm3). Nonetheless, 
the steep improvement of lesion detection with increasing lesion size 
provides a promising perspective for the integration of automated lesion 
segmentation tools in clinical settings, since it can help clinicians to 
detect lesions faster and to diagnose and monitor MS more accurately. 

Our study does not come without limitations. First, our model re-
quires T1w and FLAIR image pairs, which might not always be available. 
Second, although less pronounced than the benchmark methods, our 
model still shows decreased lesion detection efficiency with decreasing 
lesion volumes. Even though the explainability of features learned via 
CNNs and, more specifically U-Nets have been comparatively well 
studied, they still lack some interpretability in contrast to methods 
leveraging manually selected features. In addition, preprocessing is part 
of the LST-AI toolbox and includes registration to MNI space, which 
prevents the possible effects of different preprocessing methods on 
segmentation performance. To handle all segmentation tools under 
comparison equally, we also followed this strategy to validate our 
method. Yet this may have lowered the performance of those lesion 
segmentation tools not inherently operating in MNI space. Finally, the 
quality of the publicly available datasets used for validation in this study 
is likely above average; therefore, segmentation performance may be 
lower for data of lower quality closer to real-life clinical data. 

In conclusion, we introduce LST-AI, a new lesion segmentation 
toolbox and make it publicly available on GitHub (https://github. 
com/CompImg/LST-AI). It includes a preprocessing pipeline as well as 
an ensemble of three 3D U-Nets with binary cross-entropy and Tversky 
loss, making it a holistic lesion segmentation tool, enabling easy-to- 
implement, quick, and accurate automated lesion segmentation for MS 
research without retraining and fine-tuning. We validated its robustness 
on multiple datasets and found excellent performance. We believe that, 
in future studies, LST-AI should replace LST. 
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