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In regression models with many potential predictors, choosing
an appropriate subset of covariates and their interactions at the
same time as determining whether linear or more flexible func-
tional forms are required is a challenging and important task. We
propose a spike-and-slab prior structure in order to include or
exclude single coefficients as well as blocks of coefficients asso-
ciated with factor variables, random effects or basis expansions
of smooth functions. Structured additive models with this prior
structure are estimated with Markov Chain Monte Carlo using a
redundant multiplicative parameter expansion. We discuss shrink-
age properties of the novel prior induced by the redundant param-
eterization, investigate its sensitivity to hyperparameter settings
and compare performance of the proposed method in terms of
model selection, sparsity recovery, and estimation error for Gaus-
sian, binomial and Poisson responses on real and simulated data
sets with that of component-wise boosting and other approaches.
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1 Introduction

In data sets with many potential predictors, choosing an appropriate subset
of covariates and their interactions at the same time as determining whether
linear or more flexible functional forms are required to model the relation-
ship between covariates and response is a challenging and important task.
From a Bayesian perspective, it can be translated into a question of estimating
marginal posterior probabilities whether a variable should be in the model
and in what form (i.e. linear or smooth; as main effect and/or as effect mod-
ifier).

This report describes a method based on a spike-and-slab prior structure
[Ishwaran and Rao, 2005] to select or deselect single coefficients as well as
blocks of coefficients associated with factor variables, interactions or basis
expansions of smooth functions. These bimodal priors for the hyper-variances
of the regression coefficients result in a two component mixture of a narrow
“spike” around zero and a “slab” with wide support as the marginal prior
for the coefficients. The mixture weights for the “spike” component can be
interpreted as posterior probabilities of exclusion of a coefficient or coefficient
block from the model.

The main contribution of the present work is the extension of the spike-
and-slab or stochastic search variable selection (SSVS) approach [George and
McCulloch, 1993] for selection of single coefficients in Gaussian models to
the selection of potentially large blocks of coefficients for general responses
from an exponential family. We use an innovative sampling procedure based
on a redundant multiplicative parameter expansion [Gelman et al., 2008] in
order to improve the exceedingly slow mixing of conventional samplers that
make a direct extension of the spike-and-slab approach for function selec-
tion (or, more generally, selection of coefficient blocks) infeasible. We also
show that this parameter expansion leads to a prior with desirable regular-
ization properties similar to Lq-penalization with q < 1. To make our ap-
proach reproducible and applicable, it is implemented in publicly available
software (R-package spikeSlabGAM [Scheipl, 2010c]). It improves on previous
approaches in that it fulfills all of the following criteria simultaneously:

i. it accommodates all types of regularized effects with a (conditionally)
Gaussian prior such as simple covariates (both metric and categorical),
penalized splines (uni- or multivariate), random effects or ridge-penalized
factors/interaction effects,

ii. it scales reasonably well to intermediate datasets with thousands of ob-
servations and hundreds of covariates,

iii. it accommodates non-Gaussian responses from the exponential family,

iv. it is implemented in publicly available and user-friendly open source soft-
ware.

Fitting the practical importance of the topic, a vast literature on Bayesian ap-
proaches for selection of single coefficients based on mixture priors for the
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coefficients exists. In a recent review paper, O’Hara and Sillanpää [2009]
compare the spike-and-slab approach in Kuo and Mallick [1998], the Gibbs
variable selection approach [Carlin and Chib, 1995, Dellaportas et al., 2002],
and stochastic search variable selection (SSVS) approaches in George and Mc-
Culloch [1993], among other methods.

Bayesian function selection, similar to the frequentist COSSO [Zhang and
Lin, 2003], is usually based on decomposing an additive model into orthogo-
nal functions in the spirit of a smoothing spline ANOVA [Wahba et al., 1995].
Wood et al. [2002] and Yau et al. [2003] describe implementations using a data-
based prior that requires two MCMC runs, a pilot run to obtain a data-based
prior for the “slab” part and a second one to estimate parameters and select
model components. A more general approach based on double exponential
regression models that also allows for flexible modeling of the dispersion is
described by Cottet et al. [2008]. They use a reduced rank representation
of cubic smoothing splines (i.e a “pseudo-spline” [Hastie, 1996]) with a very
small number of basis functions to model the smooth terms in order to reduce
the complexity of the fitted models, and, presumably, to avoid the mixing
problems detailed in Section 3.2. Since the authors were unable to provide
their software for this work, it was not possible to compare their approach to
the one described in the following. Reich et al. [2009] also use the smoothing
spline ANOVA framework and perform variable and function selection via
SSVS for Gaussian responses, but their implementation is very slow. To the
best of our knowledge, none of the above-mentioned approaches was imple-
mented in publicly available software in a useable form at the time of writing
and none are able to select between smooth nonlinear and linear effects.

The report is structured as follows: Section 2 summarizes structured ad-
ditive regression models and introduces the notation. Section 3 describes
the prior structure (3.1) and the parameter expansion trick used to improve
mixing (3.2) and discusses shrinkage properties of the marginal prior for the
regression coefficients (3.4). Section 4 describes the MCMC sampler imple-
mented in spikeSlabGAM. Sections 5 and 6 summarize results from a variety
of simulation studies and a collection of real data sets, respectively.

2 Structured additive regression

2.1 Model structure

Structured additive regression [Fahrmeir et al., 2004], a broad model class
that contains generalized additive mixed models, is among the most widely
used approaches in applied statistics due to its flexibility and generality.

We give a short summary of structured additive regression: The distribu-
tion of the responses y given a set of covariates xj; j = 1, . . . , p belongs to an
exponential family, i.e

π(y|x, φ) = c(y, φ) exp
(

yθ − b(θ)
φ

)
, (1)
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with θ, φ, b(·) and c(·) determined by the type of distribution. The additive
predictor η = ∑

p
j=1 f j(xj) determines the conditional expected value of the

response via

E(y|x1,...,p) = h(η) (2)

with a fixed response function h(·).
Components f (x) of the additive predictor can contain a wide variety of

regularized and unregularized model terms, such as

• linear terms f (x) = βx

• factor variables ( f (x) = βx(i) iff x = i)

• interactions (both linear-linear or categorical-linear)

• smooth functions of (one or more) continuous covariates, i.e. splines,
spatial effects, surface estimators, varying coefficient terms

• Gaussian Markov random fields for discrete spatial covariates

• random effects such as subject-specific intercepts.

Flexible terms such as the last 3 need to be regularized in order to avoid over-
fitting and are modeled with appropriate shrinkage priors. These shrinkage
or regularization priors are usually Gaussian or can be parameterized as scale
mixtures of Gaussians (e.g. the Bayesian Lasso with a Laplace prior on the co-
efficients is a Normal-Exponential scale mixture [Park and Casella, 2008]), so
that they are conditionally Gaussian given their variance parameters. In the
following we focus on models including linear terms, factor variables, smooth
functions of a single covariate and random intercept terms.

2.2 Bayesian P-splines

Smooth functions f () of continuous covariates are commonly modeled via
basis function expansions, i.e. f (x) = ∑K

k=1 δkBk(x) = Bδ, where δ is a vector
of coefficients associated with (nonlinear) basis functions Bk(); k = 1, . . . , K.
Many possibilities for the choice of basis functions and the associated regular-
ization exist. Knot-free methods include e.g. thin plate splines [Wood, 2003]
or smoothing splines [Wood et al., 2002] and their reduced rank representa-
tions [Cottet et al., 2008] based on the dominating eigenvalues and -vectors of
the covariance of the equivalent Gaussian process.

In the following, we use Bayesian P-splines as introduced by Lang and
Brezger [2004], similar to the approach chosen in Panagiotelis and Smith
[2008]. In this approach, Bk(x), k = 1, . . . , K is a collection of B-spline basis
functions [Eilers and Marx, 1996] and the shrinkage prior on the associated
coefficient vector δ is a Gaussian random walk prior of order d:

∆dδ ∼ NK−d
(
0, τ2IK−d

)
,
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where ∆d is the d-th difference operator matrix. In the following we use cubic
B-splines with a second order difference penalty. Note that this formulation
implies a partially improper prior for δ: δ ∝ exp

(
−0.5δ′Pδ/τ2), with rank-

deficient P = ∆d ′∆d.

2.3 Decomposition and Reparameterization of regularized terms
in penalized and unpenalized parts

For both computational and interpretational reasons it is often beneficial
to reparameterize regularized model components with a partially improper
prior in a mixed model representation [Fahrmeir et al., 2004]. Partially im-
proper priors naturally arise e.g. for P-splines because the prior is a Bayesian
analogue to the frequentist roughness penalty which is constructed so that,
for d-th order differences, polynomial functions up to the (d − 1)-th power
remain unpenalized. Consequently, coefficient vectors that parameterize con-
stant or linear functions are in the nullspace of the prior precision matrix.

More generally, for any regularized term f (x) = Bδ with a partially im-
proper Gaussian prior δ ∼ NK

(
0, s2P−

)
with fixed rank-deficient precision

matrix P and associated design matrix B, the problem is reparameterized by
a decomposition of the coefficient vector δ into an unpenalized part and a
penalized part:

δ = X̃1β1 + X̃2β2

where X̃1 ∈ RK×d, is a basis of the d-dimensional nullspace of P and X̃1 and
X̃2 have the following properties [Kneib, 2006, ch. 5.1]:

1. The concatenated matrix [X̃1X̃2] has full rank to make the transforma-
tion above a one-to-one transformation. This also implies that both X̃1
and X̃2 have full column rank.

2. X̃1 and X̃2 are orthogonal, i. e. X̃1X̃2
′
= 0

3. X̃ ′
1PX̃1 = 0, so that β1 is unpenalized by P

4. X̃ ′
2PX̃2 = I, so that the penalty term for β2 reduces to ‖β2‖2, the kernel

of a vector of i.i.d. Gaussian variates.

The decomposition is not unique and can always be based on the spectral
decomposition of P. With

P = [Λ+Λ0]
′
(

Γ+ 0
0 0

)
[Λ+Λ0],

where Λ+ is the matrix of the eigenvectors associated with the positive eigen-
values diag(Γ+), and Λ0 are the eigenvectors associated with the zero eigen-
values, the decomposition is

X̃1 = Λ0 and
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X̃2 = L(L′L)−1 with L = Λ+Γ+
1/2.

The regularized model terms can then be expressed as

Bδ = B(X̃1β1 + X̃2β2) = X1β1 + X2β2 (3)
and δ′Pδ = (X̃1β1 + X̃2β2)

′P(X̃1β1 + X̃2β2) = β′
2β2

with X1 as the design matrix associated with the unpenalized part and X2 as
the design matrix associated with the penalized part of the term. The prior for
the regularized part after reparameterization is then β2 ∼ NK−d(0, s2I), while
β1 has a flat prior. For an additive model with linear predictor η given by
η = ∑

p
k=1 fk(xk) = ∑

p
k=1 Bkδk, the reparameterization results in a linear pre-

dictor η = ∑
p
k=1 Xk,1βk,1 + ∑

p
k=1 Xk,2βk,2.

3 The NMIG Model with Parameter Expansion

The following Section describes the prior structure of the conventional Normal-
mixture of Inverse Gamma (NMIG) model (Section 3.1) and shows that this
setup is not well suited for the simultaneous selection of coefficient groups
(Section 3.2). Section 3.3 describes a parameter expansion that changes the
prior structure and enables simultaneous selection of coefficient groups. Ish-
waran and Rao [2005] originally proposed an empirical Bayes analogue of this
prior for selection of single coefficients in the linear model for Gaussian data.

3.1 Model Hierarchy

This section discusses the basic model hierarchy for structured additive re-
gression models with the NMIG prior. In most cases, the linear predictor η
will contain terms that are forced into the model (e.g. a global intercept term)
and are not associated with a variable selection prior. We write η = ηu + Xβ,
where ηu = Xuβu represents the part of the linear predictor not associated
with an NMIG prior. In the following, we focus on the part Xβ associated
with NMIG priors.

Figure 1 shows the hierarchy of the basic NMIG prior model. At the lowest
level of the hierarchy, the data yi, i = 1, . . . , n come from a distribution in the
exponential family such as the Gaussian, binomial or poisson distributions.
The canonical parameter of this distribution is connected to the linear pre-
dictor via a known response function g(). The regression coefficients have
independent Gaussian priors with mean zero. Subvectors β j, j = 1, . . . , p are
associated with different components of the predictor, i.e. different covariates,
unpenalized and penalized parts of a reparameterized spline basis or a set of
indicator variables encoding the levels of a factor. The prior variance for β
is constant within subvectors and given by the product of an indicator vari-
able γj and the hypervariance τ2

j . The indicator variable γj takes the value
1 with probability w or some (very) small value v0 with probability 1− w.
The hypervariance τ2

j has an inverse gamma-prior with shape parameter aτ
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The NMIG model:

j=1,...,p

i=1,...,n

βj ∼ N(0, γjτ
2
j Idj)

γj ∼ wδ1(γj) + (1− w)δvo(γj)

w ∼ Beta(aw, bw)

(aw, bw)

v0

τ2
j ∼ Γ−1(aτ, bτ)

(aτ, bτ);
aτ << bτ

yi ∼ Expo. fam.(g(ηu,i + x′iβ))

Figure 1: Directed acyclic graph for the NMIG model.
Ellipses are stochastic nodes, rectangles are deterministic/logical nodes. Sin-
gle arrows are stochastic edges, double arrows are logical/deterministic
edges. Subvectors βj are associated with different components of the predic-
tor, i.e. unpenalized and penalized parts of a reparameterized spline basis or
indicators coding the different levels of a factor. dj is the length of subvector
βj. g() is a known response function. δy(x) is zero for any value of x other
than y and 1 at y. The linear predictor from model terms not associated with
an NMIG prior is given by ηu,i.
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and scale parameter bτ with bτ � aτ, so that the mode bτ/aτ is significantly
greater than 1. The implied prior for the effective hypervariance v2

j = γjτ
2
j

is a bimodal mixture of inverse gamma distributions, with one component
strongly concentrated on very small values – the spike with γj = v0 and effec-
tive scale parameter v0bτ – and a second more diffuse component with most
mass on larger values – the slab with γj = 1 and scale bτ. A coefficient asso-
ciated with a hypervariance that is primarily sampled from the spike-part of
the prior will be strongly shrunk towards zero if v0 is sufficiently small, so
that the posterior probability for γj = v0 can be interpreted as the probability
of exclusion of βj from the model. The Beta prior for the mixture weights w
can be used to incorporate the analyst’s prior knowledge about the sparsity
of β or, more practically, enforce sufficiently sparse solutions for overparame-
terized models. In the following, we write βj ∼ NMIG(v0, w, aτ, bτ) to denote
this prior hierarchy for the regression coefficients.

Expressions for the full conditionals resulting from this prior structure are
given in Section 4. This prior hierarchy is very well suited for selection of
model terms for non-Gaussian data because the selection (i.e. the sampling
of indicator variables γ) occurs on the level of the hypervariances for the co-
efficients. This means that the likelihood itself is not in the Markov blanket
of γ and consequently does not occur in the full conditionals for the indi-
cator variables. Since the full conditionals for γ are thus available in closed
form regardless of the likelihood, this results in comparatively easy and fast
model averaging for non-Gaussian models without the need to delve into the
intricacies of estimating marginal likelihoods.

3.2 Using NMIG for simultaneous selection of multiple
coefficients fails

Previous approaches for Bayesian variable selection have primarily concen-
trated on selection of single coefficients [George and McCulloch, 1993, Kuo
and Mallick, 1998, Dellaportas et al., 2002, Ishwaran and Rao, 2005] or used
very low dimensional bases for the representation of smooth effects. E.g. Cot-
tet et al. [2008] use a pseudo-spline representation of their cubic smoothing
spline bases with only 3 to 4 basis functions. In the following, we argue that
conventional blockwise Gibbs sampling is ill suited for updating the state of
the Markov chain when sampling from the posterior of an NMIG model even
for moderately large coefficient blocks. We show that mixing for γj will be
very slow for blocks of coefficients βj with dj � 1. We suppress the index j
in the following.

The following analysis will show that, even if the blockwise sampler is ini-
tially in an ideal state for switching between the spike and the slab parts of
the prior, i.e. a parameter constellation so that the full conditional probabil-
ity P(γ = 1|·) = .5, such a switch is very unlikely in subsequent iterations
for coefficient vectors with more than a few entries given the NMIG prior
hierarchy.

Assume that the sampler starts out in iteration (0) with a parameter con-
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Figure 2: P(γ) as a function of the relative change in ∑d β2 for varying d, γ(0):
Inclusion probability in iteration (1) as a function of the ratio between the
sum of squared coefficients in iteration (1) and (0). Lines in each panel
correspond to τ2

(1) equal to the median of its full conditional and the .1- and
.9-quantiles. Upper row is for γ(0) = 1, lower row for γ(0) = v0. Columns
correspond to d = 1, 5, 20. Solid gray grid lines denote inclusion probability
= .5 and ratio of coefficient sum of squares = 1

figuration of at, bt, v0, w, τ2
(0) and β(0) so that P(γ(0) = 1|·) = .5. We set w = .5.

The parameters for which P(γ = 1|·) = .5 satisfy the following relations:

P(γ = 1|·)
P(γ = v0|·)

= vd/2
0 exp

(
(1− v0)

2v0

∑d β2

τ2

)
= 1,

so that P(γ = 1|·) > .5 if

∑d β2

dτ2 > − v0

1− v0
log(v0),

or
d

∑ β2 > − dv0

1− v0
log(v0)τ

2,

or τ2 > − (1− v0)∑d β2

dv0 log(v0)
.

Assuming a given value τ2
(0), set

d

∑ β2
(0) =

dv0

1− v0
log(v0)τ

2
(0).

Now γ(0) takes on both values v0 and 1 with equal probability, conditional on
all other parameters.
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In the following iteration, τ2
(1) is drawn from its full conditional Γ−1(at +

d/2, bt +
∑d β2

(0)
2γ(0)

) (see (7)). Figure 2 shows P(γ(1) = 1|τ2
(1), ∑d β2

(1)) as a func-

tion of ∑d β2
(1)/ ∑d β2

(0) for various values of d. The 3 lines in each panel

correspond to P(γ(1) = 1|τ2
(1), ∑d β2

(1)) for values of τ2
(1) equal to the median

of its full conditional as well as the .1- and .9-quantiles. The upper row in the
Figure plots the function for γ(0) = 1, the lower row for γ(0) = v0.

So, if we start in this “equilibrium state” we begin iteration (0) with v0, w,
τ2
(0), and β(0) so that P(γ(0) = 1|·) = .5. We then determine P(γ(1) =

1|τ2
(1), ∑d β2

(1)) as a function of ∑d β2
(1)/ ∑d β2

(0) for

• various values of dim(βj) = d,

• γ(0) = 1 and γ(0) = v0,

• τ2
(1) at the .1, .5, .9-quantiles of its conditional distribution given β(0), γ(0).

The leftmost column in Figure 2 shows that moving between γ = 1 and γ =
v0 is easy for d = 1: For a large range of realistic values for ∑d β2

(1)/ ∑d β2
(0),

moving back to γ(1) = v0 from γ(0) = 1 (upper panel) has reasonably large
probability, just as moving from γ(0) = v0 to γ(1) = 1 (lower panel) is fairly
likely for realistic values of ∑d β2

(1)/ ∑d β2
(0). For d = 5, however, P(γ(1) =

1|·) already resembles a step function. For d = 20, if ∑d β2
(1)/ ∑d β2

(0) is not
smaller than 0.48, the probability of moving from γ(0) = 1 to γ(1) = v0 (upper
panel) is practically zero for 90% of the values drawn from p(τ2

(1)|·). However,

draws of β that reduce ∑d β2 by more than a factor of 0.48 while γ = 1 are
unlikely to occur in real data. It is also extremely unlikely to move back to
γ(1) = 1 when γ(0) = v0, unless ∑d β2

(1)/ ∑d β2
(0) is larger than 2.9. Since

the full conditional for β is very concentrated if γ = v0, such moves are
highly improbable and correspondingly the sampler is unlikely to move away
from γ = v0. Numerical values for the graphs in Figure 2 were computed
for aτ = 5, bτ = 50, v0 = 0.005 but similar problems arise for all suitable
hyperparameter configurations.

In summary, mixing of the indicator variables γ will be very slow for long
subvectors. In experiments, we observed posterior means of P(γ = 1) to be
either ≈ 0 or ≈ 1 across a wide variety of settings, even for very long chains,
largely depending on the starting values of the chains. The following section
describes a possible remedy.

3.3 Parameter Expansion: The peNMIG Model

The mixing problem analyzed in the previous section is similar to the mix-
ing problems encountered in other samplers for hypervariances of regression
coefficients: a small variance for a batch of coefficients implies small coeffi-
cient values and small coefficient values in turn imply a small variance so that
the sampler is unlikely to exit a basin of attraction around the origin. This
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problem has been previously described in Gelman et al. [2008], where the
issue is framed as one of strong dependence between a block of coefficients
and their associated hypervariance. A bimodal prior for the variance such as
the NMIG prior where the Markov chain must switch between the different
components of the mixture prior associated with the two modes of course ex-
acerbates these difficulties. A promising strategy to reduce this dependence
is the introduction of working parameters that are only partially identifiable
along the lines of parameter expansion or marginal augmentation introduced for
the EM-algorithm in Meng and van Dyk [1997] and developed further for
Bayesian inference for hierarchical models in Gelman et al. [2008]. While Gel-
man et al. [2008] concentrate on speeding up convergence for conventional
hierarchical models, we use the parameter expansion to enable simultaneous
selection or deselection of coefficient subvectors and improve the shrinkage
properties of the resulting marginal prior.

We add a redundant multiplicative parameterization to the spike-and-slab
prior. We set

βj = αjξ j; ξ j ∈ Rdj

for a subvector βj with length dj and use a scalar parameter

αj ∼ NMIG(v0, w, aτ, bτ),

where NMIG denotes the prior hierarchy given in Fig. 1. Entries of the vector
ξ j are a priori distributed as

ξ jk
i.i.d.∼ 1

2
N(1, 1) +

1
2

N(−1, 1), k = 1, . . . , dj,

and prior independence between αj and ξ j. We write

βj ∼ peNMIG(v0, w, aτ, bτ)

as shorthand for this prior structure.
The effective dimension of the coefficient vector associated with updating

γj and τ2
j is then equal to one in every penalization group, since the Markov

blankets of both γj and τj now only contain the scalar parameter αj instead of
the vector βj. This is crucial in order to avoid the mixing problems described
in the previous Section, because instead of

P(γ = 1|·)
P(γ = v0|·)

= vd/2
0 exp

(
(1− v0)

2v0

∑d
i β2

i
τ2

)

for the conventional NMIG prior, we now have

P(γ = 1|·)
P(γ = v0|·)

=
√

v0 exp
(
(1− v0)

2v0

α2

τ2

)
,
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which is less susceptible to result in extreme values and behaves more like
the probabilities in the leftmost column of Figure 2.

In our parameter expansion, the parameter αj parameterizes the “impor-
tance” of the j-th coefficient block, while ξ j “distributes” αj across the entries
in βj. Setting E(ξ) = ±1 shrinks ξ towards |1|, the multiplicative identity, so
that the interpretation of αj as the “importance” of the j-th coefficient block
can be maintained and yields a marginal prior for βj that is less concentrated
on small absolute values than ξ ∼ N(0, 1).

peNMIG: NMIG with parameter expansion

j=1,...,p l=1,...,q=∑
p
j=1 dj

i=1,...,n

αj ∼ N(0, γjτ
2
j )

γj ∼ wδ1(γj) + (1− w)δvo(γj)

v0 w ∼ Beta(aw, bw)

(aw, bw)

τ2
j ∼ Γ−1(aτ, bτ)

(aτ, bτ);
aτ << bτ

ξl ∼ N(ml , 1)

ml ∼ 1
2 δ1(ml) +

1
2 δ−1(ml)

β = blockdiag(ξ1, . . . , ξp)α

yi ∼ Expo. fam.(g(ηu,i + x′iβ))

Figure 3: Directed acyclic graph of NMIG model with parameter expansion.
Ellipses are stochastic nodes, rectangles are deterministic/logical nodes. Sin-
gle arrows are stochastic edges, double arrows are logical/deterministic
edges.

Figure 3 shows the prior hierarchy for the model with parameter expansion.
In the following, this model will be denoted as peNMIG. The vector ξ =
(ξ′1, . . . , ξp)

′ is decomposed into subvectors ξ j associated with the different
penalization groups and their respective entries αj, j = 1, . . . , p in α.
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3.4 Shrinkage properties

Marginal priors

This section investigates the regularization properties of the marginal prior
for the regression coefficients β implied by the hierarchical prior structures
given in Figs. 1 and 3. To distinguish between the conventional NMIG prior
and its parameter expanded version we write β if the parameter has an NMIG
prior and βpe if it has the parameter expanded peNMIG prior. In the follow-
ing, we analyze the univariate marginal priors

p(β|aτ, bτ, aw, bw, v0) =

=
∫

p(β|γ, τ2)p(τ2|aτ, bτ)p(γ|w, v0)p(w|aw, bw)dτ2dγdw

for the conventional NMIG model and

p(βpe = αξ|aτ, bτ, aw, bw, v0)

=
∫

p(α|γ, τ2)p
(

βpe

α

)

︸ ︷︷ ︸
=ξ

1
|α| p(τ

2|aτ, bτ)p(γ|aw, bw, v0)

p(w|aw, bw)dαdτ2dγdw

for the peNMIG prior.

These are the univariate marginal priors for a single regression coefficient
with and without parameter expansion with the intermediate quantities τ2, γ
and w integrated out. We analyze the marginal priors because it has been
shown that the shrinkage properties of the resulting posterior means are de-
pendent on their shape and less on that of the conditional priors [Fahrmeir
et al., 2010, Kneib et al., 2010]. We use v2 = γτ2 ∼ Γ−1(aτ, γbτ) so that the
marginal prior for β in the conventional NMIG-model is a mixture of scaled
t-distributions with 2aτ degrees of freedom and scale factors

√
v0bτ/aτ and√

bτ/aτ with weights bw
aw+bw

and aw
aw+bw

, respectively:

p(β|aτ, bτ, aw, bw, v0) =

=
aw

aw + bw

∫ ∞

0
p(β|v2)p(v2|aτ, bτ)dv2

+
bw

aw + bw

∫ ∞

0
p(β|v2)p(v2|aτ, v0bτ)dv2

=
aw

aw + bw

baτ
τ√

2πΓ(aτ)

∫ ∞

0
v−2(a+ 3

2 )e

(
−

β2
2 +bτ

v2

)

dv2
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+
bw

aw + bw

(v0bτ)aτ

√
2πΓ(aτ)

∫ ∞

0
v−2(a+ 3

2 )e

(
−

β2
2 +v0bτ

v2

)

dv2

= K1

∫ ∞

0

(
v2

β2

2 + bτ

)−(a+ 3
2 )

e

(
−

β2
2 +bτ

v2

)
(

β2

2
+ bτ

)−(aτ+
1
2 )

d
v2

β2

2 + bτ

+ K2

∫ ∞

0

(
v2

β2

2 + v0bτ

)−(aτ+
3
2 )

e

(
−

β2
2 +v0bτ

v2

)
(

β2

2
+ v0bτ

)−(aτ+
1
2 )

d
v2

β2

2 + v0bτ

=
aw

aw + bw

baτ
τ Γ(aτ +

1
2 )

√
2πΓ(aτ)

(
β2

2 + bτ

)aτ+
1
2
+

bw

aw + bw

(v0bτ)aτ Γ(aτ +
1
2 )

√
2πΓ(aτ)

(
β2

2 + v0bτ

)a+ 1
2

=
aw

aw + bw

Γ
(

2aτ+1
2

)

Γ
(

2aτ
2

)√
2aτπ bτ

aτ

(
1 +

β2

2aτ
bτ
aτ

)− 2aτ+1
2

+
bw

aw + bw

Γ
(

2aτ+1
2

)

Γ
(

2aτ
2

)√
2aτπ v0bτ

aτ

(
1 +

β2

2aτ
v0bτ
aτ

)− 2aτ+1
2

. (4)

The marginal prior for βpe in the peNMIG model has no closed form. The
density given in (4) is also the marginal prior p(α|aτ, bτ, aw, bw, v0) for α in the
peNMIG model so that a density transform yields

p(βpe = αξ|aτ, bτ, aw, bw, v0) =

=
∫

p(α|aτ, bτ, aw, bw, v0)p
(

βpe

α

)

︸ ︷︷ ︸
=ξ

1
|α|dα

=
∫

p
(

βpe

ξ
|aτ, bτ, aw, bw, v0

)
p (ξ)

1
|ξ|dξ. (5)

Figure 4 shows the two marginal priors for v0 = 0.005, (aτ, bτ) = (5, 50)
and aw = bw. Values for peNMIG were determined by numerical integration.
Note the characteristic shape of the spike-and-slab prior for the marginal prior
without parameter expansion: There is a “spike” around zero which corre-
sponds to the contribution of the t-distribution with scale factor

√
v0bτ/aτ

and a “slab” which corresponds to the contribution of the t-distribution with
scale factor

√
bτ/aτ. The prior for peNMIG has heavier tails and an infinite

spike at zero (see (6)). It looks similar to the original spike-and-slab prior sug-
gested by Mitchell and Beauchamp [1988], which used a mixture of a point
mass in 0 and a uniform distribution on a finite interval, but sampling for our
approach has the benefit of conjugate and proper priors.
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Figure 4: Marginal priors for β as given in (4) and (5) with (aτ , bτ) = (5, 50),
v0 = 0.005, aw = bw. (Log scale on vertical axis.)

The following shows that the marginal prior p(βpe) diverges in 0. We use

p(βpe|aτ, bτ, aw, bw, v0) =
∫ +∞

−∞
pα

(
βpe

ξ

)
pξ(ξ)

1
|ξ|dξ,

so that

p(βpe|aτ, bτ, aw, bw, v0)|βpe=0 = pα(0)
∫ +∞

−∞
pξ(ξ)

1
|ξ|dξ.

It is enough to show that I =
∫ +∞
−∞ pξ(ξ)

1
|ξ|dξ diverges, since pα(0) is finite

and strictly positive. The prior pξ() is a mixture of normal densities with
variance 1 and means ±1, so

I = K
∫ +∞

−∞

1
|ξ|

(
exp

(
− (ξ + 1)2

2

)
+ exp

(
− (ξ − 1)2

2

))
dξ

= K(I1 + I2 + I3 + I4)

with

I1 =
∫ 0

−∞
−1

ξ
exp

(
− (ξ + 1)2

2

)
dξ, I2 =

∫ +∞

0

1
ξ

exp
(
− (ξ + 1)2

2

)
dξ,

I3 =
∫ 0

−∞
−1

ξ
exp

(
− (ξ − 1)2

2

)
dξ, and I4 =

∫ +∞

0

1
ξ

exp
(
− (ξ − 1)2

2

)
dξ.

Note that I1 = I4 and I2 = I3. Since all 4 integrals are positive, it is enough to
show that one of them diverges:

I4 =
∫ 1

0

1
ξ

exp
(
− (ξ − 1)2

2

)

︸ ︷︷ ︸
≥e−

1
2 for ξ∈[0,1]

dξ +
∫ +∞

1

1
ξ

exp
(
− (ξ − 1)2

2

)
dξ

︸ ︷︷ ︸
=K̃≥0
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≥ e−
1
2

∫ 1

0

1
ξ

dξ + K̃

= e−
1
2 [ln(ξ)]10 + K̃ = +∞. (6)

−40 −20 0 20 40

−
50

0
50

NMIG

β

∂ ∂β
lo

g(
p(

β)
)

v0 = 0.005,
aτ = 5,
bτ = 50
v0 = 0.00025,
aτ = 5,
bτ = 25

−10 −5 0 5 10

−
4

−
2

0
2

4

peNMIG

β

∂ ∂β
lo

g(
p(

β)
)

v0 = 0.005,
aτ = 5,
bτ = 50
v0 = 0.00025,
aτ = 5,
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Figure 5: Score functions for marginal priors for beta as given in (4) and (5).
Note the different scales for the conventional NMIG and peNMIG.

For both NMIG and peNMIG, the tails of the marginal priors are heavy
enough so that they have redescending score functions (see fig. 5) which
ensures Bayesian robustness of the resulting estimators. While the shape of
peNMIG’s score function is similar to that of an Lq-prior with q → 0 and
is fairly robust towards different combinations of hyperparameters, the con-
ventional NMIG score function has a complicated shape determined by the
interaction of aτ, bτ and v0. Note that the score function of the marginal prior
under parameter expansion descends monotonously and much faster.

The marginal prior of the hypervariances for βpe = αξ is given by the
density of the product γτ2ξ2 since βpe|γ, τ2, ξ ∼ N(0, γτ2ξ2). This marginal
prior, which is the integral over the product of a mixture of scaled inverse
gamma distributions with a noncentral χ2

1 distribution

p(λ2 =γτ2ξ2) =

=
∫ ∞

0

(
aw

aw + bw
Γ−1

(
λ2

ξ2 |aτ, bτ

)
+

bw

aw + bw
Γ−1

(
λ2

ξ2 |aτ, v0bτ

))

1
ξ2 χ2

1(ξ
2|µ = 1)dξ2,

Γ−1(x|a, b) =
ab

Γ(a)
x−(a+1) exp

(
− b

x

)
,

χ2
1(x|µ = 1) =

1
2

exp
(
− x + 1

2

)
x−

1
4 I− 1

2

(√
x
)

,
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(Iν(y) denotes the modified Bessel function of the first kind) is intractable,
so we are unable to verify whether conditions for Theorem 1 in Polson and
Scott [2010] apply. Simulation results indicate that the peNMIG prior has
similar robustness for large coefficient values and better sparsity recovery as
the horseshoe prior (see p. 30), for which the theorem applies.

The peNMIG prior combines an infinite spike at zero with heavy tails.
This desirable combination is similar to other shrinkage priors such as the
horseshoe prior [Carvalho et al., 2010] and the normal-Jeffreys prior [Bae and
Mallick, 2004] for which both robustness for large values of β and very effi-
cient estimation of sparse coefficient vectors have been shown [Carvalho et al.,
2010, Polson and Scott, 2010].

Constraint regions

The shapes of the 2-d constraint regions log p((β1, β2)′) ≤ const implied by
the NMIG and peNMIG priors provide some further intuition about their
shrinkage properties. The contours of the NMIG prior, depicted on the left

Figure 6: Contour plots of log p((β1, β2)
′) for aτ = 5, bτ = 50, v0 = 0.005,

aw = bw for the standard NMIG model and the model with parameter expan-
sion. Lower panels are zooms into the region around the origin (indicated
in the upper panels).

in fig. 6, have different shapes depending on the distance from the origin.
Close to the origin (β < .3), they are circular and very closely spaced, im-
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plying strong ridge-type shrinkage – coefficient values this small fall into the
“spike”-part of the prior and will be strongly shrunk towards zero. Moving
away from the origin (.3 < β < .8), the shape of the contours defining the
constraint region morphs into a rhombus shape with rounded corners that
is similar to that produced by a Cauchy prior. Still further from the origin
(1 < β < 2), the contours become convex and resemble those of the con-
tours of an Lq penalty function, i.e. a prior with p(β) ∝ exp(−|β|q), with
q < 1. Coefficient pairs in this region will be shrunk towards one of the axes,
depending on their posterior correlation and which of their maximum like-
lihood estimators is bigger. For even larger β, the shape of the contours is a
mixture of a ridge-type circular shape around the bisecting angle with pointy
ends close to the axes. The concave shape of the contours in the areas far from
the axes implies proportional (i.e. ridge-type) shrinkage of very large coeffi-
cient pairs. This corresponds to the comparatively smaller tail robustness of
the conventional NMIG prior observed in simulations.

The shape of the constraint region implied by the peNMIG prior has the
convex shape of a Lq-penalty function with q < 1, which has the desirable
properties of simultaneous strong shrinkage of small coefficients and weak
shrinkage of large coefficients due to its closeness to the L0 penalty (see also
fig. 8).

Until now, the discussion has been limited to bivariate shrinkage proper-
ties applied to single coefficients from separate penalization groups. In the
following, we discuss shrinkage properties for coefficients from the same pe-
nalization group, i.e. two entries from the same subvector βj in the nota-
tion of Figs. 1 and 3. The shape of the peNMIG prior for 2 coefficients
from the same penalization group is quite different. Recall that two co-
efficients (β1, β2) from the same penalization group share the same α, e.g.
in this case (β1, β2)′ = α(ξ1, ξ2)′. This results in a very different shape of
log p((β1, β2)′) ≤ const shown in Figure 7 (values determined by numerical
integration). The prior in this case is

p(βpe = α(ξ1, ξ2)
′|aτ, bτ, aw, bw, v0) =

=
∫

p(α|aτ, bτ, aw, bw, v0)p

(
βpe

α

)
1
|α|dα

=
∫

p(α|aτ, bτ, aw, bw, v0)
1
|α| ·

· 1
4

(
N
(

β1

α
|µ = 1

)
+ N

(
β1

α
|µ = −1

))
·

·
(

N
(

β2

α
|µ = 1

)
+ N

(
β2

α
|µ = −1

))
dα,

where N(x|µ) denotes the normal density with variance 1 and mean µ. The
shape of the constraint region for grouped coefficients is that of a square
with rounded corners. Compared with the convex shape of the constraint
region, this shape induces less shrinkage toward the axes and more towards
the origin or along the bisecting angle.
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Figure 7: Constraint region for β = (β1, β2)
′ from the same penalization

group.

Figure 8 illustrates the difference in shrinkage behavior between grouped
and ungrouped coefficients for a simple toy example. We simulated design
matrices X with n = 15 observations and 2 covariates so that (X ′X)−1 =(

1 ρ
ρ 1

)
with ρ = −0.8, 0, 0.8. Coefficients β were either (1, 1)′ (two intermedi-

ate effect sizes) or (0, 2)′ (one null, one large effect) and observations y were
generated with a signal-to-noise ratio of 2. We generated 100 datasets for each
combinations of ρ and β and compared OLS estimates to the posterior means
for a peNMIG model as returned by spikeSlabGAM.

The different shrinkage properties for grouped and ungrouped coefficients
are most apparent for uncorrelated coefficients (middle column): Shrinkage
in this case occurs in directions orthogonal to the contours of the prior, so
while the shape of the grouped prior causes shrinkage toward the origin in
the direction of the bisecting angle or parallel to the axes, the ungrouped
coefficients are shrunk more toward the nearest axis. Consequently, we expect
estimation error for sparse coefficient vectors with few large and many small
or zero entries (like β = (0, 2)′) to be smaller for ungrouped coefficients, while
the grouped prior should have a smaller bias for coefficient vectors with many
entries of similar (absolute) size (like β = (1, 1)′): While most of the mass of
the multivariate prior for ungrouped coefficients is concentrated along the
axes (i.e. on sparse coefficient vectors), the multivariate prior for grouped
coefficients is concentrated in a cube around the origin.
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Figure 8: Shrinkage for grouped (top graph) and ungrouped coefficients
(bottom graph).
Arrows connect OLS estimates with posterior means from spikeSlabGAM on
identical data sets. Black crosses denote means of OLS estimators over
all replications for a given setting, red crosses means of posterior means
from a peNMIG model fit with spikeSlabGAM. Top rows in each graph are
for β = (1, 1)′, bottom rows for β = (0, 2)′. Columns show results for
ρ = −0.8, 0, 0.8. Note that ρ is the correlation of the OLS estimators, not the
correlation of the associated covariates.
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4 MCMC

This section describes the MCMC sampler implemented in spikeSlabGAM that
was used for all the simulations and applications in Sections 5 and 6. Algo-
rithm 1 on p. 26 gives a short summary of the blockwise Metropolis-within-
Gibbs sampler we use.

4.1 Full conditionals

The sampler exploits the fact that the full conditionals of (most of) the param-
eters are available in closed form:

w|· ∼ Beta

(
aw +

p

∑
j

δ1(γj), bw +
p

∑
j

δv0(γj)

)
,

τ2
j |· ∼ Γ−1


at + dj/2, bt +

∑
dj
i=1 β2

ji

2γj


 ,

P(γj = 1|·)
P(γj = v0|·)

= v
dj/2
0 exp


 (1− v0)

2v0

∑
dj
i=1 β2

ji

τ2
j


 . (7)

Full conditionals for βj for Gaussian responses and the conventional NMIG
model (given in fig. 1) are given by

βj|· ∼ N(µj, Σj) (8)

with

Σj =

(
1
σ2

ε

X ′jX j +
1

γjτ
2
j

Idj

)−1

; µj =
1
σ2

ε

ΣjX ′jy.

In the peNMIG model given in fig. 3, updates for α use the “collapsed”
design matrix Xα = X blockdiag(ξ1, . . . , ξp), while ξ is updated based on a
“rescaled” design matrix Xξ = X blockdiag(1d1, . . . , 1d p)α, where 1d is a d× 1
vector of ones. For Gaussian responses, these are draws from their multi-
variate normal full conditionals as above. For non-Gaussian responses, we
use P-IWLS proposals [Lang and Brezger, 2004] with a Metropolis-Hastings
step. The following Section 4.2 provides more details on the methods used to
sample β.

Note that

P(γj = 1|·)
P(γj = v0|·)

> v
dj/2
0 for all values of βj, i.e that

P(γj = 1|·) > v
dj/2
0

1 + v
dj/2
0

≈ v
dj/2
0 for small v0.
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4.2 Updating βpe

This section describes the implementation of the updates for the regression
coefficients in the peNMIG model. For both Gaussian and non-Gaussian re-
sponses, the proposed algorithm does blockwise updates of coefficient sub-
vectors, conditional on the remainder of the coefficient vector and the other
parameters in the Markov blanket (i.e. prior covariances, prior means and the
relevant likelihood terms). The default is a blocksize of 30 for both α and ξ for
Gaussian response and smaller blocksizes of 5 and 15 for α and ξ, respectively,
for non-Gaussian response. Blocksizes are smaller for non-Gaussian response
since the acceptance probability in the necessary Metropolis-Hastings-step for
non-Gaussian responses tends to decrease quickly with increasing dimension
of the proposal.

Since β = blockdiag(ξ1, . . . , ξp)α, we sample β by first updating α based on
a “collapsed” n× p design matrix Xα = X blockdiag(ξ1, . . . , ξp) and then up-
dating ξ based on a “rescaled” n× q design matrix Xξ = X blockdiag(1d1, . . . , 1d p)α,
where 1d is a d× 1 vector of ones. The j-th column of Xα contains the sum
of the original design columns multiplied by the entries in the subvector ξ j
associated with αj. Each column in Xξ contains the respective column of
the original design matrix multiplied by the associated entry in α. The prior
means ml ∈ {±1} for ξl ∼ N(ml , 1) are drawn beforehand from their full
conditionals via P(ml = 1|·) = 1

1+exp(−2ξl)
.

Update via QR-decomposition

The following paragraphs describe a general method to update a coefficient
vector δ associated with a conditional Gaussian prior. We use this procedure
to update β in the NMIG model and to update both α and ξ in the peNMIG
model.

Regression coefficients δ with prior δ ∼ N(µδ, Σδ) and associated design
matrix Xδ can be updated by running the regression of an augmented data
vector ỹ with covariance Σ̃ on an augmented design matrix X̃ with

ỹ =

(
y
µδ

)
; X̃ =

(
Xδ

I

)
and Σ̃ =

(
Cov(y) 0

0 Σδ

)
. (9)

If only a subvector δj is updated conditional on the remainder δ−j of the
vector δ, y is replaced by y− Xδ

−jδ−j and Σδ is replaced by Σδ
−j,−j.

Following Gelman et al. [2008], we perform the updates for the regression

coefficients via the QR-decomposition Σ̃
−1/2

X̃ = QR. From this decomposi-

tion, we can solve the triangular system Rδ̂ = Q
(

Σ̃
−1/2

ỹ
)

for the mean of

the full conditional δ̂. As long as Σ̃
−1/2

is a diagonal matrix, as is the case
for all of the models and predictor terms we are considering (see Section 2.3),
or is known, the computationally demanding step is the computation of the
QR-decomposition.
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We solve another triangular system Reδ = n, ni
i.i.d.∼ N(0, 1) in order to

generate a candidate value δc = δ̂ + eδ from (the approximation to) the full
conditional, so the proposal distribution q(δc, δ) is N(δ̂, (R′R)−1).

IWLS updates for non-Gaussian responses

We use a variant of the well-known IWLS proposal scheme [Gamerman, 1997]
to do blockwise updates for both α and ξ in the non-Gaussian case. We use
a penalized IWLS (P-IWLS) proposal scheme based on an approximation of
the current posterior mode described in detail in Brezger and Lang [2006]
(Sampling scheme 1, Section 3.1.1). This method is a Metropolis-Hastings
type update which uses a Gaussian (i.e. second order Taylor) approximation
to the full conditional around its approximate mode as its proposal distribu-
tion. The approximating Gaussian is obtained by performing a single Fisher
scoring step per iteration.

For P-IWLS, y and Cov(y) in (9) are replaced by their IWLS equivalents
[Gamerman, 1997]

Cov(y)
IWLS≈ diag

(
b′ ′(θ)g′(µ)2) and y

IWLS≈ X jδj + (y− µ)g′(µ), (10)

see (1) for notation.
We use the following modification of the IWLS-algorithm in order to de-

crease the computational complexity of the algorithm somewhat: By using
the mean of the proposal distribution of the previous iteration δ̂

p
instead of

δ in (10) and recalculating µ and θ based on δ̂
p
, the proposal distribution q()

becomes independent of the current state, which simplifies the calculation
of the acceptance probability and can increase acceptance rates [Brezger and
Lang, 2006].

Acceptance rates for the sampler strongly depend on the size of the update
blocks and on the magnitude of the rescaling performed in each iteration:
For large blocks or updates that require drastic rescaling (see paragraph be-
low), acceptance probabilities can occasionally become small, especially for
binary responses. To avoid getting stuck, our sampler monitors rejection
rates for each block. If proposals for a certain update block have been re-
jected 10 times in a row, we use a different proposal density for this block
with probability 0.5: Instead of drawing proposals from N(δ̂

p
, (R′R)−1), we

use q(δc, δ) = N(δc, (R′R)−1), i.e. we use the current state as the mean of the
proposal. The working observations and IWLS weights that determine R are
calculated from the mode of the previous iteration as described above so that
the proposal ratio q(δ, δc)/q(δc, δ) is 1. This type of update tends to result in
smaller steps, but it is useful in order to get the chain moving again. Using
an adaptive transition kernel such as this one can violate the detailed balance
condition for the transition kernel of the Markov chain, but results in Section
5 convincingly show that convergence of the chains is not adversely affected.
For most datasets, mode switching occurs very rarely during the sampling
of the chain if at all, and spikeSlabGAM provides the option to switch it off

24



entirely. Direct comparisons of results on problematic datasets between ex-
ceedingly long (i.e. > 100000 iterations for a model with 20 coefficients) runs
of single-site-IWLS-updates without mode switching and blocked updates
with mode switching showed that differences between the resulting posterior
distributions were well within the range of MC error.

Rescaling parameter blocks

After updating the entire α− and ξ−vectors, each subvector ξ j is rescaled
so that |ξ j| has mean 1, and the associated αj is rescaled accordingly so that
βj = αjξ j is unchanged:

ξ j →
dj

∑
dj
i |ξ ji|

ξ j and αj →
∑

dj
i |ξ ji|
dj

αj.

This rescaling is advantageous since αj and ξ j are not identifiable and thus
their sampling paths can wander off into extreme regions of the parameter
space without affecting the fit, e.g. αj becoming extremely large while en-
tries in ξ j simultaneously become extremely small. By rescaling, we retain
the interpretation of αj as a scaling factor representing the importance of the
model term associated with it and avoid numerical problems that can oc-
cur for extreme parameter values. For non-Gaussian responses, the posterior
modes used in the IWLS-updates are shifted accordingly as well. Note, how-
ever, that this shifting of the mode is only approximate. Consequentially, this
rescaling can occasionally lead to low (< .1) acceptance rates for the P-IWLS
proposals since the proposal density may not be well adapted to the posterior
anymore after a large rescaling.

Starting values

It is essential to find suitable starting values for β for non-Gaussian responses,
otherwise the IWLS sampler fails. We initialize β by performing Fisher scor-
ing steps with fixed and usually large values of the hypervariance until the
relative change in β are smaller than 10%, up to a maximum of 20 steps.
Starting values for α(0) and ξ(0) are computed via

α
(0)
j =

∑
dj
i |β ji|
dj

and ξ
(0)
j =

βj

α
(0)
j

.

Simulation results and applications (Sections 5, 6) show that this strategy
works well.

4.3 Estimating Inclusion Probabilities

Selection of coefficient blocks βj in the NMIG and peNMIG models is based
on the marginal posterior of γj. The posterior expectation of δ1(γj) is the
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Algorithm 1 MCMC sampler for peNMIG

1: Initialize τ2(0), γ(0), σ2(0), w(0) and β(0) (via IWLS for non-Gaussian re-
sponse as described on p. 25)

2: Compute α(0), ξ(0), X(0)
α

3: for iterations t = 1, . . . , T do
4: for blocks b = 1, . . . , Bα do
5: generate α

(t)
b from its full conditional (Gaussian case)/ via IWLS-P

6: X(t)
ξ = X blockdiag(1d1 , . . . , 1dp)α

(t)

7: generate m(t)
1 , ..., m(t)

q from their full conditionals
8: for blocks b = 1, . . . , Bξ do
9: generate ξ

(t)
b from its full conditional (Gaussian case)/ via IWLS-P

10: for penalization groups i = 1, . . . , p do
11: rescale ξ

(t)
i and α

(t)
i (see p. 25)

12: X(t)
α = X blockdiag(ξ(t)1 , . . . , ξ(t)p )

13: generate τ1
2(t), ..., τp

2(t) from their full conditionals
14: generate γ1

(t), ..., γp
2(t) from their full conditionals

15: generate w(t) from its full conditional
16: if y is Gaussian then
17: generate σ2(t) from its full conditional

posterior inclusion probability pin,j, since pin,j = P(γj = 1) = E(δ1(γj)). In-
clusion probabilities pin,j are estimated with the Rao-Blackwellized estimator

p̂in,j = T−1
T

∑
t=0

p(t)in,j ,

with p(t)in,j = 1−





(
1 + v

dj/2
0 exp

(
(1−v0)

2v0

∑
dj
i=1(β

(t)
ji )2

(τ2
j )

(t)

))−1

for NMIG,

(
1 + v1/2

0 exp
(

(1−v0)
2v0

(α
(t)
j )2

(τ2
j )

(t)

))−1

for peNMIG,

where θ(t) denotes the realized value of parameter θ in iteration t of an MCMC
chain with length T. This estimator uses the MCMC samples of P(γj = 1)

after burn-in, instead of p̂in,j = T−1 ∑T
t=0 δ1(γ

(t)
j ).

Barbieri and Berger [2004] show that, under fairly strong conditions, the
median probability model, i.e. the model which includes only covariates with a
marginal inclusion probability greater than 0.5, is optimal for predictive pur-
poses in the class of single models. Although the conditions set forth (i.e.
orthogonal design, squared error loss) do not apply to most of the settings in
which spikeSlabGAM could conceivably be used, we still use this threshold of
pin,j = 0.5 to determine exclusion or inclusion of model terms in the follow-
ing. We concur with their assertion that “[. . . ] the fact that only the median
probability model seems to have any optimality theory whatsoever suggests
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that it might quite generally be successful, even when the optimality theory
does not apply” [Barbieri and Berger, 2004, p. 894] and this is borne out by
simulation studies and applications (see Sections 5, 6).

4.4 Algorithm Variants

While the default prior for the inclusion indicators γj assumes mutual in-
dependence, i.e. that inclusion or exclusion of a model term is a priori in-
dependent of the inclusion or exclusion of all other model terms, we also
implemented a structure of the prior for γ that incorporates the hierarchical
structure of the model terms themselves. More precisely, the prior structure
forces inclusion of e.g. the linear term for a covariate if the corresponding
smooth term is included in the model, or the inclusion of main effects if an
interaction effect involving them is included in the model. Without changing
the sampler per se, this “top-down” approach is implemented as a simple
pass over the updated γ-vector in each iteration, making sure that all low-
order terms (i.e. main effects) have γ = 1 if high-order terms that involve
them (i.e. interactions) have γ = 1. Alternatively, a “bottom-up” variant en-
forcing more parsimonious models that excludes high-order terms (i.e. sets
them to γ = v0) unless all low-order terms associated with them are included
may be an option worth pursuing, but we have not done so yet. An alterna-
tive to be implemented in future versions of the software is to sample γ not
via single-site updates, but blockwise with blocks determined by the depen-
dencies induced by the hierarchy (e.g. sample γs for main effects and their
interaction together) and then include a Metropolis-Hastings step to reject
proposals that violate the hierarchical constraints in a block.

5 Simulation Studies

The following sections summarize results from tests of the proposed meth-
ods on simulated data. Section 5.1 investigates the adaptive shrinkage prop-
erties of the proposed prior. Section 5.2 shows that the proposed parameter
expansion with multiplicative redundant parameters can improve sampling
behavior for settings in which the posterior of the regression coefficients con-
tains strong correlations. Sections 5.3 and 5.4 investigate model selection and
estimation performance for models with random intercepts and smooth func-
tions, respectively. Section 5.5 describes results for additive models of some
complexity for both Gaussian and Poisson responses and compares the per-
formance of our approach to the performances of other recently suggested
algorithms.

We introduce some additional notation for the generation of Gaussian data:
For a given data-generating process (DGP) that generates a random design
matrix X and a (fixed or random) vector of coefficients β, let η = Xβ denote
the “true” linear predictor. For responses with y = η + ε, the difficulty level
of estimating both β, and, consequently, η is determined mostly by the ra-
tio between the systematic variability that can be quantified as the observed
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variability of η, i.e. the “signal”, and the unsystematic variability introduced
by the Gaussian error terms ε, the “noise”. Let sdη =

√
∑n

i (ηi − η̄)2/n and
define the signal-to-noise ratio SNR = n sd2

η / ∑n
i ε2

i . For a given value of SNR

and realization of η, responses y are then generated via yi ∼ N
(

ηi, sd2
η / SNR

)
.

5.1 Adaptive shrinkage

We investigate the shrinkage properties of the proposed prior structures in a
simple setting. The following describes the data-generating process:

• n = 20, 50, 100 observations

• β = (.1, .2, .3, . . . , 1), p = 10

• signal-to-noise ratio SNR= 0.5, 2

• covariates xj are independent, with xj ∼ U[−2, 2] and enter the model
scaled to have mean 0 and standard deviation .5.

• 100 replications per setting

We compare the shrinkage properties of the posterior means from spikeSlabGAM
with those of the horseshoe prior (HS) as implemented in R package monomvn
[Gramacy, 2010] and the LASSO estimator (L1) as implemented in R package
lasso2 [Lokhorst et al., 2009]. The horseshoe prior (a scale mixture of normals
with a scaled half-Cauchy mixing distribution, where the scale of the mix-
ing distribution is itself half-Cauchy distributed), has recently been shown to
have excellent adaptive shrinkage properties [Carvalho et al., 2010] and we
use its behavior as a reference for good adaptive shrinkage properties, while
the LASSO estimators serve as a reference for a shrinkage estimator without
adaptivity.

Figure 9 shows the median and the inter-quartile ranges of the posterior
means of the estimated coefficients over the 100 replications for each combina-
tion of the different numbers of observations n and the signal-to-noise ratios
SNR. We compare models with (peNMIG) and without (NMIG) the redun-
dant multiplicative parameter expansion with (aτ, bτ, v0) = (5, 25, 0.00025) or
(5, 50, 0.005).

Note that the frequentist LASSO (L1, in yellow) performs about the same
amount of regularization in all of the settings – all six approaches overshrink
the larger coefficients for N = 20 and N = 50, SNR= 0.5; LASSO less so than
the Bayesian approaches. However, as more information from the data be-
comes available with increasing N and SNR, the Bayesian approaches (NMIG,
peNMIG, HS) perform less regularization, since the likelihood contribution
of the posterior increasingly dominates the prior contribution to the poste-
rior. This is visible especially for the bottom right panel with N = 100 and
SNR= 2.

Adaptive shrinkage in the sense of strong regularization of smaller coeffi-
cients (i.e. β ≤ 0.5) and simultaneously weak shrinkage for large coefficients
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Figure 9: Estimated coefficients (median & inter-quartile range) for differ-
ent (pe)NMIG-prior settings, the horseshoe prior (HS) and the frequentist
LASSO (L1). Fat dark gray horizontal bars show values of the true coeffi-
cients.

true β

P
(γ

=
1)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

N: 20

●
●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

.1 .2 .3 .4 .5 .6 .7 .8 .9 1

N: 50

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

.1 .2 .3 .4 .5 .6 .7 .8 .9 1

N: 100

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

.1 .2 .3 .4 .5 .6 .7 .8 .9 1

S
N

R
: 0.5

S
N

R
: 2

Algorithm
● peNMIG:c(5, 25):0.00025

● peNMIG:c(5, 50):0.005

● NMIG:c(5, 25):0.00025

● NMIG:c(5, 50):0.005

Figure 10: Posterior means of P(γ = 1) (median & inter-quartile range) for
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(i.e. β ≥ 0.8) is observable only for N = 50, 100. For N = 20, posterior means
for peNMIG with (aτ, bτ) = (5, 50) and v0 = 0.005 are closest to those re-
turned by the horseshoe-prior model. We observe no systematic differences
between the shrinkage properties of NMIG and peNMIG for v0 = .005. Es-
timates and inclusion probabilities (see fig. 10) for the larger coefficients are
much smaller for the NMIG model. We also note that inclusion probabilities
for peNMIG seem to be somewhat less sensitive to the different hyperparame-
ters than for NMIG. Shrinkage of the smaller coefficients is more pronounced
for smaller v0 and τ2 (red and green symbols) without a corresponding in-
crease in estimation bias for the larger coefficients, at least for settings with
enough data (i.e. n = 50, SNR= 2 and n = 100). For settings with n = 50,
SNR= 2 or n = 100, larger v0 and τ2 NMIG models without parameter ex-
pansion (in purple) perform much worse. This is due to lower inclusion
probabilities (see fig. 10). In general, we find that the spikeSlabGAM estimates
are similar to the HS estimates.

Across all settings, estimation times for spikeSlabGAM for both NMIG and
peNMIG were about one third to half of those for monomvn. In absolute terms,
running 3000 iterations of the chains took between 0.16 and 0.36 seconds for
spikeSlabGAM depending on n and whether parameter expansion was used,
while monomvn’s horseshoe implementation took between 0.58 and 0.64 sec-
onds on a modern desktop PC (Intel Core2 Quad Q9550 CPU with 2.83GHz).

Tail robustness and sparsity recovery

In order to compare the robustness of our approaches to large coefficient val-
ues relative to that of the horseshoe prior, we replicate the simulation study in
Section 3.1. of Polson and Scott [2010]. We simulate 100 datasets with n = 60
observations and p = 40 covariates. The covariates are independent standard
normal variates. The true coefficient vector is 80% sparse, with the first 32
entries equal to zero (i.e. the “noise” component) and the remaining 8 drawn
from a t-distribution with 3 degrees of freedom (i.e. the “signal” component).
We simulate responses y with normal errors so that the signal-to-noise ratio
is 2. Results are shown for prior settings aτ = 5, bτ = 50, v0 = 0.00025, aw =
bw = 1 and the default settings for the horseshoe prior as implemented in
monomvn. Figure 11 shows the mean square estimation errors (MSE) for pos-
terior means of β separately for the noise (upper panel) and signal (lower
panel) components of β. MSE for the noise part is consistently higher for the
horseshoe estimates (average MSE-ratio is 2.8 compared to the spikeSlabGAM-
estimates for peNMIG and 5.0 for NMIG), while the MSE for the signal part
is slightly lower (average MSE-ratio: 0.94 for peNMIG and 0.83 for NMIG).
These results show satisfactory tail robustness for both approaches compara-
ble to that of the horseshoe prior and excellent sparsity recovery. As expected
(see Section 3.4, figs. 4, 6), robustness is stronger for peNMIG than for NMIG.
Sparsity recovery is very good for both of our approaches. We observed qual-
itatively similar results for signal-to-noise ratios 5 and .5 (not shown).
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Figure 11: Mean square estimation errors (MSE) for posterior means of β.
Upper panel shows MSE(β̂) for the coefficients that are zero, lower panel
shows MSE(β̂) for the coefficients drawn from t3. Dark grey lines connect
values from the same replicates.

5.2 Sampling performance with parameter expansion

We investigate the approximate integrated autocorrelation times – defined as

IAT(x) =
1
2
+

T

∑
t=1

r̂(t),

r̂(t) are the estimated auto correlations for lag t [Jackman, 2009]– for the re-
gression coefficients and their estimation error in designs with strong correla-
tions in the posterior distribution of β. We generate random design matrices
X ∈ Rn×p so that Ψ = (X ′X)

−1 is a matrix with 1 on the diagonal and a con-
stant ρ everywhere else, i.e. the correlations between all the OLS-estimators
are equal to ρ. Specifically, X = UΨ−1/2, where U is an orthonormal matrix
and Ψ−1/2 is the Cholesky root of Ψ−1. Responses y are then generated as

y ∼ Nn

(
η,

sd2
η

SNR
In

)
.

Regression coefficients β are set as an equidistant descending sequence of
length 10 from 2 to .5 interspersed with zeroes, i.e. β = (2, 0, 1.83̄, . . . , 0.6̄, 0, 0.5, 0)′

so that p = 20.
We use the following settings for our simulations:

• correlation of βOLS: ρ = .9, .95

• signal-to-noise-ratio SNR = 1, 3

• no of observations: n = 50, 100
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Ratios of IAT with and without parameter expansion
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Figure 12: Ratios of average integrated autocorrelation times for β̂ (upper

graph), root mean square estimation error
√
‖β̂− β‖2 (middle graph) and

time per “independent” sample (bottom graph).
Columns correspond to the settings of the data generating process (corre-
lation and SNR). Boxplots contain the ratio between peNMIG and NMIG
results for each replicate. Boxplots are grouped into the four different prior
settings. Red boxplots correspond to results for n = 100 observations, blue
for n = 50. Vertical axes are on binary log scale; fat black horizontal line
corresponds to a ratio of 1, i.e no change.
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• 100 replications for each setting

Figure 12 shows the ratios between average integrated autocorrelation times

for β̂ (top graph) and root mean square estimation error
√
‖β̂− β‖2

2 (mid-
dle graph) with and without parameter expansion for the different settings
for the posterior correlation, the signal-to-noise ratio and hyperparameters
(aτ, bτ) and v0. Panels from left to right show results for correlation 0.9 with
SNR 1 and SNR 3 followed by results for correlation 0.95 with SNR 1 and SNR
3. The simulation shows that the suggested parameter expansion improves
mixing and reduces estimation error for all DGP settings and hyperparame-
ter configurations, especially for higher SNR, smaller v0, and low number of
observations. Parameter expansion reduces estimated integrated autocorre-
lation times for β by a median factor of .49 for n = 50 and .57 for n = 100

and estimation error
√
‖β̂− β‖2

2 by a median factor of .94 for n = 50 and .95
for n = 100. Because of the larger complexity of the sampler for peNMIG
(see Section 4), the observed improvement in mixing is not large enough to
translate into consistent reductions in computing time for n = 100 : The bot-
tom graph in Figure 12 shows that the time to generate a single “independent
sample” (defined as the total run time of the sampler divided by the effective
sample size, which is in turn the number of iterations of the chain divided by
2IAT [Jackman, 2009]) remains about the same in most settings, with median
ratios of estimated time per independent sample of .80 for n = 50 and .98 for
n = 100. Regression analyses of the simulation results with performance mea-
sures as dependent variables and second-degree interactions and main effects
for the data-generating process (n, SNR, correlation) and the hyperparame-
ters ((aτ, bτ), v0) also show that using peNMIG increases the odds of correctly
including a covariate in the model by a factor of 1.11, without a corresponding
decrease in specificity. Accuracy increases by a factor of 1.04. Table 1 gives
mean performance measures for the different settings and priors.

In summary, these results indicate that parameter expansion has the po-
tential to improve mixing for difficult data situations dramatically, although
this may not translate into relevant savings in computation time for larger
data sets with many parameters due to the higher computational burden of
sampling from the parameter expanded posterior. Parameter expansion also
reduces estimation error and improves complexity recovery. Note that we
did not investigate whether these advantages disappear if the sampler for the
conventional NMIG model is allowed to run long enough to achieve a similar
effective sample size as that of the parameter expanded model.

5.3 Random Intercept Models

This section summarizes simulation results on selecting and estimating ran-
dom intercept coefficients for Gaussian and binomial response. The basic data
generating process for both types of response is

η = x + Zb
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Parameter

DGP Prior Expansion Sensitivity Specificity IAT
√

MSE(β̂) TPS [ms]

0.9:100:1

c(10, 30):0.00025 Yes 0.69 0.84 4.21 0.09 7.96
No 0.70 0.80 8.18 0.09 8.50

c(10, 30):0.005 Yes 0.68 0.86 1.79 0.09 3.36
No 0.65 0.85 2.97 0.09 2.83

c(5, 50):0.00025 Yes 0.60 0.93 4.36 0.10 8.22
No 0.55 0.94 8.44 0.10 8.74

c(5, 50):0.005 Yes 0.51 0.96 1.14 0.09 2.02
No 0.37 0.98 2.18 0.11 1.85

0.9:100:3

c(10, 30):0.00025 Yes 0.93 0.95 3.40 0.04 6.31
No 0.92 0.93 5.83 0.04 6.50

c(10, 30):0.005 Yes 0.91 0.96 0.93 0.04 1.78
No 0.89 0.97 1.53 0.04 1.58

c(5, 50):0.00025 Yes 0.91 0.98 1.90 0.04 3.49
No 0.89 0.97 4.74 0.04 5.50

c(5, 50):0.005 Yes 0.77 1.00 0.77 0.04 1.40
No 0.69 1.00 1.08 0.05 1.04

0.9:50:1

c(10, 30):0.00025 Yes 0.38 0.86 3.86 0.14 5.28
No 0.34 0.85 8.62 0.15 6.76

c(10, 30):0.005 Yes 0.38 0.87 1.68 0.14 2.29
No 0.29 0.88 3.76 0.15 2.90

c(5, 50):0.00025 Yes 0.19 0.97 4.40 0.16 6.04
No 0.17 0.97 8.10 0.16 6.29

c(5, 50):0.005 Yes 0.24 0.96 1.20 0.14 1.59
No 0.13 0.99 2.38 0.16 1.79

0.9:50:3

c(10, 30):0.00025 Yes 0.77 0.89 4.11 0.07 5.84
No 0.76 0.85 8.95 0.08 7.79

c(10, 30):0.005 Yes 0.76 0.91 1.63 0.07 2.06
No 0.72 0.90 3.20 0.08 2.74

c(5, 50):0.00025 Yes 0.68 0.96 4.41 0.08 6.30
No 0.59 0.97 9.08 0.09 7.67

c(5, 50):0.005 Yes 0.60 0.98 1.14 0.08 1.55
No 0.42 0.99 3.03 0.10 2.40

0.95:100:1

c(10, 30):0.00025 Yes 0.68 0.85 4.11 0.09 7.93
No 0.66 0.80 8.17 0.10 8.66

c(10, 30):0.005 Yes 0.67 0.86 1.63 0.09 2.96
No 0.64 0.83 2.99 0.10 3.03

c(5, 50):0.00025 Yes 0.60 0.95 3.25 0.09 6.15
No 0.56 0.94 7.34 0.10 7.73

c(5, 50):0.005 Yes 0.52 0.97 1.02 0.09 1.89
No 0.39 0.97 2.30 0.11 2.24

0.95:100:3

c(10, 30):0.00025 Yes 0.95 0.93 3.04 0.04 5.69
No 0.94 0.93 5.43 0.04 6.19

c(10, 30):0.005 Yes 0.92 0.96 1.13 0.04 2.17
No 0.90 0.96 1.66 0.04 1.87

c(5, 50):0.00025 Yes 0.93 0.97 2.30 0.04 4.39
No 0.91 0.98 4.11 0.04 4.40

c(5, 50):0.005 Yes 0.78 1.00 0.75 0.04 1.45
No 0.71 1.00 1.35 0.05 1.39

0.95:50:1

c(10, 30):0.00025 Yes 0.38 0.83 4.05 0.14 5.42
No 0.35 0.83 8.34 0.15 6.94

c(10, 30):0.005 Yes 0.37 0.84 1.67 0.14 2.24
No 0.32 0.86 3.86 0.15 3.13

c(5, 50):0.00025 Yes 0.18 0.96 4.63 0.16 6.23
No 0.14 0.97 8.57 0.16 6.82

c(5, 50):0.005 Yes 0.24 0.94 1.22 0.14 1.65
No 0.10 0.98 2.43 0.16 1.94

0.95:50:3

c(10, 30):0.00025 Yes 0.80 0.87 4.44 0.07 5.90
No 0.79 0.85 8.75 0.08 7.77

c(10, 30):0.005 Yes 0.79 0.90 1.91 0.07 2.55
No 0.75 0.88 3.26 0.08 2.67

c(5, 50):0.00025 Yes 0.69 0.95 5.03 0.08 7.50
No 0.59 0.96 9.93 0.09 8.57

c(5, 50):0.005 Yes 0.62 0.98 1.25 0.07 1.72
No 0.43 0.99 3.10 0.10 2.52

Table 1: Means of sensitivity (ratio of included coefficients ≥ .5), specificity
(ratio of excluded coefficients = 0), integrated autocorrelation times, root
mean square error for estimated coefficients and estimated times per inde-
pendent sample (in milliseconds, on an AMD Opteron 270)
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with an incidence matrix Z for a grouping factor and

xi
i.i.d.∼ U

(
0,
√

12
)

, i = 1, . . . , n so that Var(x) = 1

b̃g
i.i.d.∼ tν, g = 1, . . . , no. of groups;

b = σ
b̃−mean(b̃)

sd(b̃)

with all combinations of the following settings:

• 10 or 100 groups/subjects (i.e b ∈ R10 or R100)

• with (on average) 5 or 20 observations for each group/subject

• with degrees of freedom ν = 1 or 20 (i.e. Cauchy or approximately
Gaussian random effects)

We use scaled and centered random effects b so that the contribution of the
random effects to the variability of the linear predictor is constant across
replications for the same value of σ and for different values of ν. We com-
pare misclassification rates and estimation error ‖b̂ − b‖2 between various
prior settings for our approach and mixed models fitted with lme4 [Bates and
Maechler, 2009] and tested with (restricted) likelihood ratio test.

Linear mixed model

For the linear mixed model, we use

• signal-to-noise-ratio SNR = 1, 5

• random effects scale factor σ = 0, 0.0625, 0.125, 0.25, 0.5, 0.75, 1

and balanced data, in addition to the settings described above. We generate
100 data sets for each combination of settings.

Inclusion or exclusion of the random intercept term in the LMM is based
on the p-value of an exact restricted likelihood ratio test (RLRT) for H0 :
σ2 = 0 with significance level α = .05 as implemented in RLRsim [Scheipl,
2010a, Scheipl et al., 2008]. We consider the random intercept included in the
spikeSlabGAM-models if the Rao-Blackwellized estimate of the posterior mean
of P(γb = 1) is greater than .5. Figure 13 shows error rates (top left: false
positive or type I error for σ = 0, top right: false negative or type II error)
and root mean square estimation errors for the random intercept model for
Gaussian responses. Type I and type II error rates for the hyperparameter
configurations considered here are fairly close to those of the RLRT with sig-
nificance level α = .05 (black lines). As in the other simulations, a smaller v0
(red, blue symbols) yields less conservative models, because the threshold an
effect has to cross before the associated hypervariance is sampled from the
“slab” and not from the “spike” decreases. Type II error rates are insensitive
towards the different prior combinations for smaller sample sizes and low
SNR.
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Figure 13: Mean type I / type II err rates and
√

MSE for linear mixed models
with a random intercept.
Rows correspond to the different combinations of SNR and degrees of free-
dom ν, top two rows are for SNR = 1. Columns correspond to the dif-
ferent combinations of number of groups/subjects and observations per
group/subject, two rightmost columns are for 10 groups/subjects. Left
graph gives type I error for σ = 0, right graph gives type II error
rates for σ > 0. Graph on the lower right gives mean estimation error
√

MSE =
√
‖b̂− b‖2. Solid black lines line give error rates and RMSE for

the LMM (based on the p-value of a restricted LR-test with α = .05). Vertical
axis for type I error is on

√
-scale, vertical axis for RMSE is on log2-scale.

Error bars show 95% CIs for mean error rates.
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Across all settings, estimation error for the LMM is markedly larger than
for peNMIG and fairly stable across the different priors. Estimation error for
σ = 0, however, is much lower for v0 = 0.00001 since it imposes stronger
shrinkage than v0 = 0.00025.

Mixed model with binary response

For the generalized linear mixed model, binary responses y are generated
from

yi ∼ B
(

n = 1, p = (1 + exp (−ηi))
−1
)

with

• random effects scale factor σ = 0, 0.125, 0.25, 0.5, 0.75, 1, 1.5

• balanced groups or unbalanced groups with relative group sizes drawn
from a Dirichlet distribution with concentration parameter α = (5, . . . , 5)′

and the other settings as described at the beginning of this Section. Inclusion
or exclusion of the smooth term in the GLMM is based on the p-value of a
likelihood ratio test for H0 : σ2 = 0 with significance level α = 0.15. The
reference distribution for this test was determined by a parametric bootstrap
for each dataset. We generate 50 data sets for each combination of settings.
Figure 14 shows error rates (top left: false positive or type I error for σ = 0,
top right: false negative or type II error) and root mean square estimation er-
rors for the random intercept model for Binomial responses. Type I error rates
for the peNMIG model are larger for small group size (first and third column)
and this difference is more pronounced in the balanced settings (second and
fourth row) than in the unbalanced settings. For those settings where peN-
MIG and the bootstrap LRT have similar type I error rates, their type II error
rates are similar as well, and for all settings the slope of type II error rates
for peNMIG is similar to that of the bootstrap LRT. Surprisingly, a smaller
v0 (red, blue symbols) does not yield less conservative models for many of
the settings. Across all settings, estimation error for the GLMM is markedly
larger than for peNMIG and practically indistinguishable for the different
priors.

The simulation results for LMM and GLMM suggest that peNMIG’s model
selection behavior for random effects is similar to that of the (restricted) like-
lihood ratio test for a broad variety of settings, but peNMIG’s estimation of
the random effects is much better than that produced by the conventional
ridge-type shrinkage of the frequentist mixed model with Gaussian random
effects.

5.4 Univariate Smoothing for Gaussian response

We investigate the properties of the peNMIG prior in terms of function selec-
tion for both randomly generated and fixed functions.

37



Mean Type I Error

Prior

Ty
pe

 I 
E

rr
or

 R
at

e

0.00
0.01
0.04
0.09
0.16
0.25
0.36

0.00
0.01
0.04
0.09
0.16
0.25
0.36

0.00
0.01
0.04
0.09
0.16
0.25
0.36

0.00
0.01
0.04
0.09
0.16
0.25
0.36

10:5 10:20 100:5 100:20

Mean Type II Error

σ

Ty
pe

 II
 E

rr
or

 R
at

e

0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

10:5

0.
12

5
0.

25 0.
5
0.

75 1
1.

5

10:20

0.
12

5
0.

25 0.
5
0.

75 1
1.

5

100:5

0.
12

5
0.

25 0.
5
0.

75 1
1.

5

100:20

0.
12

5
0.

25 0.
5
0.

75 1
1.

5

1:u
1:b

20:u
20:b

Prior

● c(5, 50):0.00025

● c(5, 50):1e−05

● c(5, 25):0.00025

● c(5, 25):1e−05

Mean RMSE

σ

M
S

E

2−82−52−2

2−82−52−2

2−82−52−2

2−82−52−2

10:5

0
0.

12
5

0.
25 0.
5

0.
75 1
1.

5

10:20

0
0.

12
5

0.
25 0.
5

0.
75 1
1.

5

100:5

0
0.

12
5

0.
25 0.
5

0.
75 1
1.

5

100:20

0
0.

12
5

0.
25 0.
5

0.
75 1
1.

5

1:u
1:b

20:u
20:b

Figure 14: Mean type I / type II error rates and
√

MSE for mixed models
with a random intercept and binary response.
Rows correspond to the different combinations of balance (“u” is unbal-
anced, “b” is balanced) and degrees of freedom ν, top two rows are
for ν = 1. Columns correspond to the different combinations of num-
ber of groups/subjects and observations per group/subject, two rightmost
columns are for 10 groups/subjects. Left graph gives type I error for σ = 0,
right graph gives type II error rates for σ > 0. Graph on the lower right

gives mean estimation error
√

MSE =
√
‖b̂− b‖2. Solid black lines line give

error rates and RMSE for the GLMM (based on the p-value of a LR test with
α = .15). Vertical axis for type I error is on

√
-scale, vertical axis for RMSE

is on log2-scale. Error bars show 95% CIs for mean error rates.
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We compare inclusion probabilities and misclassification rates for peNMIG
with various hyperparameter configurations to boosting with separate base
learners for the linear and smooth parts of the function with mboost and to ad-
ditive models (AM) in mixed model representation fitted with amer [Scheipl,
2010b]. Inclusion or exclusion of a smooth term in the AM is based on the
p-value of an RLRT for H0 : σ2 = 0 with α = .05 as implemented in RLRsim
[Scheipl, 2010a, Scheipl et al., 2008]. Ten-fold cross validation on the train-
ing data is employed to determine the optimal stopping iteration for mboost
and a baselearner is included in the model if it is selected in at least half of
the cross-validation runs up to the stopping iteration. Smooth terms are in-
cluded in the spikeSlabGAM-models if the Rao-Blackwellized posterior mean
of P(γ = 1) is greater than .5.

Randomly generated functions

We investigate the properties of our approach first on data from a very basic
data-generating process for a simple spline model:

• η = x+Z(x)b; Z(x) is the penalized part of a B-spline basis for covariate
x with a difference penalty of order 2.

• b ∼ σN(µ, Id), µ is drawn from {−1, 1}d.

We use the following settings for the simulation:

• number of observations: n = 50, 500

• signal-to-noise-ratio SNR = 0.5, 5

• dimension of spline basis: ds = 5, 20

• degree of nonlinearity: σ2 = 0, 0.125, 0.25, 0.375, 0.5

• 50 replications

For σ2 = 0, the function to be estimated is linear, so the correct model is one
without a smooth term. Results for this data generating process are shown in
Figure 16. Figure 15 shows 10 realizations of simulated functions x + Z(x)b
for the various settings.

Fixed functions

We also investigate the properties of our approach with a data-generating
process (DGP) based on nonrandom nonlinear functions:

• η = x + σ f (x)

• f (x) =





(2x− 1.5)2/3 (quadratic)
(π sin(2πx))/11 (sinus)
(φ((x− 0.2)/0.12)− φ((x− 0.7)/0.055)) (bumpy)

(φ(·) is the standard normal density.)
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We use the following settings for the simulation:

• number of observations: n = 50, 500

• signal-to-noise-ratio SNR = 0.5, 5

• degree of nonlinearity: s = 0, 0.25, 0.5, 0.75, 1

• 50 replications

For σ = 0, the function to be estimated is a simple line, so the correct model
is one without a smooth term. Figure 15 shows the shape of the 3 functions
for varying d. We use 10 basis functions to estimate the functions.

Figures 16 and 17 show type I and type II error rates along with square
root of the mean square error ‖η− η̂‖2 for the various priors, additive models
fit with amer and tested with exactRLRT (solid lines) and component-wise
boosting fit with mboost. Selection via component-wise boosting is extremely
anti-conservative, with type I error rate between 60% and 95% and type II
error rates close to 0 across all settings, and comparatively large prediction
error especially for strong nonlinearity.

Inclusion probabilities for spikeSlabGAM are heavily influenced by the prior
settings: Note that (aτ, bτ) = (10, 30) implies smaller hypervariances than
(aτ, bτ) = (5, 50) and thus less regularization of the function estimates, so
the higher inclusion rates for (aτ, bτ) = (10, 30) are expected. Since smaller
values of v0 imply stronger regularization if the hypervariance is sampled
from the “spike”, the odds of sampling from the “spike” are smaller and
thus the smaller values of v0 (i.e. lighter shades in figs. 16, 17) are less
conservative and quicker to include smooth terms in the model (i.e. sample
from the “slab”) – the smaller v0, the smaller is the threshold an effect has to
cross in order to be included in the model.

Compared to function selection based on the RLRT with nominal α = .05
– note that model selection via AIC corresponds to an RLRT with α = .05 in
this context [Greven, 2007, p. 104] – our approach is more conservative for
almost all of the considered settings and priors. Exceptions occur for priors
with small v0 in settings with low-dimensional basis, small n and/or low
signal-to-noise ratios. In those settings, the prior influence is much stronger
and there is not enough information in the data to move P(γ = 1) far away
from its prior mean of .5 in many cases.

Correspondingly, type II error rates are mostly higher than those for the
RLRT, with exceptions for those settings and priors that are less conservative.
There is only one combination of prior and setting in which our approach
dominates the RLRT in terms of misclassification: For randomly generated
functions with n = 500, SNR = .5, d = 5 and prior (10, 30) : .005, both type
I and type II error rates are lower than those of the RLRT. For most settings
and priors, type II error rates decrease about as fast as those of the RLRT,
but on a higher absolute level. This reflects the fact that the model selection
implemented in spikeSlabGAM selects “relevant” terms and not “significant”
terms. The threshold of relevance depends on (aτ, bτ) and v0.
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Figure 16: Mean type I / type II error rates and
√

MSE for randomly gener-
ated functions.
Left graph gives type I error for σ2 = 0, right graph gives type II error rates
for σ2 > 0. Left column in each graph for n = 50, right column for n = 500.
Upper two rows for SNR = .5 with ds = 5, 20, lower two for SNR = 5. Graph
on the lower right gives mean prediction

√
MSE. Solid black lines line gives

error rates for the GAM (based on the p-value of a restricted LR-test with
α = .05), dashed black line for mboost. Vertical axis for type I error is on√

-scale. Error bars show 95% CIs for mean error rates.
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The graphs on the bottom right of figs. 16 and 17 shows that the larger
type II error rates do not necessarily mean higher estimation errors. For
randomly generated functions, the model averaging implicit in our procedure
fits the data as least as good as the frequentist AM in this context, and seems
to perform much better than component-wise boosting. Average estimation
errors for fixed functions are mostly smaller than those of component-wise
boosting, but larger than those for the additive model. Across all settings,
estimation errors are much more robust against the different prior settings
than model selection.

We discussed the shape of the multivariate prior for grouped coefficients
in Section 3.4 and noted that it places more mass on coefficient vectors with
many entries of a similar size. The specific fixed functions we used were
chosen since the true coefficient vector for the penalized basis functions for
the quadratic function lies on the bisecting angle, i.e. all entries have the
same value, while the entries of the true coefficient vectors for both the sinus
and the bumpy functions have strongly varying magnitudes. Consequently,
we expected performance for the quadratic function to be much better than
the performance for the other two fixed functions. It is reassuring to see
that the relative performance for the quadratic function is very similar to that
for the sinus and bumpy functions, even for settings where the information
content in the likelihood is fairly weak (low SNR, low n) and the potential for
prior-data conflict to distort the fit is correspondingly large.

5.5 Generalized Additive Models

In the following Sections 5.5.1 and 5.5.2, we compare the performance of
peNMIG in sparse (generalized) additive models to that of component-wise
boosting [Hothorn et al., 2010] in terms of predictive MSE and complexity
recovery. As a reference, we also fit a conventional GAM (as implemented in
mgcv [Wood, 2008]) based on the “true” formula (i.e. a model without any
of the “noise” terms), which we subsequently call the “oracle”-model. For
Gaussian responses only, we also compare our results to those from ACOSSO
[Storlie et al., 2009]. ACOSSO is not able to fit non-Gaussian responses.

We supply separate base learners for the linear and smooth parts of co-
variate influence for the component-wise boosting in order to compare com-
plexity recovery between boosting and our approach. We use 10-fold cross
validation on the training data to determine the optimal stopping iteration
for mboost and count a baselearner as included in the model if it is selected
in at least half of the cross-validation runs up to the stopping iteration. BIC
is used to determine the tuning parameter for ACOSSO. We were unable to
compare our approach to the closely related one described in [Reich et al.,
2009], which is implemented for Gaussian responses, since the available R
implementation is impractically slow.

For both Gaussian responses (Section 5.5.1) and Poisson responses (Section
5.5.2), the data generating process has the following structure:

• We define 4 functions
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– f1(x) = x,

– f2(x) = x + (2x−2)2

5.5 ,

– f3(x) = −x + π sin(πx),

– f4(x) = 0.5x + 15φ(2(x − .2))− φ(x + 0.4), where φ() is the stan-
dard normal density function,

which enter into the linear predictor. Note that all of them have (at least)
a linear component.

• We define 2 scenarios:

– a “low sparsity” scenario: Generate 16 covariates, 12 of which
have non-zero influence: the true linear predictor is η = f1(x1) +
f2(x2) + f3(x3) + f4(x4) + 1.5( f1(x5) + f2(x6) + f3(x7) + f4(x8)) +
2( f1(x9) + f2(x10) + f3(x11) + f4(x12))

– “hi sparsity” scenario: Generate 20 covariates, 4 of which have non-
zero influence: η = f1(x1) + f2(x2) + f3(x3) + f4(x4)

• The covariates are either

– i.i.d.∼ U[−2, 2] or

– from an AR(1) process with correlation ρ = 0.7.

• We simulate 50 replications for each combination of the various settings.

We compare 9 different prior specifications:

• (aτ, bτ) = (5, 25), (10, 30), (5, 50)

• v0 = 0.00025, 0.005, 0.01

Predictive MSE is evaluated on test data sets with 5000 observations. Com-
plexity recovery, i.e. how well the different approaches select covariates with
true influence on the response and remove covariates without true influence
on the response is measured in terms of accuracy, defined as the number of
correctly classified model terms (true positives and true negatives) divided
by the total number of terms in the model. I.e. for the “low sparsity” sce-
nario, the full model potentially has 32 terms (linear terms and basis expan-
sions/smooth terms for each of the 16 covariates), only 21 of which are truly
non-zero (the linear terms for the first 12 covariates plus the 9 basis expan-
sions of the covariates not associated with the linear function f1()). Accuracy
in this scenario would then be determined as the sum of the correctly included
model terms plus the correctly excluded model terms, divided by 32.

5.5.1 Gaussian response

In addition to the basic structure of the data generating process described in
the previous Section, the data generating process for the Gaussian responses
has the following properties:
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• signal-to-noise-ratio SNR = 5, 20

• number of observations: n = 200, 1000
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Figure 18: Prediction MSE divided by oracle MSE for Gaussian response:
White boxplots show results for the different prior settings, blue and red
symbols show results for mboost and ACOSSO, respectively: Shaded region
gives IQR, line represents median. Dark grey lines connect results for the
same replication.
Columns from left to right: 200 obs. with SNR=5, 20; 1000 obs. with SNR=5,
20. Rows from top to bottom: uncorrelated obs. with sparse and unsparse
predictor, correlated obs. with sparse and unsparse predictor. Vertical axis
is on binary log scale.

Figure 18 shows the mean squared prediction error divided by the one achieved
by the “oracle”-model. Predictive performance is very robust against the dif-
ferent prior settings. Different prior settings also behave similarly within
replications, as shown by the mostly parallel grey lines. Predictions for
N = 1000 (two rightmost columns) are mostly better than and at least equal to
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the results for both boosting and ACOSSO, with the exception of the setting
with unsparse predictor and correlated observations (lowest right panels),
where ACOSSO outperforms our approach. Predictions for the small sample
case (N = 200, two leftmost columns) are similar but generally less precise
than either boosting or ACOSSO, especially for high SNR and uncorrelated
observations (top half of second column). Figure 19 shows the proportion of
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Figure 19: Complexity recovery for Gaussian response: proportion of cor-
rectly included and excluded model terms.
White boxplots show results for the different prior settings, blue and red
symbols show results for mboost and ACOSSO, respectively: Shaded region
gives IQR, line represents median. Dark grey lines connect results for the
same replication.
Columns from left to right: 200 obs. with SNR=5, 20; 1000 obs. with SNR=5,
20. Rows from top to bottom: uncorrelated obs. with sparse and unsparse
predictor, correlated obs. with sparse and unsparse predictor.

correctly included and excluded terms (linear terms and basis expansions) in
the estimated model. Estimated inclusion probabilities are very sensitive to
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v0 and comparatively robust against (aτ, bτ). Accuracy is consistently much
lower than for ACOSSO. However, a direct comparison with ACOSSO is not
entirely appropriate because ACOSSO does not differentiate between smooth
and linear terms, while mboost and our approach do. Therefore ACOSSO
solves a less difficult problem. The accuracy of peNMIG is always better than
mboost for the sparse settings (1st and 3rd rows) because the specificity of our
approach is 1 across settings, regardless of the prior (!), while mboost mostly
achieves only very low specificity, but very high sensitivity.

5.5.2 Poisson response

In addition to the basic structure of the data generating process described in
the previous section, the data generating process for the Poisson responses
has the following properties:

• number of observations: n = 500, 2000

• responses are generated with overdispersion:
yi ∼ Po (si exp(ηi)) ; si ∼ U[0.66, 1.5]

Figure 20 shows the mean squared prediction error (on the scale of the lin-
ear predictor) divided by the one achieved by the “oracle”-GAM. Predictive
performance is very robust against the different prior settings. Different prior
settings also behave similarly within replications, as shown by the mostly par-
allel grey lines. Predictions for uncorrelated responses (top 2 rows) are mostly
more precise than mboost, especially so for the sparse setting with uncorre-
lated responses (top row). Note that our approach even seems to improve
on the oracle method for about half of the replications in the uncorrelated,
unsparse setting with n = 500 (second row, first column) with a relative pre-
diction MSEs below 1. Predictions for correlated responses (bottom 2 rows)
are generally less precise than mboost, especially for the sparse setting (third
row). Figure 21 shows the proportion of correctly included and excluded
terms (linear terms and basis expansions) in the estimated models. Estimated
inclusion probabilities are sensitive to v0 and comparatively robust against
(aτ, bτ). The smaller value for v0 tends to perform better in the unsparse
settings (rows 2 and 4) since it forces more terms into the model (higher sen-
sitivity, lower specificity) and vice versa for the sparse setting and the larger
v0. Complexity recovery is usually more stable across the different settings
and priors for our approach than for boosting, especially for uncorrelated co-
variates and a sparse predictor (top row). The constant accuracy for mboost
in the low sparsity scenario with uncorrelated responses (second row) is due
to its very low specificity: It includes practically all model terms all the time.

The simulations for generalized additive models show that the proposed
peNMIG-Model is competitive in terms of estimation accuracy and confirms
that estimation results are robust against different hyperparameter config-
urations even in fairly complex models. Model selection is more sensitive
towards hyperparameter configurations, especially v0. The discovery rate of
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Figure 20: Prediction MSE divided by oracle MSE (on the scale of the linear
predictor):
White boxplots show results for the different prior settings, blue symbols
show results for mboost. Shaded region gives IQR, line represents median.
Dark grey lines connect results for the same replication.
Columns from left to right: 500 obs., 2000 obs. Rows from top to bottom:
uncorrelated obs. with sparse and unsparse predictor, correlated obs. with
sparse and unsparse predictor. Vertical axis is on binary log scale.
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Figure 21: Complexity recovery for poisson response: proportion of correctly
included and excluded model terms.
White boxplots show results for the different prior settings, blue symbols
show results for mboost: shaded region gives IQR, line represents median.
Dark grey lines connect results for the same replication.
Columns from left to right: 500 obs., 2000 obs. Rows from top to bottom:
uncorrelated obs. with sparse and unsparse predictor, correlated obs. with
sparse and unsparse predictor.

50



true non-zero model terms was low for Gaussian responses, and high for
Poisson responses.

We are not aware of any other SSVS implementations for variable selec-
tion in additive models with non-Gaussian responses that were available for
benchmarking, but the performance of peNMIG seems to be very competitive
to that of component-wise boosting.

6 Applications

6.1 UCI Binary Classification Data

We use a collection of 21 data sets for binary classification from the UCI Ma-
chine Learning Repository [Asuncion and Newman, 2007]. Figure 22 gives

UCI binary classification data: N vs p
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Figure 22: Characteristics of UCI data sets: number of observations versus
number of features.
“Balance” is the ratio between the number of observations in the larger class
and the number of observations in the smaller class, i.e. it is 1 if the data
set is balanced. promotergene is the only dataset we consider that has more
parameters than observations before accounting for spline basis expansions.

an overview of the datasets we use and their characteristics. The vertical
axis gives the number of covariates and different factor levels, the horizon-
tal axis gives the number of (complete) observations. Most of the datasets
contain a mixture of continuous and factor variables. We do not consider
any interactions, only linear and smooth main effects. We evaluate prediction

51



performance based on the deviance values for a 20-fold cross validation on
each dataset. Predictive deviance D̄ is defined as twice the average negative
log likelihood D̄ = −2/nP ∑nP

i=1 L(yP,i, η̂P,i) in the test sample where yP and
η̂P are the out-of-sample responses and estimated linear predictors for the
test sample. The size of the test sample is nP. As for the experiments with
simulated data, we use component-wise boosting with separate base learners
for the linear and smooth parts of covariate influence and compare prediction
performance and complexity of the boosting models to our approach.

We brutally preprocess the data in an automated fashion in order to pre-
empt possible numerical problems: All covariates with less than 6 unique
values are coded as factor variables. All numeric covariates are scaled to the
unit interval [0, 1] first, followed by taking the logarithm of the covariate val-
ues (plus an offset of .1) if skewness is greater than 2 or taking the logarithm
of 1.1 minus the covariate value if skewness is below -2. All numeric covari-
ates (transformed or not) are then standardized to have mean 0 and standard
deviation 1. All incomplete observations are removed.

We evaluate our approach for two model building scenarios: For the first
one, we perform an automated preselection procedure to generate model for-
mulas based on the following heuristic, which roughly follows ideas devel-
oped by Harrell [2001]:

1. Determine the “available degrees of freedom” for the smooth terms by
dividing the number of observations in the smaller class by 3 and sub-
tracting the sum of the number of levels of all factor variables in the
data.

2. • if the available degrees of freedom are larger than 4 times the num-
ber of numeric covariates, assign a spline expansion with 10 basis
functions to each numerical covariate. You’re done.

• if not go to next step

3. • split all numerical covariates by quartile

• perform χ2-tests of association of the resulting 5-level factors with
the response

• sort numerical covariates by decreasing strength of association (as
measured by the p-value of the χ2-test)

4. starting with the covariate with the strongest association, assign spline
expansions with 5 basis functions to the numerical covariates and sub-
tract 5 “available degrees of freedom” until no more degrees of freedom
are left

5. if any numerical covariates remain after all available degrees of freedom
are spent, they enter the model as simple linear terms.

This approach results in model specifications below the maximum complexity
for datasets credit, Cards, Heart1, Ionosphere, hepatitis, Sonar and
musk.
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In the second approach, we assign a spline expansion with 5 basis func-
tions to all numerical covariates regardless of the number of predictors and
observations, leading to a more difficult estimation and selection problem in
data sets with large p and small n.

Models with preselected function terms

We show results for combinations of (aτ, bτ) = (10, 50), (5, 25) and v0 =
0.005, 0.00025. We use a uniform prior w ∼ Beta(1, 1). MCMC chains are
run with a burn-in of 1000 iterations, followed by a sampling phase of 12000
iterations, of which we save every fourth.

Figure 23 shows the achieved predictive performance for the first model
building strategy for the 21 datasets. Note that the performance of our ap-
proach is more variable than mboost’s. Our approach achieves lower me-
dian deviances in most datasets. Predictive performance seems to be very ro-
bust against different hyperparameter settings, even for large p/N. With the
exceptions of Spirals, PimaDiab, ringnorm, threenorm, and twonorm, our
approach yields more accurate predictions in the majority of cross-validation
folds.

To investigate the parsimony of the fitted models, i.e. whether equivalent or
better prediction can be achieved by simpler models, we plot the differences
in predictive deviances versus the difference in the proportion of potential
model terms included in the models in Figure 24. Larger values on the vertical
axis indicate smaller deviance for our approach, and larger values on the
horizontal axis indicate a sparser fit for our approach.

For dataset threenorm our approach tends to yield more complex models
with larger deviance. For datasets credit, Cards, Ionosphere, promotergene
and Sonar, our approach predicts more accurately than boosting with (much)
smaller model complexity. Neither absolute performance nor performance
relative to boosting seems to be tied to any of the easily observable character-
istics of the data sets (i.e. p, N, p/N, balancedness).

No clear picture emerges for the different priors: As expected, a smaller
v0 (green and blue dots) tends to yield larger models, i.e. datasets credit,
Sonar, and results are more sensitive towards v0 than towards (aτ, bτ). Note
that Figure 24 does not include datasets Spirals, tictactoe, twonorm and
titanic because there were no differences in sparsity. For both titanic and
tictactoe, prediction was much better with our approach, while prediction
for Spirals and twonorm was worse (see fig. 23). Table 2 gives the median
deviances and AUCs (area under the ROC-curve) for the different datasets
and priors.

Models without preselection

We use the second model-building strategy and repeat the analysis with-
out restricting the number of smooth terms for data sets credit, Cards,
Heart1, Ionosphere, hepatitis, Sonar and musk (For all other data sets,
the model without preselection is the same as the one with preselection.). We
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Figure 23: UCI data I: Predictive Deviances for 20-fold crossvalidation.
Boxplots show results for the different prior settings, blue symbols show
results for mboost: shaded region gives IQR, line represents median. Dark
grey lines connect results for the same fold.
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Deviance and Sparsity Difference
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Figure 24: UCI data I: Difference in proportion of included model terms ver-
sus differences in predictive deviances.
POsitive values denote smaller deviances/models for our approach com-
pared to mboost. Spirals, tictactoe, twonorm, titanic not shown be-
cause there were no differences in sparsity.
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use slightly different priors and algorithm settings for this model building
strategy because the settings suitable for the previous model-building strat-
egy perform less well for very high-dimensional models with n / p such as
the ones considered here. Specifically, we choose a more informative prior
for w to enforce selection of terms. Our results show that using the default
uniform prior w ∼ Beta(1, 1) tends to yield large models which included al-
most all possible terms most of the time in these strongly over-parameterized
models. We also use NMIG instead of peNMIG for penalization groups with
d = 1 (i.e. linear terms and binary factors) to reduce the posterior’s dimen-
sionality. Reported results are for combinations of v0 = 0.005, 0.00025 and
(aw, bw) = (1, 1), (20, 40) with (aτ, bτ) = (5, 25).

Figure 25 shows deviance values for the test data (top) and differences in
deviances and sparsity (bottom) between our approach and componentwise
boosting with mboost. Compared to the results for the models with pres-
election, predictive performance is worse for these high-dimensional logistic
additive models and compares less favorably with results from boosting: With
the exception of credit, all median deviances are larger than those for mboost.
The bottom graph shows that our approach deals comparatively less well with
high-dimensional, sparse settings (e.g. musk with n = 476 and 332 potential
model terms, of which 166 are smooth terms.) Using an informative prior for
w to enforce model sparsity seems to work well for large p/N and does not
influence prediction quality in either direction. In settings with smaller p/N
the value of v0 has more influence on the sparsity of the estimated model
than (aw, bw): Compare the results for credit, Cards, and Heart1 (smaller
p/N), where the more parsimonious models are those with v0 = 0.005, with
the results for the other datasets, where the more parsimonious models are
those with (aw, bw) = (20, 40).

More generally, the performance of peNMIG on the binary classification
datasets we used show that it is very competitive to componentwise boosting
for a majority of the problems but that relative performance seems to decrease
somewhat for very high-dimensional problems with many smooth terms.

56
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Figure 25: UCI data II:
Upper graph: Predictive deviances for 20-fold crossvalidation. Boxplots
show results for the different prior settings, blue symbols show results for
mboost: shaded region gives IQR, line represents median. Dark grey lines
connect results for the same fold.
Lower graph: Difference in proportion of included model terms versus dif-
ference in predictive deviance. Points in topright quadrant denote folds
and prior settings in which our approach achieved smaller deviances with a
smaller model. Points in lower 2 quadrants denote folds/priors in which our
approach resulted in larger deviances than the corresponding mboost-fits.
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Dataset (aτ , bτ ) v0 median(D̄) median(AUC)
mboost spikeSlabGAM mboost spikeSlabGAM

Circle (5, 25) 0.00025 0.41 0.11 1.00 1.00
(5, 25) 0.005 0.41 0.12 1.00 1.00
(5, 50) 0.00025 0.41 0.12 1.00 1.00
(5, 50) 0.005 0.41 0.12 1.00 1.00

Spirals (5, 25) 0.00025 0.98 2.15 0.94 0.91
(5, 25) 0.005 0.98 2.09 0.94 0.90
(5, 50) 0.00025 0.98 2.12 0.94 0.91
(5, 50) 0.005 0.98 2.19 0.94 0.90

titanic (5, 25) 0.00025 1.09 1.01 0.68 0.68
(5, 25) 0.005 1.09 1.01 0.68 0.68
(5, 50) 0.00025 1.09 1.01 0.68 0.68
(5, 50) 0.005 1.09 1.01 0.68 0.68

PimaDiab (5, 25) 0.00025 1.03 1.16 0.84 0.81
(5, 25) 0.005 1.03 1.12 0.84 0.82
(5, 50) 0.00025 1.03 1.16 0.84 0.80
(5, 50) 0.005 1.03 1.11 0.84 0.81

chess (5, 25) 0.00025 0.60 0.15 0.99 1.00
(5, 25) 0.005 0.60 0.16 0.99 1.00
(5, 50) 0.00025 0.60 0.15 0.99 1.00
(5, 50) 0.005 0.60 0.16 0.99 1.00

liver (5, 25) 0.00025 1.18 1.21 0.79 0.76
(5, 25) 0.005 1.18 1.22 0.79 0.76
(5, 50) 0.00025 1.18 1.25 0.79 0.75
(5, 50) 0.005 1.18 1.23 0.79 0.76

monks3 (5, 25) 0.00025 0.42 0.08 1.00 1.00
(5, 25) 0.005 0.42 0.08 1.00 1.00
(5, 50) 0.00025 0.42 0.08 1.00 1.00
(5, 50) 0.005 0.42 0.09 1.00 1.00

ringnorm (5, 25) 0.00025 0.89 5.50 0.98 0.99
(5, 25) 0.005 0.89 5.56 0.98 0.99
(5, 50) 0.00025 0.89 5.75 0.98 0.99
(5, 50) 0.005 0.89 5.52 0.98 0.99

threenorm (5, 25) 0.00025 0.86 1.06 0.93 0.92
(5, 25) 0.005 0.86 1.05 0.93 0.93
(5, 50) 0.00025 0.86 1.09 0.93 0.92
(5, 50) 0.005 0.86 1.08 0.93 0.92

tictactoe (5, 25) 0.00025 1.03 0.10 0.90 1.00
(5, 25) 0.005 1.03 0.10 0.90 1.00
(5, 50) 0.00025 1.03 0.09 0.90 1.00
(5, 50) 0.005 1.03 0.10 0.90 1.00

twonorm (5, 25) 0.00025 0.33 4.16 1.00 1.00
(5, 25) 0.005 0.33 4.12 1.00 1.00
(5, 50) 0.00025 0.33 4.57 1.00 1.00
(5, 50) 0.005 0.33 4.54 1.00 1.00

credit (5, 25) 0.00025 1.11 1.05 0.76 0.75
(5, 25) 0.005 1.11 1.02 0.76 0.76
(5, 50) 0.00025 1.11 1.05 0.76 0.75
(5, 50) 0.005 1.11 1.03 0.76 0.77

Cards (5, 25) 0.00025 0.83 0.69 0.92 0.93
(5, 25) 0.005 0.83 0.68 0.92 0.93
(5, 50) 0.00025 0.83 0.68 0.92 0.93
(5, 50) 0.005 0.83 0.68 0.92 0.93

Heart1 (5, 25) 0.00025 0.89 0.73 0.94 0.92
(5, 25) 0.005 0.89 0.73 0.94 0.93
(5, 50) 0.00025 0.89 0.74 0.94 0.93
(5, 50) 0.005 0.89 0.71 0.94 0.93

HouseVotes84 (5, 25) 0.00025 0.29 0.04 1.00 1.00
(5, 25) 0.005 0.29 0.04 1.00 1.00
(5, 50) 0.00025 0.29 0.03 1.00 1.00
(5, 50) 0.005 0.29 0.04 1.00 1.00

Ionosphere (5, 25) 0.00025 0.92 0.80 0.90 0.87
(5, 25) 0.005 0.92 0.84 0.90 0.88
(5, 50) 0.00025 0.92 0.86 0.90 0.89
(5, 50) 0.005 0.92 0.81 0.90 0.88

BreastCancer (5, 25) 0.00025 0.37 0.13 1.00 1.00
(5, 25) 0.005 0.37 0.14 1.00 1.00
(5, 50) 0.00025 0.37 0.13 1.00 1.00
(5, 50) 0.005 0.37 0.15 1.00 1.00

hepatitis (5, 25) 0.00025 0.75 0.20 1.00 1.00
(5, 25) 0.005 0.75 0.21 1.00 1.00
(5, 50) 0.00025 0.75 0.10 1.00 1.00
(5, 50) 0.005 0.75 0.09 1.00 1.00

Sonar (5, 25) 0.00025 1.15 1.03 0.85 0.85
(5, 25) 0.005 1.15 0.94 0.85 0.86
(5, 50) 0.00025 1.15 1.03 0.85 0.85
(5, 50) 0.005 1.15 0.95 0.85 0.86

musk (5, 25) 0.00025 0.91 0.83 0.91 0.92
(5, 25) 0.005 0.91 0.74 0.91 0.92
(5, 50) 0.00025 0.91 1.02 0.91 0.92
(5, 50) 0.005 0.91 1.02 0.91 0.92

promotergene (5, 25) 0.00025 0.58 0.00 1.00 1.00
(5, 25) 0.005 0.58 0.00 1.00 1.00
(5, 50) 0.00025 0.58 0.00 1.00 1.00
(5, 50) 0.005 0.58 0.00 1.00 1.00

Table 2: Median deviances and AUCs for test samples of UCI data (Models
with preselection).
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Dataset (aw, bw) v0 median(D̄) median(AUC)
mboost spikeSlabGAM mboost spikeSlabGAM

credit (1, 1) 0.005 1.09 1.08 0.78 0.80
(1, 1) 0.00025 1.09 1.09 0.78 0.76
(20, 40) 0.005 1.09 1.08 0.78 0.80
(20, 40) 0.00025 1.09 1.08 0.78 0.77

Cards (1, 1) 0.005 0.77 12.47 0.94 0.93
(1, 1) 0.00025 0.77 13.46 0.94 0.92
(20, 40) 0.005 0.77 11.67 0.94 0.93
(20, 40) 0.00025 0.77 12.09 0.94 0.92

Heart1 (1, 1) 0.005 0.83 0.91 0.94 0.93
(1, 1) 0.00025 0.83 0.91 0.94 0.91
(20, 40) 0.005 0.83 0.84 0.94 0.92
(20, 40) 0.00025 0.83 0.96 0.94 0.90

Ionosphere (1, 1) 0.005 0.63 1.16 0.98 0.95
(1, 1) 0.00025 0.63 1.11 0.98 0.95
(20, 40) 0.005 0.63 1.00 0.98 0.94
(20, 40) 0.00025 0.63 1.10 0.98 0.95

hepatitis (1, 1) 0.005 0.69 1.49 1.00 1.00
(1, 1) 0.00025 0.69 1.21 1.00 1.00
(20, 40) 0.005 0.69 1.25 1.00 1.00
(20, 40) 0.00025 0.69 0.76 1.00 1.00

Sonar (1, 1) 0.005 0.81 10.86 0.96 0.92
(1, 1) 0.00025 0.81 9.52 0.96 0.92
(20, 40) 0.005 0.81 8.44 0.96 0.92
(20, 40) 0.00025 0.81 8.81 0.96 0.91

musk (1, 1) 0.005 0.76 6.92 0.96 0.92
(1, 1) 0.00025 0.76 8.77 0.96 0.93
(20, 40) 0.005 0.76 3.17 0.96 0.91
(20, 40) 0.00025 0.76 4.79 0.96 0.92

Table 3: Median deviances and AUCs in test samples for UCI data. (Models
without preselection)
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6.2 Insect Venom Allergy

We reanalyze data on insect venom allergy from a large observational multi-
center study previously analyzed in Ruëff et al. [2009]. The data consists of
962 patients from 14 European study centers with established bee or vespid
venom allergy who had had an allergic reaction after a field sting. The bi-
nary outcome of interest is whether patients suffered a severe, life-threatening
reaction, defined as anaphylactic shock, loss of consciousness, or cardiopul-
monary arrest, following the index sting. A severe reaction was observed for
206 of the 962 patients (21.4%). Data were collected on

• the concentration of tryptase, a potential biomarker (logtryp, [log(µg/l)]),

• sex (sex),

• age (age [years]),

• the culprit insect: bee or vespid (insect),

• the intake of cardiovascular medication: β-blockers (betablocker), ACE
inhibitors (aceinhibitor) and/or anti-hypertensive drugs (heartmeds),

• whether the patient had had at least one minor systemic reaction to a
sting prior to the index sting (stings),

• the CAP-class (a measure of antibody load) of the patient with regard
to the venom of the culprit insect, with levels 1, 2, 3, 4,≥ 5 (cap).

(R variable names in brackets)
An analysis of this data has to take into account possible study center ef-

fects, possible non-linear effects of both age and the (logarithm of) blood
serum tryptase concentrations and the possibility of differing effect structures
for bee and wasp stings. We fit a peNMIG-model with interactions between
culprit insect and the other covariates, smooth functions for both age and
tryptase and a random intercept for the study center with spikeSlabGAM. The
following code example shows the necessary R commands.

> formula <- severe ~ insect * (sex + stings + betablocker +
+ aceinhibitor + heartmeds + cap) + sm(age) + sm(logtryp) +
+ rnd(studcent)
> mcmc <- list(chainLength = 10000, burnin = 500, thin = 5,
+ sampleY = TRUE, blocksize = c(10, 15), modeSwitching=FALSE)
> hyper <- list(tau = c(5, 25), gamma = 0.00025)
> m <- spikeAndSlab(formula = formula, data = severity,
+ hyperparameters = hyper, mcmc = mcmc,
+ family = "binomial")

[. . .]
starting...burnin done!
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Acceptance: Alpha: 0.683794 Ksi: 0.593714
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We generate 10000 samples from the posterior, keeping every fifth from a
chain with 50000 iterations after a burn in of 1000 iterations. We use hyper-
parameters (aτ, bτ) = (5, 25), v0 = 0.00025 and aw = bw = 1. We also instruct
the sampler to sample y from the posterior predictive distribution for model
validation, to use blocksizes of 10 and 15 for the P-IWLS updates of α and
ξ, respectively, and not to use the mode switching described in Section 4.4.
Running the chain takes about 10 minutes a modern desktop PC (Intel Core2
Quad Q9550 CPU with 2.83GHz).

Acceptance rates for both α and ξ are good, and the traceplots (see fig. 26
for the traces of the first nine regression coefficients) indicate that the sampler
has converged. Figure 27 shows the estimated smooth terms for age and

Figure 26: Traceplots for the first 9 entries in β for the insect allergy data

the log of tryptase. The estimated function shape for age is very close to a
straight line, while the estimated function shape for tryptase is fairly flat for
lower values, and than rises more rapidly for larger values.

Inclusion probabilities for the different penalization groups are displayed
in table 4. Based on the marginal inclusion probabilities with a cutoff of
0.5, we would select culprit insect, sex, previous stings, ACE inhibitors, both
linear and smooth terms for both age and tryptase and the random effect
for study center as relevant predictors. This model, which is based on the
marginal inclusion probabilities, is also very close to the mode of the posterior
of γ. The configuration of γ with the highest posterior probability (p=0.0285)
corresponds exactly to this median model, and the configuration of γ with
the second highest posterior probability (p=0.0266) is the same but without
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Figure 27: Function estimates and 80% credible regions for the insect allergy
data

the smooth term for age, the marginal inclusion probability of which is only
marginally above 0.5 and the shape of which, as shown in fig. 27 is not far
from a linear shape at all.

Our results replicate the prediction model used by Ruëff et al. [2009], who
arrived at the same model minus the smooth term for age via a stepwise
selection based on the AIC criterium. The spikeSlabGAM model offers an, al-
beit small, improvement in prediction accuracy as can be expected from the
implicit model averaging - the AUC based on the means from the posterior
predictive is 0.79 compared to the 0.731 reported in the original analysis. We
report posterior means and credible intervals for the exponentiated coeffi-
cients of the included model terms in table 5. The means correspond fairly
closely to those reported in the previous analysis, but the credible regions are
much wider. This larger variability is caused by the implicit model averag-
ing and is, we believe, a more honest assessment of estimation uncertainty
than the confidence intervals derived from a single model resulting from a
stepwise selection procedure.
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model term P(γ = 1) Inclusion
insect 0.79 x

sex 0.9 x
stings 1 x

betablocker 0.36
aceinhibitor 0.61 x

heartmeds 0.32
cap 0.19

sm.age.fx1 0.99 x
sm.age.s 0.55 x

sm.logtryp.fx1 0.95 x
sm.logtryp.s 0.88 x
rnd.studcent 1 x

insect.sex 0.19
insect.stings 0.15

insect.betablocker 0.19
insect.aceinhibitor 0.21

insect.heartmeds 0.2
insect.cap 0.21

Table 4: Inclusion probabilities for the model terms for the insect allergy
data. sm.age.fx1 denotes the linear term for age, sm.age.s the smooth
term, analogously for tryptase. rnd.studcent is the random intercept for
study center and insect.fnord denotes the interaction of culprit insect with
a covariate fnord.

mean odds ratio 2.5 % 10 % 90 % 97.5 %
culprit insect: Vespid 1.63 0.97 1.03 2.42 2.99

sex: Female 0.60 0.37 0.44 0.88 1.03
stings: 1+ 4.75 2.74 3.35 6.76 8.13

ACE inhibitor: Yes 1.66 0.86 0.97 3.58 6.18
Age 1.03 1.02 1.02 1.04 1.05

Table 5: Posterior means and credible intervals for exp(β) (i.e. the multi-
plicative effect on the estimated odds for a severe reaction) of the included
linear model terms.
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7 Conclusion

The focus of this report is on the shrinkage and model selection properties of
the novel peNMIG prior in structured additive regression. By introducing this
redundant multiplicative parameter expansion combined with a spike-and-
slab prior on the level of the hypervariances we are able to select or deselect
multiple coefficients (i.e. coefficients for a spline basis or random intercepts
associated with a grouping factor) simultaneously in order to guide model
choice for generalized additive mixed models.

Extensive simulation studies and application examples show that the per-
formance of the proposed approach is competitive to recently proposed adap-
tive shrinkage priors and frequentist approaches that address estimation and
selection of model terms simultaneously. Estimation performance is very ro-
bust against different hyperparameter configurations in all the settings we
considered. Variable selection and model choice are more sensitive to vary-
ing hyperparameters, but we are confident that the collected simulations and
application examples provide a solid foundation for the choice of appropriate
values for any analysis.

Our approach is implemented in the R-package spikeSlabGAM. The condi-
tional conjugacy of the proposed prior hierarchy allows for fast and very sta-
ble fully Bayesian inference based on MCMC sampling. In its current state,
spikeSlabGAM allows fitting additive mixed models for Gaussian, Binomial
and Poisson responses. Extensions for geoadditive modeling with GMRFs,
multivariate smooth terms and robust error term distributions are straight-
forward.

Our simulation studies also indicate that peNMIG may be less well suited
to very high-dimensional problems. Further research is needed to determine
whether this is due to fundamental properties of our proposal such as the
doubling of regression coefficients caused by the parameter expansion or
whether performance in p > n-settings can be redeemed by selecting more
appropriate hyperparameters. One promising alternative to P-splines espe-
cially for more high dimensional (additive) models and the exploration of
interaction effects that we intend to address in future work are low-rank rep-
resentations of Gaussian process priors.
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Indian Journal of Statistics, Series B, 60(1):65–81, 1998.

S. Lang and A. Brezger. Bayesian P-splines. Journal of Computational and Graph-
ical Statistics, 13(1):183–212, 2004.

J. Lokhorst, B. Venables, B. Turlach, and M. Maechler. lasso2: L1 constrained
estimation., 2009. URL http://CRAN.R-project.org/package=lasso2. R
package version 1.2-10.

X.L. Meng and D. van Dyk. The EM algorithm–an old folk-song sung to a
fast new tune. Journal of the Royal Statistical Society. Series B, 59(3):511–567,
1997.

T.J. Mitchell and J.J. Beauchamp. Bayesian variable selection in linear regres-
sion. Journal of the American Statistical Association, 83(404):1023–1032, 1988.

R.B. O’Hara and M.J. Sillanpää. A Review of Bayesian Variable Selection
Methods: What, How, and Which? Bayesian Analysis, 4(1):85–118, 2009.

A. Panagiotelis and M. Smith. Bayesian identification, selection and estima-
tion of semiparametric functions in high-dimensional additive models. Jour-
nal of Econometrics, 143(2):291–316, 2008.

T. Park and G. Casella. The bayesian lasso. Journal of the American Statistical
Association, 103(482):681–686, 2008.

N.G. Polson and J.G. Scott. Shrink globally, act locally: Sparse bayesian reg-
ularization and prediction. In J.M. Bernardo, M.J. Bayarri, J. O. Berger,
A. P. Dawid, D. Heckerman, A. F. M. Smith, and M. West, editors, Bayesian
Statistics 9. Oxford University Press, 2010.

67



B.J. Reich, C.B. Storlie, and H.D. Bondell. Variable selection in Bayesian
smoothing spline ANOVA models: Application to deterministic computer
codes. Technometrics, 51(2):110, 2009.

F. Ruëff, B. Przybilla, M.B. Biló, U. Müller, F. Scheipl, W. Aberer, J. Birnbaum,
A. Bodzenta-Lukaszyk, F. Bonifazi, C. Bucher, et al. Predictors of severe sys-
temic anaphylactic reactions in patients with Hymenoptera venom allergy:
Importance of baseline serum tryptase–a study of the European Academy
of Allergology and Clinical Immunology Interest Group on Insect Venom
Hypersensitivity. Journal of Allergy and Clinical Immunology, 124(5):1047–
1054, 2009.

F. Scheipl. RLRsim: Exact (Restricted) Likelihood Ratio tests for mixed and addi-
tive models., 2010a. URL http://CRAN.R-project.org/package=RLRsim. R
package version 2.0-4.

F. Scheipl. amer: Additive mixed models with lme4, 2010b. URL http://CRAN.
R-project.org/package=amer. R package version 0.6.6.

F. Scheipl. spikeSlabGAM: Bayesian model selection for Generalized Additive Mixed
Models, 2010c. R package version 0.3-12.

F. Scheipl, S. Greven, and H. Küchenhoff. Size and power of tests for a zero
random effect variance or polynomial regression in additive and linear
mixed models. Computational Statistics & Data Analysis, 52(7):3283–3299,
2008.

C.B. Storlie, H.D. Bondell, B.J. Reich, and H.H. Zhang. Surface estimation,
variable selection, and the nonparametric oracle property. Statistica Sinica,
2009. to appear.

G. Wahba, Y. Wang, C. Gu, R. Klein, and B. Klein. Smoothing spline ANOVA
for exponential families, with application to the Wisconsin Epidemiological
Study of Diabetic Retinopathy. The Annals of Statistics, 23(6):1865–1895,
1995.

S. Wood, R. Kohn, T. Shively, and W. Jiang. Model selection in spline non-
parametric regression. JRSS-B, 64(1):119–139, 2002.

S.N. Wood. Thin-plate regression splines. JRSS-B Statistical Methodology, 65
(1):95–114, 2003.

S.N. Wood. Fast stable direct fitting and smoothness selection for generalized
additive models. JRSS-B, 70(3):495, 2008.

P. Yau, R. Kohn, and S. Wood. Bayesian variable selection and model averag-
ing in high-dimensional multinomial nonparametric regression. Journal of
Computational and Graphical Statistics, 12(1):23–54, 2003.

H.H. Zhang and Y. Lin. Component Selection and Smoothing in Smoothing
Spline Analysis of Variance Models. The Annals of Statistics, 34:2272–2297,
2003.

68


