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SUMMARY
All animals must transform ambiguous sensory data into successful behavior. This requires sensory repre-
sentations that accurately reflect the statistics of natural stimuli and behavior. Multiple studies show that
visual motion processing is tuned for accuracy under naturalistic conditions, but the sensorimotor circuits
extracting these cues and implementing motion-guided behavior remain unclear. Here we show that the
larval zebrafish retina extracts a diversity of naturalistic motion cues, and the retinorecipient pretectum orga-
nizes these cues around the elements of behavior. We find that higher-order motion stimuli, gliders, induce
optomotor behavior matching expectations from natural scene analyses. We then image activity of retinal
ganglion cell terminals and pretectal neurons. The retina exhibits direction-selective responses across glider
stimuli, and anatomically clustered pretectal neurons respond with magnitudes matching behavior. Periph-
eral computations thus reflect natural input statistics, whereas central brain activity precisely codes informa-
tion needed for behavior. This general principle could organize sensorimotor transformations across animal
species.
INTRODUCTION

All animals need to react to changes in their environment. Many

changes involve relative motion between the animal and its sur-

roundings [1], making visual motion detection a crucial sensory

task [2]. Spatially localizedmotion signals could indicate a salient

object in the visual environment, such as a predator or prey [3–8],

which might engage dedicated escape or hunting maneuvers

[9–12]. Spatially coherent global motion typically indicates that

the animal is moving within its environment, and animals thereby

exhibit a variety of stabilization responses to whole-field motion

[13–15]. To generate appropriate actions to visual motion stimuli,

the animal must accurately estimate motion cues from light sig-

nals and route these motion signals through the central brain to

the motor circuits that are required to generate the matched el-

ements of behavior [16–19]. However, the circuits and computa-

tions that link sensation to action remain largely unknown. For

example, although studies in humans and non-human primates

have uncovered a variety of computational cues that brains

use to infer whole-field motion from noisy sensory inputs

[20–22], the extent to which these motion percepts rely on

distinct versus common neural circuits is still debated [23, 24].
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Interestingly, what we do know about the principles, algo-

rithms, and circuits of visual motion processing is remarkably

conserved across both vertebrate and invertebrate brains

[25–27]. An appealing hypothesis to explain these observations

is that each animal species has individually adapted its

motion-processing strategy to reflect the commonly shared

statistics of behaviorally relevant natural sensory environments

[28–30]. The fundamental idea that visual information processing

is adapted to natural scene statistics has provided quantitative

and conceptual insights into diverse visual phenomena

[31–37]. In the context of motion processing, this hypothesis

has been most thoroughly developed for a class of complex mo-

tion stimuli called gliders [20, 38, 39]. It’s worth noting several key

results about gliders before addressing their computational

logic. First, gliders are perceptually relevant for at least primates

and insects [20, 39]. Second, the fly’s directional pattern of glider

selectivity emerges in performance-optimized models of whole-

field velocity estimation in natural environments [40, 41]. Finally,

flies extract glider signals early in their visual system, whereas

primate glider processing involves the visual cortex [38–40].

This raises the interesting possibility that diverse animal brains

have converged on useful algorithmic solutions to shared
ne 22, 2020 ª 2020 The Author(s). Published by Elsevier Inc. 2321
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computational goals, despite differences in the implementation

at the level of neural circuits.

An algorithmic description of visual motion estimation must

discern when and how the brain interprets spatiotemporal

patterns of light asmotion. This is challenging to achieve because

the space of possible stimuli is too large to sample exhaustively,

and only a small fraction of stimuli will induce motion percepts.

Furthermore, natural images and movies are notoriously difficult

to parametrize because of their intricate statistical content

[42–45]. Glider stimuli approach this problem by characterizing

motion estimation algorithms in the mathematically complete ba-

sis of spatiotemporal correlations [20, 26, 46–48]. Each glider

stimulus is designed to account for the fact that motion induces

many different spatiotemporal correlations across the visual field

[46, 49, 50]. By artificially isolating correlations that co-occur

during real-world motion [44], gliders can flexibly reveal the con-

tributions of various computational cues to motion perception.

For example, odd-ordered glider stimuli measure basis elements

that are explicitly asymmetricwith respect toON/OFF stimuli, and

this property has been used to show that ON/OFF asymmetric

neural processing is highly relevant to fly behavior [40, 41, 47].

Similar stimuli and correlation computations are also relevant

for depth perception and texture perception [51, 52].

Here we introduce the larval zebrafish as a teleost model for un-

raveling the neural mechanisms of glider-induced behavior in a

vertebrate brain. It is known that larval zebrafish respond behavior-

ally to phi, reverse-phi, and non-Fourier motion stimuli [53], which

are well known precursors to glider stimuli [20]. We begin by

showing that zebrafish also exhibit directional-responses to third-

order glider stimuli, thereby implicating light-dark asymmetric visual

motion processing in zebrafish behavior [40, 41, 46]. Importantly,

larval zebrafish are small and optically translucent, which permits

brain-wide functional imaging at cellular resolution [54, 55]. Recent

work shows that several motion-guided stabilization behaviors re-

cruit a central brain area called the pretectum [56–58]. The pretec-

tum spatially integrates visual signals from several classes of retinal

ganglion cells [57, 59–61] and interconnectswithmultiple visual and

motor pathways [61, 62]. This functional multiplexing is reflected in

substantial response heterogeneity [56, 57, 60], although the rela-

tive contributions of inputs to the pretectum and within-pretectum

computations in shaping the responses of individual pretectal neu-

rons is unclear [61]. By combining retinal and pretectal imaging,

here we show that there are retinal ganglion cells that are direction

selective across glider stimuli and that pretectal neurons refine this

representation to precisely match the patterns that we observed

behaviorally. These data suggest that retinal motion processing is

tailored to the demands of naturalistic stimuli, whereas the pretec-

tum provides a flexible code for those visual motion stimuli that

drive stabilization behaviors.

RESULTS

Zebrafish Optomotor Turning Is Tuned to the Temporal
Frequency of Moving Gratings
The optomotor response is an innate behavior that counteracts

relative motion between the animal and its environment, such

that leftward motion causes a persistent leftward turn bias (Fig-

ure 1A). The canonical Hassenstein-Reichardt correlator (HRC)

detects visual motion through spatiotemporal correlations in
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the stimulus and accurately predicts the turning magnitudes of

many animals to moving sinusoidal gratings [25, 26, 49, 63].

The spatiotemporal structure of such a drifting sine grating can

be intuitively characterized by its spatial wavelength and velocity

(Figure 1B, front faces). However, the HRC predicts that the rele-

vant notion of grating speed for turning optomotor behavior is the

temporal frequency of motion [64, 65] (Figure 1B, right faces),

which combines the grating’s wavelength and speed to encode

how the stimulus oscillates temporally. For example, the two

moving gratings in Figure 1B have the same temporal frequency

despite differences in their velocity and spatial wavelength.

We first tested whether zebrafish optomotor responses to later-

ally drifting gratings are temporal frequency tuned. We measured

optomotor responses in freely swimming zebrafish presented with

closed-loop whole-field motion stimuli whose orientation was

locked to the fish’s body axis (Figure 1A; STAR Methods). As ex-

pected, zebrafish consistently turned in the direction of stimulus

motion through a series of discrete swim bouts (Figure 1C). The

magnitude of these turning responses was inconsistently tuned

to the velocity of motion (Figure 1D, left). For example, zebrafish

responded to faster stimulus velocities when the wavelength of

the grating was longer. However, we found a universal temporal

frequency tuning curve when we plotted the max-normalized

response magnitudes as a function of temporal frequency (Fig-

ure 1D, right), similarly to what has been reported in flies [64–66].

Therefore, turning responses of larval zebrafish validate a core

prediction of the HRC and support the notion that zebrafish detect

motion by using local spatiotemporal correlations in the stimulus.

Natural Image Motion Contains Higher-Order
Correlations
Natural images are highly intricate [35] (Figure 1E, top face), and

their motion involves higher-order spatiotemporal correlations

that go beyond the second-order cues detected by the HRC [41,

44, 46]. We illustrated these higher-order correlations by simu-

lating rightward motion of a binarized natural image (Figure 1E,

left, center-left). Positive second-order motion cues reliably indi-

cated rightwardmotion at each vertical edgewithin the image (Fig-

ure 1E, center-right). Third-order motion cues also appeared at

each edge, but the sign of the response was opposite for light

and dark edges (Figure 1E, right). Taken together, second- and

third-order motion cues thus jointly encode the direction and

contrast polarity of each moving edge [39]. Interestingly, both

invertebrate and vertebrate brains encode motion in an edge-

type selectivemanner [25, 26], and sensitivity to third-ordermotion

cues contributes to this selectivity in flies [39, 40]. Such encoding

could be immediately useful for distinguishing between moving

light and dark objects in the natural environment [44]. Moreover,

visual motion estimators can use the edge-type specificity af-

forded by third-order motion cues to more accurately estimate

the velocity of whole-field motion in light-dark asymmetric natural

environments [40, 41, 47]. Accordingly, multiple animals exhibit

behavioral motion responses to third-order correlations [20, 39],

and we next asked whether larval zebrafish are among them.

Glider Stimuli Induce Optomotor Responses in Larval
Zebrafish
We used a stimulus set consisting of a single pair of laterally drift-

ing sine gratings (Figure 2A, first column), uncorrelated non-



Figure 1. Optomotor Turning Response of

Larval Zebrafish Follows the Predictions of

Canonical Models of Visual Motion

(A) Schematic of freely swimming closed-loop

experiment in which the stimulus is locked to the

fish’s body axis. A turn of 90� is depicted in red. In

this panel, and all subsequent panels, positive

angles denote leftward turns.

(B) Space-time representation of the rightward

motion of a 2D sine grating. The spatial structure of

sine grating is shown on the top face of the cube.

Two quantities are sufficient to describe sine-

grating motion, for example the velocity (n) and

wavelength (l), and the direction and speed of the

motion can be inferred from correlations in space

and time (front face). However, the canonical HRC

model predicts that motion perception is tuned to

the temporal frequency of the moving grating (side

face). Note that interplay between the velocity and

wavelength of the sine grating permits the same

temporal structure to occur with different velocity

and wavelength parameters (compare the top and

bottom cubes).

(C) The cumulative angle turned as a function of

time (full trial = 12 s) is quantified. Individual trials

for an example leftward motion stimulus appear in

light gray, the trial average is shown in black, and

the inset highlights an individual trial with the left

turn depicted above.

(D) Fish-averaged total angle turned during the 12-

s trial, for multiple velocity and wavelength com-

binations (N = 40 fish) (left). The same data were

peak normalized before averaging and plotted

against temporal frequency (right), as calculated

from each combination of wavelength and velocity.

Error bars show standard errors of mean.

(E) Left: Similar to (B). An example natural image

selected from van Hateren’s natural image dataset

(image number: 598) [35] (top face). We used the

luminance-calibrated image to simulate constant

velocity rightward motion (front face). For demon-

strative purposes only, we contrast equalized the

images shown by replacing the luminance of each

pixel with the intensity rank of the pixel in the im-

age. Note that the motion consists of both moving

light and dark edges. Center-left: To simplify the

pattern ofmotion signals, we binarized the contrast

of the natural image around the mean. Center-

right: We computed second-order motion cues by

multiplying pairs of spacetime pixels whose spatial and temporal offsets matched the speed of motion (1 pixel per time step). By subtracting left-oriented cues

from right-oriented cues, we obtained a directional motion signal that indicated rightward motion at each edge location. In particular, note that the signal is

positive or zero everywhere. Right: We also computed a third-order motion cue by multiplying three spacetime pixels whose spatial and temporal offsets again

matched the speed of motion, now in a temporally converging triangular pattern (see the rightmost column of Figure 2A). The directional motion signal now

depended on whether the moving edge was light or dark, with positive signals resulting from rightward-moving light edges, and negative signals coming from

rightward-moving dark edges.
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directional noise (Figure 2A, second column), and spatiotempo-

rally correlated glider stimuli that were designed to isolate visual

cues that predict leftward or rightward motion in natural environ-

ments [39, 41] (Figure 2A, remaining columns). Note, however,

that the spacetime orientation of the glider stimulus (Figure 2A,

top versus bottom rows) need not match the direction of the mo-

tion cue [20, 39]. Each glider was defined to enforce a particular

second- or third-order correlation over space and time (STAR

Methods; Figure S1A). For example, positive second-order corre-

lations simply translate binary spatial patterns by one pixel per
time step (Figure 2A, third column), whereas negative second-or-

der correlations also invert the contrasts of the translated pat-

terns (Figure 2A, fourth column). These two stimulus types are ex-

amples of phi and reverse-phi motion that were instrumental

toward establishing several canonical models for visual motion

estimation [22, 49, 53, 67]. Third-order glider stimuli construct tri-

angles in spacetime (Figure 2A, fifth through eighth columns) and

average away all second-order cues that could be detected by

canonical models. Although these stimuli might appear unnatural,

they have experimentally useful properties. First, they generate
Current Biology 30, 2321–2333, June 22, 2020 2323



Figure 2. Larval Zebrafish Perceive Glider Stimuli as Motion

(A) Example spacetime diagrams of the 15 stimuli presented in our experiments. Ball and stick diagrams illustrate the correlation structure enforced within the

associated spacetime diagrams, the empty set symbol (B) denotes a spatiotemporally uncorrelated stimulus, and the arrow icons indicate standard leftward or

rightward motion of sinusoidal grating stimuli. The directional stimuli were divided into left-oriented (top row) and right-oriented (bottom row) varieties, based on

the displacement direction of the constituent points (STAR Methods).

(B) Fish-averaged mean turning responses quantified as the cumulative angle turned (N = 120 fish). Shaded error bars represent the standard errors of the mean.

Fish respondedweakly to uncorrelated stimuli and turned in the motion direction for drifting sine gratings (top). The positive left-oriented two-point glider induced

turning responses similar to leftward grating motion, whereas the negative left-oriented two-point glider induced turning opposite to the stimulus orientation

(bottom).

(C) Total angle turned during the complete 12 s trial for each non-directional or left-oriented stimulus. Responses to each glider stimulus, including three-point

gliders, were significantly different from uncorrelated stimulus responses (all p < 10�5, Wilcoxon test). Note that the direction of left-oriented glider responses

depended on the pattern and parity (correlation sign) of the glider. Error bars are standard errors of the mean.

(D) Bout-specific zebrafish behavior for the 15 stimuli, quantified as fish-averaged frequencies of forward swimming bouts, leftward turning bouts, and rightward

turning bouts over a 12-s trial (N = 120 fish, STAR Methods). Error bars are standard errors of the mean. Asterisks denote significant differences in comparison

with uncorrelated stimulus responses (p < 0.05, Wilcoxon test). See also Figure S1.
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motion responses in several animals [20, 38, 39]. Second, they

provide experimental support for models that enhance visual mo-

tion estimation by accounting for natural light-dark asymmetries

[40, 41]. Finally, they provide a rigorous mathematical framework

for decomposing visual motion estimates [26, 41, 46].

We first quantified the behavior as the average cumulative

angle turned during the 12 s of stimulus presentation (Figure 2B).

We used the uncorrelated stimulus tomeasure a possible turning

bias in the population of fish, and leftward and rightward gratings

caused fish to change their turning by similar magnitudes in the

expected directions (Figure 2B, top). The magnitude and
2324 Current Biology 30, 2321–2333, June 22, 2020
direction of turning responses to positive two-point gliders

were closely matched to gratings, and reverse-phi stimuli

caused fish to turn against the stimulus orientation (Figure 2B,

bottom) [53]. Each third-order glider stimulus caused a weak

but highly significant directional turning response (Figure 2C;

Figure S1B). Interestingly, positive and negative three-point

gliders induced turns in opposite directions (compare fifth and

sixth rows of Figure 2C, or the seventh and eighth rows), despite

these stimuli being simply related to each other by contrast

inversion (Figure 2A). Moreover, the signs and relative magni-

tudes of these turning responses matched those predicted by
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performance-optimized models and those previously measured

in fruit flies [39, 41] (Figure S1C). These directionalities also

match neuronal recordings in dragonfly and macaque [38].

Thus, glider stimuli are motion illusions that probe naturalistic

motion computations across the animal kingdom.

Larval zebrafish swim in a sequence of discrete bouts, and op-

tomotor stimuli modulate several elements of behavior that

combine to generate the total angle turned [57, 68, 69]. We

thus further dissected the behavior into bout frequencies associ-

ated with forward swims, right turns, and left turns (Figure 2D;

Figure S1D). In comparison to uncorrelated noise, every stimulus

increased bout frequencies in the induced turning direction, and

many also decreased turn frequencies in the opposite direction.

Although forward swim bouts were less strongly modulated by

our lateral motion stimuli, positively correlated three-point

gliders usually increased forward swim frequencies and induced

relatively weak turning behavior.

Neuronal Responses to Glider Stimuli Are Lateralized by
Turning Direction
We next sought to characterize brain-wide neuronal responses

to glider stimuli. We achieved this by measuring fluorescent cal-

cium responses in transgenic zebrafish expressing a genetically

encoded calcium indicator pan-neuronally (Tg:elavl3:GCaMP6f)

[70] in a head-fixed and tail-free preparation under a two-photon

microscope (Figures 3A–3B; STAR Methods). This allowed us to

monitor neuronal activity and swimming behavior simulta-

neously, which is important because the frequency of head-

restrained behavior might differ from that of freely swimming

larvae. We automatically detected neuronal regions of interest

(ROIs) by using previously published methods [58] (STAR

Methods). The direction selectivity of zebrafish neurons to drift-

ing sine gratings is highly lateralized, with the left/right brain pri-

marily responding to leftward/rightward motion [57, 71]. Here we

reproduced this finding (Figure 3C; Figure S2A) and further

observed a similar pattern for positive two-point glider stimuli

(Figure 3D; Figure S2A). Interestingly, neuronal responses in

the hindbrain (Hb) and cerebellum (Ce) were visually indistin-

guishable between two-point glider stimuli and drifting gratings,

which is consistent with the notion that these regions generate

themotor outputs similarly elicited by either type of stimulus (Fig-

ure 2D). However, two-point glider stimuli recruited responses in

the optic tectum (OT) that drifting gratings did not (Figures 3A,

3C, and 3D; Figure S2A). Importantly, visual responses in the

pretectum were similar for both stimulus types, which is consis-

tent with the hypothesis that the pretectum is a critical visual area

underlying the zebrafish optomotor response [57].

We thus focused on how the pretectum visually represented

glider stimuli. Both sides of the pretectum responded to negative

two-point glider stimuli (Figure 3E; Figure S2B). The more poste-

rior/ventral sub-region preferred opposite orientations for the

negative and positive two-point gliders, whereas the more

anterior/dorsal sub-region showed amatched orientation prefer-

ence. The response pattern seen in the posterior/ventral sub-re-

gion was consistent with the hypothesis that neurons in the left/

right pretectum prefer stimuli that drive leftward/rightward

turning. Indeed, when we defined a directional index that quan-

tified how strongly individual ROIs preferred stimuli driving left-

ward versus rightward turning, we found that the left/right
pretectum strongly preferred stimuli driving leftward/rightward

turning (Figure 3F; Figure S2B). The pretectal pattern of direction

selectivity was also apparent in hindbrain responses (Fig-

ure S2C), and three-point glider maps similarly showed laterali-

zation that reflected the directionality of turning behavior (Figures

S2D and S2E). Note that the left-/right-oriented negative two-

point gliders contain long-range positive two-point correlations

that would drive leftward/rightward turning if isolated [50]. In light

of this fact and the results above, we predict that the anterior/

dorsal sub-region of pretectum contains neurons that prefer

long-range motion cues. By averaging visually activated ROI re-

sponses in the left versus right pretectum, we found that this di-

rection selectivity was observed for every pair of glider stimuli

(Figure 3G). This lateralized pattern was absent in the optic

tectum and less prevalent in cerebellar and hindbrain neurons

(Figure S2F). However, pretectum-like tuning for glider stimuli

might be preserved within cerebellar and hindbrain sub-regions

that are anatomically and functionally downstream of pretectum.

AF5&6 Contains Direction-Selective Retinal Signals
The pretectum receives both direction-selective and non-direc-

tional inputs from the retina [56, 57, 59, 61], so we next sought to

determine whether direction selectivity for glider stimuli is

already present in the retinal output. In zebrafish, retinal ganglion

cell (RGC) axons arborize in ten distinct arborization fields (AFs),

with each AF conveying information from a sub-population of

RGCs [59, 72]. To precisely measure retinal responses, we

imaged transgenic SyGCaMP6s fish that selectively express

the fluorescent calcium indicator GCaMP6s in retinal ganglion

cell synapses under the islet-2b promoter [61, 73, 74] (Figure 4A;

STAR Methods), and we adapted our segmentation routine to

detect bouton-scale ROIs (Figure 4B; STAR Methods). Each of

AF5, AF6, and AF10 have been shown to contain direction-selec-

tive signals, but neuropil ablation experiments found that only

processes near AF5 and AF6 affected optomotor behavior [57,

61, 75]. We thus imaged a field of view that does not contain

AF10 to achieve high-resolution imaging of the remaining AFs,

which are much smaller than AF10. With this technique, we

were able to measure visually responsive fluorescent signals in

most arborization fields (Figure 4B), but AF1, AF2, and AF3

were too ventral for high-fidelity imaging in our setup. Further-

more, fluorescent signals in AF7 were not visually modulated

during our experiment. We thus focus all subsequent analyses

on AF4, AF5, AF6, AF8, and AF9. In addition, we merged AF5

and AF6 in the analysis because we only detected a few ROIs

in AF5, the response properties of these ROIs were similar to

nearby AF6 (Figure S3A), and direction-selective retinal signals

do not seem to respect the AF5/6 boundary [61].

Visual motion stimuli increased the fluorescence of some ROIs

and decreased the fluorescence of others (Figure 4C), so we first

separated ROIs into an activated population that was signifi-

cantly activated by a positive two-point motion stimulus, a sup-

pressed population that was significantly suppressed, and a null

population that did not respond (STAR Methods). Activated and

suppressed populations were both present in all AFs (Figure 4D),

and we assessed the direction selectivity of the activated and

suppressed populations of each AF separately. We found that

most ROIs did not exhibit strong selectivity in any AF, but

AF5&6 ROIs showed significantly more direction-selective
Current Biology 30, 2321–2333, June 22, 2020 2325



Figure 3. Neuronal Responses in the Pretectum Are Anatomically Lateralized and Direction Selective for Glider Stimuli

(A) Whole-brain anatomical map from a reference brain (constructed from a confocal stack of Tg(elavl3:GCaMP6f) 7 dpf larva), on which all subsequent ROI

selectivity maps were overlaid. Brain structures referred to in the text are highlighted (approximate locations). OT, Optic Tectum; Pt, Pretectum; Ce, Cerebellum;

Hb, Hindbrain.

(B) Schematic of two-photon imaging setup in which the larva was head-embedded in agarose but free to move its tail. We presented visual motion stimuli from

below, and the behavior could be tracked while imaging the neural activity.

(C) Whole-brain direction selectivity map moving sine gratings, revealing left preferring (green) and right preferring (magenta) regions (30,778 ROIs from 11 fish).

(D) Whole-brain direction selectivity maps for two-point glider stimuli.

(E) Pretectum direction selectivity maps for negative two-point glider stimuli. Direction selectivity in the ventral (dorsal) pretectum was opposite (matched) to the

orientation of positive two-point glider stimuli (559 ROIs from 11 fish).

(F) Pretectum direction selectivity maps comparing all stimuli driving leftward turning (green) to those driving rightward turning (red). Direction selectivity in the

pretectumwas lateralized in amanner that matched the direction of the turning behavior. For each set of maps, we show coronal (center of triplet), transverse (top

of triplet), and right sagittal projections (right of triplet). A indicates the anterior-posterior axis, V the ventral-dorsal axis, and L the left-right axis. Scale bars

represent 0.1 mm in (C), (D), and (B) and 0.05 mm in (E) and (F).

(G) Mean z-scored fluorescence responses of ROIs in the left (N = 840 ROIs) versus right pretectum (N = 991 ROIs). Each mean was direction selective for each

directional pair of stimuli, and directional preferences matched the behavioral turning directions. Shaded error bars represent SEM. Green and red colored dots

signify visual stimuli driving left turning and right turning, respectively. Horizontal dashed lines mark the peak average responses during the uncorrelated stimulus

presentation. Asterisks indicate that all comparisons were significant at the p = 0.01 level (Wilcoxon test). See also Figure S2.
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Figure 4. The Retina Computes Direction-Selective Glider Responses

(A) Geometry of the how retinal axons arborize in the central zebrafish brain. Here we show a projected view of a 3D reconstruction of the left hemisphere

arborization fields (AFs) using retinal-labeled Tg:Islt2b:SyGCAMP6s zebrafish (7 dpf). Each color highlights a single AF. AF8 is hidden behind AF7 in this view.

Because AF5 and AF6 were difficult to distinguish and functionally similar (Figure S3A), we merged them into AF5&6 for most figure panels. Auto-fluorescence

artifacts from the eye were masked prior to other data analyses (STAR Methods). P indicates the anterior-posterior axis, V the ventral-dorsal axis, and M the

medial-lateral axis. Scale bar represents 50 mm.

(B) Example planes showing ROIs identified with our imaging and segmentation routines. We extracted many ROIs from most AFs, but we did not observe

functional responses in AF7. A and L indicates the anterior-posterior and left-right axes. Scale bar represents 20 mm.

(C) Individual retinal ROIs were consistently activated or suppressed by visual stimuli across the stimulus conditions. We display fluorescence responses from a

randomly selected subpopulation of 2,500 ROIs (out of 270,596). The ROIs were sorted by the significance of their selectivity for stimulus-on versus stimulus-off

periods across all stimuli (Wilcoxon test). Solid and dashed yellow lines indicate the start and end of stimulus presentation periods respectively. Blue lines mark

the p value thresholds (p = 0.05) used to define the activated and suppressed ROI populations.

(D)More retinal ROIs were activated and suppressed than expected by chance, and the fraction of ROIs activated or suppressed varied across the AFs. Error bars

represent standard error of the mean, and confidence intervals were estimated by assuming Poisson variability in counting statistics (N = AF4: 62,173; AF5&6:

59,450; AF8: 5,676; and AF9: 73,722 ROIs).

(E) The number of retinal ROIs that were direction selective for drifting gratings was only above chance levels in AF5&6, as assessed by a shuffle test (STAR

Methods). In particular, error bars represent estimated 95% confidence intervals and excluded the chance level of 0 in AF5&6 only.

(F) Top: Leftmost column represents two example planes showing a region encompassing AF5 and AF6. ROIs preferring leftward (rightward) gratings are colored

cyan (red). Panels in the middle/rightmost columns are from left/right side of the brain. The green boxes in the leftmost panels indicate subregions rotated and

shown at higher resolution to the right. A indicates the anterior-posterior axis, and L indicates the left-right axis. Scale bars, left column: 30 mm, all the other

columns: 5 mm. Bottom: Z-scored fluorescence traces of the three example ROIs circled in yellow at top. Each ROI was identified by its direction selectivity to

drifting grating stimuli, but they also showed direction-selective responses to two-point and three-point glider stimuli.

(G) Mean z-scored fluorescence traces of all ROIs direction selective for leftward- or rightward-drifting gratings in the left or right AF5&6. The directional stimulus

pairs marked with asterisks were significantly different at the p = 0.01 level (one tailedWilcoxon test). All other directionally paired stimuli did not show statistically

significant differences. N = 240 ROIs (top left), 330 (bottom left), 234 (top right), 449 (bottom right). See also Figure S3.
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responses to drifting gratings thanwould be expected by chance

(Figure 4E; STARMethods), consistent with previous results [61].

We also found that direction-selective responses to positive

two-point glider stimuli, negative two-point glider stimuli, and

three-point glider stimuli were enhanced only in activated
AF5&6 ROIs (Figures S3B–S3D). We decided to focus on ROIs

identified as direction selective based only on responses to later-

ally drifting gratings. This choice allowed us to assess whether

canonically direction-selective retinal ganglion cells also show

direction selectivity to gliders.
Current Biology 30, 2321–2333, June 22, 2020 2327
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Retinal Direction Selectivity Includes Glider Stimuli
We found activated direction-selective ROIs sparsely distributed

within AF5&6 and near the AF5/6 boundary (Figure 4F, top). Inter-

estingly, the direction selectivity of many individual ROIs to drift-

ing gratings generalized to also endow direction selectivity for

positive two-point gliders, negative two-point gliders (reverse-

phi), and each three-point glider configuration (Figure 4F,

bottom). Moreover, example ROIs preferring rightward-moving

gratings also preferred glider stimuli associated with rightward

turning (Figure 4F, bottom, rows 1 and 3), and ROIs preferring

leftward-moving gratings also preferred glider stimuli driving left-

ward turning (Figure 4F, bottom, row 2). However, not all acti-

vated direction-selective ROIs exhibited patterned glider

responses. For example, the average response of all leftward-

selective ROIs in the left AF5&6 showed the aforementioned

selectivity pattern (Figure 4G, top left), but the leftward-selective

mean in the right AF5&6 showed weaker glider modulation and

did not show significant direction selectivity to most three-point

gliders (Figure 4G, top right). A similar pattern was seen for right-

ward-selective ROIs (Figure 4G, bottom), now with the right

AF5&6 showing stronger glider selectivity. In contrast, the

weaker direction selectivity for gratings observed in suppressed

AF5&6 ROIs (Figure 4E) did not generalize to other stimulus pairs

(Figure S3E), and both hemispheres also contained non-direc-

tional ROIs (Figure S3F). These results show that the larval zebra-

fish retina extracts direction-selective signals for higher-order

motion stimuli and suggest that multiple direction-selective pop-

ulations might be distinguishable with gliders. Nevertheless,

retinal ROIs responded with magnitudes that imperfectly

matched the stimuli’s motion strength and behavioral relevance.

For example, the vast majority (�95%) of activated direction-se-

lective ROIs in AF5&6 showed significant responses to non-

directional uncorrelated noise. We thus hypothesized that

pretectal processing would refine retinal inputs to construct a vi-

sual representation more appropriate for driving optomotor

behavior.

Modeling Pretectal Neurons as a Threshold-Linear
Integration of Behavioral Outcomes
To determine whether individual pretectal neurons coded for

behavioral outcomes induced by glider stimuli, we modeled

each ROI’s activation as a threshold-linear combination of

several behavioral predictors (Figure 5A; STAR Methods). In

particular, three predictors were derived from the mean behav-

ioral frequencies of leftward turning, rightward turning, and for-

ward swimming, and a fourth predictor represented non-specific

stimulus drive (Figures 2D and 5A). These models typically ex-

plained a large fraction of the neuronal response variance in

the pretectum but not in AF5&6 (Figure 5B). We could improve

model fits in AF5&6 by accounting for its precise response ki-

netics (Figures S4A and S4B), but this elaborated model form

continued to fit pretectum ROIs better (Figure S4B). We found

accurate model fits occurred throughout the pretectum (Fig-

ure 5C), and themodel traces successfully captured pretectal re-

sponses to both classical motion and third-order glider stimuli

(Figure 5D; Figure S4D). The model fits beautifully revealed

many direction-selective neurons that precisely tracked the

magnitude by which various stimulus correlations increased

the frequencies of leftward or rightward turning (Figure 5D,
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traces 1 and 2). Other neurons exhibited response patterns

that resembled a combination of turning and forward swimming

behaviors (Figure 5D, traces 3 and 4).

As anticipated by Figure 3D, neurons in the pretectum were

anatomically organized according to their behavioral correlates

(Figure 5E). Most obviously, the neurons strongly influenced by

the pattern of leftward and rightward turning were respectively

localized in the left and right pretectum (Figure 5E, bottom;

Figure S4C). We also found a clear organization along the ante-

rior-posterior axis, with turn-associated neurons located more

posterior (Figure 5E; bottom, Figure S4C), and the neurons posi-

tively associated with forward swimming or non-specific stim-

ulus drive located more anterior (Figure 5E, top; Figure S4C).

These coefficient maps are reminiscent of the direction selec-

tivity maps in Figure 3, and the model fits of individual ROIs

only had large positive turning weights when the ROI also had

high direction selectivity (data not shown). Despite these strong

correlations between pretectal neuron activity and mean behav-

ioral outcomes, pretectal activity was not instructive and could

occur without behavioral output. For example, during the 5-s

stimulus presentation, head-embedded larval zebrafish often re-

sponded directionally to drifting gratings and positive two-point

gliders (Figure S4E) but not to reverse-phi or three-point glider

stimuli (Figure S4F). Therefore, the pretectal responses to

reverse-phi and three-point glider stimuli must be gated down-

stream of the pretectum, perhaps by competitive processing in

the hindbrain or cerebellum [57, 61, 76–79]. Overall, we thus hy-

pothesize that the pretectum integrates direction-selective

retinal inputs (Figure S5) to construct a behavior-ready code

that can be easily readout by downstream motor centers.

DISCUSSION

Visual motion influences a wide variety of ethological behaviors,

so evolution demands that visual systems accurately estimate

motion from naturalistic patterns of input. Canonical models of

visual motion estimation in both flies and primates suppose

that pairwise correlations between light signals provide the

fundamental cues of elementary motion detection [22, 49], and

here we found temporal frequency tuning in zebrafish behavior

that mimicked model predictions and fly behavior [64, 65].

Nevertheless, pairwise motion estimates have limited accuracy

for complex naturalistic stimuli [28, 39]. Fortunately, the rich

statistics of natural motion [44, 45] imply that a variety of

higher-order spatiotemporal cues can help [29, 41, 46, 47]. In

this study, we discovered that third-order cues robustly elicit

motion-guided behaviors in larval zebrafish, with patterns that

strikingly match those of flies [39]. Interestingly, basic statistics

of natural visual scenes are shared across a wide range of visual

environments [36, 42], and the visual systems of multiple spe-

cies, including fruit flies, dragonflies, larval zebrafish, macaques,

and humans, have found ways to incorporate second-, third-,

and higher-order correlations into their motion-processing algo-

rithms [20, 38, 39, 53, 80, 81]. The observed directionalities of

zebrafish and fly turning behaviors agree with the hypotheses

of prior theoretical work that calculated how flies should

combine low-order correlational cues to best estimate the veloc-

ity of whole-field motion [41]. Thus, the algorithms of visual mo-

tion estimation are strikingly convergent across the animal



Figure 5. Individual Pretectum Neurons

Represent Visual Motion Stimuli According

to Their Effect on Optomotor Behaviors

(A) Schematic of the model architecture (STAR

Methods). Mean behavior regressors were first

convolved with a temporal kernel that emulated

measurable responses in our calcium imaging

experiment. The regressors were then combined as

a weighted sum, and a final thresholding step

captured the non-negativity of the measured pre-

tectal responses. We use N, F, L, and R to denote

the Non-specific stimulus-on regressor, the For-

ward swim frequency regressor, and the Left/Right

turn frequency regressors (STAR Methods). For

compactness, we illustrate the procedure for the

first three stimuli only.

(B) Distribution of R-squared values (fraction of

variance explained by the model) for all activated

ROIs. Note that when the responses of AF5&6 units

were fitted similarly, the fraction of variance ex-

plained was shifted toward smaller values in com-

parison with the pretectum case.

(C) R-squared maps showing that the quality of

model fits was comparable throughout the pre-

tectum. As in Figure 3, we show coronal (center),

transverse (top), left sagittal (left), and right sagittal

projections (right) overlaid on anatomical maps

(grayscale). A indicates the anterior-posterior axis,

V the ventral-dorsal axis, and L the left-right axis.

Scale bar represents 0.05 mm.

(D) Example traces for four pretectum ROIs,

together with associated model fits and R-squared

values. The first two example ROIs show pretectal

neurons that respond to glider stimuli with magni-

tudes closely matching the behavioral turning fre-

quencies induced by the stimuli. The final two ROIs

show that other pretectal neurons responded rela-

tively non-selectively to glider stimuli.

(E) Weight coefficient maps for the four regressors

used in the model. ROIs utilizing the L or R re-

gressors were localized to the left or right pre-

tectum, respectively. ROIs receiving positive drive

from the N or F regressors were localized to the

anterior pretectum. All graphical conventions

match (C). See also Figures S4 and S5.
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kingdom, and natural sensory statistics provide a valuable guide

for understanding these algorithms. Because prior models were

built from the statistics of natural terrestrial environments, it will

be interesting to determine whether any predictions change for

the underwater environments experienced by zebrafish [37, 82].

Understanding how these algorithms are implemented within

visual systems can provide additional insight into the logic and

mechanisms of neuronal computation. Direction selectivity

arises in the retina of many vertebrate species, including rabbits,

mice, and zebrafish [74, 83, 84]. However, not all motion cues are

present in the earliest direction-selective cells [40, 85], andwhich
Current B
motion cues are computed in the retina

versus central brain remains unclear [86,

87]. Here we used functional calcium

imaging of retinal ganglion cell axon termi-

nals to show that the zebrafish retina com-

putes direction-selective motion signals
for reverse-phi stimuli and three-point glider stimuli. The pattern

of direction selectivity precisely matched the directionality of

optomotor turning behavior. Interestingly, the fly’s earliest direc-

tion-selective neurons also respond to reverse-phi stimuli with a

directionality matched to behavior [50, 67]. Fly researchers have

recognized that this response pattern is inconsistent with a naive

neuronal implementation of the HRC’s multiplication operation

[67], yet it can emerge from a motion energy model [88], a

spatially distributed implementation of the HRC [67], or a bio-

physically realistic neuronmodel [89]. On the other hand, the cor-

rect directional preferences for third-order glider stimuli only
iology 30, 2321–2333, June 22, 2020 2329
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emerge in flies after separate ON-edge and OFF-edge motion

signals are combined [40, 90]. This suggests that AF5&6 encode

both ON-edge and OFF-edge motions. Our results generally

support the hypothesis that the elementary motion signals

needed for the zebrafish optomotor response are computed in

the retina [53, 57]. Because the directionality of glider behavior

can be predicted from the demands of accurate motion estima-

tion with natural scenes [41], this suggests that the retina’s

algorithms for motion processing are tailored to the structure

of natural sensory environments. Furthermore, the direction-se-

lective signatures associated with whole-field motion are tar-

geted specifically to AF5 and AF6 [61], which have previously

been shown to causally affect optomotor responses to drifting

grating stimuli [57]. We were thus able to link a naturalistic retinal

computation to behavior via specific retinal projection patterns in

the central brain.

Retinal signals do not project directly to the hindbrain motor

centers generating behavior [59, 72], and our data support the

emerging view that the pretectum is a midbrain visual area that

integrates and refines visual motion cues in support of several

stabilization behaviors [56, 57, 60, 61]. For example, the pretec-

tum has been shown to binocularly integrate several directions of

visual motion information in amanner that recapitulates themag-

nitudes and latencies of optomotor behaviors [57, 91, 92]. Here

we extend this argument and suggest that the pretectum also in-

tegrates direction-selective retinal signals to represent more

complex motion cues, including those in reverse-phi and glider

stimuli, with magnitudes that facilitate behavior. We further hy-

pothesize that this functional organization will underlie optomo-

tor responses to second-order motion stimuli [53, 75], and these

properties generally make the pretectum well suited to process

higher-order motion cues that require long-range nonlinear inte-

gration of local motion signals [21, 24]. Overall, this results in a

representation that closely correlates with the behavioral out-

comes induced by a diversity of visual motion stimuli [57, 76].

This representation is anatomically organized into lateralized

populations of neurons with similar directional tuning, which

could permit ipsilateral long-range connections from the pretec-

tum to lateralized hindbrain nuclei associated with turning

behaviors. More generally, the afferents and efferents of the pre-

tectum are varied and numerous [62], which might permit the

pretectum to flexibly influence multiple behaviors.

Our data support the idea that the retina extracts multiple fea-

tures of naturalistic visual stimuli, whereas central brain areas

integrate and refine these features according to their relevance

for specific behaviors [56, 57, 71, 93, 94]. This idea is likely to

generalize across species and visually guided behaviors. Mice

have dozens of functionally distinct RGC types [83]. In larval ze-

brafish, many anatomically distinct RGCs project contralaterally

to ten AFs [59, 72]. The non-uniformity of these projections could

easily route visual features to their appropriate targets. For

instance, RGCs in AF7 specifically respond to natural and artifi-

cial prey stimuli [3], which in turn drive prey capture related

circuitry in the optic tectum [5]. Moreover, AF6, AF8, and AF9

process dark looming and dimming stimuli [7], with AF9 being

even more strongly activated by bright looming and luminance

increases, and these retinal responses could drive escape

behaviors via visual processing in the optic tectum [17]. Finally,

optomotor and optokinetic responses combine several
2330 Current Biology 30, 2321–2333, June 22, 2020
behavioral motifs, and AF4, AF5, AF6, AF9, as well as the pretec-

tum have each been implicated in some of their aspects [56, 57,

61, 95]. Future work is needed tomore fully identify the functional

mapping of retinal features to specific AFs, downstream brain re-

gions, and resultant behaviors.

Visual motion estimation is a computation that all animals need

to perform [1]. By comparing the solutions of evolution to this

problem, we can better understand similarities and differences

between neural circuits. Similarities point to evolutionary conver-

gence. For example, light-dark asymmetries are fundamental to

glider processing [41, 46], and the neural implementation of

glider processing in both flies and primates involves a separation

of signals into ON-edge and OFF-edge channels [39, 40]. Our

current results suggest that ON/OFF separations within the

vertebrate retina might be utilized to generate responses to

glider stimuli in zebrafish [25, 26, 96]. Differences are also impor-

tant, because they could reveal multiple implementations of

common computational algorithms. For example, many circuit

architectures might extract glider signals [38, 40, 41, 88].

Furthermore, prior work implicates the primate cortex in glider

processing [38, 39], but our current data suggest that in the ze-

brafish these signals are present in the retina. This suggests

that vertebrate brains have exploredmultiple strategies for visual

processing. For example, some species might have highly spe-

cific feature detectors in the retina whereas others might rely

on more generic retinal representations [86, 87]. Similarly,

saliency maps guiding attention might occur in variable brain re-

gions across vertebrate species [97]. Such species-level differ-

ences could provide hints into how subtle evolutionary and etho-

logical factors impact neural computation [38, 39, 97, 98]. Here

we have taken important steps toward establishing the larval ze-

brafish as a powerful system for comparative studies of the neu-

ral computations underlying visual motion processing. We antic-

ipate that the unique possibilities afforded by brain-wide imaging

in this behaving vertebrate will play crucial roles in comparative

studies that address complex aspects of motion-guided

behavior and decision making.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Zebrafish: wild-type Tupfel

long-fin

N/A ZFIN ID:

ZDB-GENO-990623-2

Zebrafish:

Tg(UAS:syGCaMP6s)

mpn156

[61]

Zebrafish: Tg(isl2b:Gal4-

VP16, myl7:TagRFP)zc65

[99] ZFIN ID:

ZDB-FISH-150901-13523

Zebrafish:

Tg(elavl3:GCaMP6f)

[77] ZFIN ID: ZDB-ALT-180201-1

Software and Algorithms

MATLAB (data analysis) MathWorks https://www.mathworks.

com/products/matlab.html

ComputationalMorphometry

Toolkit (anatomical

registration)

[100] https://www.nitrc.org/

projects/cmtk/

Other

Z-Brain atlas (anatomical [71] https://engertlab.fas.
reference) harvard.edu/Z-Brain/
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for materials, data and code should be directed to and will be fulfilled by the Lead Contact, Ruben

Portugues (ruben.portugues@tum.de).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The [datasets/code] supporting the current study have not been deposited in a public repository because of their large size but are

available from the corresponding author on request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
All experiments were performed with 6-7 days post fertilization (dpf) zebrafish larvae, which were maintained at 28�C on a 14 h light/

10 h dark cycle. Behavioral experiments were done with Tuepfel long-fin (TL) wild type strain. The nacre transgenic zebrafish lines

Tg(elavl3:GCaMP6f+/+) [77] and Tg(Islt2b:Gal4,UAS:SyGCaMP6s+/+) [61, 99] were used for wholebrain/pretectal and AF imaging

experiments, respectively. All animal experimental procedures were approved by the Max Planck Society and the local government

(Regierung von Oberbayern).

METHOD DETAILS

Free-swimming behavioral experiments
Larvae were placed in a 10 cm Petri dish, on a clear acrylic support covered with a diffusive screen, and illuminated from below using

an array of IR LEDs. Freely swimming larvae were tracked using a high speed Mikrotron camera (200 fps) and an IR band-pass filter.

The visual stimuli were presented from below on a 12 cm by 12 cm region of the screen, covering the area of the dish completely, and

using an Asus P2E microprojector. Closed loop motion stimuli were generated with custom written LabView software. The fish’s

orientation and position were continuously monitored, and the stimulus was updated such that the stimulus pattern was always

oriented perpendicularly to the fish’s body axis [69].
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One stimulus was presented during each 12 s trial and there was no inter-trial interval. For the sine grating tuning data shown in

Figure 1D, twenty trials were presented within each stimulus set corresponding to all stimulus conditions. For the glider data shown in

Figure 2, fifteen trials were needed to show the full stimulus set. Stimulus order was randomized within each set of trials. Datasets for

sine-grating tuning and glider stimuli were collected through independent experiments from different sets of fish. Whenever the ze-

brafish left a user-defined region near the center of the dish, we drove the zebrafish back to the center of the dish using a concentric

OMR stimulus. Each experiment was limited to be at most 2 h. In the sine-grating tuning experiments, we uniformly spaced five tem-

poral frequencies on a logarithmic axis at 10 ^ (�1,�0.5, 0, 0.5, 1) Hz. Thus, the velocities used for each spatial period were: 2.4 mm

(0.24, 0.75, 2.4, 7.5, 24 mm/s); 4.8 mm (0.48, 1.5, 4.8, 15, 48 mm/s); 9.6 mm (0.96, 3, 9.6, 30, 96 mm/s); 19.2 mm (1.9, 6, 19, 60,

190 mm/s). We computed the max-normalized response magnitudes in Figure 1D by scaling the measured tuning curve of each in-

dividual zebrafish to have a maximal value of 1 before averaging. The velocity of the drifting sine gratings in the glider experiments

(spatial period 10 mm) was 10 mm/s. Contrast was 100% (darkest and lightest pixels possible) in all stimuli and was not gamma-cor-

rected for the projector.

Behavioral analyses were performed with customwrittenMATLAB software. We detected the onset and offsets of individual bouts

of behavior by finding times where the fish’s distance changed by at least 0.3 mm. By comparing the position and orientation of the

fish before and after the bout, we associated each bout with an angle turned. We calculated bout-frequency versus bout angle histo-

grams for directional and non-directional stimuli, and the cut-off values for identification of forward swims, leftward turns, or right-

ward turns were set based on these distributions (Figure S1D). Histogramswere computed by binning bout angles into 1-degree bins.

Glider stimulus construction
Motion induces spatiotemporal correlations in visual stimuli, and each glider stimulus was constructed to enforce a specific corre-

lation among two or three spatiotemporally separated pixels [20, 38, 39]. We represented each glider pattern as a signed ball and

stick diagram (e.g., Figure 2A) that defines the update rule by which each pixel is assigned its contrast value of +1 or �1 (white or

black) (Figure S1A). For example, the simplest glider patterns enforced positive or negative correlations between two pixels (Fig-

ure 2A, third and fourth columns). Denoting the binary contrast value of the i-th pixel at time t by Ci(t), the 2-point update rules

were each of the form Ci(t)Ci+D(t + d) = P, where D was the displacement between the pixels, d was the frame duration, and P was

the parity of the glider pattern (i.e., sign of the correlation). Consequently, each pixel value was determined bymultiplying an adjacent

pixel value at the previous time step by P (either 1 or �1). Note that the sign of D specifies the orientation of the glider pattern. Also

note that each stimulus was randomly initialized with a seed row (i.e., initial stimulus pattern) and seed column (i.e., contrast source at

the left or right stimulus boundary). In the case of 3-point gliders, the update rules wereCi(t)Ci+D(t)Ci+D(t + d) = P andCi(t)Ci(t + d)Ci+D(t +

d) = P for the converging and diverging types, respectively. Again, the sign ofD specifies the orientation of the glider pattern, and each

stimulus was randomly seeded with one row and column of the stimulus. Lastly, to generate the uncorrelated noise stimuli each pixel

was randomly chosen to be black or white, independent of the rest of the pixels. For all stimuli, pixel sizes were defined by |D| =

1.31 mm and d = 90 ms. Importantly, when integrated over space and time, each glider pattern has vanishing components for the

other types of correlational structures. Thus, each of the 3-point gliders excluded 2-point correlations as well as the other 3-point

correlations. Additionally, all stimuli were equiluminant in time and space, and each point in spacetime had the same variance.

More discussion of glider stimuli is available in several related publications [20, 38, 39].

Functional imaging
Larvae were embedded in 1.5%–2% agarose in 3.5 cm Petri dishes placed onto an acrylic platform covered with a light-diffusing

screen [58]. Neural activity was recorded with a custom-built two-photon microscope. A Ti-Sapphire laser tuned to 905 nm (Spectra

Physics Mai Tai) was used for excitation. Larval brains were imaged while being presented with visual stimuli from below (pixel size

1.31 mm, presented 5 mm below the fish) at 60 fps using an Asus P2E microprojector and a red long-pass filter (Kodak Wratten

No.25), which allowed simultaneous imaging and visual stimulation. Visual stimuli (5 cm by 5 cm) were generated with customwritten

Labview software. Imaging experiments were done to acquire three different datasets specific for whole-brain, pretectum, and AF

regions. Frames were acquired at 2.8 Hz with pixel sizes 0.85 mm (whole-brain), 0.45 - 0.85 mm (pretectum) and 0.3 - 0.45 mm

(AFs), depending on the field of view covered. We showed each stimulus once per plane during pretectum/whole-brain imaging

experiments and three times per plane in AF imaging experiments. Imaging planes were separated by 1 mm steps, and 300, 60,

and 30-60 planes were needed to cover the imaging volume probed during whole-brain, pretectal, and AF imaging experiments,

respectively. This small step size implies that single neurons often appeared in several consecutive imaging planes. Each stimulus

was presented for 5 s, with 5 s of gray screen presented between stimuli. The fifteen stimuli were presented in randomized order.

Since the stimulus encoding was not gamma-corrected for the projector, gray was equally spaced between white and black in

RGB units, which roughly match the units of ‘‘perceptual brightness’’ experienced by humans. Consequently, the total physical lumi-

nance level increased during stimulus presentation but was matched across glider stimuli.

Head-embedded behavior quantification
In the subset of fishwherewe simultaneously tracked tail movements and neuronal signals, agarose around the tail was removedwith

a fine scalpel. In these experiments, larvae were illuminated from above with IR light emitting diodes (850 nm) and tracked from below

at 200 fps with an infrared-sensitive charge-coupled device camera (Pike F032B, Allied Vision Technologies). Custom Labview soft-

ware was used to track the position of eleven points evenly spaced between the base and tip of the tail [58]. The tail trace is then
Current Biology 30, 2321–2333.e1–e6, June 22, 2020 e2
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calculated as the sum of the angles of the ten segments. We detected bout onsets and offsets under head-embedded conditions as

time points where the difference between the two consecutive points along the tail trace exceeds 3 degrees. We then computed a

bout asymmetry index by temporally integrating the mean-subtracted tail trace over the full duration of the bout (Figures S4E and

S4F). Therefore, a positive value indicates that the position of the tail was overall above its mean value, as expected for a leftward

turn [68], and negative values likewise indicate rightward turns.

Image processing and ROI detection
All image analyses and anatomical registrations were done as in [58]. In brief, each frame within a trial was first aligned to the average

image of that plane to correct for the fish’s movements or the drift, and then all z-planes were aligned to each other. Auto-fluores-

cence from the eye was discarded by masking out this region in all planes. We then automatically detected ROIs using local

correlations, as described in previously published methods [58]. The fluorescence time series of every voxel was correlated with

the fluorescence time series of the neighboring 26 voxels in 3D. This generated a stimulus-agnostic anatomical map of local corre-

lation values, based only on the time-varying activity of the voxels. This correlation map was then used to seed an ROI growing al-

gorithm, which starts with the voxel with maximum local correlation and sequentially adds neighboring voxels if their correlation with

the ROI exceeds a threshold. The algorithm stops if no neighboring voxels exceed the correlation threshold, or if the ROI’s size rea-

ches a size limit. Note that this method also discards ROIs if their size is too small. We adjusted the ROI size parameters depending on

whether we sought neuronal ROIs (min = 50 voxels, max = 1000 voxels) or axonal ROIs in the retinal neuropil (min = 1 voxel, max = 50

voxels). The ROI growing algorithmwas then repeated starting at the voxel with the next highest local correlation. After the ROIs have

been segmented, their total fluorescence response is defined as the sum of the fluorescence responses of all individual voxels that

comprise the ROI.

For AF imaging experiments, we made three modifications to this ROI detection routine to compensate for the decreased number

of voxels that constitute the ROI. First, we increased the accuracy of local correlationmap by first concatenating the activity across all

three trials. Second, ROIs in the AF imaging experiments were built in 2D, because puncta are expected to be too small to span mul-

tiple planes. Finally, we replaced the trial-concatenated total fluorescence response by the trial-averaged total fluorescence

response, which helped suppress noise in these anatomically small ROIs.

In the whole-brain experiments, anatomical stacks of individual fish were aligned to a reference brain using the Computational

Morphometry Toolkit [100]. The reference brain was obtained by summing the fluorescence of GCaMP6f, and each fish’s stack

was aligned via an affine transformation followed by a non-rigid one. Individual ROIs from each fish were then registered onto the

reference brain via these transformations. Correspondence of salient anatomical features between the reference brain and registered

brain was used to assess the registration’s precision.

We defined several preference indices to assess the features that determine the direction-selective patterns seen in the zebrafish

brain (Figure 3; Figure S2, annotation based on the Z-Brain atlas [71]). Each index compared the mean z-scored fluorescence re-

sponses of visually activated ROIs to a set of ‘‘leftward’’ and ‘‘rightward’’ stimuli. In Figures 3C–3E, and Figures S2A, B-left, E, the

directionality of the stimulus was determined by its orientation. In Figure 3F and Figure S2B-right, C, D, the directionality of the stim-

ulus was determined by the turning direction it elicited. In all cases, the selectivity index was defined as the difference between the

leftward and rightward responses divided by their sum.We represented this 3D direction-selective information in several 2Dmaps by

mean-projecting over voxels in the brain (Figure 3C, 3D, Figures S2A, C-E) or the pretectum (Figures 3E, 3F; Figure S2B). Direction-

selectivity scores were low in the whole-brain projections because the averages included many non-selective ROIs. We thus

enhanced the contrast by raising the selectivity scores to the power of 0.2, and we scaled the color axes in each whole-brain

map to reflect selectivity scores relative to the maximum value in that map. On the other hand, color axes in pretectum maps quan-

titatively corresponded to the mean direction selectivity index.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis of AF data
Stimulus activated and suppressed populations of ROIs were determined using one-sided Wilcoxon tests comparing the responses

during stimulus-on and stimulus-off periods for all 15 stimuli. Out of 270,596 ROIs, 93,194 were identified as activated, 127,110 as

suppressed, and the remaining 50,292 ROIs had no significant stimulus-related modulation. The p value threshold of 0.05 was used

to divide the ROIs into the three groups. Since the total luminance increased during stimulus presentation, many of these responses

likely reflect canonical coding of light level by ON and OFF retinal ganglion cells.

Figure 4E and Figure S3B estimated direction selectivity based on ROI responses to pairs of directional stimuli. We used a shuffle

analysis to examine whether each ROI responded differently to leftward and rightward stimulus variants. In particular, for each ROI

we shuffled the directionality labels of the six responses (i.e., from three left trials and three right trials), such that every possible cor-

rect and incorrect labeling of the trial types was considered. The mean differences between each set of three pseudo-right and three

pseudo-left responses were calculated. This resulted in 10 possible trial groupings, one of which corresponds to the true direction-

ality labels. ROIs where the largest magnitude difference corresponded to the true trial labels were identified as direction selective

(29,830 direction-selective ROIs across all AFs). Thus, the false positive rate was at most 1/10 or 10%. The ‘‘% enhanced’’ metric

plotted in Figure 4E and Figure S3B estimated this false positive rate, and corrected for it, by finding the number of statistically sig-

nificant directional ROIs in each individual AF and subtracting the mean number of ROIs whose largest difference magnitude
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corresponded to each of the 9 incorrect labels. We normalized this quantity by dividing by the total number of ROIs in the AF. Note

that this ‘‘% enhanced’’ metric would be 1 if every ROI in the AF had statistically significant direction selectivity and would average to

0 if the AF had no true direction-selective ROIs. We assessed whether the ‘‘% enhanced’’ metric was statistically nonzero by first

computing the standard deviation of the number of ROIs whose largest difference magnitude was each of the 9 incorrect labels,

and then multiplying the result by 1.96 to assess significance at the p = 0.05 level.

Figure S3D assessed direction selectivity by pooling ROI responses across 3-point glider stimuli, with directionality labels assigned

based on the directionalities of turning behavior. Here there were 24 trials, and it was impractical to assess difference magnitudes for

every possible shuffling of the trial labels. We instead generated 999 randomly shuffled labels and assessed direction selectivity at

the p = 0.05 level by checking whether the difference magnitude of the true directionality labels was within the top 5% of the shuffle dis-

tribution (Figure S3C). The large number of possible labels made it difficult to estimate the false-positive rate from the data, so the ‘‘%

enhanced’’ metric in Figure S3D simply subtracted an assumed false positive rate of 5% from the fraction of ROIs that were direction-

selective. Note that this ‘‘% enhanced’’ metric would be 0.95 if every ROI in the AF had statistically significant direction selectivity and

would average to 0 if the AF had no true direction-selective ROIs. To assess whether this ‘‘% enhanced’’ metric was statistically nonzero,

we assumed variability dominated by counting statistics and computed the standard deviation of a binomial distribution whose success

probability was 0.05 and whose sample size matched the number of activated ROIs in the AF. As before, we multiplied the standard de-

viation by 1.96 to assess significance at the p = 0.05 level. All statistical analysis was performed with custom written scripts in MATLAB.

Model fitting
We used calcium responses from 1531 activated pretectal ROIs (collected from 26 fish) and 7649 activated AF5&6 ROIs (31 fish) in

model fitting. Each activity trace was normalized to have unit variance and shifted to have zero median during interstimulus intervals.

Each activity trace was a 420-dimensional vector, because the frame rate was 2.8 Hz, and each stimulus and interstimulus interval

was 5 s. R-squared values were used to assess the goodness of fit. All analyses were done with custom written scripts in MATLAB.

As depicted in Figure 5A, we used several behaviorally derived regressors to predict the activity trace of each activated ROI in pre-

tectum and AF5&6. Let’s index the stimulus conditions as m= 1;.;15, and let Tm denote the set of frame numbers when stimulus m

was present. Note that the frame rate and stimulus duration imply that each Tm has 14 elements. To construct the regressors, we

began by constructing four step functions that encode one stimulus-independent predictor and three different behaviorally derived

predictors (Figure 5A, left). In particular,

A1ðtÞ =
X15
m= 1

cTm ðtÞ;
1

A2ðtÞ =
X5

m= 1

FmcTm ðtÞ;
1

A3ðtÞ =
X5

m=1

LmcTm ðtÞ;
1

A4ðtÞ =
X5

m= 1

RmcTm ðtÞ;

where t = 1;.; 420 indexes the frame number,

cTm ðtÞ =
�
1 ; t˛Tm

0 ; t;Tm

�
are indicator functions, and Fm, Lm, and Rm are the frequencies of forward swimming, leftward turning, and rightward turning in stim-

ulus condition m, asmeasured during free swimming conditions (Figure 2D). These four regressors were then convolvedwith an expo-

nential calcium kernel, fðtÞ= e�t=t for tR0, to emulate the effects of calcium imaging with GCaMP6f (t = 400 ms [70])

BiðtÞ = ðf �AiÞðtÞ
(Figure 5A, middle). Finally, each predictor was normalized to produce a unit variance regressor,

XiðtÞ = BiðtÞ
StdðBiðtÞÞ;
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where i = 1;.;4 and StdðvÞ denotes the standard deviation across elements of vector v (Figure 5A, right). Note that each regressor

exponentially approaches zero during each interstimulus interval.

Denote the time-dependent activity trace of neuron j as yðjÞðtÞ. In Figure 5, wemodeled each ROI as a threshold-linear combination

of the four regressors defined above,

by ðjÞðtÞ = g

 X4
i = 1

u
ðjÞ
i XiðtÞ

!
;

where byðjÞðtÞ denotes the model’s estimated activity for ROI j,u
ðjÞ
i are weighting coefficients for the effect of regressor i on ROI j, and

gðxÞ=maxðx;0Þ is a threshold-linear function. We optimized the weights for each ROI by minimizing the squared difference between

the model and the data (solved with the quasi-Newton method).

uðjÞ = argminw

24X
t

 
yðjÞðtÞ � g

 X4
i =1

wiXiðtÞ
!!2

+ lðjÞ
X4
i = 1

w2
i

35;
where lðjÞ is an ROI-specific parameter that determines the strength of L2 regularization. Nonzero values of lðjÞ help reduce overfitting,

and we chose lðjÞ for each cell by leave-one-out cross validation over all 15 stimuli. In particular, let ~Am be the union of Tm, the last 7

frames of the interstimulus interval preceding it, and first 7 frames of the interstimulus interval following it. Then

lðjÞ = argminl

 X15
m= 1

L ðj;mÞðlÞ
!
;

where

L ðj;mÞðlÞ =
X
t˛~Am

 
yðjÞðtÞ � g

 X4
i = 1

w
ðj;mÞ
i ðlÞXiðtÞ

!!2

;

2  

wðj;mÞðlÞ = argminw

4X
t;~Am

yðjÞðtÞ � g

 X4
i = 1

wiXiðtÞ
!!2

+ l
X4
i = 1

w2
i

35:
To minimize over l, we empirically tested all values of l between 0 and 10 in increments of 0.1.

In Figures S4 and S5, we performed the exact same model fitting procedures using different sets of regressors. In Figure S4,

we used four behaviorally derived regressors that accounted for the precise kinetics of the GCaMP6f fluorescence response in

pretectum and AF5&6. We first estimated separate response waveforms for pretectum and AF5&6 by averaging ROI responses

to the uncorrelated stimulus. In particular, let ~yðjÞðtÞ be the total fluorescence response of ROI j throughout the uncorrelated

stimulus presentation and the interstimulus interval that follows it. Note that if the uncorrelated stimulus was the last stimulus

presented to ROI j, then the subsequent interframe interval was only 7 frames. In this case, we substituted the first 7 frames of

the trial for missing frames of ~yðjÞðtÞ. Thus, ~yðjÞðtÞ is a 28-dimensional vector. Then the average waveforms in pretectum and

AF5&6 are denoted

MPtðtÞ = 1

NPt

X
j˛fPtg

~yðjÞðtÞ

and

MAFðtÞ = 1

NAF

X
j˛fAFg

~yðjÞðtÞ;

where is fPtg and fAFg are the sets of ROIs in pretectum and AF5&6, and NPt and NAF are the number of ROIs in pretectum and

AF5&6. Finally, let tm = 8+ 28ðm�1Þ denote the onset frame of stimulus m in yðjÞðtÞ. Then the four behavioral regressors become

X1;CðtÞ =
X15
m= 1

X28
t
0
= 1

MCðt0Þdt�tm + 1
t
0 ;
15
X2;CðtÞ =
X
m= 1

Fm
X28
t
0
=1

MCðt0Þdt�tm + 1
t
0 ;
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X3;CðtÞ =
X15
m=1

Lm
X28
t
0 =1

MCðt0Þdt�tm + 1
t
0 ;
15
X4;CðtÞ =
X
m= 1

Rm
X28
t
0
= 1

MCðt0Þdt�tm +1
t
0 ;

where C is a stand-in for Pt or AF, and

dij =

�
1 i = j
0 isj

is the Kronecker delta-function.

In Figure S5, we fit pretectal ROI responses in terms of retinal regressors. Here the six regressors were simply taken to be themean

fluorescent responses of: (i) all leftward selective ROIs in left AF5&6; (ii) all non-directional ROIs in left AF5&6; (iii) all rightward selective

ROIs in left AF5&6; (iv) all leftward selective ROIs in right AF5&6; (v) all non-directional ROIs in right AF5&6; and (vi) all rightward se-

lective ROIs in right AF5&6. Note that the four directional regressors are plotted in Figure 4G, and the others are plotted in Figure S3F.
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