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Abstract

Introduction: Neuroinflammation evaluation after acute ischemic stroke is a promising option for selecting an appropri-
ate post-stroke treatment strategy. To assess neuroinflammation in vivo, translocator protein PET (TSPO PET) can be
used. However, the gold standard TSPO PET quantification method includes a 90 min scan and continuous arterial blood
sampling, which is challenging to perform on a routine basis. In this work, we determine what information is required for
a simplified quantification approach using a machine learning algorithm.
Materials and Methods: We analyzed data from 18 patients with ischemic stroke who received 0–90 min [18F]GE-180
PET as well as T1-weigted (T1w), FLAIR, and arterial spin labeling (ASL) MRI scans. During PET scans, five manual
venous blood samples at 5, 15, 30, 60, and 85 min post injection (p.i.) were drawn, and plasma activity concentration was
measured. Total distribution volume (VT) was calculated using Logan plot with the full dynamic PET and an image-
derived input function (IDIF) from the carotid arteries. IDIF was scaled by a calibration factor derived from all the mea-
sured plasma activity concentrations. The calculated VT values were used for training a random forest regressor. As input
features for the model, we used three late PET frames (60–70, 70–80, and 80–90 min p.i.), the ASL image reflecting per-
fusion, the voxel coordinates, the lesion mask, and the five plasma activity concentrations. The algorithm was validated
with the leave-one-out approach. To estimate the impact of the individual features on the algorithm’s performance, we
used Shapley Additive Explanations (SHAP). Having determined that the three late PET frames and the plasma activity
concentrations were the most important features, we tested a simplified quantification approach consisting of dividing a
late PET frame by a plasma activity concentration. All the combinations of frames/samples were compared by means of
concordance correlation coefficient and Bland-Altman plots.
Results: Whenusingall the input features, thealgorithmpredictedVT valueswith highaccuracy (87.8 ± 8.3%) for both lesion
and non-lesion voxels. The SHAP values demonstrated high impact of the late PET frames (60–70, 70–80, and 80–90 min p.i.)
and plasma activity concentrations on the VT prediction, while the influence of the ASL-derived perfusion, voxel coordinates,
and the lesion mask was low. Among all the combinations of the late PET frames and plasma activity concentrations, the 70–
80 min p.i. frame divided by the 30 min p.i. plasma sample produced the closest VT estimate in the ischemic lesion.
Conclusion: Reliable TSPO PET quantification is achievable by using a single late PET frame divided by a late blood
sample activity concentration.
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1 Introduction GE-180 PET is possible in a mouse photothrombotic stroke
Stroke is the second leading cause of death [1] and the
third main cause of long-term disability worldwide (WHO
2020 report). Hence, it is important to limit the extent of
neuronal damage and to improve recovery from stroke.
However, such post-stroke therapy is currently available
only in the acute phase of vascular occlusion, while treat-
ment at later time points is limited to rehabilitative training.
Therefore, novel therapies are needed to improve neurolog-
ical recovery after brain injury.

Microglia, the brain resident innate immune cells, are an
excellent target candidate for such a therapy, as these were
shown to contribute to long-term neuronal repair after stroke
[2], but also were linked to neurodegeneration and excessive
synaptic pruning [3]. Microglia activation is strongly corre-
lated to the 18 kDa translocator protein (TSPO) expression
level on the outer membrane of microglial mitochondria
[4]. There is still limited understanding of the inflammatory
response after stroke. It is known that microglia activation
occurs after acute ischemic stroke and that it may persist
for several months [5]. Microglia may infiltrate connecting
white matter tracts, as shown by means of [11C]PK11195
positron emission tomography (PET) [6–7], thus causing a
secondary neurodegeneration. However, this has not been
investigated systematically. Moreover, there are no studies
with [18F]-labelled second-generation PET tracers, such as
flutriciclamide ([18F]GE-180), which has higher binding
potential [8], improved signal-to-noise ratio, and lower non-
specific binding in healthy tissue [9] compared to the first-
generation tracers as shown in animal studies. [18F]GE-180
was already successfully used by multiple authors in clinical
studies to assess activated microglia in various disease, e.g.
in glioma [10–11], Alzheimer’s disease [12], multiple sclero-
sis [13], 4-repeat taupathies [14–15], and fibrillar amyloido-
sis [15].

The gold standard approach for TSPO binding quantifica-
tion is based on the reversible two-tissue compartment
model to calculate the volume of distribution (VT) [16]. As
shown by Fan et al. [16], the two-tissue compartment model
can be replaced by the Logan plot analysis [17] for VT esti-
mation, which was successfully implemented by several
authors [13–14,18]. While Logan plot produces more robust
estimates due to reduced number of fit parameters, it still
requires a long 90 min TSPO PET scan and, in case of inva-
sive Logan plot, continuous arterial blood sampling and esti-
mation of tracer metabolite content in the arterial plasma.
This approach is challenging for hospital staff to perform
on a routine basis and reduces patients’ comfort. In our pre-
vious work [19], we showed that a simplified TSPO binding
estimation based on late 60–90 min post injection (p.i.) [18F]
model when using cerebellar white matter as a pseudo-
reference tissue.

In this study, we aimed at establishing a similar simplified
approach for human data, now including information addi-
tional to the late PET frames, that would quantify TSPO
binding with high precision without the need for a reference
tissue. A machine learning-based (ML-based) prediction
algorithm was used to assess the importance of the addi-
tional features (shown in Fig. 2 and listed in Section 2.9)
in estimating the TSPO binding. In particular, we tested
whether brain perfusion information provided by arterial
spin labeling (ASL) magnetic resonance imaging (MRI) that
could be used to replace the early PET data, as shown in a
recent study [20], improves the performance of the estima-
tion algorithm. After determination of the essential features
for a robust [18F]GE-180 quantification, we established a
simplified procedure, which comprised scaling a late PET
frame by activity concentration of a late plasma sample,
and compared its performance to the ML-based algorithm.

2 Materials and methods

2.1 Study design

An overview of acquired data and processing steps is
shown in Fig. 1. The study included 18 subjects after acute
ischemic stroke. MRI was performed for all the subjects in
6.5 days (median) after stroke onset followed by 90 min
[18F]GE-180 PET on the same day. During the PET acquisi-
tion, five manual venous blood samples were drawn. For
each subject, we defined a TSPO binding parameter in each
voxel using Logan plot based on the 90 min PET and an
image-derived input function (IF). Using the calculated
parameter values as ground truth, we trained a ML-based
algorithm with various input features that included three late
10 min PET time frames, brain perfusion data from ASL-
MRI, and plasma activity concentration from the five time-
points (see full feature list in Section 2.9). The first aim
was to define which features have the highest influence on
the predicted binding estimates. For this, we calculated the
Shapley additive explanations (SHAP). Having determined
the most important features for the algorithm, we established
a simplified TSPO quantification method based on this
reduced feature set and compared it to the performance of
the ML-based algorithm with full input (shown in Fig. 1).

2.2 Human data

In this study we analyzed the data from 18 ischemic
stroke patients (4 females and 14 males; mean age 69.4
± 10.3 years). Following inclusion criteria were used: age
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�50 years, acute ischemic stroke with diffusion-weighted
imaging-positive (DWI-positive) lesion. Prior infectious dis-
ease, contraindications for PET and/or MRI were defined as
exclusion criteria. The study was approved by the local
ethics committee (IRB no. 19-428) and the German radiation
protection committee (Z5-22464/2019-163-G). The research
was conducted in accordance with the principles of the Dec-
laration of Helsinki, and all subjects gave written informed
consent.

2.3 MR imaging

MR imaging was performed on a Siemens MAGNETOM
Prisma scanner with 64 channel head/neck coil (Siemens
Healthineers, Erlangen, Germany) at the Institute of Stroke
and Dementia Research of the University Hospital, LMU
Munich. The MR imaging acquisition protocol included
T1-weighted imaging (T1w), fluid-attenuated inversion
recovery (FLAIR) imaging, DWI, and ASL.

T1w images were acquired with a multi-echo magnetiza-
tion prepared rapid acquisition with Gradient Echoes using
the following parameters: voxel size 0.8 � 0.8 � 0.8 mm3,
repetition time (TR) 2560 ms, inversion time (TI) 1100
ms, echo times (TE) 1.68, 3.29, 4.90, 6.51 ms, flip angle 7
degrees. The root mean square across all TE was used for
further processing. For FLAIR imaging, the following
parameters were used: voxel size 1.0 � 1.0 � 1.0 mm3, TR
5000 ms, TI 1800 ms, TE 393 ms. DWI parameters were:
voxel size 1.7 � 1.7 � 1.7 mm3, TR 3220 ms, TE 74.00
ms, multi-band acceleration factor 3, b-values 0, 1000 and
3000 s/mm2, in total 90 diffusion-encoding directions. For
perfusion estimation, we used Hadamard-encoded pseudo-
continuous ASL with voxel size 3.3 � 3.3 � 3.3 mm3,
TR = 7 s, TE = 22.3 ms, labeling delay (LD) 0.224, 0.257,
0.305, 0.374, 0.482, 0.683, 1.175 s and postlabeling delay
(PLD) 0.5 s.
2.4 PET imaging

[18F]GE-180 PET scans were acquired using a Siemens
Biograph 64 PET/CT scanner (Siemens Healthineers, Erlan-
gen, Germany) at the Department of Nuclear Medicine of the
University Hospital, LMU Munich. For patient positioning,
a head band was used to fix the head to both reduce possible
motion and improve patient’s comfort. A low-dose CT scan
was acquired before PET imaging for attenuation correction.
The tracer injection was performed at the scan start. The
mean injected activity was 173 ± 25 MBq. List-mode data
were acquired from 0 to 90 min p.i. The images were recon-
structed using the OSEM3D algorithm (4iterations,21sub-
sets) (Siemens Healthineers, Erlangen, Germany). A 336 �
336 � 109 matrix was used, resulting in a voxel-size of
1 � 1 � 2 mm3. The list-mode data were binned into 21
frames (6 � 10 s, 4 � 30 s, 1 � 2 min, 3 � 5 min, 7 � 10
min). Standard corrections for scattered and random coinci-
dences, decay, and dead time were performed. A post-
reconstruction Gaussian filter of 5 mm full width at half
maximum was applied.

2.5 Image pre-processing

Pre-processing of the ASL-MR images was performed
using toolboxes from the FMRIB software library (FSL)
[21]. First, the ASL data were corrected for motion using
mcflirt. Next, distortion was corrected via topup based on
ASL calibration scans with alternating phase-encoding
polarity. The data were then decoded with the inverse Hada-
mard encoding matrix and mean perfusion-weighted images
were generated for each PLD. The processing results and the
pre-processed ASL data were taken as input for the perfusion
analysis using oxford_asl.

For every subject, the ischemic lesion was manually seg-
mented on the FLAIR image. The DWI mean image (trace-
weighted) at b = 1000 s/mm2 was used to ascertain that the
selected lesion was (sub)acute. All segmentations were
supervised by an experienced neuroradiologist.

Next, the FLAIR, arterial blood equilibrium magnetiza-
tion image (M0), and PET images were rigidly registered
to the corresponding T1w image (dissimilarity function: nor-
malized mutual information [22], interpolation method: tri-
linear) using the PMOD FuseIt tool (version 4.2, PMOD
Technologies, Zurich, Switzerland). The resulting FLAIR
transformation was applied to the lesion segmentation, while
the M0 transformation was applied to the perfusion image.

T1w MR images were registered to the Montreal Neuro-
logical Institute (MNI) space using 3 Probability Maps Nor-
malization method (SPM8) with the 1 mm SPM8 brain
template consisting of gray, white matter, and CSF probabil-
ity maps [23]. For this, we used the PMOD Neuro tool (ver-
sion 4.2, PMOD Technologies, Zurich, Switzerland). For
every subject, this elastic transformation was applied to the
corresponding PET, FLAIR, perfusion image, and the lesion
segmentation in the T1w space.

The regions that were not present in the perfusion image
(cerebellum, superior sagittal sinus), the straight sinus, and
the brain ventricles were excluded from the analysis. For this
purpose, we created a mask by (I) taking the intersection of
all the voxels enclosed in the ASL image, (II) manually seg-
menting the straight sinus, the region with high unspecific
[18F]GE-180 signal, on an 80–90 min p.i. PET image aver-
aged among all the subjects, (III) subtracting the straight
sinus VOI, and (IV) subtracting the brain ventricles using
the definitions from the N30R83 maximum probability atlas
[24–25].



Figure 1. Study design. (I) Image registration was performed based on T1w image. (II) FLAIR and DWI images were used to define
ischemic lesion. (III) Ground truth TSPO binding estimate was derived from dynamic [18F]GE-180 PET and five venous blood samples.
(IV) Input features for the ML-based TSPO binding prediction algorithm were obtained from three late PET frames, blood data, and ASL-
MRI. Most important features were determined using SHAP, and (V) a simplified TSPO binding estimation method was established.
Lastly, (VI) the performance of (IV) and (V) was compared.

A. Zatcepin et al. / Z Med Phys 34 (2024) 218–230 221
2.6 Blood data

During the 90 min PET scan, we drew five venous blood
samples for blood tracer activity estimation at 5, 15, 30, 60,
and 90 min p.i. Approximately 3 ml of blood were taken per
sampling. 1 ml of whole blood and 1 ml of plasma were
drawn from each sample, and their activity was measured
with a Hidex Automatic Gamma Counter (Hidex Oy, Turku,
Finland) cross-calibrated with the PET scanner. Decay cor-
rection to the injection time was applied. The blood activity
values were metabolite-corrected using the population-based
[18F]GE-180 parent fraction values from [18]. No parent
fraction was estimated in this work.
2.7 Image-derived input function (IDIF)

We implemented a semi-automated procedure for IDIF
extraction based on recommendations from [26]. The frame
for segmentation was selected manually for each subject,
which was the frame where the carotid arteries were clearly
visible, but no significant uptake was observed in the sagittal
sinus yet. The automated procedure (Python 3.7) included
cropping of the selected frame so that only the carotid arter-
ies were included. To minimize the partial volume effect,
five hottest voxels from each 15 consecutive axial planes
were added to the ROI, starting from below the circle of Wil-
lis, resulting in a total of 75 voxels. All automatically gener-
ated carotid VOIs were visually inspected. From the created
carotid VOI, we extracted the time-activity curve (TAC).
The TAC was then fitted using a three-exponential model
[27]. To further reduce the partial volume effect in the caro-
tid arteries, we multiplied the fitted TAC by a calibration
factor, which was calculated as the value that minimized
the sum of the mean squared difference between the plasma
activities from manual sampling at the five timepoints and
the corresponding TAC values. Multiple samples were
needed to account for possible noise in the measured blood
samples as well as due to a possible shape difference
between the IDIF and the arterial IF [28]. Next, we multi-
plied the resulting curve by the parent fraction curve
reported in [18].

2.8 Kinetic modeling

For generating ground truth VT values for the ML algo-
rithm, we employed the Logan plot analysis, a method pre-
viously validated for the use in [18F]GE-180 quantification
[16]. Logan plot was applied on interpolated image data with
larger voxels to reduce noise. In addition to regional infor-
mation, voxelwise modeling offers the possibility to use
the voxel coordinate as input feature for the ML algorithm,
contrary to a VOI-based analysis. We performed the fitting
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using the frames starting from 30 min p.i., i.e., the 30–40,
40–50, 50–60, 60–70, 70–80, and 80–90 min p.i. frame.
VT was defined as the slope of the linear fit [17]; the inter-
cept was not used. PET, perfusion images, and the lesion
segmentations were interpolated to the same size of
8.5 � 8.5 � 8.5 mm3. For each subject, we calculated an
individual VT map using an in-house Python implementation
of the Logan plot algorithm with the IDIF. The VT maps
were used as the ground truth for the ML algorithm. Addi-
tionally, VT values were calculated for lesion VOIs based
on non-interpolated 1 � 1 � 1 mm3 images.
2.9 Machine learning algorithm for VT prediction

To make voxelwise predictions for the VT value, we used
the random forest (RF) algorithm [29], a machine learning
method that combines multiple randomly generated decision
trees, or estimators. The algorithm was selected due to its
accuracy, relative simplicity, and resistance to overfitting.
The Scikit-learn implementation of RF was used (Python
3.7, Scikit-learn 0.22.1). For the algorithm, we selected input
features that we assumed to be potentially relevant for the
prediction. These features (Fig. 2) were:

� [18F]GE-180 voxel activity from the 60–70, 70–80, and 80–
90 min frames (kBq/cc) (Fig. 2(A)),

� Perfusion value in the voxel from ASL MRI (ml/100g/min)
(Fig. 2(B)),

� Lesion in the voxel from the manual segmentation (True/False)
(Fig. 2(C)),

� Coordinates (x, y, z) of the voxel in the MNI space to account
for possible regional differences in tracer extraction (Fig. 2(D)),

� Plasma activity at 5, 15, 30, 60, and 85 min (kBq/ml) (Fig. 2
(E)).

The RF was run with 100 estimators. To prevent overfit-
ting, we performed regularization by setting the minimum
number of samples required to be at a leaf node to 5, i.e.,
in an individual tree a split point was considered only if at
least 5 training samples in each of the two branches
remained after the split. When training and validating the
algorithm, we used the leave-one-out approach, i.e., for the
training we used the input features belonging to all the
patients except the validation patient. We used 1605 input
features per subject.

As a measure of the algorithm’s performance, we used
accuracy that for an individual subject was calculated as
follows:

Accuracy ¼ 1� 1
N

XN

i¼1

y0i � yi
�� ��

yi
;

where yi is the ground truth V T , y 0i is the predicted V T , N is
the number of voxels in the image.
2.10 Model interpretation by SHAP

The impact of each individual feature was assessed by
using SHAP (Python 3.7, SHAP 0.40.0). SHAP are designed
to make machine learning models interpretable. Full descrip-
tion of the SHAP methodology is beyond the scope of this
work and can be read in the original paper [30]. Briefly, a
SHAP value is the average of the marginal contributions
across all the feature permutations and can be calculated
for each training sample.

2.11 Simplified TSPO quantification using most
important features determined by SHAP

SHAP demonstrated that late PET frames and plasma
activity concentrations have highest impact on the model
predictions, while the lesion mask and voxel coordinates
were shown to be the least important features (see Sec-
tion 3.2). Based on this, we built simplified models with a
reduced feature set. First model (RF1) used the three late
PET frames, the five plasma activity concentrations, and
the brain perfusion; second model (RF2) used the three late
PET frames and the five plasma activity concentrations only.
Additionally, guided by the idea that VT is a ratio of tissue to
blood tracer concentration, we investigated an even simpler
approach, in which we divided a late PET frame by a plasma
activity concentration as a proxy for VT. Since the three late
PET frames are correlated, and the same is valid for the five
plasma activity concentrations, all possible combinations of
PET frames and plasma samples were considered in order to
define which of these features yield the closest approxima-
tion for the VT.

2.12 Reduced-features model comparison and statistical
tests

To compare the VT prediction algorithms with reduced
feature set to the one with the full input as well as to each
other, we performed Wilcoxon signed-rank test (Python
3.7, Pingouin 0.3.8) on accuracy values from all the study
subjects for each method pair. Wilcoxon signed-rank test
was used instead of the paired t-test, since the distributions
of the accuracies were not normal. The test was performed
for both the mean accuracies derived from 8.5 � 8.5 � 8.5
mm3 voxels (lesion and non-lesion) and the mean accuracies
in the non-resliced lesion VOI (i.e., directly derived from the
1 � 1 � 1 mm3 PET image in the MNI space). A signifi-
cance threshold of 0.05 was used. p-values were corrected
using Benjamini/Yekutieli false discovery rate correction
[31]. Additionally, we calculated the Pearson correlation
coefficient between the ground truth VT and VT predicted
by the reduced-features methods in the lesion and performed
linear fitting. To assess the concordance between the pre-
dicted values and the ground truth, we calculated the Lin’s



Figure 2. Input features for random forest. Voxel features: (A) 60–90 min p.i. [18F]GE-180 PET split in three 10 min frames, (B) brain
perfusion from ASL, (C) lesion in voxel (True/False), (D) voxel coordinates in MNI space. Features from venous plasma: (E) plasma
activity concentration at 5, 15, 30, 60, and 85 min p.i.
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concordance correlation coefficient (CCC). Following
McBride interpretation of CCC [32], we considered
CCC < 0.90 as poor concordance, 0.90 < CCC < 0.95 as
moderate concordance, 0.95 < CCC < 0.99 as substantial
concordance, and CCC > 0.99 as perfect concordance. To
evaluate the agreement between the predicted and the ground
truth VT, we performed Bland-Altman analysis [33]. Next,
we determined whether there was a constant and/or propor-
tional bias in VT estimates. To identify the existence of a
constant bias, we compared mean difference between the
ground truth and the predicted VT to zero by means of a
single-sample t-test. A proportional bias was considered to
be significant if there was a Pearson correlation between
the mean of the two methods and their difference. A signif-
icance threshold of 0.01 was used in both cases.

3 Results

3.1 Random forest predicts VT values with high accuracy

The random forest algorithm was run for all the 18 study
subjects. Mean VT prediction accuracy in an 8.5 � 8.5 � 8.5
mm3 voxel across all the subjects was 87.8 ± 8.3%. An
example of RF predictions for all the voxels from one of
the subjects plotted against the ground truth VT is shown
in Fig. 3(A). The corresponding ground truth VT map and
predicted VT map are depicted in Fig. 3(B, C), respectively.

3.2 SHAP values demonstrate high impact of late PET
frames and plasma samples on the RF predictions, but
low influence of ASL-derived perfusion

For each training sample, we calculated a set of SHAP
values, which are represented as individual dots in Fig. 4
(A). We then calculated the mean of the absolute SHAP val-
ues for each feature (Fig. 4(B)). It was shown that the three
late PET frames as well as the five plasma activity concen-
trations have the highest impact on the model prediction,
with the influence of the 60–70 min p.i. frame and the
15 min plasma sample being the strongest. The perfusion
value from the ASL image, voxel dimensions, and lesion
mask had little impact on the predictions.

3.3 Late PET frames divided by late plasma activity
concentration demonstrate accuracy similar to RF

It was demonstrated that RF1 and RF2 had the same
accuracy when run on the whole image (p = 1) as well as
on the lesion VOI (p = 0.82) only (Fig. 5). Among the scaled
PET values, the best accuracy was achieved with the 15 and
30 min p.i. plasma samples when run on all the voxels and
with the 30 min p.i. plasma sample when run on the lesion
VOI (Fig. 5, see Supplementary Table 1, 2 for individual
p-values). RF2 significantly outperformed all the scaling
methods when run on all the voxels (except 30 min plasma,
p > 0.27) while no differences between RF2 and all the scal-
ing methods were observed for the lesion VOI (except 5 min
plasma, p < 0.006) (Fig. 5).

3.4 70–80 min p.i. PET frame divided by single 30 min p.
i. plasma activity concentration yields best VT prediction
in ischemic lesions

All the combinations of the PET frames and the plasma
samples showed very strong correlation with the ground
truth VT (r >= 0.94, p < 10�8, Fig. 6). 15 and 30 min plasma
activity-scaled frames showed substantial concordance, 60
and 85 min scaled frames showed moderate concordance,
while for 5 min scaled frames poor concordance was
observed. The highest concordance was achieved when
using 60–70 and 70–80 min frames scaled by 30 min plasma
sample (CCC = 0.984, CCC = 0.981, respectively) (Fig. 6).
The Bland-Altman plots for all the combinations showed
high degree of agreement between the ground truth and
the predicted VT, since most of the data points lie within
the limits of agreement (from 16 to 18 subject out of 18



Figure 3. (A) Random forest VT predictions plotted against the ground truth for an example subject. Red dots show lesion voxels, blue dots
represent non-lesion voxels. The line of identity is shown in black. (B) Ground truth VT map for the example subject. (C) Corresponding
predicted VT map.

Figure 4. RF feature importance demonstrated by SHAP values. (A) SHAP values for each single voxel of each subject. The color shows
the value of the feature. (B) Average absolute SHAP values representing average impact on the model output. The features are sorted
according to their importance.
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subjects, see Fig. 7, Supplementary Table 3). A significant
constant bias was observed for all the combinations apart
from 60–70 and 70–80 min p.i. PET and 30 min p.i. plasma
sample (p < 0.01, mean difference against zero by single-
sample t-test, see Supplementary Table 3). We also observed
a significant proportional bias for the following combina-
tions: 5 min p.i. plasma sample with 60–70, 70–80, 80–
90 min p.i. PET frame; 15 min p.i. plasma sample with
70–80 min p.i. PET frame; 30 min p.i. plasma sample with
60–70, 80–90 min p.i. PET frame (Supplementary Table 3).
A combination of 30 min p.i. plasma sample and 70–80 min
p.i. PET frame is therefore the only one devoid of both forms
of bias.
4 Discussion

In this study, we established a ML-based algorithm that
predicts VT with high accuracy (87.8 ± 8.3%) compared to
the ground truth VT calculated using the Logan plot with
an IDIF. By means of SHAP values, we were able to show
that the excellent performance of the algorithm was attribu-
ted to the late PET frames (60–70, 70–80, and 80–90 min p.
i.) and plasma activity concentrations (5, 15, 30, 60, 85 min
p.i.) only, while the ASL-derived brain perfusion, voxel
coordinates, and the manually defined lesion mask had little
influence on the performance (Fig. 4). The low importance
of the ASL-derived values was also demonstrated by the



Figure 5. Performance of simplified VT prediction methods based on [18F]GE-180 PET uptake values scaled by a single plasma activity
concentration versus the RF algorithm. Blue boxes show the accuracy on all the 8.5 mm voxels, red boxes represent the accuracy for the
lesion VOI with no reslicing. Dots represent individual subjects.
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Wilcoxon signed-rank test between the accuracies of the RF
with and without the perfusion values (Fig. 5, RF1 versus
RF2). This finding suggests possible [18F]GE-180 signal
independence of the blood-brain barrier (BBB), which was
previously demonstrated by Kaiser et al. [10] for a group
of glioma patients. Contrary, Scott et al. [20] reported signif-
icant correlation between the non-displaceable binding
potential (BPND) and a simplified binding estimate calcu-
lated based on a shortened PET acquisition and ASL-
derived brain perfusion for a mixed group of cognitively
normal and Alzheimer’s disease subjects. However, in their
work the authors used a tracer with different kinetics ([18F]
florbetapir) and applied a different kinetic model (simplified
reference tissue model). Another study [34] reported non-
specific binding of [18F]GE-180 in ischemic lesions with
BBB damage as well as high contribution of the vascular
signal to the overall uptake for a group of stroke patients;
however, the authors selected a 15–30 min p.i. frame for
evaluations, where tissue TACs do not reach the plateau
yet [16,35].

There is an ongoing discussion on how much the [18F]
GE-180 signal is reflecting BBB damage versus specific
binding. In several studies of glioma patients [10–11,36–
37], it was shown that [18F]GE-180 PET uptake can be
clearly visualized on the PET image in areas outside of the
gadolinium enhancement area on MRI and even in gliomas
without any visible contrast enhancement on MRI. Addition-
ally, Albert et al. [38–39] showed an example of a glioma
patient with a clear BBB breakdown visible on contrast
MRI, but without significant [18F]GE-180 signal in the
lesion. A recent longitudinal study [40] demonstrated a sig-
nificant [18F]GE-180 uptake both 2 weeks before and up to
5.5 months after one could see prominent gadolinium
enhancement in progressive multifocal leukoencephalopa-
thy. Moreover, there is no correlation between [18F]GE-
180 signal intensity and BBB disruption as assessed using
contrast-enhanced T1-weighted MRI relative to native T1-
weighted MRI in a voxelwise analysis [10]. Additionally,
very similar binding patterns in in vitro autoradiography
and ex vivo autoradiography were observed in animal mod-
els [38]. These finding, contrary to claims mentioned in [41–
42] clearly point to a specific component resulting in sus-
tained [18F]GE-180 binding. Undoubtedly, the disruption
of the BBB has an influence on the [18F]GE-180 uptake
[41–42], but this is the case for all TSPO tracers to a certain
degree. To our knowledge, there is no study showing that the
uptake of any other TSPO tracer is not influenced by BBB
disruption, as well as there is no study demonstrating that
the accumulation of [18F]GE-180 beyond the BBB is merely
a non-specific signal. More studies are required to better
understand the details of [18F]GE-180 binding in lesions
with damaged BBB.

Nevertheless, [18F]GE-180 is a tracer with proven high
clinical value and, contrary to [41], should not be considered



Figure 6. Relationship between the ground truth VT and the predicted VT in the lesion VOI of all the study subjects. The predicted VT is the
lesion uptake in a late frame divided by a plasma activity concentration. All combinations of late frames and plasma samples are shown.
The solid black line shows the linear fit, the dashed line is the line of identity. m, b are the slope and the intercept of the fit line, r is the
Pearson’s r, p is the linear correlation p-value, CCC is the Lin’s concordance correlation coefficient.
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a failed TSPO radioligand. For instance, [18F]GE-180 shows
the tumor extent better than MRI alone [10–11], and high
[18F]GE-180 signal was not only shown to be associated
with higher tumor grade [36], but it also has a prognostic
value for recurrent glioma patients belonging to otherwise
homogeneous molecular subgroups [43]. Additionally,
[18F]GE-180 allows the representation of inflammation
development over time in progressive multifocal leukoen-
cephalopathy [40]. With that said, the clinical value of
[18F]GE-180 in other conditions, especially for more
radiosensitive groups of patients, such as children [44],
can only be proven after careful validation for this specific
patient group.

By using the Wilcoxon signed-rank test, we demonstrated
that RF trained with all the three late PET frames and the
five plasma activity concentrations (RF2, Fig. 5) predicts
VT in all the image voxels with accuracy higher than any
combination of a late PET frame scaled by a plasma activity
concentration (insignificantly higher for 30 min p.i. plasma,
significantly higher for the rest); however, in the lesion VOI
there was no significant difference in accuracy between RF2
and other scaling methods (except for 5 min p.i. plasma).
This result suggests that using longer scanning time and
more than one blood sample might result in an improved
VT prediction, which is, however, not the case for the
ischemic stroke lesion region and therefore supports the
use of a single blood sample for TSPO quantification in
ischemic stroke patients. Late PET frames scaled by
30 min p.i. plasma activity concentration demonstrated the
best accuracy for the lesion VOI.

The highest concordance was obtained when using 60–70
or 70–80 min p.i. frame with the 30 min p.i. plasma sample
(Fig. 6). Even though the Bland-Altman plots indicated high
agreement between the ground truth and all the scaling
methods (Fig. 7), only the combination of 70–80 min p.i.
frame and 30 min p.i. plasma sample demonstrated the lack
of both constant and proportional bias (Supplementary
Table 3). This result supports the use of the 30 min p.i.
plasma sample for simplified TSPO quantification. How-
ever, the 60 min blood sample, which can be drawn right
before the static scan and is therefore more convenient for
both the patient and the personnel, also produces similarly
accurate VT estimates. According to the results of this study,
both 70–80 and 60–70 p.i. PET frames can be used for sim-



Figure 7. Bland-Altman plots for the ground truth VT versus predicted VT in the lesion VOI of all the study subjects. The predicted VT is
the lesion uptake in a late frame divided by a plasma activity concentration. All combinations of late frames and plasma samples are shown.
The solid line indicates the mean difference between the calculation methods, the two dashed lines depict the limits of agreement (95%
confidence interval of the mean difference). SD – standard deviation.
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plified VT estimation, which supports the use of the 60–
80 min summed frame that provides better count statistics.

The two-tissue compartment model is considered to be
the gold standard TSPO quantification method [16]; how-
ever, in this work we used Logan plot instead. Fan et al.
[16] reported strong correlations between two-tissue
compartment-derived and Logan plot-derived VT for all
the brain regions investigated in their work, but the estimates
had some bias. Nevertheless, the authors endorsed the use of
Logan plot for voxelwise analyses. The two-tissue model is
less suitable for this task as it produces high parameter errors
with noisy data; in contrast, Logan plot generates robust VT

estimates as it has less parameters to be fitted.
One of the limitations of this study is the lack of arterial

IF (AIF). Invasive arterial blood sampling is associated with
risks for the patient and was not possible in this study given
the condition of the patients that had ischemic stroke less
than a week before their [18F]GE-180 PET scan. Another
way to approximately estimate the blood peak would be to
draw several early venous blood samples with a 15-20 s
interval. It was not performed either due to the condition
of the veins of several study patients, for which it took more
than a minute to draw a single blood sample. Therefore, we
used carotid IDIF for the Logan plot. Due to the finite frame
length (10sduringthefirstminute), the blood peak magnitude
could not be precisely estimated. IDIFs are known to be
prone to the partial volume effect (PVE) and therefore
underestimate the signal. To reduce the influence of the
PVE, we used only the hottest voxels from the carotid arter-
ies to derive the IDIF. But, as mentioned by Zanotti-
Fregonara et al. [28], methods based on the use of n hottest
voxels closely approximate the AIF only when several imag-
ing parameters are a posteriori adjusted, and choosing a dif-
ferent reconstruction algorithm [45] or using a different
tracer [26] results in reduced accuracy. This issue was
addressed by scaling using multiple blood samples, a
recommendation [28] based on the fact that IDIF and AIF
might differ in shape. On the other hand, IDIF offers some
advantages over AIF, as it does not require delay and
dispersion correction as well as the cross-calibration between
the continuous blood sampler and the scanner, which are
common sources of error when dealing with AIF. Carotid
artery IDIF was successfully validated for using with TSPO
tracers by several groups [26,46]. Using IF derived from
sources that are less prone to PVE, such as ascending aorta,
available when using long axial field-of-view PET [47]
could improve VT estimates. Additional limitations are the
lack of parent fraction correction and the fact that metabolite
correction was achieved by using population-based data
[18].



228 A. Zatcepin et al. / Z Med Phys 34 (2024) 218–230
[18F]GE-180 is a tracer with slow kinetics [16], which
makes kinetic modelling, especially voxelwise, challenging,
since the tracer cannot be clearly classified as reversible or
irreversible. On the other hand, a VOI-based analysis was
not desirable since one of the tested input features was the
coordinate in the MNI space, and VOIs do not have the same
shape. The use of VOI centers as input features could have
possibly reduced the performance of the ML algorithm.
Using coarse voxels (8.5 � 8.5 � 8.5 mm3) was a good
compromise that allowed both the coordinate estimation
and robust VT calculation. Additionally, coarse voxel size
was a way to achieve a better match between the PET and
the perfusion image, which both have limited resolution.
No reslicing to coarse voxels is required for kinetic mod-
elling when using simplified approaches without ASL-
based perfusion and coordinates (such as RF2), provided that
the parameter error is acceptable.

Another limitation of the study is the sample size. The
values of plasma activity concentration were identical for
the voxels belonging to a single patient, i.e. only 18 unique
concentration values were present in the dataset. However,
the number of single samples was relatively high (1605per-
patient). Since RF regressor is not able to extrapolate beyond
the value range of the training samples, the accuracy was
reduced in samples with extreme feature values. This can
be seen on Supplementary Fig. 1 for the subject with the
lowest accuracy (the first bar), who had the smallest plasma
activity concentration among the studied group. To improve
the accuracy on extreme validation samples, one can com-
bine RF with linear regressor by stacking or use a
regression-enhanced RF [48]. Increasing the number of
training subjects is likely to improve the overall accuracy.

To our knowledge, this is the first study that validated a
semi-quantitative TSPO binding estimate based on a late
PET frame and a blood sample against a quantitative param-
eter from the full 90 min dynamic scan in a human ischemic
stroke cohort for [18F]GE-180. The use of the late frame is
also supported by other clinical and preclinical [18F]GE-
180 studies in different patient groups as well as disease
models. For instance, Vomacka et al. [13] reported a very
strong correlation (Pearson’s r > 0.9) between the standard-
ized uptake value ratio (SUVR) from static 60–90 min p.i.
images and the distribution volume ratio (DVR) derived
from reference-tissue Logan plot in patients with multiple
sclerosis when using the frontal cortex as a reference. A high
correlation between SUVR und DVR derived from the same
kinetic model with the white matter as the reference region
was also reported by Brendel et al. [49] in a mouse study,
while another preclinical work [50] showed that scaling
the late static frame by myocardial uptake can further
improve the estimates. In a clinical study, Albert et al.
[11] reported [18F]GE-180 TAC reaching a plateau after
60 min p.i. in the glioblastoma region and used the 60–
80 min p.i. frame for further evaluations. In a preclinical
model of ischemic stroke, Chaney et al. [51] performed
dynamic 0–60 min p.i. [18F]GE-180 scan and selected the
50–60 min p.i. frame for the analysis as it provided the high-
est signal-to-background ratio.

In conclusion, our study shows that late [18F]GE-180
PET and a single late plasma sample are sufficient for a
robust quantification of neuroinflammation in ischemic
stroke patients. The 70–80 min p.i. frame and the 30 min
p.i. plasma sample yield the closest VT approximation. This
procedure replaces the 90 min [18F]GE-180 PET and does
not require kinetic modeling, thus this procedure could be
easily implemented in the clinical workflow.
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