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Single-neuron representation of learned complex
sounds in the auditory cortex
Meng Wang1,2,10, Xiang Liao 3,10✉, Ruijie Li1,10, Shanshan Liang1,10, Ran Ding1, Jingcheng Li1, Jianxiong Zhang1,

Wenjing He1, Ke Liu1, Junxia Pan1, Zhikai Zhao1, Tong Li1, Kuan Zhang1, Xingyi Li1,3, Jing Lyu4, Zhenqiao Zhou4,

Zsuzsanna Varga5, Yuanyuan Mi3, Yi Zhou 6, Junan Yan 6, Shaoqun Zeng2, Jian K. Liu7, Arthur Konnerth5,

Israel Nelken 8, Hongbo Jia 4,5,6✉ & Xiaowei Chen 1,9✉

The sensory responses of cortical neuronal populations following training have been exten-

sively studied. However, the spike firing properties of individual cortical neurons following

training remain unknown. Here, we have combined two-photon Ca2+ imaging and single-cell

electrophysiology in awake behaving mice following auditory associative training. We find a

sparse set (~5%) of layer 2/3 neurons in the primary auditory cortex, each of which reliably

exhibits high-rate prolonged burst firing responses to the trained sound. Such bursts are

largely absent in the auditory cortex of untrained mice. Strikingly, in mice trained with

different multitone chords, we discover distinct subsets of neurons that exhibit bursting

responses specifically to a chord but neither to any constituent tone nor to the other chord.

Thus, our results demonstrate an integrated representation of learned complex sounds in a

small subset of cortical neurons.
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For each sensory modality, e.g., vision, audition, and somato-
sensation, the corresponding primary sensory cortical region
of the mammalian neocortex carries out the first stage of

sensory information processing. Numerous studies have system-
atically investigated how sensory cortical neurons encode sensory
information by means of selectively tuned responses to the relevant
elementary features, such as the direction/speed/size of visual
objects in the primary visual cortex (V1)1–3, the acoustic frequency/
loudness of sounds in the primary auditory cortex (A1)4–7, and the
identity/angle/torque of whiskers in the primary somatosensory
cortex (S1)8.

At the level of topographic maps of sensory features, primary
sensory cortices in adult animals are well known to undergo
significant shifts and refinements following sensory deprivation-
recovery experiences9, behavioural task training10 or naturalistic
experiences11. For example, in A1, both classical and operant
conditioning resulted in a global shift of the tonotopic map
towards the frequency of the conditioned tone12. However,
although training-induced global shifts in topographical sensory
feature maps have been extensively studied, how the firing
properties of individual cortical neurons are transformed by
training remains unknown, largely due to technical limitations.

There are two well-established techniques for acquiring sensory
feature maps in the mammalian cortex. The first involves elec-
trical recordings of neuronal firing at multiple arbitrary sites
spread over the relevant sensory cortical region13. The second
involves imaging with intrinsic optical signals14 or bulk-loaded
voltage-sensitive dyes15 in a large frame, thereby sacrificing
single-cell resolution to monitor the entire relevant sensory cor-
tical region. In recent years, significant advances have been made
in each approach. In the first approach (electrophysiology),
modern high-density electrode arrays16 have become available,
enabling simultaneous recordings of hundreds to thousands of
cells at high temporal resolution in actively behaving animal17.
However, this approach still has methodological limitations, i.e.,
only active cells can be sampled, the gaps between sampled cells
are arbitrary, and it is difficult to record the same cells over
multiple days. In the second approach (imaging), with the
development of chronic two-photon Ca2+ imaging of neuronal
populations with genetically encoded Ca2+ indicators18,19, a cell-
by-cell analysis of neuronal responses can be performed over
many days. For example, in monocular deprivation experiments,
the ipsilateral visual stimulation–evoked Ca2+ response ampli-
tudes of some neurons in the binocular zone of V1 were sig-
nificantly enhanced immediately after the deprivation period and
then, after the recovery period, returned to the same level as
before deprivation20. However, Ca2+ imaging lacks the temporal
resolution needed to identify spike firings over a large dynamic
range21, while voltage-sensitive imaging (whose latest significant
advances achieve single-cell resolution in awake, behaving ani-
mals22) is limited by the viability of the recording preparation.

At present, the classical single-cell loose-patch recording tech-
nique23 is still indispensable for precisely and reliably resolving
spike firings without intracellular perturbation of a neuron. To
study the spike firing properties of individual cortical neurons in
animals following training, we used a combination of two-photon
Ca2+ imaging and single-cell loose-patch recording in awake
behaving mice19,24–26. We performed targeted loose-patch record-
ing of single neurons via online Ca2+ signal analysis and patch
pipette navigation under two-photon imaging guidance27 and
performed loose-patch recording simultaneously with live two-
photon Ca2+ imaging. With the help of this combined technique in
layer 2/3 (L2/3) of A1 in animals following auditory associative
training, we reveal a unique class of neurons, each of which exhibits
high-rate bursting responses exclusively to the learned complex
sounds but not to any of their constituent pure tones.

Results
An auditory associative training paradigm. We trained head-
fixed mice in a dark environment. Water was pumped at a con-
stant latency (100 ms) after a brief (50 ms long) sound stimulus
(Fig. 1a and Supplementary Movie 1; see Supplementary Methods
for details). The pumping (20 ms) formed a water droplet on a
spout. The water droplet remained at the spout until being
consumed by the animal’s voluntary licking or being replaced by
a new droplet in the next trial. There was no other sensory sti-
mulus, punishment or behaviour enforcing event. Each sound
stimulus was followed by water pumping, regardless of the ani-
mal’s behaviour.

Initially, we used broadband noise (BBN) with a constant
waveform for both training and testing. A group of six animals
started with a very low sound-evoked licking probability (Fig. 1b,
session #1, 5 ± 3%, mean ± s.e.m., same notation for all beha-
vioural data in this section), which then reached 91 ± 4% in
session #6 and then remained stably high in three more
consecutive sessions (session #7, #8, #9: 96 ± 4%, 94 ± 2%, 93 ±
5%) when the same sound-water relation was maintained on the
rig. We then broke the sound-water relation by delivering sound
stimulus without water on the rig. After 3 such detraining
sessions, the sound-evoked licking probability dropped to 8 ± 5%
(Fig. 1b, session #13, detrained, P= 0.0095, two-sided Wilcoxon
signed-rank test). A control group of four animals (Fig. 1b,
control-trained) first underwent the standard training sessions
(#1 to #6) and then were kept in their home cage for 3 days. These
control-trained animals at the testing timepoint showed a sound-
evoked licking probability (80 ± 8%) that was slightly but not
significantly (P= 0.24, two-sided Wilcoxon rank-sum test) lower
than that in the last training session (93 ± 5% at session #9).
These data suggest that the behavioural effect of training was
largely maintained over days without further training and could
be reverted by detraining.

Next, we studied whether the licking behaviour was specific to
the trained sound. We analysed the probability of spontaneously
initiating a licking bout in each 1000 ms bin in the inter-trial
intervals (continuous ongoing licking actions immediately after
the sound-evoked licking were not considered spontaneous
licking). The spontaneous licking probability was low and
uniform at both naive and trained stages (Fig. 1c, naive: 3 ± 2%,
trained: 3 ± 3%, n= 6 mice, P= 0.75, two-sided Wilcoxon
signed-rank test); thus, training did not change the spontaneous
licking probability. To test the specificity of behavioural response,
a new group of 6 animals were trained with BBN in the same way
as above and tested with the BBN as well as a list of pure tones.
The results (Fig. 1d) showed that each tone-evoked licking
probability (mean value in the range of 12–15% for each tone)
was much lower than that evoked by BBN (96 ± 4%, n= 6 mice,
**P < 0.01, two-sided paired bootstrap tests comparing each tone
with the BBN). These results suggest that the licking behaviour in
trained animals involved specific perception of the trained sound.

Next, we investigated whether animals could learn two
different sounds. We modified the training rig with two spouts,
where a 2 kHz tone was followed by water from the right spout,
and a 12.1 kHz tone was followed by water from the left spout
(Fig. 1e; for an example behaviour test, see Supplementary
Movie 2). Note that the animals could be voluntarily probing on
both spouts one after another. Thus, we considered only the first
lick contact (within 1000 ms after sound stimulus onset) when
calculating the licking probability (for the correct spout) evoked
by each of the trained tones (Fig. 1f). In this set of experiments
involving a new group of six mice, we also performed a
psychometric test by using a range of pure tones that were not
introduced in training. As shown in Fig. 1g, any non-trained tone,
even including those only half an octave apart from a trained
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tone, evoked a licking probability (regardless of which spout)
much lower than the licking probability (with correct choice of
spout) evoked by a trained tone (non-trained tones: mean value
in the range of 34%–50%; trained tones: 2 kHz: 90 ± 4%; 12.1 kHz:
85 ± 6%, n= 6 mice, **P < 0.01, two-sided unpaired bootstrap
tests comparing each pair of non-trained tones with trained
tones). This result suggests that animals could be trained to
specifically distinguish two different tones against each other as
well as against non-trained tones.

Cognitively meaningful sound stimuli in daily life for humans
or animals alike are usually complex sounds. We next modified
the 2-tone training protocol by using two synthesized chords
(Fig. 1h). Chord 1 was composed of 2.0, 2.7, 3.6, and 4.9 kHz
tones and was followed by water from the right spout; chord 2
was composed of 8.9, 12.1, 16.3, and 21.9 kHz tones and was
followed by water from the left spout. Throughout all the training
sessions, a new group of six mice exhibited a licking probability
higher than 80% for each of the two chords (Fig. 1i). We also
performed a psychometric test by using each of the tones on the
composition list. The result (Fig. 1j, see also Supplementary
Movie 3) showed a contrast in which, while the licking probability
evoked by each chord was high (chord 1: 88 ± 5%; chord 2: 100 ±
0%, n= 6 mice), the licking probability evoked by any of the
constituent tones was significantly lower (mean value in the range
of 18–35%, n= 6 mice, **P < 0.01 for all two-sided paired
bootstrap tests comparing each tone with each chord). Thus, at

the behavioural level, the chord-trained animals recognized each
trained chord as a whole rather than as constituent features. This
result is consistent with the above-shown result that BBN-trained
animals exhibited very low licking probabilities evoked by pure
tones (Fig. 1c) because the BBN can be regarded as a special
chord that contains many tones of a broad range of frequencies.
These results together suggest that the animals, as shown by their
voluntary behaviour on the training rig, could indeed specifically
distinguish trained stimuli against each other and against non-
trained stimuli.

Training induced an inhomogeneous transformation of
neuronal population responsiveness. It has been known that
training experiences could enhance the overall neuronal popu-
lation responsiveness in the relevant sensory cortex12. Thus, we
next performed a set of two-photon Ca2+ imaging experiments
using a genetically encoded Ca2+ indicator, GCaMP6f19,27

(Supplementary Methods, Supplementary Movie 4), in A1 L2/3
to analyse single-cell responsiveness throughout our auditory
training. By using widefield fluorescence imaging (Fig. 2a, b)7 as
well as retrograde labelling (Supplementary Fig. 1)26,28, we
established a reference cortical map of A1 for guiding cranial
window surgery in the following two-photon imaging experi-
ments. We then used AAV-GCaMP6f (e.g., Fig. 2c) in a new
group of 10 mice that underwent both training and detraining
with BBN.
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Fig. 1 An auditory association training paradigm. a Cartoon illustration of the sound-water association training paradigm and experiment setup. 2PM:
two-photon microscope; E-phys: single-cell loose-patch pipette. b Learning curve, animals trained and tested with broadband noise (BBN), n= 6 mice. Error
bars: +/− s.e.m., same for all the other panels in Fig. 1. c Spontaneous licking analysis. n.s., P > 0.05. n= 6 mice. d Psychometric test in animals trained
with BBN and tested with a range of pure tones; P= 3.30e−3, P= 3.30e−3, P= 3.30e−3, P= 5.50e−3, P= 1.10e−3, P= 3.30e−3, P= 2.20e−3, P=
3.30e−3, P= 5.50e−3, P= 3.30e−3, P= 4.40e−3, BBN versus different pure tones, respectively, two-sided paired bootstrap test, Bonferroni corrected,
n= 6 mice. e Cartoon illustration of the 2-tone training paradigm. f Learning curve, animals trained with 2 tones (2.0 kHz or 12.1 kHz), n= 6 mice.
g Psychometric test, 2-tone-trained animals, ΔFreq (octaves): frequency difference between the test tone and one of the two trained tones (to the closer
one); P= 4.20e−3, P= 3.00e−3, P= 6.00e−4, P= 3.00e−3, P= 7.80e−3, P= 9.00e−3, two-sided unpaired bootstrap test, the test tone versus other
tones, respectively, Bonferroni corrected, n= 6 mice. h Cartoon illustration of the 2-chord training paradigm. i Learning curve, animals trained with 2
chords; n= 6 mice. j Psychometric test, 2-tone-trained animals tested with the two trained chords and each of their constituent tones; P= 0.0128,
P= 6.00e−3, P= 5.20e−3, P= 3.20e−3, chord 1 versus its constituent tones, respectively, two-sided paired bootstrap test, Bonferroni corrected, n= 6
mice; P= 5.60e−3, P= 1.20e−3, P= 1.20e−3, P= 8.00e−4, chord 2 versus its constituent tones, respectively, two-sided paired bootstrap test, Bonferroni
corrected, n= 6 mice. In psychometric testing sessions, different sounds were played in randomized trial orders, and behavioural responses until a total
consumption of 20 droplets in one session were used for analysis. Data with error bars are presented as the mean ± s.e.m. **P < 0.01, *P < 0.05.
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Figure 2d shows one example cell that exhibited high-
amplitude Ca2+ responses (Δf/f (GCaMP6f) ≥ 1.0) to the BBN
stimulus in nine consecutive trials at the trained stage but much
weaker and less reliable responses in the naive and detrained
stages. However, the majority of cells in the same field of view
(FOV) showed much weaker responses, even at the trained stage
(Fig. 2e). To understand the spike firing properties underlying
cellular Ca2+ response patterns, we performed a parallel set of
calibration experiments with combined single-cell loose-patch
recording and two-photon Ca2+ imaging in vivo under the same
GCaMP6f expression conditions (Supplementary Fig. 2). Ca2+

transients of amplitude Δf/f (GCaMP6f) ≥ 1.0 (orange-red colours
on the response map) corresponded to firing events consisting of
more than 3 spikes per 150 ms time window. The complete
dataset of chronic Ca2+ imaging (including the remaining nine
animals, one imaging FOV performed in each animal, Fig. 2f)

showed that such high Ca2+-responsive cells (trial-averaged Δf/f
(GCaMP6f) ≥ 1.0) at the trained stage were found in 9 out of the
10 FOVs. Altogether, 30 cells satisfied the criterion of trial-
averaged Δf/f (GCaMP6f) ≥ 1.0 at the trained stage, out of a total
of 423 cells pooled from the 10 animals. The Ca2+ response
amplitudes (trial-averaged) of these 30 cells increased severalfold
after training and decreased severalfold after detraining (Δf/f
values, naive: 0.48/0.31–0.54; trained: 1.4/1.2–1.8, detrained:
0.32/0.25–0.41; median/1st–3rd quartile, same notation for all
subsequent data if not stated otherwise; n= 30 cells, two-sided
Wilcoxon signed-rank test, ***P < 0.001 for both tests of naive
versus trained and trained versus detrained). To exclude the
possibility that the observed training-induced increase in
response amplitude in this sparse subpopulation of cells
(30/423, 7.1%) was due to an effect of thresholding on random
fluctuations, we analysed single-trial responses in each of these 30
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cells at the naive stage and at the trained stage. For each cell,
the increment of the Δf/f value (from the naive stage to the
trained stage) was significant (two-sided Wilcoxon signed-rank
test, *P < 0.05).

By comparison, when viewing all 423 imaged cells (including
those 30 highly responsive cells) together as one population,
we observed a much smaller although significant change in
Ca2+ response amplitudes (trial-averaged) following training and
detraining (Δf/f values, naive: 0.56/0.39–0.80; trained:
0.59/0.43–0.89; detrained: 0.47/0.38–0.58, n= 423 cells, two-
sided Wilcoxon signed-rank test, ***P < 0.001 for both tests).
This statistical result, together with a complete cell-by-cell
analysis (Supplementary Fig. 3), showed a strikingly inhomoge-
neous single-cell transformation following training: amidst a
minor upward shift (~10%) in the overall neuronal population
Ca2+ responsiveness (to the trained sound, BBN), a drastic
amplification (~3-fold) of Ca2+ responsiveness occurred in sparse
cells (~7.1% of population) in A1 L2/3.

High-rate bursting: the firing properties of high-Ca2+-responsive
cells in trained animals. Concerns on toxicity29,30 and cell-by-
cell variation in Ca2+ sensing31 caused by GCaMP6f expression
may have undermined the finding of sparse highly
Ca2+-responsive cells in trained animals. Thus, we performed a
new set of experiments by applying single-cell loose-patch
recordings23,32,33 in highly Ca2+-responsive cells identified
with a chemical Ca2+ dye, Cal-52024,27,34 (for example, see
Supplementary Movie 5), with lesser concerns for toxicity and
inhomogeneity in cell-by-cell Ca2+ sensing. A detailed com-
parison between Ca2+ imaging data obtained by the two dif-
ferent Ca2+ indicators (Cal-520 and GCaMP6f) will be further
demonstrated in the next section.

An example imaging FOV is shown in Fig. 3a, in which a cell
with high Ca2+ responses (Δf/f (Cal-520) ≥ 1.5, the rationale of
this criterion will be demonstrated in the next section) was
targeted by a loose-patch pipette. Four consecutive trials of
combined two-photon Ca2+ imaging and loose-patch recordings
(Fig. 3b, with magnified view of loose-patch recordings in Fig. 3c)
showed that in each trial, a high-amplitude Ca2+ transient
occurred simultaneously with multiple spike firings in a time
window of ~150 ms. In each of the seven trained mice in this set
of experiments, we recorded at least one such highly responsive
cell (there were multiple cells of high Ca2+ responses in each
animal, but we targeted no more than three cells per animal to
minimize tissue damage), as shown in an overlaid display (nine
cells, three trials shown for each cell) in Fig. 3d. Within an
individual response event, spike waveform amplitudes tended to
decay over time (fitted curve in Fig. 3d). All n= 239 recorded
stimulation trials pooled from the same nine cells are shown as
raster plots in Fig. 3e, for which the inter-spike interval (ISI)
distribution histogram (Fig. 3f) had a prominent peak at
approximately 10 ms (11/8.5–21 ms), corresponding to a high
instantaneous firing rate of approximately 100 Hz (90/50–120
Hz). These two properties (~100 Hz instantaneous firing rate,
decay in spike amplitude within event) were consistent with
cortical neuronal burst firing as defined in previous studies21,35,36.
Thus, we defined bursting spike responses as sound-triggered
response events consisting of three or more spike firings in a 150-
ms time window from the stimulus onset and with the presence of
spike waveform amplitude decaying in the same time window.
This definition also applies to other loose-patch recording data
throughout this study.

While the last spike of the burst event overlapped with the
onset of licking (Fig. 3g, 184/143–265 ms versus 250/120–370 ms,
P > 0.05, two-sided Wilcoxon rank-sum test), the first spike of the

burst clearly occurred earlier than the onset of licking (29/22–49
ms versus 250/120–370 ms, ***P < 0.001, two-sided Wilcoxon
rank-sum test, n= 239 trials pooled for nine cells). Thus, these
bursting responses were indeed evoked by the sound stimulus but
not by tongue movement or water intake. We reconstructed the
morphology of five recorded bursting responsive cells (from the
two-photon z-stack images, for example see Fig. 3h), each
showing a similarly rich dendritic tree and an axon extending out
of the L2/3 of cortex, resembling stereotypical L2/3 cortical
pyramidal neurons37,38. These data together reveal the existence
of single neurons exhibiting trial-by-trial reliable burst firing
responses to the trained sound (BBN) in A1 L2/3.

Validating the emergence of high responsiveness (bursting) in
sparse cells following training. We established a new calibration
graph of the Ca2+ signal for the Cal-520 dye (Fig. 3i), including
the nine highly responsive cells from above (Fig. 3e) and 7 other
cells with different Ca2+ response amplitudes that were randomly
targeted, to provide a large sample of response events that cov-
ered a broad range of spikes per event (1–27 spikes; for example,
see Supplementary Fig. 4). The burst detection threshold of Δf/f
(Cal-520)= 1.5 faithfully rejected singlet firing events (1–2 spikes,
0% false positive rate, n= 49 events) and was consistent with the
previous threshold of Δf/f (GCaMP6f)= 1.0 in the GCaMP6f
imaging data (Supplementary Fig. 2); thus, both thresholds were
conservative for detecting bursts (laying between 3 and 4 spikes).
Therefore, in all subsequent sets of Ca2+ imaging experiments
without loose-patch recording, we applied a criterion (Δf/f (Cal-
520) ≥ 1.5 or Δf/f (GCaMP6f) ≥ 1.0) on single-trial Ca2+ signals
to identify bursting response events in single trials, as well as on
trial-averaged Ca2+ signals per cell to identify bursting responsive
cells from entire FOVs.

In all Ca2+ imaging experiments, we used a high magnification
objective (Nikon 40X/0.8) with a long working distance (3.5 mm)
that was suitable for operating a patch pipette during live two-
photon imaging in vivo, and we used a relatively high scanning
zoom (2–4×) in the single-plane configuration to optimize
morphological visibility and tissue stability for each cell in the
FOV. These imaging quality factors were the only criteria for
configuring the imaging FOV in each animal. Therefore, the
number of imaged cells per FOV (and per animal) was not as
high as that in other recent studies39,40 by configuring the same
type of two-photon microscope for large-FOV and volumetric
imaging. Thus, we tested a large number of animals (8-naive and
18-trained animals with Cal-520 in a new set of experiments; 10
animals with GCaMP6f as the same dataset in Fig. 2) to compare
the Ca2+ imaging data with Cal-520 and with GCaMP6f and to
verify the emergence of high Ca2+ responsiveness (bursting) in
sparse A1 L2/3 cells following training.

We established distribution histograms of single-cell respon-
siveness (trial-averaged Ca2+ response Δf/f values of each cell) for
pooled neuronal populations in naive animals or trained animals.
Interestingly, both the naive and trained distributions in both the
Cal-520 and GCaMP6 datasets were highly skewed and could be
well fitted with lognormal functions41, appearing as symmetric
Gaussian shapes when drawn with a logarithmic x-axis, as shown
in Fig. 4. We found that the trained distribution had a
significantly larger mean (on a log scale) than the naive
distribution for both the Cal-520 and GCaMP6f datasets (both
***P < 0.001, two-sided Wilcoxon rank-sum test). We then
applied the above-established criterion to identify bursting
responsive cells (Δf/f (Cal-520) ≥ 1.5 or Δf/f (GCaMP6f) ≥ 1.0).
For all the imaged populations, we counted the number of
bursting responsive cells. Bursting responsive cells were nearly
absent in the eight-naive animals with Cal-520 imaging (0.2%,
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2/1314 cells; Fig. 4a left). In contrast, in the 18-trained animals
with Cal-520 imaging, the bursting responsive cells constituted
4.7% of the population and were statistically significant (52/1112
cells; Fig. 4a right, ***P < 0.001, Fisher’s exact test). Importantly,
at least one bursting responsive cell was found in each of the 18-
trained animals (imaged with Cal-520). The Cal-520 imaging
results (Fig. 4a) largely reproduced the GCaMP6f imaging results
(Fig. 4b, same dataset as in Fig. 2), where 2.1% (9/423, Fig. 4b left)
of cells at the naive stage and a significantly increased fraction of
7.1% (30/423, Fig. 4b right, ***P < 0.001, Fisher’s exact test) of
cells at the trained stage were bursting responsive, and in 9 of 10
FOVs, we observed at least one training-transformed bursting
responsive cell (see also Fig. 2f). There was a minor, statistically
nonsignificant difference in the bursting cell ratio (GCaMP6f:
7.1%, n= 10 mice; Cal-520: 4.7%, n= 18 mice; P= 0.056, Chi-
square test). The above analysis for comparing the Cal-520 and
GCaMP6f datasets showed the same significant results: training
induced an upward shift of overall population responsiveness
and the emergence of high responsiveness (bursting) in sparse A1
L2/3 cells in trained animals. Moreover, the cell-by-cell analysis of
the GCaMP6f dataset (Fig. 2 and Supplementary Fig. 3) showed
that the bursting responsiveness at the trained stage emerged
primarily by the strong amplification (~3-fold) of response
amplitudes in a few weakly responsive cells but not by up-shifting

the response amplitudes of those few already highly responsive
cells at the naive stage.

Reliable sound-evoked bursting responses regardless of
behavioural motivation. Previous literature42,43 has suggested
that cortical neuronal responses could be modulated by beha-
vioural motivational drive. Thus, we analysed the sound-evoked
bursting responses and licking actions on a trial-by-trial basis in
trained animals. In some imaging (with Cal-520) sessions, we
applied many stimulation trials of the same trained sound (BBN)
followed by water delivery to perform recordings of sound-
evoked neuronal responses sequentially at different imaging
FOVs (Fig. 5a–d, in 7 out of 18 BBN-trained animals we imaged
at multiple FOVs). After ~20–30 trials in an imaging session,
sound-evoked licking probability became significantly lower,
most likely because the animal no longer became thirsty (Sup-
plementary Methods). Nevertheless, bursting responses (Δf/f ≥ 1.5
(Cal-520) in single trials) remained highly reliable (e.g., example
cell #6 in Fig. 5d) even when the trained animal did not lick at all.

We binned each 10 consecutive trials as subsessions to calculate
the sound-evoked bursting response probability and licking
probability for each animal (Fig. 5e). The sound-evoked licking
probability started at a high level (≥80%) but gradually decreased
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(to ≤20%, one-way ANOVA, P= 5e−5; n= 8 subsessions) in an
animal-dependent manner. In contrast, the probability of sound-
evoked bursting responses remained at a high level of ≥80%
throughout all subsessions (one-way ANOVA, P= 0.13; n=
8 subsessions). These data reveal the existence of trial-by-trial
reliable neuronal bursting responses in A1 L2/3 (evoked by the
trained sound), which were independent of the changes in
behavioural motivation level or behavioural outcome over
repeated trials.

Holistic bursting (HB) cells. At the behavioural level, the ani-
mals trained with two chords (Fig. 1i) recognized each of the
trained chords as a whole but not as constituent tones (Fig. 1j).
We next investigated A1 L2/3 neuronal response properties
(imaging with Cal-520) in a new group of 7 mice trained with the
two chords and tested with each chord as well as each of their
constituent tones. We applied the above-established Δf/f (Cal-
520) ≥ 1.5 criterion for trial-averaged signals to detect bursting
responsive cells. Strikingly, in chord-trained animals (Fig. 6a), we
found some cells in A1 L2/3 that exhibited bursting responses
only to a specific trained chord but not to any of the individual
constituent tones of either chord (see the first example cell in
Fig. 6b; also see Supplementary Movie 6). Because the bursting
activity of these neurons represents an integration of all com-
ponents of the complex auditory stimulus, we referred to them as
HB cells. Accordingly, since the BBN could also be regarded as a
combination of multiple pure tones (see Fig. 1c), in another group
of 6 BBN-trained animals (Fig. 6c) that were tested with the BBN
as well as a range of tones, we also found a few cells that exhibited
bursting responses to the BBN in a holistic manner (see the first
example cell in Fig. 6d). In addition, for both groups of chord-
trained and BBN-trained animals, we found a few quasi-holistic
bursting (qHB) cells that exhibited bursting responses to a
complex sound (a chord or BBN) as well as to one or several (but
not all) of its component tones (see the second example cells in
Fig. 6b and d). Furthermore, we also found analytic bursting (AB)
cells that exhibited bursting response only to one or a few tested
tones (see the third example cells in Fig. 6b and d).

Overall, bursting responsive cells (of all different properties:
HB, qHB and AB) were rare, and the majority (>90%) of all the

observed cells were non-bursting (NB) to any of the tested sound
stimuli. The sound-evoked response properties of all the bursting
cells are shown in Fig. 6e (2-chord-trained animals, 18 HB cells, 5
qHB cells and 19 AB cells out of a total of 570 cells in 19 imaging
FOVs in seven animals) and Fig. 6f (BBN-trained animals, 22 HB
cells, 8 qHB cells and 37 AB cells out of 681 neurons in 22 FOVs
in 6 animals).

Note that the HB, qHB and AB cells could be identified only
after testing the complex sound-trained animals with different
pure tones. We found that the number of HB cells per trained
complex sound was significantly higher than that of qHB cells or
AB cells per tested pure tone. (Fig. 6e, 2-chord-trained animals
tested with the 2 chords and 8 tones: HB versus qHB cells, P=
0.012; HB versus AB cells, P= 0.0011, Chi-square test; Fig. 6f,
BBN-trained mice tested with the BBN and 11 tones, HB versus
qHB cells, P= 0.016, HB versus AB cells, P= 0.00041, Chi-square
test). Interestingly, for the HB cells in the 2-chord-trained mice,
we found that the response (Δf/f (Cal-520)) evoked by the
preferred chord was significantly greater than either the
summation of 4 tone-evoked responses, the best tone response,
or the non-preferred chord response (Fig. 6g, preferred chord:
2.93/2.31–4.25, sum of four constituent tones: 1.49/1.30–1.95,
P= 0.003, z= 2.94; best tone response: 0.61/0.48–0.96, non-
preferred chord response: 0.41/0.23–0.64, P < 0.001; two-sided
Wilcoxon signed-rank test; n= 18 cells). Therefore, these results
suggest that the HB cells found in the trained animals exhibit not
only a simple preference to a trained complex sound but also a
highly nonlinear summation.

Taken together, these data reveal the existence, in A1 L2/3 of
mice trained with complex sound(s), of distinct sparse sets of HB/
qHB cells that possessed bursting responses to each trained
complex sound (chord or BBN) as a whole, with the co-existence
of AB cells that possessed enhanced tuning response properties to
various individual tones.

HB and qHB cells together carry perfect information of
learned complex sounds. Since individual neurons often show a
large trial-by-trial response variability, much effort was made to
show that a sufficiently large neuronal population could never-
theless carry information about complex objects reliably in single
trials by means of various population coding schemes44,45. Here,
in contrast, we found sparse sets of individual HB/qHB cells in
trained animals that were highly reliable in their responses to the
trained complex stimuli. What could be the contribution of such
sparse cells to neuronal population information coding?

We used a linear support vector machine (SVM) algorithm to
read out the classification information from a single-trial
neuronal population response pattern (a vector consisting of
Δf/f values of neurons in a defined population), as illustrated in
the cartoon in Fig. 7a. Here, the information of a trained sound is
defined as the single-trial accuracy to discriminate that specific
trained sound (labelled as the target class) from any non-trained
or the other trained sound (together labelled as the nontarget
class). We performed the SVM test in various scenarios (Fig. 7b–d,
see Supplementary Methods for detailed procedure and results).
We recruited different numbers of cells into a population in
specific orders (either non-bursting cells first or bursting cells
first) and ran the SVM on a single-trial population response
vector to discriminate the sound stimulus. The results are
expressed in curves showing the single-trial decoding accuracy
(Ac) versus the number of cells recruited in the population (Np).
Importantly, to enable the analysis to report the contribution of
individual cells, we also configured hypermouse (Fig. 7c, d)
datasets by concatenating data from multiple FOVs from
different animals under the same experimental conditions to
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reduce the potential contribution of noise correlations in
populations of neurons within the same animal.

The results showed that when only NB cells were recruited, the
single-trial decoding performance (Ac) increased monotonically
with the number of cells (Np). The best performance achieved
with the maximum available number of NB cells in each scenario
is as follows (the chance level was 50% in all scenarios). Figure 7b,
middle graph: Ac= 84.4 ± 0.5% in one example mouse of the
BBN-trained scenario; Fig. 7c, middle graph: Ac= 94.6 ± 0.5% in
the hypermouse of the BBN-trained scenario; Fig. 7d, middle
graph: Ac= 73 ± 4% in the hypermouse of the 2-chord-trained
scenario. In contrast, the few HB and qHB cells together
supported perfect classification (Ac= 100% in all scenarios). On
the other hand, AB cells sometimes improved the classification
and sometimes didn’t, depending on whether HB and qHB cells
were present or not (see Supplementary Methods for details of the
analysis and result). These results show that linear decoding of a
large set of NB cells could achieve a significant discrimination

accuracy of single trials, but the very few HB/qHB cells could
achieve a perfect discrimination under the same conditions.

Discussion
By simultaneously combining two-photon Ca2+ imaging of
neuronal populations with targeted single-cell loose-patch
recordings in awake behaving mice, we found that the sound-
water association training-transformed distinct sparse subsets of
A1 L2/3 neurons from a non-bursting mode to a bursting mode
in response to a trained sound. The temporal relations of
response events (Fig. 3) demonstrated that those A1 L2/3 bursting
responses were not induced by licking or water intake. Further-
more, in trained animals, the licking probability evoked by the
trained sound dropped over repeated trials of stimulation, yet the
sound-evoked bursting responses in sparse A1 L2/3 cells con-
tinued to occur with a high reliability (Fig. 5). Thus, the bursting
responses that emerged in sparse A1 L2/3 cells reliably
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represented the trained sound but not behavioural motivation or
behavioural outcome.

In animals trained with complex sounds (BBN or chords) and
tested with these sounds as well as a range of pure tones, we

discovered the co-existence of three distinct subsets of neurons in
A1 L2/3: HB cells that exhibited bursting response exclusively to
the learned complex sounds; qHB cells that exhibited bursting
response to the learned complex sounds as well as to one or
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Fig. 6 Holistic, quasi-holistic and analytic bursting cells in animals trained with complex sounds. a Cartoon showing a 2-chord-trained animal. b Ca2+

signals evoked by different sound stimuli using each chord and each pure tone for three example cells. Single trials (grey traces) and their averages (black
and purple traces) are overlaid. Vertical bars indicate sound stimulus onset time. c, d Similar arrangement as in panels a and b showing different example
cells from BBN-trained mice. e Summary for holistic, quasi-holistic and AB responsive cells identified out of 570 cells (pooled from all 19 imaging FOVs in 7
chord-trained animals tested with the two chords and 8 constituent tones); each dot represents the bursting response (trial-averaged Ca2+ response
amplitude, Δf/f (Cal-520)≥ 1.5) to the corresponding stimulus. f Same arrangement as panel e; the summary for bursting responsive cells out of a total of
681 cells (from all 22 imaging FOVs in 6 BBN-trained animals that were tested with BBN and pure-tone stimuli). g Comparing the response to the chord
with the responses to constituent tones in the 2-chord-trained mice. Each data point represents the trial-averaged Ca2+ response amplitude for a certain
category. Sum of four constituent tones means summing the responses evoked by each of the four constituent tones that correspond to the preferred
chord. Datapoints for each cell were individually calculated (i.e., the preferred chord could be a different one, or summing different tone responses), P=
0.0099 (chord versus sum of 4 tones), P= 5.88e−4 (chord versus best tone), P= 5.88e−4 (chord versus non-preferred chord), two-sided Wilcoxon
signed-rank test, Bonferroni corrected, n= 18 cells. ***P < 0.001, **P < 0.01. Boxes represent Q1 and Q3, central bars indicate the median, and whiskers
indicate Q1-1.5 × IQR and Q3+ 1.5 × IQR.
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several of the constituent tones; and AB cells that exhibited
bursting response to pure tones only. The co-formation of HB/
qHB/AB cells in L2/3 of the sensory cortex can be explained in
light of a series of in vivo subthreshold single-cell dendritic
imaging studies37,38,46. This ubiquitous finding of the dendritic
organization of sensory input features47 showed that individual
L2/3 primary sensory cortical (V1, A1 or S1) neurons, regardless
of either their location on topographical maps of elementary

sensory features or their output preferences, received multiple
synaptic inputs of highly diverse feature specificities throughout
entire dendrites in a widely distributed manner. Accordingly, our
results here show that a few L2/3 primary sensory cortical neu-
rons exhibited a strong response to specific conjunctions of
multiple elementary features as HB/qHB cells, while a few other
L2/3 neurons exhibited an enhanced tuning response to indivi-
dual single elementary features as AB cells. This reservoir of
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single-cell multi-input operating logic found in awake behaving
animals is consistent with those reported by previous in vitro
studies48,49, including a recent study on human L2/3 cortical
neurons50.

State-of-art neuromorphic computing hardware51 typically
supports a classical integrate-and-fire single-unit operating
logic52. Here, our findings could inspire a new HB single-unit
operating logic to be deployed for the purpose of storing and
retrieving the trained complex information at a high accuracy and
specificity (Fig. 7). Sparse subsets of standard integrate-and-fire
model neurons can be transformed to deliver a high-rate, long-
duration burst of output spikes (instead of 1 spike) upon specific
conjunctions (but not summations) of multi-input activations.
Beyond being an inspiration to brain-like computing and artificial
intelligence technologies53,54, burst firing is well known to have
significantly more efficacy than singlet firing in establishing
synaptic transmission and plasticity55 in biological neurons. In
particular, the bursts recorded in our study had an instantaneous
firing rate of 50–120 Hz and a firing duration of 100–200 ms,
matching well that typically applied in the stimulation protocols
for optimally inducing synaptic long-term plasticity in both
rodent56 and human brain tissues57. Overall, our finding of the
unique class of bursting neurons representing learned complex
sounds in the auditory cortex demonstrates how single cortical
neurons represent complex objects as a whole rather than the sum
of their parts.

Methods
Animals. C57BL/6J male mice (2–3-months old) were provided by the Laboratory
Animal Center at the Third Military Medical University. The mice were housed in
a temperature- and humidity-controlled room on a cycle of 12-h light/dark (lights
off at 19:00). All experimental procedures were performed in accordance with
institutional animal welfare guidelines with the approval of the Third Military
Medical University Animal Care and Use Committee.

Auditory stimulation. Sound stimuli were delivered by an ED1 electrostatic speaker
driver and a free-field ES1 speaker (both from Tucker Davis Technologies)26,27,37. The
distance from the speaker to the mouse ear (contralateral to the imaged A1) was
~6 cm. The sound stimulus was produced by a custom-written, LabVIEW-based
program (LabVIEW 2012, National Instruments) and transformed to analogue vol-
tage through a PCI6731 card (National Instruments). All sound levels tested with a
microphone placed ~6 cm away from the speaker were calibrated by a pre-polarized
condenser microphone (377A01 microphone, PCB Piezotronics Inc.). All the data
were obtained at 1MHz via a data acquisition device (USB-6361, National Instru-
ments) and examined by our custom-made LabVIEW program. For BBN (BBN,
bandwidth 0–50 kHz), the sound level was ~65 dB sound pressure level (SPL). We
generated a waveform segment of BBN and used the same waveform segment for all
experiments involving BBN. For testing neuronal response characteristics, we used 11
pure tones, the frequencies of which were logarithmically spaced in the range of
2–40 kHz. The sound levels were ~74 dB SPL (2.0–10 kHz) and ~67 dB SPL
(10–40 kHz), respectively. For the 2-chord training experiments, chord 1 consisted of
2.0, 2.7, 3.6, and 4.9 kHz, while chord 2 consisted of 8.9, 12.1, 16.3, and 21.9 kHz. The
sound level of chord 1 was ~78 dB SPL, and the sound level of chord 2 was ~71 dB
SPL. The background noise level was kept at ~55 dB SPL for all experiments. As
described in our previous reports26,58, low frequencies (<1 kHz) were major com-
ponents of background noise. With a spectral density of ~33 dB/sqrt (Hz), the peak of
background noise is below 1 kHz. Neither visible light nor other sensory stimuli were
present. The duration of a sound stimulus (tone, chord or BBN) was 50ms.

Training, detraining and testing. Before training, the animal was implanted with
the headpost under isoflurane anaesthesia and then allowed to recover for 5 days.
During the training period, the animal was head-fixed to the recording rig and
received water exclusively on the training rig. A droplet of water was formed at a
spout by automatically controlled pumping (pumping duration, 20 ms) at 100 ms
after the end of the sound stimulus (in total, 50+ 100= 150 ms from the stimulus
onset) (Fig. 1a). Licking actions were monitored with a camera (frame rate 30 Hz)
under infrared illumination that was invisible to the animal. Sound stimuli were
delivered without any cues at random inter-trial intervals (in the range of 5–10 s,
longer than the duration of a licking action). The rationale of using a randomized
inter-trial interval setting was to avoid the possible effect of the rhythmic pre-
dicative responses that have been known to exist in mice26.

Water droplets remained at the spout after being delivered so that the animal
could always obtain water if ever it voluntarily made a licking action at any time

after water was delivered. If the animal had not licked before the next trial
occurred, a new droplet would replace the previous one at the spout. There was no
cue, stimulus or reward/punishment object beyond the sound and the water. The
spout was positioned at a distance of approximately 3–4 mm from the animal
mouth (and with no visible ambient light) such that the animal had to voluntarily
stretch out its tongue to probe and acquire water droplets on the spout. A success
sound-evoked licking event was defined as an event in which the animal initiated a
licking action within 1000 ms from sound stimulus onset. One droplet had an ~5 μl
volume, and 20 droplets of water together had a volume of ~0.1 ml. For one
experimental session, only those trials until mice acquired 20 droplets of water
were considered effective trials and used for calculating the sound-evoked licking
probability (except for the data shown in Fig. 5, where the licking probability was
calculated for each 10 consecutive trials, the result of which prompted us to define
the 20-droplet criterion retrospectively).

Animals were considered trained if the sound-evoked licking probability (mean
value) was ≥80%. We did not apply any punishment for incorrect licking timing.
The training rigs inside isolation boxes and the testing rig under a two-photon
microscope were nearly identical, and the animals did not show obvious signs of
discomfort on either of the rigs. One experimental session typically involved
40–100 stimulus events. The total amount of water consumed by an animal on the
rig was sufficient to prevent dehydration, which was confirmed by the body weight
control (<20% weight loss throughout all the experimental days)27.

There were three different training scenarios with different association sounds
in this study applied to different groups of animals. The association sounds were
code-named as follows: BBN: the BBN with one spout, 2-tone: two pure tones with
two spouts (2.0 kHz with the right spout and 12.1 kHz with the left spout), and 2-
chord: two chords with two spouts (chord 1 consisting of 2.0, 2.7, 3.6 and 4.9 kHz
with the right spout; chord 2 consisting of 8.9, 12.1, 16.3 and 21.9 kHz with the left
spout). All groups of animals were tested with the same sound used for training to
assess the behaviour performance over sessions, i.e., the learning curve. In some of
the BBN and 2-chord training groups of animals, a full range of different pure
tones, including the training tones (kHz: 2.0, 2.7, 3.6, 4.9, 6.6, 8.9, 12.1, 16.3, 21.9,
29.6 and 40.0) and the BBN, were used to test neuronal responses. Water was
always delivered on the corresponding spout (for testing the 2-chord-trained
animals, delivering on the right spout for the 4 lower tones and on the left spout for
the four higher tones).

In detraining sessions (Figs. 1 and 2), all configurations and parameters of the
rig and session were exactly the same as those in training, except that there was no
water delivery accompanying the sound stimulus. Note that the two-photon
imaging testing for detrained animals was under the same condition as that in the
testing session after training, i.e., there was water delivery following the sound
stimulus.

Two-photon Ca2+ imaging in A1 L2/3. For two-photon imaging in head-fixed
awake mice27, we glued a titanium head post to the skull for head fixation under
isoflurane anaesthesia. Three days after surgery, animals received 1 ml of water
supply per day for 2–3 days and then underwent either training or testing sessions
with water deprivation in their home cages (for details, see the section above).

For acute imaging experiments with Cal-520 AM, we exposed the right A1 of
the mouse4,37. In brief, the animal was anaesthetized by isoflurane and kept on a
warm plate (37.5 °C). The skin and muscles over the auditory cortex were removed
after local lidocaine injection. A custom-made plastic chamber was glued to the
skull with cyanoacrylate glue (UHU), followed by a small craniotomy (~2 mm ×
2mm) (the centre point: Bregma –3.0 mm, 4.5 mm lateral to midline). Afterwards,
the animal was transferred to the recording rig. The craniotomy was filled with
1.5% low-melting-point agarose. The recording chamber was perfused with normal
artificial cerebral spinal fluid (ACSF) containing 125 mM NaCl, 4.5 mM KCl,
26 mM NaHCO3, 1.25 mM NaH2PO4, 2 mM CaCl2, 1 mM MgCl2 and 20 mM
glucose (pH 7.4 when bubbled with 95% oxygen and 5% CO2). Cal-520 AM was
dissolved in DMSO with 20% Pluronic F-127 to a final concentration of 567 μM for
bolus loading. Pressure (~600 mbar, 3 min) was applied to the glass to load dye
solution. Ca2+ imaging was performed ~2 h after dye injection and lasted for up to
8 h7,27,59.

For chronic imaging experiments with GCaMP6f, standard sterile protocols
were used in our surgery27. Fourteen days after virus (AAV2/8-GCaMP6f, ~1 ×
1013 vg/ml, Obio Technology Corp., Ltd, Shanghai) injection, we exposed the right
A1 of the mouse as described above. A small plastic chamber was glued to the skull
with cyanoacrylate glue (UHU). Then, a piece of bone was removed and replaced
by a smaller coverslip (1.5 mm in diameter, below) and a larger coverslip (2.5 mm
in diameter, above), which were sealed with ultraviolet cured optical adhesives
(Norland Products Inc., USA) and dental acrylic. In the experiments for
electrophysiological recordings, these coverslips were removed. Antibiotics
(cefazolin, 500 mg/kg, intraperitoneal injection, North China Pharmaceutical
Group Corporation) were administered for 3 days. The animal was housed for a
week’s recovery. Then, the mouse was engaged in training and detraining with
protocols as described in the section above.

Two-photon imaging was performed with a custom-built two-photon
microscope system based on a 12.0 kHz resonant scanner (model “LotosScan 1.0”,
Suzhou Institute of Biomedical Engineering and Technology)38,60. Two-photon
excitation light was delivered by a mode-locked Ti:Sa laser (model “Mai-Tai
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DeepSee”, Spectra Physics) and a 40×/0.8 numerical aperture (NA) water-
immersion objective (Nikon) was used for imaging. For Ca2+ imaging experiments,
the excitation wavelength was set to 920 nm. The typical size of the FOV was
~200 µm × 200 µm. The average power delivered to the brain was in the range of
30–120 mW, depending on the depth of imaging.

Loose-patch recordings under two-photon imaging guidance. For loose-patch
recordings in auditory cortex neurons in vivo, we used the shadow-patching
procedure37,61–63, except that we did not rupture the membrane of targeted cells to
maintain a loose-patch configuration. Voltage-clamp recordings were performed
with an EPC10 amplifier (HEKA Elektronik, Germany). Patch pipettes were made
using a puller (PC-10; Narishige, Tokyo, Japan). The pulling mode was set at two-
stage and a heavy type. The glass electrode filled with normal ACSF had a tip
resistance of 5–8MΩ. Applying a pressure of 30 mbar, the glass electrode was
lowered and approached the neuron of interest. Once the electrode was moved into
the centre of the neuron, we released the pressure and gave a negative pressure
(50–100 mbar) until the tip resistance reached 30M. Raw signals were filtered at
10 kHz and sampled at 20 kHz using Patchmaster software (HEKA Elektronik,
Germany).

Retrograde tracing. To ascertain that our imaging cortical regions were located in
the A1, the criterion that the ventral part of the lateral medial geniculate body
(MGBv) connected with A164 was used. A glass electrode with a tip diameter of
20–30 μm was filled with neural tracer solution containing Alexa Fluor 488-
conjugated cholera toxin subunit B (CTB). Then, we injected the CTB solution by
pressure (700 mbar) for 3 min in the imaging site at a depth of 500 μm below the
surface. Seven days after the injection, the animals were anaesthetized, and their
brains were removed and immersed in 4% paraformaldehyde overnight. A con-
secutive series of coronal sections (50-μm thick) were collected using a sliding
cryotome, and then all sections were mounted onto glass slides and imaged with a
stereoscope (Olympus).

In vivo widefield fluorescence imaging. A homemade binocular microscope
(BM01, SIBET, CAS) with a 4X, 0.2 NA objective (Olympus) was used to record
widefield fluorescence images in the mouse cortex for establishing the reference
cortical map of A1 (Fig. 2b). A light-emitting diode (470 nm, M470L4, Thorlabs)
was used for blue illumination. Green fluorescence passed through a filter cube was
measured at 10 Hz with a sCMOS camera (Zyla 4.2, Andor Technology)7. Thy1-
GCaMP6f mice (Jackson labs stock number 025393, also known as GP5.17) were
used to functionally identify the region of A165.

The mouse was anaesthetized by urethane and kept on a warm plate (37.5 °C).
A piece of bone (~5 mm × 5mm) (the centre point: Bregma −3.0 mm, 4.5 mm
lateral to midline) was removed and replaced by a coverslip (3 mm in diameter,
below). To localize A1, four pure tones (4, 8, 16, and 32 kHz) were repeatedly
presented 20 times at an interval of 6 s.

In each mouse, the recorded cortical images were first downsampled from the
original 750 × 1200 pixels to 75 × 120 pixels. After that, the frames recorded with
sound stimuli were averaged across 20 trials. To enhance the signal-to-noise ratio,
spatial averaging was conducted over 5 × 5 pixels by a matrix filter, and temporal
averaging was conducted with three consecutive images66. The pre-processed
images were then temporally normalized to obtain the relative changes in
fluorescence (f) pixel-by-pixel. With the baseline fluorescence (f0) obtained by
averaging the images of 800 ms before sound stimulation, the relative fluorescence
changes of each pixel were calculated as Δf/f= (f− f0)/f0. The normalized images
are shown on a colour-coded scale to visualize the relative fluorescence changes
(Δf/f) in the cortex.

Data analysis. We analysed our data using custom-written software in LabVIEW
2012 (National Instruments), Igor Pro 5.0 (Wavemetrics) and MATLAB 2014a
(MathWorks)67. To correct motion-related artefacts in imaging data, we used a
frame-by-frame alignment algorithm to minimize the sum of squared intensity
differences between each frame image and a template, which is the average of the
selected image frames.

To extract fluorescence signals, we visually identified neurons and performed
the drawing of regions of interest (ROIs) based on fluorescence intensity.
Fluorescence changes (f) were calculated by averaging the corresponding pixel
values in each specified ROI. Relative fluorescence changes Δf/f= (f− f0)/f0 were
calculated as Ca2+ signals, where the baseline fluorescence f0 was estimated as the
25th percentile of the entire fluorescence recording.

As described in our previous studies26,58, we performed automatic Ca2+

transient detection based on thresholding criteria regarding peak amplitude and
rising rate68. During the licking task, licking activities were semi-automatically
tracked from the monitoring movie and quantified as a time course26,27. To
determine the responding and non-responding neurons, we calculated the Ca2+

response amplitude of one spike from the data of the combined two-photon
imaging and electrophysiology. The non-responding neurons were defined as the
ones with Ca2+ response amplitudes significantly smaller than that of one spike.

To compare data (e.g., Ca2+ amplitude) between groups, we used non-
parametric Wilcoxon rank sum test (unpaired), Wilcoxon signed-rank test (paired)

or bootstrap test to determine statistical significance (P < 0.05) between them. To
compare data from two groups by bootstrap approach, the original data sets were
sampled with replacement 10,000 times, and the P-value of the change was
computed as the proportion of the bootstrap distribution produced an inconsistent
change. One-way analysis of variance (ANOVA) was used to compare averages in
multiple conditions. Fisher’s exact test and Chi-square test were used to compare
two proportions. P values were adjusted for multiple comparisons using the
Bonferroni correction. In the text, summarized data are presented as the median/
25th–75th percentiles. In the figures, the data presented in the box-and-whisker
plot indicate the median (centre line), 25th and 75th percentiles (Q1 and Q3), i.e.,
interquartile range (IQR) (box), Q1-1.5 × IQR and Q3+ 1.5 × IQR (whiskers), and
all other data with error bars are presented as the mean ± s.e.m. (except for Fig. 7,
where the variation is presented as ±s.d.).

We used a standard 2-class linear SVM from the built-in functions of the widely
used programming platform MATLABTM. A neuronal population response pattern
of a trial is defined as a vector consisting of Δf/f values of neurons in a defined
population. We randomly selected only 1 trial from each class to train the SVM
and then randomly selected another 1 trial from each class to test the performance
of SVM. For each population size (Np), the accuracy of classification (Ac) is the
average value (+/−s.d., applies for all values in this section) from 50 different
randomly shuffled cell selections, and for each cell selection, we ran 50 different
randomly configured training and testing trial sets. The SVM was reset for each
iteration of the cell and trial subset configuration. The SVM had no access to cell
labels, and only human analysts used the cell labels to display the Ac–Np relation
for different recruiting orders.

In the first scenario (as illustrated by Fig. 7b, left cartoon), we used data from
mice that were trained with BBN and tested with BBN (target) as well as pure tones
of 11 different frequencies (nontarget). For one example imaging FOV, when we
began recruiting NB cells into a population, a small number of NB cells could
already achieve an accuracy above chance level (Fig. 7b, middle graph), in line with
a previous report69 demonstrating that a few cells may be sufficient to encode a
task-related stimulus. Furthermore, the accuracy increased monotonically with
increasing Np. When Np reached the maximum possible number of NB cells (32 in
this example experiment), Ac was a remarkable 84.4 ± 0.5%. Strikingly, recruiting
3 HB cells raised Ac to 100% for all selections of training and test data (inset in
the middle graph of Fig. 7b). When we repeated the same analysis by recruiting
HB cells first, the 3 HB cells were sufficient for achieving perfect discrimination
(Ac= 100%), and the additional recruitment of NB cells did not affect Ac (Fig. 7b,
right graph). Note that in this particular imaging FOV, there were no qHB or
AB cells.

We concatenated the response patterns from all imaging field-of-views in
multiple mice (Fig. 7c, left cartoon) and performed the same analysis over such a
hypermouse. In the hypermouse, we had all four subtypes of cells present, i.e., NB,
AB, qHB and HB cells. Furthermore, random selection of cells tended to mix cells
from different mice, disrupting correlations that could contribute to the high
discrimination performance. When we recruited the NB cells first (Fig. 7c, middle
graph), 614 NB cells provided an Ac of 94.6 ± 0.5%. Interestingly, further
recruitment of 37 AB cells reduced Ac to 86 ± 3%. Further recruitment of 8 qHB
cells increased the Ac back to 99.6 ± 0.1%, and recruitment of 22 HB cells resulted
in 100% Ac. Again, initial recruitment of the 30 HB/qHB cells achieved perfect
performance (Ac= 100%), and further recruitment of AB and NB cells did not
lower the Ac at all (Fig. 7c, right graph).

In the second scenario, we performed similar calculations with responses from
mice trained with 2 chords. To maintain simplicity, we continued to use the same
2-class linear SVM trained in the 1-shot learning paradigm. One of the two chords
was labelled as the target class, while the other chord and all 8 tones (4 tones in
each of the two chords) were labelled as the nontarget class (Fig. 7d, left cartoon).
We report the results of these calculations (Fig. 7d, middle and right graphs) in the
same format as above. Note that in the 2-chord scenario, the definition of NB and
AB cells remained the same as in the BBN scenario, but the HB/qHB cells were
further split into 4 subtypes: HB/qHB cells for chord 1 (HB-c1, qHB-c1) and
HB/qHB cells for chord 2 (HB-c2, qHB-c2). The definition of HB/qHB cells
ensured that all these subtypes did not overlap except for the qHB subtypes; indeed,
there was 1 exceptional cell that belonged to both the qHB-c1 and the qHB-c2
subtypes, and we labelled it as qHB-c1 only. Out of 570 cells in the new
hypermouse, the number of cells in each of the 6 subtypes was as follows: NB (528),
AB (19), qHB-c1 (2), HB-c1 (3), qHB-c2 (3), and HB-c2 (15).

The results were highly similar to those obtained with the hypermouse in the
BBN scenario. The Ac level with NB cells recruited first reached 73 ± 4%, but the
further recruitment of AB cells pulled the Ac down to chance level (50 ± 5%).
Because the nontarget class included not only tones but also a complex sound
(chord 1) here, the AB cells that exhibited bursts only to tones nearly completely
corrupted the partial information of classification carried by the NB cells. For the
same reason, further recruitment of the 2 qHB-c1 and 3 HB-c1 cells did not recover
the Ac. However, with the 3 qHB-c2 cells recruited, the Ac drastically increased
again (to 85 ± 3%). With the last 15 HB-c2 cells recruited, the Ac reached 100%
(already reached 100% with 13 HB-c2 cells). In the other way (Fig. 7d, right graph),
starting with just one HB-c2 cell already achieved 90 ± 9% Ac. Further recruitment
of more HB/qHB cells continued to raise the Ac up to 99.94 ± 0.06%. The Ac

reached 100% with no variation after further recruitment of 11 AB cells and
thereafter remained at 100% with the recruitment of the rest of the AB and NB
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cells. In this way, the AB cells could positively contribute to the classification
information if the HB/qHB cells were recruited before them.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request. Source data underlying Figs. 1, 3–7 and Supplementary
Figs. 2–3 are available as a Source data file. Source data are provided with this paper.

Code availability
The codes supporting the current study have not been deposited in a public repository,
but are available from the corresponding author upon request.
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