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Sheddases are specialized proteases that control the abun-
dance and function of membrane proteins by cleaving their sub-
strate’s extracellular domain (ectodomain), a process known as
shedding. Hundreds of shedding substrates have been identified,
but little is known about themechanisms that govern ectodomain
shedding. Iwagishi et al. now report that negatively charged
amino acids in the membrane-proximal juxtamembrane domain
of substrates make them resistant to shedding by the metallo-
protease ADAM17. These findings will help researchers better
understand the regulation of shedding and may aid in the devel-
opment of drugs targeting sheddases.

Ectodomain shedding is a proteolytic process, during which
the ectodomain of a membrane protein is released from cells (1).
The contributing protease, referred to as sheddase, cleaves the
substrate typically within its juxtamembrane domain, which is
the part of the ectodomain closest to the transmembrane domain
(Fig. 1). Ectodomain shedding acts as an irreversible molecular
switch and controls the abundance and the activity of integral
membrane proteins (e.g. through the degradation of cell adhesion
proteins and cell surface receptors or through release of mem-
brane-bound cytokines and growth factors) (1). Shedding occurs
for hundreds of membrane proteins, which mostly have a single
transmembrane domain or are membrane-tethered through a
glycosylphosphatidylinositol anchor. Given this large number of
substrates, ectodomain shedding controls numerous processes
in development and physiology, and regulation of this process is
essential. In the absence of tight regulatory mechanisms, shed-
ding contributes to pathology, such as increased inflammation
and Alzheimer’s disease (1). Thus, understanding the mecha-
nisms governing ectodomain shedding is of vital importance.
Unlike caspases and many other proteases that only cleave

specific amino acid motifs, most sheddases have a relaxed sub-
strate specificity. As a consequence, point mutations around a
shedding substrate’s cleavage sites rarely fully prevent shedding
(1). Additionally, sheddases typically cleave at a relatively fixed
distance from the membrane surface, such that deletions or
insertions around the cleavage site may simply shift the cleav-
age site to an alternative site nearby but do not fully inhibit
shedding. Efforts to assign substrates to sheddases must there-

fore be well-controlled to avoid the possibility that cleavage at
the new site is not simply mediated by another sheddase. For
shedding to occur, it is also important that the juxtamembrane
domain is accessible and not buried within a globular domain.
Moreover, some substrates, such as the Alzheimer’s disease–
linked amyloid precursor protein, require a helical conforma-
tion in their juxtamembrane domain to be shed. Furthermore,
post-translational substrate modifications in the vicinity of the
cleavage site may affect shedding, as observed with theO-glyco-
sylation of the cell adhesion molecule 1 (CADM1) (2). How-
ever, the effect of modifications on shedding is substrate-de-
pendent (3). Thus, further study is needed to uncover strategies
for how transmembrane proteins avoid sheddase activity.
Shedding substrates are cut by more than 30 sheddases

known to date, including the a disintegrin and metalloproteases
(ADAMs) ADAM10 and ADAM17 (1). For both sheddases,
numerous substrates have been identified, but their substrate
spectrum is likely to be much larger than what is currently
known. Similarly, for individual substrates, the contributing shed-
dase(s) as well as their exact cleavage sites remain to be identified
and are difficult to predict, raising the question of what features
flag substrates to be targeted for or prevented from shedding.
In their recent work, Iwagishi et al. (4) report a new element

governing the shedding activity of ADAM17 on its substrates.
The study analyzed the ADAM17-mediated shedding of the
activated leukocyte cell adhesion molecule (ALCAM), which is
crucial for the entrance of B cells into the brain in neuroinflam-
matory diseases such as multiple sclerosis (5). The authors
identified two ALCAM isoforms that differ in the juxtamem-
brane domain amino acid sequence. The isoform containing
stretches of negatively charged amino acids barely underwent
ADAM17-mediated shedding in the RAW264.7 macrophage
cell line, whereas the isoform without multiple negatively
charged amino acids was efficiently shed. Detailed mutational
analysis revealed that inserting stretches of negatively charged
amino acids into the juxtamembrane domain of the well-
shed ALCAM prevented its shedding by ADAM17. Similar
results are reported for a second ADAM17 substrate, the re-
ceptor tyrosine kinase ErbB4. These findings are in line with pre-
vious observations for the interleukin-6 receptor (IL-6R) (6),
another ADAM17 substrate, where an SNP resulted in an aspar-
tate-to-alanine exchange and increased IL-6R shedding.
This new rule for ADAM17 substrates—the absence of

stretches of negative charges—has important consequences for
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functional rescue experiments in vitro and in vivo. For many
shedding substrates, it remains unclear whether their physio-
logical function is mediated by the full-length form, the shed
ectodomain, or both. To address this question, it is often neces-
sary to test whether a nonsheddable variant of a substrate is
able to rescue the functional deficits seen in substrate-deficient
cells or mice. However, given the aforementioned relaxed sub-
strate specificity ofmany sheddases, the generation of nonshed-
dable substrate mutants has often been difficult—e.g. for the
ADAM17-mediated shedding of the SARS-CoV-2 receptor
ACE2 (7)—but may now be possible through the introduction
of negatively charged amino acid stretches into the substrate’s
juxtamembrane domain. This approach could also be useful for
substrates of ADAM10, a close homolog of ADAM17.
The introduction of negative charges into the juxtamem-

brane may happen under physiological conditions upon alter-
native splicing of juxtamembrane domain-encoding exons.
Iwagishi et al. (4) show this to be the case for ALCAM. The
alternatively spliced exon encodes for 14 amino acids, six of
which are aspartate and glutamate in the nonshed isoform,
whereas there is only a single glutamate in the efficiently shed
isoform. Similar observations were made for ErbB4. Likewise,
alternative splicing of CADM1 generates a nonsheddable vari-
ant that is O-glycosylated around the cleavage site or a shed-
dable variant without that modification. These examples sug-
gest that alternative splicing of exons encoding juxtamembrane
domains may be a more generally applicable mechanism to
control the shedding and, thus, the (patho-)physiological func-
tion of membrane proteins. In fact, the different splice forms of
ErbB4 have different signaling functions (8), and one, but not
the other, CADM1 isoform is linked to bladder cancer (9).
In summary, the molecular mechanisms for ectodomain

shedding are partly understood and comprise both positive and
negative features of the substrate. The recent work from Iwa-
gishi et al. (4) adds one more negative feature that substrates
must avoid to be cleaved by ADAM17, namely stretches of neg-
atively charged amino acids. Physiological relevance is demon-
strated with the finding that alternative splicing can introduce
either a shedding-susceptible or a negatively charged, shed-
ding-resistant juxtamembrane domain. Future studies need to
address the exact mechanism by which the negatively charged
amino acids block ADAM17-mediated shedding. Biophysical

experiments and in vitro protease assays may reveal whether the
negative charges simply reduce the affinity of the substrate to the
protease or even to protease-associated proteins. ADAM17 forms
a complex with a nonproteolytic subunit, iRhom1 or iRhom2.
Both proteins are integral membrane proteins that bind to the
transmembrane and probably the juxtamembrane domains of
ADAM17 and may act as adaptors that help to recruit substrates
to ADAM17 (10). Thus, it also appears possible that the negative
charges in the substrate’s juxtamembrane domain interfere with
binding to iRhoms and thus, indirectly, reduce shedding. Another
challenge for the future is to understandwhich positive and nega-
tive features of the substrate similarly apply to other major shed-
dases, such as BACE1 and BACE2. More investigations of the
shedding of individual membrane proteins and systematic pro-
teome-wide shedding analyses that are now feasible will give us a
more detailed picture of the molecular machinery governing
ectodomain shedding and will be helpful for future functional
studies, unraveling disease mechanisms and drug development
for the many shedding-related human diseases.
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