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Introduction
Multiple sclerosis (MS) is a serious, lifelong disa-
bling disease with unpredictable outcomes. The clini-
cal presentation and phenotype of MS are variable 
between patients and over time. It can encompass 
various degrees of severity. A minority of patients 
exhibit either a benign course with little disability 
accrual over time or an ‘aggressive’ course with fre-
quent, severe relapses, incomplete recovery and rap-
idly accumulating and permanent disability.1

The efficacy of available disease-modifying therapies 
(DMTs) for relapsing multiple sclerosis (rMS) and 
progressive (primary progressive MS (PPMS) and 
secondary progressive MS (SPMS)) have been insuf-
ficiently studied in aggressive disease courses.2 For 
some available DMTs, regulatory approval and insur-
ance coverage mandate that patients must be consid-
ered not responsive (based on ongoing clinical or 
radiological disease activity) or intolerant to first-line 
therapies before receiving access to more effective 

treatments. This strategy is debatable in patients with 
a more aggressive form of disease, in which the suc-
cessful therapeutic window of opportunity may be 
narrower than for those with less aggressive disease.3 
Patients with aggressive MS may be better treated if 
given rapid access to therapies considered to be more 
effective at slowing or preventing disability accrual. 
This approach would decrease the probabilities of 
breakthrough disease with first-line DMTs. Therefore, 
early identification of subjects with aggressive dis-
ease at onset or with disease that becomes more 
aggressive over time is essential to both aid treatment 
recommendations and decisions in the clinic. In addi-
tion, having a unified definition of aggressive MS 
could be used as a tool to enrich enrolment and strat-
ify subjects for prospective clinical trials for such dis-
ease phenotype.4 In the current report, attempts to 
define aggressive/active MS are reviewed. The group 
was unable to come to consensus about a new, more 
data-driven definition. However, we provide a 
detailed description of clinical and paraclinical 
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factors that are relevant to substantiate a definition, 
such as imaging, neuropathological and immunologi-
cal findings, as well as biomarker and genetic factors 
that should be studied to determine possible associa-
tions with the clinical phenotype of aggressive MS.

Materials and methods
To explore aggressive MS, its definition and treat-
ment, the European Committee for Treatment and 
Research in Multiple Sclerosis (ECTRIMS) held a 
focused workshop on aggressive MS in March 2018 
in Brussels, Belgium, including 50 European, North 
and South American, Asian and Australian neurolo-
gists and other professionals with interest in the 
understudied subgroup of MS patients with aggres-
sive disease. Presentations on the clinical, paraclinical 
and biological characteristics of aggressive MS were 
followed by discussions about current treatment strat-
egies and recommendations for future research that 
will allow improved definitions of aggressive MS and 
more effective and tailored treatment of affected 
patients. To support information presented at the 
workshop and data which appeared after, while this 
manuscript was being prepared, we conducted litera-
ture searches in the English language using PubMed, 
applying the following search terms: ‘multiple sclero-
sis’ OR ‘MS’ AND ‘aggressive’ and ‘multiple sclero-
sis’ OR ‘MS’ AND ‘highly active’.

Results

Past and recent efforts to define aggressive/highly 
active/malignant MS
Previous efforts to characterize severe or aggressive 
MS focused on the group of patients with highly 
active disease (frequent and severe relapses, rapid 
worsening) and high inflammatory and neurodegen-
erative activity, generally those with poor prognosis 
and outcomes over relatively short periods of time 
(Table 1). These have been variously categorized as 
those with ‘malignant MS’,5 ‘aggressive MS’10 or 
‘highly active MS’.15 ‘Malignant MS’ was defined in 
1996 as a ‘disease with a rapid progressive course, 
leading to significant disability in multiple neurologic 
systems or death in a relatively short time after dis-
ease onset’.5 However, the authors of this statement 
did not specify how to quantify any of these criteria, 
thus leaving the definition somewhat vague. In the 
following years, they advised that a ‘malignant’ (as 
well as a ‘benign’) label may be misleading, vary over 
time and only be determined retrospectively, conclud-
ing that such labels should be used with caution.1

The term ‘ever malignant’ was used to define MS 
patients who reached an Expanded Disability Status 
Scale (EDSS) of 6.0 within 5 years, which corre-
sponded to 12.1% of a cohort of 478 MS patients.6 
‘Ever malignant’ cases had significantly more 
relapses, more motor symptoms and a higher fre-
quency of a progressive onset.6 In a larger study, 4%–
14% of subjects fulfilled the criteria for ‘aggressive 
MS’.7,8 Here, aggressive MS constituted one of the 
three forms: form 1 included patients who reached an 
EDSS of 6 within 5 years, form 2 included those with 
EDSS ⩾6 at the age of 40 years and form 3 included 
those who entered SPMS within 3 years after rMS 
disease onset.7,8 Additional criteria for aggressive 
onset MS have been described from retrospective 
assessment as (1) two or more relapses in the year 
after onset and two or more gadolinium-enhancing 
(Gd+) lesions on brain magnetic resonance imaging 
(MRI) or (2) one relapse within a year after onset if it 
results in sustained baseline EDSS score of 3 along 
with two or more Gd+ lesions.9 Based on these crite-
ria, 58 (7.3%) of 783 MS patients were considered to 
have aggressive onset MS.9

Other definitions of aggressive MS have been proposed 
when considering treatment options. One of the rare 
clinical trials aimed at highly active disease, testing 
mitoxantrone induction therapy prior to interferon 
(IFN) β1b, defined aggressive MS as ⩾2 relapses or an 
EDSS increase ⩾2 points in the 12 preceding months, 
⩾1 Gd-enhancing lesion and baseline EDSS between 
2.5 and 5.0.11 Clinicians faced with identifying patients 
with breakthrough disease eligible for treatment with 
autologous haematopoetic stem cell transplantation 
(aHSCT) have characterized such individuals as hav-
ing ‘highly active MS’, defined as subjects with ‘fail-
ure of at least one and up to three DMTs evidenced by 
ongoing or increased clinical and MRI activity’.12 A 
recent review on treatment algorithms for aggressive 
MS similarly added ‘unresponsiveness to first and/or 
second line treatment’, as a defining feature to be con-
sidered along with clinical and MRI parameters.10

In spite of these reports with various suggestions for 
the definition of severe or aggressive MS, there is no 
consensus about which, if any, of these definitions is 
most appropriate or most useful in clinical practice or 
in a research setting. All are hampered by the need for 
either a retrospective assessment of the disease course 
or a prolonged prospective evaluation until fulfilling 
the proposed criteria and thus hinder the ability to make 
rapid and efficient treatment decisions. Efforts to iden-
tify early risk factors for disease severity are ongoing in 
inception cohorts and registries. Two studies, reported 
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since the conclusion of the workshop, defined aggres-
sive MS as reaching an EDSS ⩾6.0 within 10 years of 
disease onset. In both cohorts, approximately 5.0–6.0% 
of patients fulfilled this definition.13,14 Their findings 
are described in the clinical and MRI subsections in the 
following.

Characteristics of aggressive MS
Clinical features.  Rapid progression of disability is a 
commonly cited characteristic of aggressive MS. 
Clinical manifestations that have been associated with 
an accelerated worsening of disability in MS are sum-
marized in Table 2A, including (a) severe relapse(s) 
leading to an increase by one EDSS point or greater 
than or equal to two points in any functional system 
(FS) and/or the need for hospitalization and/or steroid 
therapy, (b) multifocal attacks,18,19 (c) incomplete 
remission20,21 and (d) attacks affecting motor, cogni-
tive, sphincter or cerebellar systems.14,18,22–26 Addi-
tional clinical factors are frequent relapses in the first 

years,16,27,28 short inter-attack interval21,16 and early 
accrual of disability with superimposed attacks.16 
Severe MS relapses have been more frequently 
reported among young persons with MS65 although 
older age at MS onset is associated with higher risk of 
disability worsening.24,17 After the Workshop, Malpas 
et  al defined aggressive MS as reaching an EDSS 
⩾6.0 within 10 years of disease onset. Indicators of an 
aggressive disease course included age >35 years at 
symptom onset, EDSS ⩾3.0 in the first year and pres-
ence of pyramidal signs in the first year of disease 
evolution. Using the MSBase registry, patients with 
all three features had a 32.0% risk of fulfilling the 
proposed aggressive MS definition.14 Some of these 
findings, such as older age and motor symptoms at 
disease onset, are in accordance with previous 
attempts to define aggressive MS in retrospective 
analyses of prospectively acquired data.6,7

MRI findings.  MRI findings have played a central role 
in diagnosis, individual evaluation in clinical practice 

Table 1.  Historical and contemporary attempts at defining aggressive/highly active multiple sclerosis.

Definition Citation Author

Malignant MS “A disease with a rapid progressive course, leading to significant disability 
in multiple neurologic systems or death in a relatively short time after 
disease onset”

Lublin et al.5

Ever malignant 
MS

“Patients that reached an EDSS of 6.0 within 5 years from onset.” Gholipor et al.6

Aggressive MS “Patients that reached an EDSS of 6.0 within 5 years from onset” (Form 1).
“Patients that reached an EDSS ⩾ 6.0 at the age of 40 years” (Form 2)
“Patients who entered SPMS phase within 3 years after rMS onset” (Form 3)

Menon S et al.7

Menon S et al.8

Aggressive onset 
MS

“MS patients with (a) ⩾2 relapses in the year after onset and ⩾2 Gd+ 
lesions on brain MRI scan or (b) one relapse within 1 year after onset if 
it results in sustained baseline EDSS score of 3.0 along with ⩾2 Gd+ 
lesions”.

Kaunzner et al.9

Aggressive MS “rMS with one or more of the following features: (a) EDSS score of 4.0 
within 5 years of onset.
(b) Multiple (⩾2) relapses with incomplete resolution in the past year.
(c) ⩾2 MRI scans showing new or enlarging T2 lesions or Gd+ lesions 
despite treatment.
(d) No response to therapy with one or more DMTs for up to 1 year”.

Rush et al.10

Aggressive 
relapsing–
remitting MS 
(ARMS)

‘⩾2 relapses or an EDSS increase ⩾2 points in the 12 preceding months, 
⩾1 Gd-enhancing lesion and baseline EDSS between 2.5 and 5.0’.

Edan G et al.11

Highly active MS ‘Failure of conventional treatment and ⩾1 severe relapses and/or incomplete 
recovery from clinically significant relapses and ⩾1 Gd+ lesion of diameter 
⩾3 mm or accumulation of ⩾0.3 T2 lesions/month in two consecutive MRI 
6–12 months apart’.

Saccardi et al.12

Aggressive MS ‘Reaching an EDSS ⩾6.0 within 10 years of disease onset’ Tintore et al.13

Aggressive MS ‘Reaching an EDSS ⩾6.0 within 10 years of disease onset’ Malpas et al.14

MS: multiple sclerosis; EDSS: Expanded Disability Status Scale; SPMS: secondary progressive multiple sclerosis; rMS: relapsing 
multiple sclerosis; MRI: magnetic resonance imaging; Gd+: gadolinium-enhancing lesions; DMT: disease-modifying treatment.
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and as a research tool. It can be used to assess disease 
severity and predict poor prognosis. Several imaging 
biomarkers have been studied, although not necessar-
ily focusing on aggressive MS (Table 2B, Figure 1). 

The presence of a high T2 lesion load, >2 Gd + lesions, 
lesion topography, T1 black holes and early discern-
ible atrophy are well recognized early predictors for 
disease progression.13,29–34,68–70 A study of over  

Table 2.  Potential parameters associated with more aggressive disease course (any one or a combination of these 
characteristics may signal aggressive disease and all are deserving of further exploration and if possible, validation in the 
context of assessing severity of disease and poor prognosis).

A. Clinical features and demographics
  Male sex16,17

  Older age at onset (>35 or >40 years)14,17,18

  Severe relapses
    ⩾1 point increase in EDSS or ⩾2 points in any functional system
    Need of hospitalization and/or steroid therapy
    Multifocal18,19

    Incomplete remission20,21

    Affecting motor, cerebellar, cognition, or sphincter functions18,22–26

    Presence of pyramidal signs in the first year of disease evolution14

  Frequent relapses in the first 5 years27,28

  Short interval between relapses16,21

  Early accrual of disability with superimposed attacks16

  EDSS ⩾3.0 in the first year of disease evolution14

B. MRI findings
  High T2 lesion burden13,29,30

  ⩾20 T2 lesions at the time of disease onset13

  ⩾2 Gd+ lesions10,31

  ⩾2 Gd+ lesions at the time of disease onset13

  T1 black holes29,32

  Infratentorial lesions30,33

  Spinal cord lesion and/or atrophy30,34,35

  Early discernible atrophy36

  Cortical and deep grey matter atrophy32,37,38

  Smouldering lesions39

C. Neuropathological features
  Transections of axons during inflammatory demyelination40

  Chronic demyelination causing axonal degeneration41

  Cortical demyelination with neuritic transection and neuronal death42

  Synaptic spine loss43

D. Immunological features in the blood
  Shift in the balance between Tregs and proinflammatory T-cells44–47

  Lower percentage of CD4+ Foxp3 Tregs, memory CD4 and CD8 cells and CD56high NK Cells44,46,47

  Increased Th17 cell responses48

  Low TCR diversity49

E. Biomarker correlates
  Detection of CSF IgM OCB50,51

  Elevated IgG Index48

  Elevated levels of NfL in CSF or serum52–55

  CSF CXCL1356,57

  CSF CHI3L158

CSF MMP959

F. Genetic markers
  HLA-DRB1*15:0160

  PD-161

  MGAT562

  APOE-epsilon 463

  BDNF64

MS: multiple sclerosis; EDSS: Expanded Disability Status Scale; Gd+: gadolinium enhancing lesions; TCR: T-cell receptor; CSF: 
cerebrospinal fluid; OCB: oligoclonal bands; NfL: neurofilament light chain; CHI3L1: chitinase 3-like 1 protein; MMP9: metalloma-
trix protein 9.
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1000 patients with clinically isolated syndromes (CIS) 
characteristic of MS showed that a high brain T2 
lesion load at baseline was the most robust predictive 
factor for future disability accrual.68 Tintore et  al.13 
used a Barcelona-based inception cohort and, like Mal-
pas et al.,14 defined aggressive MS as reaching an EDSS 
⩾6.0 within 10 years of disease onset. Early radiologi-
cal biomarkers associated with this outcome were the 
presence of ⩾20 lesions on T2-weighted images or ⩾2 

Gd+ lesions on the brain MRI performed at the time of 
the first attack. When both MRI conditions were ful-
filled, the risk increased to almost 20.0%.13 The devel-
opment of >1 Gd+ lesion and new T2 lesions was 
associated with poorer prognosis at follow-up.71 In 
addition, the positive correlation between MRI event-
free survival and progression-free survival after 
aHSCT in MS further supports the predictive value of 
new MRI lesions for disease progression.72,73

Table 3.  A selection of biomarkers in CNS and periphery and their association with prognosis.

Biomarker Authors n Duration of 
follow-up 
(months)

MRI data available Major findings

Intrathecal IgG Gasperi et al. 
(MS)48

673 48 Yes Intrathecal IgG synthesis 
is associated with worse 
prognosis

Lipid-specific IgM-
OCB

Margraner et al. 
(CIS)50

24 48 Yes Lipid-specific IgM-OCB are 
associated with worse MRI 
measures

Lipid-specific IgM-
OCB

Trangarajh et al. 
(MS)51

81 >120 NA Lipid-specific IgM-OCB are 
associated with worse long-
term clinical progression

CSF-NfL Salzer et al. 
(MS)52

95 168 NA Initial CSF-NfL levels 
relate to long-term clinical 
disability

CSF-NfL Hakansson et al. 
(MS)53

41 48 Yes CSF-NfL levels are 
predictor of aNEDA-3 status 
after 4 years

s-NfL Chitnis et al. 
(MS)54

122 120 Yes Early s-NfL levels correlate 
with T2LV, BPF and fatigue 
but not EDSS at 10 years

s-NfL Barro C et al. 
(MS)55

259 78 Yes s-NfL levels correlate with 
relapse, brain/spinal cord 
atrophy and clinical severity

CSF-CXCL12 and
CSF-CXCL13

Krumbholz et al. 
(MS)66

52 NA No MRI
Neuropathological 
findings

CSF-CXCL12 and 13 are 
elevated in MS CSF and in 
MS lesions

CSF-CXCL13 Brettschneider 
et al. (CIS and 
MS)67

91 48 Yes CSF-CXCL13 levels predict 
conversion to MS

CSF-CXCL13 Khademi et al. 
(CIS/MS)54

466 60 Yes CSF-CXCL13 levels predict 
MS, relapse rate and new 
lesions

CSF-CXCL13 Puthenparampil 
et al. (MS)55

40 6-12 Yes CSF-CXCL13 is associated 
with cortical thinning and 
high CSF leukocyte count

CSF-CH13L1 Canto et al. 
(CIS)67

813 120 Yes
Neuropathological 
findings

CSF-CHI3L1 levels predict 
conversion to MS and 
increase in disability

n: number of patients; MS: multiple sclerosis; CIS: clinical isolated syndrome characteristic of MS; MRI: magnetic resonance imaging; 
NA: not applicable; OCB: oligoclonal bands; CSF: cerebrospinal fluid; s-NFL: serum neurofilament light chain; T2LV: T2 hyperin-
tense lesion volume; BPF: brain parenchymal fraction; CXCL: C-X-C motif chemokine ligand; CH13L1: chitinase-3-like protein.
aPatients with no relapses, no brain MRI activity (no new or enlarging T2 lesions or gadolinium-enhancing lesions) and no 
sustained disability worsening (EDSS progression) during follow-up were classified as showing no evidence of disease activity-3 
(NEDA-3).
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The presence of ⩾1 spinal cord lesion, symptomatic 
or asymptomatic, has been reported as a marker of 
early and long-term disability accrual.30,34 A 

meta-analysis also showed that spinal cord atrophy 
significantly correlated with clinical disability.35 In a 
study of non-spinal CIS patients, spinal cord factors 

Figure 1.  Typical characteristics of aggressive MS on conventional MRI: (a)–(c) T2-FLAIR transverse sequences 
showing multiple nodular, confluent lesions predominantly affecting the periventricular and callosal topographies (see 
arrows) in a 33-year-old male patient with a first demyelinating attack. (d)–(f) T1 transverse sequences in the same 
patient after gadolinium administration show multiple nodular and ring-enhancing lesions. (g) (T2-FLAIR transverse 
sequence) and (h) (T2 sagittal sequence of the cervical spinal cord) show multiple infratentorial and spinal cord lesions in 
a 24-year-old female patient with relapsing–remitting multiple sclerosis, several of which showed contrast enhancement 
despite treatment with (i) and (j) fingolimod.
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such as lesion number, change in lesion number and 
change in upper cervical cord cross-sectional area 
were independently associated with reaching an 
EDSS ⩾3.0 at 5 years. Inclusion of brain lesion load 
and atrophy modestly increased the predictive power 
of the model,70 suggesting spinal cord red flags may 
be more relevant than brain red flags to predict disa-
bility, at least as measured by the EDSS. In another 
study of MS patients, the results suggested that the 
presence of spinal cord lesions may indicate a higher 
risk of 6- and 11-year EDSS progression than infraten-
torial lesions.74 In addition, the presence of ⩾2 Gd+ 
lesions and ⩾1 spinal cord lesions at baseline and 1 
year and ⩾1 new spinal cord lesions at 3 years of dis-
ease evolution were associated with conversion to 
SPMS at 15 years.30 Furthermore, the occurrence of 
cortical lesions and cortical atrophy has been reported 
as risk factors for early neurological deficit in MS.37

When assessing tissue loss, the accumulation of hypoin-
tense lesions ( ‘black holes’) on T1 sequences corre-
lated with progression rate.29 As for early brain atrophy, 
a study in CIS patients showed that a percentage brain 
volume change (PBVC) decrease below −0.817% in the 
first year of disease evolution was an independent pre-
dictor of a shorter time to a second attack,75 which could 
be an indicator of aggressive MS. Evidence of a positive 
correlation between the disability level and atrophy of 
the thalamus and basal ganglia has been supported in 
several studies.76,77 A significant association between 
deep grey matter brain atrophy rate and time to disabil-
ity progression was detected in a cohort of more than 
1200 MS patients.36 Interestingly, another study showed 
that the presence of isolated thalamic atrophy without 
whole brain atrophy distinguished patients with a higher 
risk of fast disability progression.38

More recently, the presence of smouldering lesions has 
been suggested as a new MRI marker of poor outcome 
in MS patients since it reflects persistent inflammation, 
delayed tissue repair and neurodegeneration.39

Neuropathological aspects of highly active MS.  A 
major contributor to the development of permanent 
disability in MS is axonal loss, which is an ongoing 
process from disease onset.78 This suggests that there 
should be a strong correlation between rapid disabil-
ity accumulation and a high rate of axonal damage 
and loss (Table 2). Key mechanisms resulting in neu-
ronal dysfunction include (1) transection of axons by 
an inflammatory attack, (2) chronic demyelination 
causing axonal degeneration, (3) cortical demyelin-
ation causing neuritic transection and neuronal death 
and (4) synaptic spine loss.40,42,43 The observation that 

macrophage infiltration within active lesions corre-
lates with axonal transection supports the role of 
inflammatory mechanisms in axonal loss.40 Axonal 
loss within chronic demyelinating lesions is thought 
to be a consequence of loss of myelin trophic support, 
rendering denuded axons vulnerable to the chronic 
inflammatory environment with CD8+ cells, microg-
lia and oxidative stress factors.41

Additional factors contributing to axonal loss occur in 
the normal appearing white matter (NAWM) involv-
ing secondary Wallerian degeneration of injured 
axons in adjacent white matter plaques.79 Cortical 
lesions have been associated with prominent neuronal 
apoptosis in addition to axonal and dendritic transec-
tion, and the presence of such lesions has been sug-
gested as a potential biomarker for risk of early 
disability development.80

Taken together, extensive widespread neuroaxonal 
damage and loss in MS may be viewed as the neuro-
pathologic counterpart to clinically aggressive MS, 
but this needs to be validated in clinicopathological 
correlated studies. In clinical practice, ongoing axonal 
loss may be the underlying pathology in patients with 
sustained progression despite treatment with one or 
more DMTs.

Peripheral immune correlates of highly active 
MS.  Alterations in the peripheral immune system 
associated with highly active MS have been poorly 
studied. However, the observation of sustained sup-
pression of active neuroinflammation following 
aHSCT in patients with aggressive/highly active MS 
has provided insights into immune mechanisms that 
might be associated with a highly inflammatory clini-
cal phenotype in MS81 (Table 2D). A significant shift 
in the balance between regulatory and proinflamma-
tory cells in the circulation has been detected in 
patients with active MS that underwent successful 
aHSCT.44–47 Proportionally increased levels of 
CD4 + Foxp3 + regulatory T-cells (Tregs), memory 
CD4 + and CD8 + cells, CD56high natural killer (NK) 
cells and diminished Th17 cell responses have been 
observed during peripheral immune reconstitution 
after aHSCT in MS.44–47 In addition, successful out-
comes after aHSCT in MS patients with ‘a poor prog-
nosis’ correlated with more diverse T-cell receptor 
(TCR) repertoires of CD4 + cells suggesting that low 
TCR diversity may be a risk factor for a highly inflam-
matory disease course.49 Altogether, these findings 
indicate a possible association between dysregulated 
subgroups of T cells and NK cells with highly active 
MS. Such data, not specifically gathered to define 
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aggressive MS, deserve further exploration and vali-
dation as potential immune markers for the disease.

CSF and blood biomarkers with prognostic values 
(Table 2E and Table 3).  Intrathecal IgG synthesis at 
MS onset was associated with increased risk of dis-
ability worsening within 4 years although intrathecal 
IgG synthesis is present in 60% of MS patients inde-
pendent of disease severity or prognosis.48 Further-
more, the presence of IgM OCB correlated with 
higher disease activity, EDSS progression and brain 
atrophy in rMS.50,51

Evaluation of neurofilament light chain (NfL) levels 
in both CSF (cNfL) and serum (sNfL) has shown 
strong promise as a marker for disease activity and 
disability correlated with neuroaxonal damage in MS 
and has been implemented as part of routine clinical 
assessment in some countries. To date, however, a 
correlation of NfL levels with disease severity has 
not been studied. Levels of cNfL were associated 
with both new T2 lesions and brain volume loss dur-
ing follow-up; cNfL at MS diagnosis correlated with 
Multiple Sclerosis Severity Scale (MSSS) estimates 
during a follow-up period of 8–20 years.52,53 In a 
related finding, sNfL levels correlated with risk of 
future relapses,53 disability worsening and brain T2 
lesion load.54,55 Increased sNfL was also found to be 
a negative predictor for MS, correlating with brain 
atrophy and disability development in early MS.54,55 
Some studies have attempted to establish predictive 
cut-off values of NfL levels. Patients with cNfL lev-
els >386 ng/L had a higher risk of conversion to 
SPMS than patients with lower levels,52 although this 
cut-off has not been fully validated. Another study 
assessed stratified cNfl and sNfL measurements in 
rMS patients during the first years of participation in 
a clinical trial on IFN-β versus placebo. Upper tertile 
year 2 cNfl and year 3 sNfL levels were predictive of 
reaching an EDSS ⩾6.0 at year 8 from inclusion 
compared to lower tertile levels. Similarly, upper ter-
tile year 4 sNfL concentration was predictive of 
reaching an EDSS score ⩾6.0 at 15 years, with NfL 
concentrations being complementary to 2-year brain 
parenchymal fraction change in predicting long-term 
outcomes.82

Evaluation of C-X-C motif chemokine ligand 13 
(CXCL13), also called B-cell attracting chemokine 1 
(BCA-1), has recently been used to assess inflamma-
tory activity in MS. The chemokine CXCL13 is con-
sidered to reflect B-cell activity in the CNS, and 
increased CSF CXCL13 levels were found to corre-
late with conversion from CIS to clinically definite 
MS and with relapse rates.56,66,67 Furthermore, CSF 

CXCL13 levels were associated with cortical atrophy 
in MS suggesting its value as a marker to predict dis-
ability progression.57

Since presence of cortical lesions may be considered 
as a risk factor for early MS disability development,32 
there have been attempts to develop surrogate non-
imaging biomarkers for assessment of cortical dam-
age. Increased levels of a specific panel of 
proinflammatory cytokines and chemokines includ-
ing TNF, sTNFR1, IFN γ, CXCL12, CXCL13, IL6, 
IL8, IL10, BAFF, APRIL, LIGHT, TWEAK, MMP-2, 
pentraxin3 and sCD163 distinguished patients with 
high cortical lesion load at diagnosis compared to 
patients with low cortical lesion load.83

Other potential CSF biomarkers that reflect inflam-
matory activity and may have prognostic value 
include proteolytic enzyme matrix metalloprotein-
ase-9 (MMP9), osteopontin and chitinase 3-like 1 
protein (CHI3L1). MMP9 is considered to have a cen-
tral role in MS pathogenesis with functions relating to 
CNS tissue destruction. The finding that progressive 
MS with inflammatory activity had increased levels 
of CSF MMP9 suggests its potential as a marker to 
distinguish progressive patients that could benefit 
from anti-inflammatory therapies.59 CHI3L1 corre-
lated with disease severity in several inflammatory 
diseases and was an independent risk factor for devel-
opment of EDSS 3 in a multivariate study on more 
than 800 European CIS patients.58 Importantly, none 
of these biomarkers have yet been established as reli-
able markers to predict aggressive MS and should 
currently only be viewed as indicators with potential 
prognostic values and as a fertile area for research and 
validation.

Genetic markers of MS disease activity.  MS risk 
genes have been investigated for their influence on 
MS disease outcome but the results have been con-
flicting63,84 (Table 2F). The most dominant MS risk 
gene, HLA-DRB1*15:01, correlated with develop-
ment of increased number of T2 MRI lesions and loss 
of brain volume in MS.60 A German study demon-
strated that PD-1 polymorphisms were associated 
with a progressive disease course, which was consid-
ered to be a consequence of impaired PD-1-mediated 
inhibition of T cell activation.61 A genome-wide asso-
ciation study detected variants of the glycosylation 
enzyme MGAT5 that influenced the severity of MS62 
and carriers of the APOE-epsilon 4 allele had a more 
severe disease progression.63

Non-immune-related genes such as those involved in 
neuroprotective or regenerative mechanisms have 
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emerged as possible risk factors for MS disease out-
come heterogeneity.85,86 Genetically determined 
axonal response to inflammation and environmental 
factors might be associated with clinical outcome and 
disability progression in MS. An intriguing example 
was the detection that allelic variants of the neuropro-
tective ciliary neurotrophic factor (CNTF) were asso-
ciated with disease onset, course and severity of 
experimental autoimmune encephalomyelitis (EAE) 
in mice.87 Furthermore, polymorphisms of the brain-
derived neurotrophic factor (BDNF) have in some 
studies been shown to impact on grey matter tissue 
damage in MS.64 However, current data on gene vari-
ants associated with aggressive MS are very sparse 
and controversial; additional genetic studies may 
determine whether the clinical cohort of aggressive 
MS can be genetically distinguished from other dis-
ease phenotypes.

Achievements, gaps in knowledge and future 
perspectives
Clinical, paraclinical and laboratory assessments all 
have the potential to be used in categorizing MS 
patients with a prognosis of poor outcomes over a 
short period of time, although most have not been 
evaluated with this goal in mind. Disease severity and 
activity are essential parameters when considering the 
right treatment for patients.88 While guidelines exist 
for treatment of rMS, PPMS and SPMS, specific 
guidance for how to approach treatment for severe, 
rapidly aggressive MS are lacking.88 To develop such 
guidelines, and to better manage those patients with 
aggressive disease, it is important to clearly identify 
subjects with initial or evolving signs of aggressive 
disease course as early as possible and offer them a 
highly efficient treatment as soon as possible after 
disease onset to mitigate breakthrough disease and 
progression of permanent disability.

Based on the discussion held during the ECTRIMS 
workshop on aggressive MS and on recent results 
from retrospective studies with prospectively col-
lected data, we believe that several identified clinical 
and imaging features, possibly along with elevated 
CSF and/or serum NfL levels, might be considered as 
the most promising characteristics of highly active 
MS (Table 4).

A limitation of this proposal is that several of these 
features were not studied in the context of aggressive 
MS or weighted against other suspected risk factors. 
The identification of several risk factors, however, 
depended on establishing a working definition of 
aggressive MS which, in two studies, was reaching an 

EDSS ⩾6.0 within 10 years of disease onset. Clinical 
risk factors of individuals who might be considered to 
have aggressive MS are age >35 years at symptom 
onset, EDSS ⩾3.0 in the first year and presence of 
pyramidal signs in the first year of disease evolution.14 
Older age and motor symptoms at disease onset were 
also identified as risk factors in previous attempts to 
define aggressive MS.6,7 MRI risk factors include the 
presence of ⩾20 T2 lesions or ⩾2 Gd+ lesions on the 
brain MRI performed at disease onset.13 When pre-
sent, these factors may serve as ‘red flags’ to define a 
patient as a candidate for early, more aggressive thera-
peutic intervention. This suggestion must be consid-
ered a working definition that needs to be solidified 
through future research, requiring validation in other 
cohorts to confirm or refute their short- and long-term 
value in the clinical practice. Conversely, we also have 
to acknowledge that several parameters potentially 
associated with aggressive MS (Table 2) may be use-
ful only for research purposes to understand this phe-
notype (i.e. neuroaxonal damage). In this sense, it will 
be important to identify those with translational 
potential.

As noted in the manuscript, the list of current ‘red 
flags’ for aggressive disease is far from complete. 
Notably missing are immunological assays, advanced 
imaging, pathological, genetic, and many potential 
body fluid biomarkers mentioned above. Identifying 
their differential contribution of relapse activity and 
disease progression is difficult, as disability may occur 
due to the consequences of inflammation and/or pure 
neurodegenerative mechanisms. Rather, it is important 
to study the degree to which inflammation and neuro-
degeneration factors (and their possible interactions) 
are involved in the etiopathogenesis of aggressive MS. 
This may aid in defining not only aggressive MS in 
relapsing forms but also in progressive phenotypes in 
which available evidence is even scarcer.

Importantly, whereas recent studies are based on find-
ings at disease onset or during the first year of the 
disease,13,14 potential risk factors should be assessed 
throughout the disease evolution. MS may become 
highly active after years of stability in some patients, 
and persons with a high functional reserve may take 
longer to develop disability.89

In addition, as the proportion of patients with charac-
teristics of aggressive MS is low, collaborative studies 
based on large observational registries and focused 
cohorts are necessary. These studies enable prognosti-
cation that is both generalizable and comprehensive. 
In addition, robust analytical approaches of the most 
relevant risk factors, like Bayesian analyses, are a 
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requisite of a shift from studies of associations at the 
group level towards individual prognosis. Afterwards, 
replication of novel associations in independent vali-
dation cohorts is essential.

While objective markers for MS disease severity are 
desirable, one cannot ignore the value of clinical 
judgement, independent of the presence or absence of 
markers, especially in the context of patients being 
followed over time by the same physician.
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PBVC: percentage brain volume change; NfL: neurofilament light chain; CSF: cerebrospinal fluid.
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