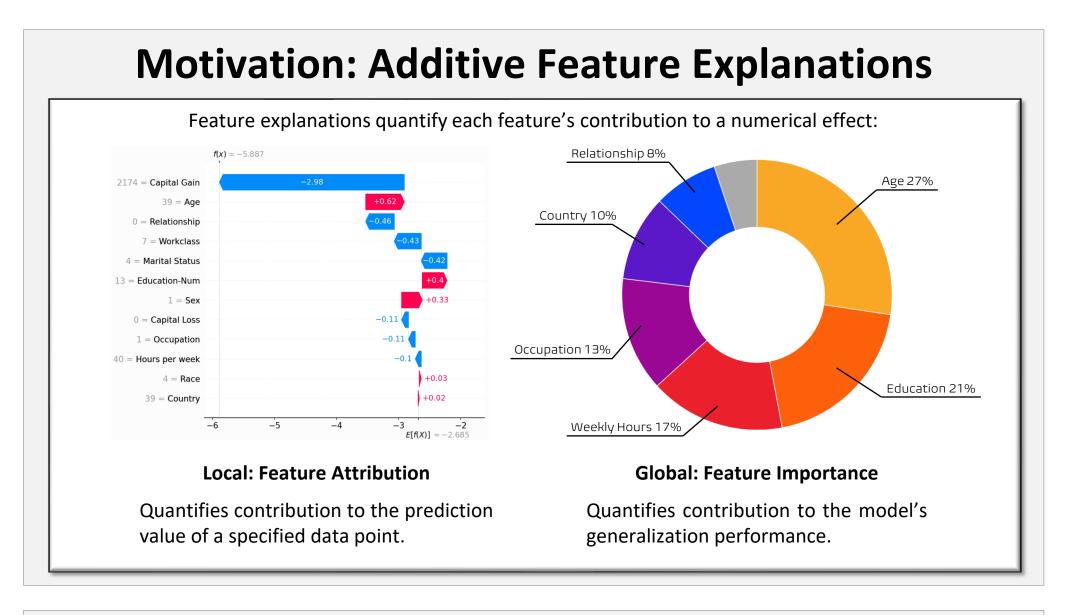
Approximating the Shapley Value without Marginal Contributions

Patrick Kolpaczki¹, Viktor Bengs², Maximilian Muschalik², and Eyke Hüllermeier²



Shapley Value

Player set $\mathcal{N} = \{1, \ldots, n\}$

 $u: \mathcal{P}(\mathcal{N}) \to \mathbb{R}$ ■ Value function

with $\nu(\emptyset) = 0$

 \rightarrow Features, datapoints, neurons, base learners etc.

→ Predicted value, generalization performance

Definition: Shapley Value (Shapley, 1953)

$$\phi_i = \sum_{S \subseteq \mathcal{N} \setminus \{i\}} \frac{1}{n \cdot \binom{n-1}{|S|}} \cdot \underbrace{[\nu(S \cup \{i\}) - \nu(S)]}_{=\Delta_i(S)}$$

Marginal contribution $\Delta_i(S)$: Increase in collective benefit when *i* joins *S*.

- Unique solution to fulfill desirable axioms: Efficiency, Symmetry, Additivity, Null-Property
- Computational effort scales **exponentially** with $n : 2^n$ coalitions in total

Fixed-budget approximation problem:

- Given cooperative game (N, v) with unknown Shapley values $\phi_1, ..., \phi_n$
- Budget T : Allowed number of evaluations of v (bottleneck due to model access) Model evaluations (inference, retraining) pose bottleneck on runtime rather than arithmetic operations
- Minimize mean squared error (MSE) averaged over all players for estimates $\hat{\phi}_1, \dots, \hat{\phi}_n$:

$$rac{1}{n}\sum_{i=1}^{n}\mathbb{E}\left[\left(\hat{\pmb{\phi}}_{i}-\pmb{\phi}_{i}
ight)^{2}
ight]$$

Approximation by sampling marginal contributions:

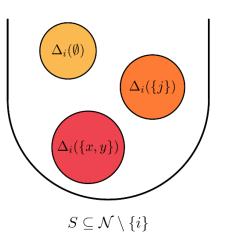
- Weights form a well-defined probability distribution:
- \rightarrow The Shapley value is the expected marginal contribution:
- Obtain $\hat{\phi}_i$ by sampling marginal contributions according to weights
- One separate approximation problem for each player

Problem: Notion of marginal contributions is inefficient!

One update of $\hat{\phi}_i$ with $\Delta_i(S) = \nu(S \cup \{i\}) - \nu(S)$ costs **2 budget tokens**

$$\sum_{S \subseteq \mathcal{N} \setminus \{i\}} rac{1}{n \cdot \binom{n-1}{|S|}} = 1$$

$$\phi_i = \mathbb{E}\left[\Delta_i(S)\right]$$



1) Paderborn University, Paderborn, Germany

2) LMU Munich, Munich, Germany

Contribution

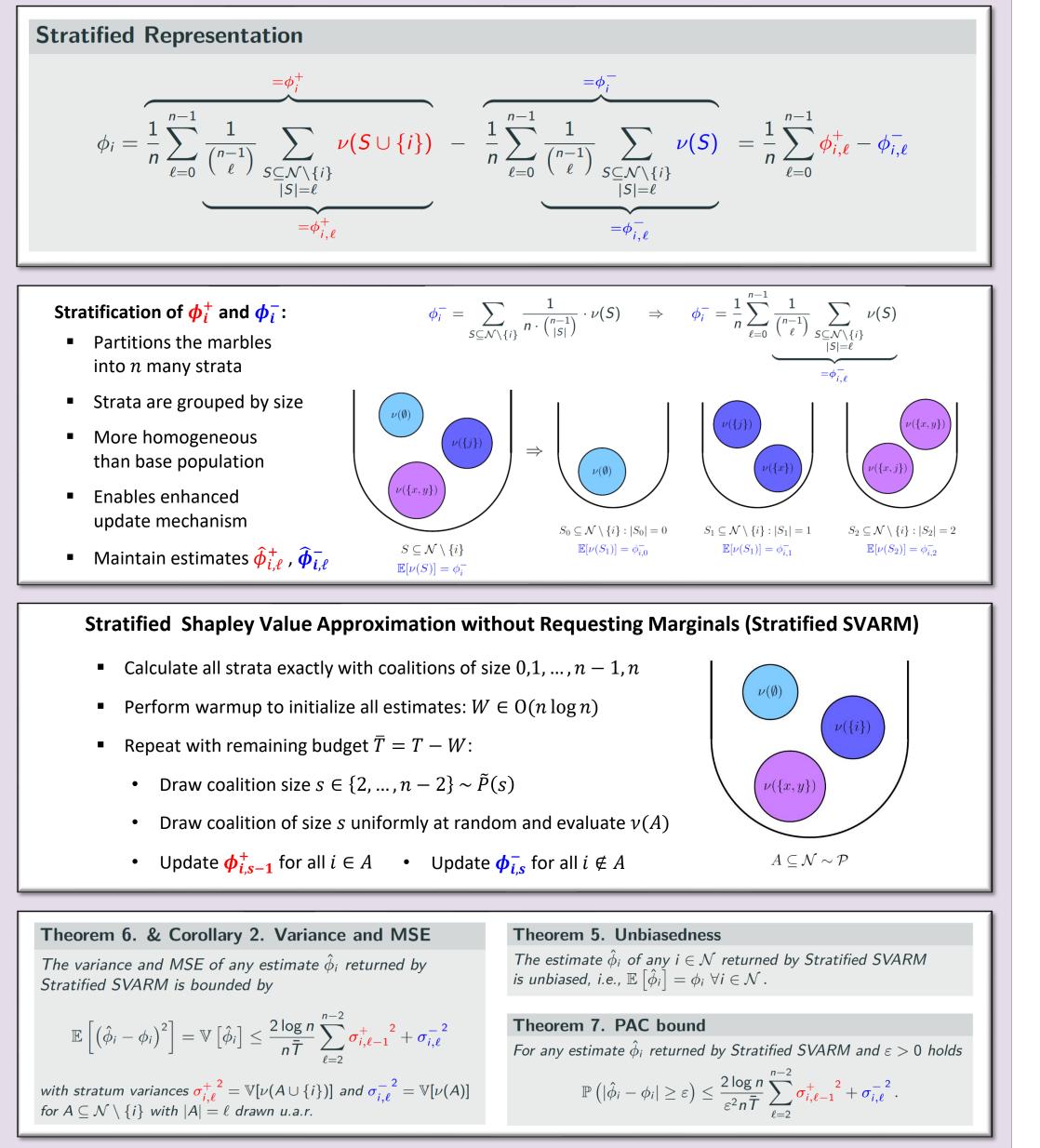
We propose a novel approximation algorithm for the Shapley value with:

- New combination of stratified representation + update mechanism
- Novel strong theoretical guarantees
 State-of-the-art empirical performance

Desirable properties:

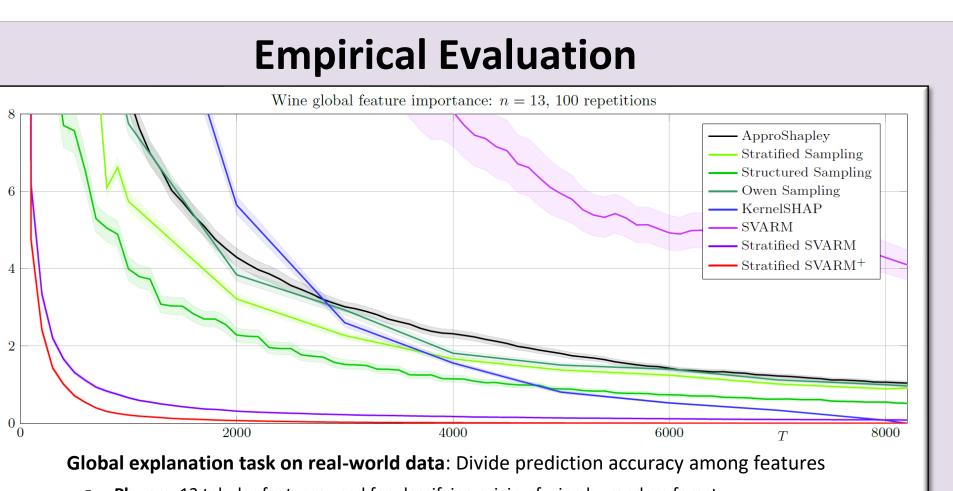
- ✓ Model-agnostic / domain-independent → Applicable for data valuation, neuron importance, etc. and even outside of ML
- ✓ No hyperpameters
- \rightarrow No fine-tuning
- ✓ Estimates available at any time
- ✓ Uncertainty-aware
- \rightarrow Budget can be cut and extended arbitrarily
- \rightarrow Allows construction of confidence intervals

Approximation Algorithm

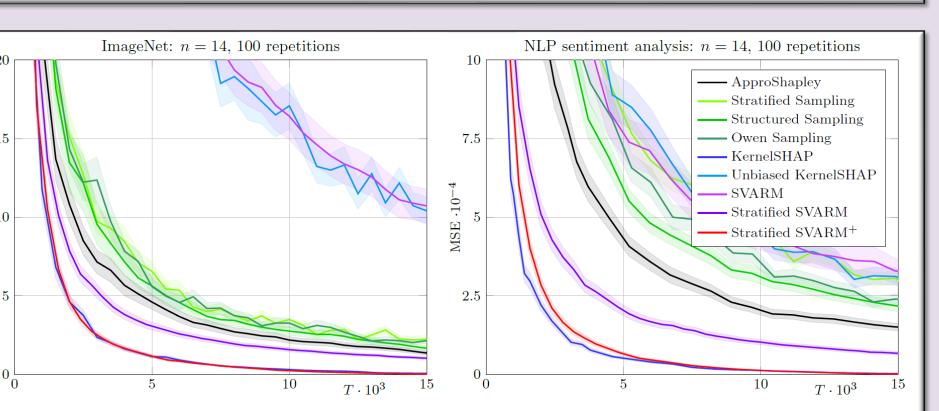


The 38th Annual AAAI Conference on Artificial Intelligence

FEBRUARY 20-27, 2024 | VANCOUVER, CANADA



- Players: 13 tabular features used for classifying origin of wine by random forest
- Feature removal: Retrain model on training data with only present coalitions Value function: Classification accuracy of random forest measured on test data



Local explanation tasks on real-world data: Divide predicted class probability among features

- Players: 14 semantic tiles (ImageNet), 14 tokenized words (NLP sentiment analysis)
- Pretrained model h predicts probability distribution over class labels
- Feature removal: Impute value by mean (numeric feature) or mode (categorical feature)
- Predicted class probability of label c using feature subset $S: h_S(c)$
- Predicted class label with full feature set: c^*
- Value function: $v(S) = h_S(c^*) h_{\emptyset}(c^*)$



Ministry of Culture and Science of the State of North Rhine-Westphalia

