Mitigating Label Noise through Data Ambiguation
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PROBLEM SETTING

Setting: Probabilistic classification given instances

(x,y) € X x Y with discrete space Y = {y4, ..., Vx}

* Instances x € X associated with underlying ground-
truth class-conditional probability p*(-| x) € P(Y)

Goal: Learn probabilistic classifier p : X —» P(Y)
Problem: Dealing with label noise

* Observing some instances with corrupted training
labels y # y

Idea: Deliberately ambiguate labels if

the model suggests a different label than
the observed training label.
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MODELING AMBIGUOUS PROBABILISTIC

EXPERIMENTS
Empirical results show suppression of memorization
effects, leading to improved robustness against label

TRAINING DYNAMICS WHEN FACING LABEL
NOISE

Training dynamics of (overparameterized) models
show two distinct phases [1,2]:

) “Correct concept learning phase”

1) Memorization phase
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LABELS
Ambiguation of probabilistic labels by credal sets Q:
* Modeling beliefs about p* as upper

probabilitiesm : Y — [0,1]

= 1(y") represents upper bound on p*(y")

= 7m(y) = 1 for observed training label y

Qr = {p e P(Y) ‘ VY S Y: X,y p(y) < r;}gg;ﬂ(y’)}

Learning from credal sets by

label relaxation [4].
L*(Qp, D) = 2glfelignﬁ(p, p)”
=  Probabilistic loss L, efficient
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= Features data disambiguation [3]
Add CIFAR-10 CIFAR-100
Loss Param Sym. Sym.
' 25 % 50 % 75 % 25 % 50 % 75 %
CE X 79.05 £0.67  55.03 £1.02  30.03 +£0.74 | 58.27 £0.36  37.16 £0.46  13.66 +0.45
ROBUST DATA AMBIGUATION (RDA) LS (a=0.1) X 76.66 £0.69  53.95 £1.47  29.03 £1.21 | 59.75 £0.24  37.61 £0.61  13.53 +0.51
LS (a = 0.25) X 77.48 £0.32  53.08 £1.95  28.29 £0.65 | 59.84 £0.57  39.80 £0.38  14.18 +0.44
LR (o = 0.1) X 80.53 £0.39  57.55 £0.95  29.83 £0.87 | 57.52 £0.58  36.77 £0.54  13.23 +0.14
Py, Py, LR (o = 0.25) X 80.43 £0.09  60.18 £1.01  31.36 £0.91 | 57.67 £0.11  37.15 £0.14  13.41 +0.24
GCE X 90.82 £0.10  83.36 £0.65  54.34 £0.37 | 68.06 £0.31  58.66 +0.28  26.85 +1.28
NCE X 79.05 £0.12  63.94 £1.74  38.23 £2.63 | 19.32 £0.81  11.09 £1.03  6.12 £7.57
NCE+AGCE X 87.57 £0.10  83.05 £0.81  51.16 +6.44 | 64.15 £0.23  39.64 +£1.66  7.67 +1.25
NCE+AUL X 88.89 £0.29  84.18 £0.42  65.98 +1.56 | 69.76 £0.31  57.41 £0.41  17.72 +£1.27
CORES X 88.60 £0.28  82.44 +£0.29  47.32 +17.03 | 60.36 £0.67  46.01 £0.44  18.23 +0.28
RDA (ours) | X | 91.48 £0.22 86.47 +£0.42 48.11 £15.41 | 70.03 £0.32 59.83 +1.15  26.75 +£8.83
Lose Add. CIFAR-10N CIFAR-100N
Param. | Random 1 Random 2 Random 3 Aggregate Worst Noisy
CE X 82.96 £0.23  83.16 £0.52  83.49 +0.34  88.74 £0.13  64.93 +0.79 | 52.88 £0.14
LS (o= 0.1) X 82.76 £0.47  82.10 £0.21  82.12 +0.37  88.63 £0.11  63.10 +£0.38 | 53.48 +0.45
LS (o = 0.25) X 82.95 +1.57 83.86 £2.05 82.61 £0.25 87.03 £2.29  66.14 +6.89 | 53.98 £0.27
\
yi(wrong) - f y1(wrong) LR (a_ 0.1) X 83.00 £0.36  82.64 £0.31  82.82 +£0.21  88.41 £0.29  66.62 +£0.33 | 52.01 +0.04
LR (a = 0.25) X 82.14 +0.49  81.87 +0.34  82.46 +0.11  88.07 £0.45  66.44 +0.14 | 52.22 £0.29
GCE X 88.85 £0.19  88.96 £0.32  88.73 +0.11  90.85 £0.32  77.24 +0.47 | 55.43 +0.47
. : : NCE X 81.88 £0.27  81.02 £0.32  81.48 +0.13  84.62 £0.49  69.40 +0.10 | 21.12 +0.67
Algorithm 1 Robust Data Ambiguation (RDA) Loss NCE+AGCE X 89.48 £0.28  88.95 £0.10  89.25 £0.29  90.65 £0.44  81.27 +0.44 | 51.42 +0.65
- . ) . — NCE+AUL X 89.42 £0.22  89.36 £0.15  88.94 +0.55  90.92 £0.19  81.28 +0.47 | 56.58 +0.41
Require: Training instance (CU, y) € X x ), model prediction P(CU) S ]P)(y )7 CORES X 86.09 £0.57  86.48 £0.27  86.02 £0.22  89.23 £0.10  76.80 £0.96 | 53.04 +0.29
confidence threshold 3 € [0, 1], relaxation parameter o € [0, 1) RDA (ours) | X | 90.43 £0.03 90.09 £0.20 90.40 £0.01 91.71 £0.38 82.91 £0.83 | 59.22 +0.26

1: Construct 7 as in Eq. (4) with

(') = {1 ify' =yVvpy'|z) >0

« otherwise

2: return L*(Q,p(x)) as specified in Eq. (4), where @, is derived from 7

» Robust “off-the-shelf” loss function against label
noise without adding complexity
» On-the-fly loss calculation, no additional
parameters
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