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Process mining is a research area focusing on the design of algorithms that can auto-
matically provide insights into business processes. Among the most popular algorithms
are those for automated process discovery, which have the ultimate goal to generate a
process model that summarizes the behavior recorded in an event log. Past research had
the aim to improve process discovery algorithms irrespective of the characteristics of
the input log. In this paper, we take a step back and investigate the connection between
measures capturing characteristics of the input event log and the quality of the discov-
ered process models. To this end, we review the state-of-the-art process complexity
measures, propose a new process complexity measure based on graph entropy, and ana-
lyze this set of complexity measures on an extensive collection of event logs and corre-
sponding automatically discovered process models. Our analysis shows that many
process complexity measures correlate with the quality of the discovered process mod-
els, demonstrating the potential of using complexity measures as predictors of process
model quality. This finding is important for process mining research, as it highlights
that not only algorithms, but also connections between input data and output quality
should be studied.
� 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Recent years have seen a drastic increase in the availability of event sequence data and corresponding techniques for ana-
lyzing business processes, healthcare pathways, or software development routines [46,28,16]. Process mining is a research
area focusing on the design of techniques that can automatically provide insights into business processes by analyzing his-
toric process execution data, known as event logs [45,15]. In process mining research, various algorithms have been devel-
oped for automated process discovery. A recent study found a rich spectrum of 35 distinct groups of such algorithms
scattered over more than 80 studies [6]. Much of this research on automated process discovery is motivated by the ambition
to improve process discovery outputs, in terms of high precision and recall, while producing models that are simple and easy
to understand [3].
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So far, this stream of research on improving process discovery algorithms has been largely driven by the implicit assump-
tion that a better algorithm would generate a better process model, no matter the characteristics of the input event log. In
fact, there are good reasons to question this narrow focus. First, research on computer experiments highlights that studying
the effect of input data characteristics on output is an important objective in many research areas [39,27]. Second, research
on classifiers demonstrates the benefits of selecting algorithms based on characteristics of the input data [20,36,35]. Third, in
various application domains, establishing a solid understanding of how input characteristics influences output has led to
fundamental algorithmic innovations [38]. For these reasons, Kriegel et al. recommend factoring in the variation of input
parameters over meaningful ranges when comparing algorithms [22].

In this paper, we revisit the output quality of automated process discovery algorithms in light of these argu-
ments. More specifically, we investigate the empirical connections between measures capturing process complexity
in terms of process behavior recorded in an event log and the quality of the process models discovered from that
event log, as well as which of these process complexity measures can serve as a suitable predictor of process dis-
covery quality. To this end, we first review process complexity measures defined in prior research studies. We ana-
lyze their characteristics and categorize them according to what perspective of process complexity they capture.
Then, noting that each measure relates to a different perspective, we propose a new measure of process complexity
based on graph entropy, which can exhaustively capture process complexity from multiple perspectives. Lastly, we
analyze the process complexity measures using a prototypical implementation and an evaluation over an extensive
set of event logs and their corresponding automatically discovered process models. Our analysis shows that many
process complexity measures (including our novel measure) correlate with the quality of the discovered process
models. Our findings demonstrate the potential of using process complexity measures as predictors for the quality
of process models discovered with state-of-the-art process discovery algorithms. Such a result is important for pro-
cess mining research, as it highlights that not only algorithms, but also connections between input data and output
quality should be studied.

The remainder of the paper is structured as follows. Section 2 summarizes prior research on measuring process complex-
ity and related studies. Section 3 presents our process complexity measure, how it is calculated, and which properties it sat-
isfies. Section 4 presents our evaluation and the main findings of this study. Section 5 concludes the paper and draws ideas
for future work.
2. Background and related work

In this section, we contextualize our study by discussing related work with a focus on the quality of discovered process
models, automated process discovery algorithms, and process complexity.
2.1. Quality of discovered process models

Process discovery is the task that encompasses the understanding of a business process behavior and the representation
of that behavior in the form of a process model [15]. Process mining research has developed various algorithms for auto-
mated process discovery. The algorithms analyze the information recorded in an input event log (i.e., the process execution
data capturing the process behavior) and automatically generate a process model as an output. Several measures have been
defined for assessing the quality of a discovered process model [45]. Precision, fitness, and simplicity are the most frequently
used ones.

Prior research studies have proposed several implementations of precision, fitness, and simplicity measures [41,34,10].
Let us assume that an event log is given, containing four sequences of events: ha; b; c; d; f ; ei; ha; c; b; d; f ; ei; ha; c; b; d; ei and
ha; b; c; d; ei. Let us also assume that three different automated process discovery algorithms have used this event log to con-
struct the three Petri net process models shown in Fig. 1.

Precision measures to which extent the process behavior (in terms of sequences of events) captured by the process model
can be found in the original event log. It ranges between 0 and 1, where a value of 1 means that the process model can only
generate sequences of events that are also contained in the event log. Model (c) is precise in this sense, Model (a) is less pre-
cise as it permits repetitions of the event f, and Model (b) is the least precise allowing any repetition and combination of the
events b; c; d; f , as long as a is the first and e the last event.

Fitness measures to which extent the behavior contained in the event log can be reproduced by the process
model. Also fitness ranges between 0 and 1, where a value of 1 means that all the sequences of events contained
in the event log can be reproduced by the process model. We observe that all Models (a), (b) and (c) have a fit-
ness of 1, since all of them can reproduce the four sequences of events: ha; b; c; d; f ; ei; ha; c; b; d; f ; ei; ha; c; b; d; ei and
ha; b; c; d; ei.

Simplicity captures how easily a process model can be understood by a human. A model that is not simple is called com-
plex. Several complexity measures have been proposed in the literature [24]. Some of them take into account the structure of
a process model (e.g., model size), others the behavioral variability of a process model (e.g., control flow complexity). In our
example in Fig. 1, it is apparent that Model (c) is structurally more complex than Models (a) and (b), since it has more nodes
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Fig. 1. Considering the event log: ha; b; c; d; f ; ei; ha; c; b;d; f ; ei; ha; c; b; d; ei; ha; b; c;d; ei; three different algorithms may respectively discover the (Petri net)
process models (a), (b) and (c).
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and edges. On the other hand, Model (c) is behaviorally simpler than Model (a) and (b), since it allows for less variation.
Accordingly, its control flow complexity is lower.
2.2. Automated process discovery algorithms

Over the past decade, more than 80 research papers have proposed new algorithms for automated process discovery [6].
Often, the process models they produce significantly differ in terms of how they trade off precision, fitness, and simplicity
[6]. The latest benchmark study [6] compares and evaluates seven of the most effective state-of-the-art algorithms, namely,
a$ [18] (A$), Inductive Miner [23] (IM), Evolutionary Tree Miner [9] (ETM), Fodina [50] (FO), Structured Heuristic Miner 6.0
[5] (SHM), Split Miner [3] (SM), Hybrid ILP Miner [49] (HILP). Although there was no algorithm found to clearly dominate the
others, IM, ETM, and SM turned out to be most reliable in terms of discovering fitting, precise, and simple process models
across the whole benchmark dataset of 24 real-world event logs. However, they also showed a substantial variance of per-
formance. HILP and A$ often discovered unsound models (i.e., containing behavioral errors, such as deadlocks) and rarely
produced highly fitting, precise, or simple process models. While FO and SHM often produced accurate models, these were
usually highly complex and difficult to interpret.

Even though the study by Augusto et al. [6] does not discuss this aspect, their results suggest a connection between the
input event log features and the quality of the automatically discovered process models. Also other works have tried to select
the most suitable discovery algorithm based on event log characteristics [36,35], but without studying the connection
between log complexity and model quality. For this reason, we hypothesize that characteristics of the event log influence
the quality of discovered process models.
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2.3. Process complexity as a factor of process discovery quality

It is a challenge for discovery algorithms to generate process models that are easy to understand. Often, the generated
models are overly complex. These complex models are called ‘‘spaghetti models”. Van der Aalst emphasizes that
‘‘spaghetti-like structures are not caused by the discovery algorithm but by the variability of the process” [43]. In line with
this observation, several proposals have been made for pre-processing event logs independent of the discovery algorithm
applied. These proposals build on clustering, supervised sequence labeling, sequential patterns, or text matching
[11,40,14]. They highlight the potential to improve process discovery outputs by modifying characteristics of the event
log data as an input.

To assess the empirical connection between log complexity and process discovery quality, we require a specific measure
that can adequately quantify process log complexity. Several evaluations of process mining algorithms have reported basic
measures. There have been studies that focus on process model complexity [24,25,37,26]. The few studies that consider pro-
cess complexity more explicitly stem from computer science, organization science, and management science. The corre-
sponding measures are categorized in Table 1 and described next.

The first category includes sizemeasures. Various properties of an event log can be easily counted including the number of
events, sequences, and event types, the minimum, maximum, and average sequence length, and the average and minimum time
difference between two events (proposed by Günther [17, Ch.3]).

The second category contains measures related to the variation of the process behavior recorded in the event log. Several
of these measures take the transition matrix derived from the directly-follows relations observed in the event log as a start-
ing point. Pentland [31] proposes the calculation of complexity as the number of acyclic paths implied by the transition
matrix derived from the event log. Hærem et al. [19] use a slight variation based on what they call the number of ties, which
in essence is the count of directly-follows relations observed in the event log. Also, Pentland’s proposal [30] of measuring the
number of operations of compressing the event log using the Lempel–Ziv algorithm is a variation measure. Finally, the (ab-
solute and relative) number of distinct sequences [45] and the average number of distinct events per sequence [17] also provide
an indication of variation.

The third category refers to distance measures. Several distance notions have been defined. Günther [17] proposes the
notion of affinity, which is based on the overlapping directly-follows relations of two event sequences. His proposed com-
plexity measure, namely average affinity, is calculated as the mean of affinity over all pairs of event sequences [17, Ch.3]. This
measure is closely related to the one proposed by Pentland [30] called deviation from random of the transition matrix. Fur-
thermore, Pentland also proposes a second distance measure based on the average edit distance between event sequences
based on notions of classical optimal matching [12].

Each of these measures has its limitations and blind spots. We can easily identify cases where one measure indicates a
difference while other measures are unaffected. We make the following observations on the relationship between two event
logs L1 and L2:

Observation O1: Assume that L1 and L2 have the same size measures of events, event types and sequences. Let us con-
sider the corner case where all the sequences of events recorded in L1 are the same, while the sequences of events
recorded in L2 are all different. While size measures would not be able to capture any difference, variation and distance
measures would detect them.
Observation O2: Assume that L1 and L2 have the same variation measures in terms of the number of unique sequences.
Still, L1 and L2 can be strikingly different in terms of size measures if the same sequences are repeated or not, and in terms
of distance measures if the variants are very similar in one log and very different in the other.
Observation O3: Assume that L1 and L2 have the same distance measures with each pair of sequences having, e.g., an edit
distance of 1 on average. If L1 includes each sequence of L2 twice, the size measures will be substantially different. Also,
Table 1
Complexity measures for business processes based on event logs.

Category Measure Label Ref.

Size Number of Events magnitude [17]
Number of Event Types variety [17]
Number of Sequences support [17]
Minimum, Average, Maximum Sequence Length TL-min, TL-avg, TL-max [45]
Average Time Difference between Consecutive Events (time) granularity [17]

Variation Number of Acyclic Paths in Transition Matrix LOD [31]
Number of Ties in Transition Matrix t-comp [19]
Lempel–Ziv Complexity LZ [30]
Number and Percentage of Unique Sequences DT(#), DT(%) [45]
Average Distinct Events per Sequence structure [17]

Distance Average Affinity affinity [17]
Deviation from Random dev-random [30]
Average Edit Distance avg-dist [30]
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the variation can be quite different if L1 includes many sequences that are the same, while a few are very different, as
compared to L2 where all sequences have rather little distance.

These observations clearly show that there is no unique process complexity measure capable of capturing information
regarding size, variation, and distance at once. In the next section, we propose a new measure that addresses this challenge.

3. Process complexity based on graph entropy

In this section, we propose a novel measurement of process complexity based on graph entropy. More generally, entropy
has been used for assessing the behavior of process representations and corresponding logs at the language level in [34,33].
This means that the measurements do not account for the distribution of variants of an event log. Graph entropy is partic-
ularly suited as an underlying concept because it can capture size, variation, and distance in an integral way. To this end, we
have to map an event log to a graph structure that acknowledges equivalences between sequences without introducing
abstractions. In Section 3.1, we define the notion of an extended prefix automaton. Section 3.2 defines graph entropy for
extended prefix automata, proves monotonicity, and relates the proposed measure to Observations 1–3.

3.1. Event logs as prefix automata

In this section, we define the extended prefix automaton for an event log. The concept of a prefix automaton was intro-
duced by Munoz-Gama and Carmona in [29] based on concepts described by Van der Aalst et al. in [44]. The concept of a
prefix automaton is particularly suited for our purpose of describing the complexity of an event log. Prefix automata describe
sequences without loss of information and abstraction. They account for equivalent prefixes but do not introduce complexity
that is not present in the event log. Fig. 2 illustrates the idea of a prefix automaton for the event log with the four sequences
we discussed above. We observe that overlapping prefixes of the sequences lead to joint paths in the prefix automaton. All
paths originate from the root. There are as many variants in this event log as there are nodes on the right-hand side without
successors. These are four in our case.

We revisit basic notions of events, event sequences, and event logs upon which we will define the construction of the
extended prefix automaton.

Definition 1 (Event, Event Sequence, Event Log [45]). Let E be a set of unique event identifiers. For each event e 2 E, we define
four attributes:

� An activity 2 E ! A where A is the set of activities. activityðeÞ is an activity type that an event e refers to.
� A timestamp ts 2 E ! TS where TS is the set of timestamps. tsðeÞ is the time when e occurred.
� A case identifier case 2 E ! CIDwhere CID is the set of unique case identifiers. caseðeÞ is the case that the event e is related
to.

� A predecessor pred 2 E ! E [ ? maps each event to a preceding event of the same case if such an event exists or to ?
otherwise. predðeÞ is a predecessor of e if they share the same case identifier caseðpredðeÞÞ ¼ caseðeÞ, if
Fig. 2. Prefix automaton derived from the previously discussed event log ha; b; c; d; f ; ei; ha; c; b;d; f ; ei; ha; c; b;d; ei; ha; b; c; d; ei.
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Fig. 3. Extended prefix automaton with partitions derived from the event log ha; b; c;d; f ; ei; ha; c; b; d; f ; ei; ha; c; b;d; ei; ha; b; c; d; ei.
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tsðpredðeÞÞ < tsðeÞ ^ 9= e0 2 E : ½caseðe0Þ ¼ caseðeÞ ^ tsðpredðeÞÞ < tsðe0Þ < tsðeÞ�. predðeÞ ¼? if 9= e0 2 E : ½caseðe0Þ ¼
caseðeÞ ^ tsðe0Þ < tsðeÞ�.

A plain event log Lplain 2 E� is a finite sequence of events (with events potentially relating to different cases). A plain event
log is ordered by event timestamps and not by cases.

The connection between an event log L and a corresponding plain event log Lplain is trivial. Lplain is a concatenation of all
e 2 S

r2L
r. In the opposite direction, a trace rcid ¼ he1; . . . ; enijei 2 E ^ caseðeiÞ ¼ cid ^ tsðeiÞ < tsðeiþ1Þ for all 1 6 i 6 n� 1,

and a log L ¼ S
e2E

rcaseðeÞ.

[29] defines a prefix automaton PA ¼ ðS; T;A; s0Þwith S being a set of states, A the set of activities, T# S� A� S set of tran-
sitions and s0 the initial state. Based on this, we introduce the concept of an extended prefix automaton. Compared to the
prefix automaton TS in [29], our automaton is extended in two ways. First, we define the seq function that maps each state
s 2 S to a set of events seqðsÞ# E having the same prefix as the state itself. Second, we define a partitioning function C that
splits the extended prefix automaton EPA into 0 6 k 6 jLj partitions. Note that jLj here refers to the number of traces in an
event log L. We discuss partitioning in more detail below.

Definition 2 (Extended prefix automaton). EPA ¼ ðSþ; T;A;C; seq; rootÞ

� Sþ ¼ S [ frootg is a set of states
� A is a set of activities
� T# Sþ � A� S is a set of transitions. Note that the root has no incoming transitions.
� C 2 Sþ ! N0 [ f?g a partitioning function, defining for each state s 2 Sþ the partition to which it belongs. CðsÞ refers to a
partition the state s belongs to. A state can only belong to one partition. We write CðrootÞ ¼? because the root node does
not belong to any partition.

� seq 2 S ! }ðEÞ maps each state to events having the same prefix as the state. Note that every event in the log L (or Lplain)
corresponds to one and only one state: 8e 2 L 9s 2 S : e 2 seqðsÞ and 8s; s0 2 S : s – s0 ) seqðsÞ \ seqðs0Þ ¼ £.

� root 2 Sþ is the entry state of the automaton and corresponds to an empty prefix. (same as s0 in [29])

Although the concept of accepting states is not mentioned in [29] and mentioned only informally in [44], we want to state
explicitly here that in an extended prefix automaton all states are accepting states.1 This means that every trace r 2 L can be
replayed (recall ¼ 1), but the extended prefix automaton can also produce shorter sequences that were not observed in the log L
(precision 6 1). Note that this is no harm to our ambition of obtaining a representation of the event log with 100% precision and
recall when we store observed event sequences using the extended prefix automation.
1 It is an alternative to introduce sink nodes similar to the root node as the only accepting states. We do not consider this alternative here, because it does not
allow the incremental construction of the prefix automaton while events of running cases are continuously added.
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Consider our previous example sequences and Fig. 3. The example illustrates how events of the event log are mapped to
states with the help of the function seqðsÞ. All sequences start with activity a, so one state s11 suffices to capture all observed
behavior up to that point. The second event in sequences 1 and 4 is b, which is captured by the state s12 such that Cðs12Þ ¼ 1
and seqðs12Þ ¼ fb1; b4g. In sequences 2 and 3, the second event is c, which requires the extended prefix automaton to branch
and introduce another state s32 with seqðs32Þ ¼ fc2; c3g in a new partition P3. Each time such branching occurs, a new partition
is introduced, and the final number of partitions equals the number of observed process variants.

For its construction, we use the corresponding plain event log Lplain. Algorithm1 shows how the extended prefix automa-
ton is constructed. The algorithm iterates over the events in the log Lplain and uses the variables lastAT ; predAT ; currentAT , and
currentc. The variable lastAT is a mapping used to store the latest corresponding activity type that is added to the automaton
for every case ID. While it is possible to search for it at every iteration, such a mapping increases the efficiency of the algo-
rithm. predAT is used to store the activity type of the current event’s predecessor, while currentAT stores the activity type of
the event in question. currentc stores the partition number of the current activity type.

Algorithm1: Constructing the Extended Prefix Automaton
Lines 1 and 2 initialize variables. From Line 3 on, we iterate over the complete set of events of the plain event log. Lines 4–
8 are concerned with identifying if the current event continues an already stored case or starts a new one at the root. Lines
10–12 map the resulting state to currentAT for the case that a transition from a preceding state using the activity type of the
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current event already exists. If not, Lines 13—20 and Line 26 show how partitioning is performed. As a new state is created, it
is immediately assigned to a partition and this assignment does not change. As Lines 14, 17, and 19 show, there are three
possible cases of how a state can be assigned to a new partition:

1. The preceding state predAT already has some outgoing transitions. However, the activityðeÞ is not among them. This means
that a new path towards the next activity is introduced in predAT . This new path and the new states in this path are made a
new partition and the partition count is incremented.

2. The preceding state is root and it has no outgoing transitions, which means e is the first event in Lplain. In this case, the new
state defines the first partition in the extended prefix automaton. Note that this case does not differ from the previous one
conceptually, but requires a slightly different implementation.

3. The preceding state has no outgoing transitions but is not a root state. Since the predAT has no outgoing transitions, the
new activity does not add any path and thus the new state should belong to the same partition as its predecessor.

We assume that all look-up functions in this algorithm can be implemented with computational complexity in OðkÞwith a
constant k. Then, iterating over the set of events E drives the complexity of this calculation. The complexity of calculating the
extended prefix automaton is accordingly OðEÞ.

3.2. Graph entropy of extended prefix automata

Entropy is an appropriate concept for defining complexity measures due to its properties of monotonicity [34]. Some
applications of entropy have been developed by Polyvyanyy et al. for defining precision and recall measures for conformance
checking at the language level, in which eigenvalues of process models and event logs are calculated iteratively with poly-
nomial complexity [34,33,32]. Here, we highlight the opportunity to use entropy as an underlying concept for calculating the
process complexity of an event log based on extended prefix automata in linear time.

More specifically, we define the four entropy measures: variant entropy and sequence entropy, as well as their correspond-
ing normalized versions. We build on the measures proposed by Dehmer et al. [13] who define graph entropy based on a
partitioning of the graph into Xi partitions.
jXj � logðjXjÞ �
Xk

i¼1

jXij � logðjXijÞ ð1Þ
We calculate variant entropy based on the extended prefix automaton by only considering its structure and not the num-
ber of events associated with each state. We apply the formula with X ¼ S (this is Sþ without the root). Note that we do not
consider the set of transitions T, because every state has exactly one incoming transition. We obtain:
Ev ¼ jSj � logðjSjÞ �
XmaxðCÞ

i¼1

jfs 2 SjCðsÞ ¼ igj � logðjfs 2 SjCðsÞ ¼ igjÞ ð2Þ
The measure of variant entropy measures the complexity of an event log based on the structure of the extended prefix
automaton. It is possible to obtain the same valuead for two automata with a different number of states. For this reason,
we introduce a normalized variant entropy with a range of ½0;1�. It is calculated as follows:
�Ev ¼ Ev
ðjSjÞ � logðjSjÞ ð3Þ
Both versions of the variant entropy measure are based on the number of states in a partition in (2). This is an abstraction.
Each state s 2 S is associated with a non-empty set of events, whose cases share the same prefix seqðsÞ–£. Each event e 2 L
belongs to one and only one such set. This implies that every event can also be assigned to one and only one partition in the
extended prefix automaton. In this way, we obtain a measure that reflects the frequencies of events and corresponding pre-
fixes. Thus, we calculate sequence entropy based on the number of events in a partition by extending (2). For the sake of read-
ability, we define:
seqðSÞ ¼
[

s2S
seqðsÞ ð4Þ
and
seqiðSÞ ¼
[

s2SjCðsÞ¼i

seqðsÞ ð5Þ
Then, we can define sequence entropy in the following way:
Es ¼ jseqðSÞj � logðjseqðSÞjÞ �
XmaxðCÞ

i¼1

jseqiðSÞj � logðjseqiðSÞjÞ ð6Þ
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Same as variant entropy, the absolute sequence entropy measure depends on the number of states in the extended prefix
automaton, but additionally on the number of events associated with each state. The same idea of normalization can be
applied to sequence entropy resulting in the normalized sequence entropy:
�Es ¼ Es

jseqðSÞj � logðjseqðSÞjÞ ð7Þ
Lemma 1. The sequence entropy measure is monotonous with respect to an increasing number of events.
This property makes sequence entropy particularly suitable for measuring process complexity based on event logs.

Proof. In order to prove monotonicity of the sequence entropy measure, we have to show that adding one event increases
this measure. To this end, we have to show that the following equation holds for jseqðS2Þj ¼ jseqðS1Þj þ 1.
jseqðS2Þj � logðjseqðS2ÞjÞ �
XmaxðC2Þ

i¼1

jseqiðS2Þj � logðjseqiðS2ÞjÞ > ð8Þ

jseqðS1Þj � logðjseqðS1ÞjÞ �
XmaxðC1Þ

i¼1

jseqiðS1Þj � logðjseqiðS1ÞjÞ ð9Þ
We observe a corner case. If maxðC2Þ ¼ maxðC1Þ ¼ 1, then each summation equals the preceding term, such that both the
left-hand and the right-hand side of the equation yield zero.

We rearrange the equation by bringing the sums onto the right-hand side.
jseqðS2Þj � logðjseqðS2ÞjÞ � jseqðS1Þj � logðjseqðS1ÞjÞ > ð10Þ
XmaxðC2Þ

i¼1

jseqiðS2Þj � logðjseqiðS2ÞjÞ� ð11Þ

XmaxðC1Þ

i¼1

jseqiðS1Þj � logðjseqiðS1ÞjÞ ð12Þ
Now we can distinguish two cases. If maxðC2Þ > maxðC1Þ, then there must be one new partition that includes only one
event. As a result, the right-hand side becomes 1 � logð1Þ ¼ 0, such that the formula holds true because
jseqðS2Þj � logðjseqðS2ÞjÞ is larger than jseqðS1Þj � logðjseqðS1ÞjÞ due to each of its factors being larger, respectively.

Let us consider the alternative case that maxðC2Þ ¼ maxðC1Þ. In this case, there exists an index x where there is a
difference between seqiðS2Þ and seqiðS1Þ. We write
jseqðS2Þj � logðjseqðS2ÞjÞ � jseqðS1Þj � logðjseqðS1ÞjÞ > ð13Þ
jseqðSx2Þj � logðjseqðSx2ÞjÞ � jseqðSx1Þj � logðjseqðSx1ÞjÞ ð14Þ
Furthermore, we can assume that there is a natural number m < S1, such that we can write
jseqðS2Þj � logðjseqðS2ÞjÞ � jseqðS1Þj � logðjseqðS1ÞjÞ > ð15Þ
ðjseqðS2Þj �mÞ � logðjseqðS2Þj �mÞ � ðjseqðS1Þj �mÞ � logðjseqðS1Þj �mÞ ð16Þ
We bring all terms to the left-hand side, yielding
jseqðS2Þj � logðjseqðS2ÞjÞ ð17Þ
� ðjseqðS2Þj �mÞ � logðjseqðS2Þj �mÞ ð18Þ
� jseqðS1Þj � logðjseqðS1ÞjÞ ð19Þ
þ ðjseqðS1Þj �mÞ � logðjseqðS1Þj �mÞ ð20Þ
> 0 ð21Þ
Now, let us consider that we can write S2 ¼ S1 � f ¼ S1 þ 1, such that f ¼ S1þ1
S1

. Then, we obtain
f � jseqðS1Þj � logðf � jseqðS1ÞjÞ ð22Þ
� ðf � jseqðS1Þj �mÞ � logðf � jseqðS1Þj �mÞ ð23Þ
� jseqðS1Þj � logðjseqðS1ÞjÞ ð24Þ
þ ðjseqðS1Þj �mÞ � logðjseqðS1Þj �mÞ ð25Þ
> 0 ð26Þ
We pull f out of the logarithms and reorder the terms to obtain
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f � jseqðS1Þj � logðf ÞjÞ ð27Þ
� ðf � jseqðS1Þj �mÞ � logðf Þ ð28Þ
þ f � jseqðS1Þj � logðjseqðS1ÞjÞ ð29Þ
� jseqðS1Þj � logðjseqðS1ÞjÞ ð30Þ
� ðf � jseqðS1Þj �mÞ � logðjseqðS1Þj �mÞ ð31Þ
þ ðjseqðS1Þj �mÞ � logðjseqðS1Þj �mÞ ð32Þ
> 0 ð33Þ
These can be pulled together to obtain
f � logðf Þ � ðjseqðS1Þj � jseqðS1Þj þmÞ ð34Þ
þ ðf � 1Þ � jseqðS1Þj � logðjseqðS1ÞjÞ ð35Þ
� ðf � 1Þ � ðjseqðS1Þj �mÞ � logðjseqðS1Þj �mÞ ð36Þ
> 0 ð37Þ
This can be simplified and rewritten to
f � logðf Þ �m ð38Þ
þ ðf � 1Þ � jseqðS1Þj � logðjseqðS1ÞjÞ ð39Þ
> ðf � 1Þ � ðjseqðS1Þj �mÞ � logðjseqðS1Þj �mÞ ð40Þ
We can replace the product on the right-hand side of the inequality with a term that is larger by replacing factors that are
greater one with larger factors. In turn, we replace jseqðS1Þj �m with jseqðS1Þj, such that the terms from lines (39) and (40)
become equal. We then obtain
f � logðf Þ �m > 0 ð41Þ
This equation holds true because the three factors in line (41) are greater than zero due to properties of f and m. �
Let us revisit Observations 1–3 and focus on the sequence entropy measure. Observation 1 states that we would want to

distinguish two event logs L1 and L2 that have the same amount of events n ¼ jEj and sequences m ¼ jfrj r 2 Lgj. If all
sequences of L1 are identical, we obtain one partition. Based on the corresponding extended prefix automaton, we obtain

Es ¼ jseqðSÞj � logðjseqðSÞjÞ �P1
i¼1jseqiðSÞj � logðjseqiðSÞjÞ ¼ 0. If all sequences are fully different in L2 (and let us assume them

to be of equal length l), then we obtain Es ¼ m � l � logðm � lÞ �Pm
i¼1l � logðlÞ ¼ m � l � logðm � lÞ �m � l � logðlÞ ¼ m � l � logðmÞ > 0.

This means that these cases can be distinguished.
Observation 2 states event logs L1 and L2 can have the same number of variants, but different size. Let us assume that L1 is

a duplication of L2 such that jL1j ¼ 2 � jL2j. Then, the amount of variants remains the same:maxðC1Þ ¼ maxðC2Þ. For evaluating
the impact on the entropy measure, we calculate the difference EsðL1Þ � EsðL2Þ. We assume S refers to L2, which yields the

following equation: 2 � jSj � logð2 � jSjÞ �PmaxðCÞ
i¼1 2 � jseqiðSÞj � logð2 � jseqiðSÞjÞ � jSj � logðjSjÞ þPmaxðCÞ

i¼1 jseqiðSÞj � logðjseqiðSÞjÞ,
which is equal to 2 � jSj � logð2Þ þ jSj � logðjSjÞ �PmaxðCÞ

i¼1 2 � jseqiðSÞj � logð2Þ þ jseqiðSÞj � logðjseqiðSÞjÞ. This is the same as

Es þ 2 � jSj � logð2Þ �PmaxðCÞ
i¼1 2 � jseqiðSÞj � logð2Þ and greater than zero if Es is greater than one.

Observation 3 states that two logs L1 and L2 with the same edit distance between cases can differ in size and in their
number of variants. Regarding size, we already demonstrated that duplicating the event log increases entropy if there is
more than one partition. If we assume a case of a constant number of states and events in the extended prefix automaton,
then it suffices to show that two times the amount of events in one partition (2 � jseqiðSÞj) yields a higher entropy than two
partitions with jseqiðSÞj events. For these two cases, we have summands in the summation as follows:
ð2 � jseqiðSÞjÞ � logð2 � jseqiðSÞjÞ for less and larger partitions and 2 � ðjseqiðSÞj � logðjseqiðSÞjÞÞ for double the amount of partitions
with half the number of events. It is easy to see that
ð2 � jseqiðSÞjÞ � logð2 � jseqiðSÞjÞ > 2 � ðjseqiðSÞj � logðjseqiðSÞjÞÞ ð42Þ
because
2 � jseqiðSÞj � 2þ 2 � jseqiðSÞj � logðjseqiðSÞjÞ > 2 � ðjseqiðSÞj � logðjseqiðSÞjÞÞ ð43Þ
yields
2 � jseqiðSÞj � 2 > 0 ð44Þ

To summarize, we observe that our sequence entropy yields a process complexity measure for event logs that is mono-

tonously growing with events being added no matter where in the event log. In comparison to the other measures presented
in Section 2, we observe that the critical Observations 1–3 are well addressed by our entropy-based measure.
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4. Evaluation

We have implemented our graph entropy-based process complexity measures as a Python application2, which also com-
putes all log complexity measures discussed in Section 2. The application receives as input an event log (either in CSV or XES
format) and calculates all complexity measures or a user-selected subset of them. Henceforth, for simplicity, we will refer to
these measures as log complexity measures to distinguish them from the complexity that is associated with process models.
We focus our evaluation and the analysis of the different complexity measures on the following two research questions:

RQ1. How does log complexity affect the quality of automatically discovered process models?
RQ2. What log complexity measures could be used as a proxy to predict the quality of automatically discovered process

models?

In the following, we describe in detail the analysis that we conducted towards answering the two research questions.

4.1. Dataset and setup

For our experiments, we first selected the collection of 24 event logs that Augusto et al. used for their review [6]. We
extended this collection with eight event logs of the Business Process Intelligence Challenges 2019 [47] (three out of eight)
and 2020 [48] (five out of eight). Hence, the collection of event logs we use for our experiments includes a total of 32 event
logs (20 of which are publicly available and 12 private). To the best of our knowledge, this is the largest collection of real-
world event logs used in a process mining study so far, representing an increase of 33:3% from the former largest collection
[6]. The public subset of the collection of event logs previously used by Augusto et al. [6] is available for download from the
4TU Research Data Centre [7]. The event logs we used in our experiments record the executions of business processes from a
variety of domains, including healthcare, finance, government, and IT service management. They demonstrate an heteroge-
neous degree of complexity across the different complexity measures. Tables 3–5 show the complexity of each event log,
reporting our novel graph entropy-based complexity measures (Table 3) as well as the complexity measures from prior
research (Tables 4 and 5). The labels of the state-of-the-art log complexity measures are reported in Table 1 in Section 2,
while the labels of our measures are reported in Table 2.
Table 2
Process complexity measure labels.

Process complexity measure Label

Variant Entropy var-e
Sequence Entropy seq-e
Normalised Variant Entropy nvar-e
Normalised Sequence Entropy nseq-e
The values3 shown in Tables 3–5 highlight the heterogeneous nature of the event logs in the collection, with the vast major-
ity of the log complexity measures varying over a large range of values (e.g. DT(%) covers the range 0.01% to 97.5%).

Given our interest in understanding how log complexity measures relate to the quality of automatically discovered pro-
cess models, the second component of our evaluation dataset includes the process models automatically discovered from the
32 event logs using the three most reliable algorithms to date, according to [6]: the Evolutionary Tree Miner (ETM) [9], the
Inductive Miner - Infrequent Behavior Variant (IM) [23], and the Split Miner (SM) [3].

Table 6 shows the quality of the process models automatically discovered by ETM, IM, and SM, covering both accuracy
(i.e., fitness and precision) and complexity of the process models. The corresponding measures are: fitness, precision, F-
score (of fitness and precision), size, and control flow complexity (CFC). We recall that fitness quantifies the amount of behavior
contained in the event log that the process model is able to replay. The precision measure quantifies the amount of behavior
allowed by the process model that can be found in the event log. The F-score of fitness and precision is the product of the two
measurements divided by their sum and multiplied by two. Over the past decade, several fitness and precision measures
have been proposed [41], each of them suffering from different limitations (from approximation to low scalability). The
results shown in Table 6 report the alignment-based fitness and precision measures proposed by Adriansyah et al. [2,1].
The choice of measures was guided by the goal to maintain consistency with the latest benchmark results [6]. The
alignment-based fitness [2] is calculated as one minus the normalized sum of the minimal alignment cost between each trace
in the event log and the closest corresponding trace that can be replayed by the process model. The alignment-based precision
[1], instead, builds a prefix-automaton of the event log and then replays the process model on top of it, assessing the number
of times that the process behavior diverges from the behavior of the prefix-automation. Finally, the size of a process model
2 Sources available athttps://github.com/MaxVidgof/process-complexity
3 A dash ’-’ represents an exception during the calculation of the measure, e.g. due to out-of-memory exception or a timeout (which we set at 12 h).
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Table 3
Complexity of the evaluation dataset - Part 1.

log var-e seq-e nvar-e nseq-e LOD granularity

BPIC12 474928.8 1384057.4 0.708 0.423 8.2 0.26
BPIC13cp 3502.3 18231.6 0.705 0.311 2.4 2502013.36
BPIC13inc 88677.4 294092.5 0.718 0.405 2.6 1540.64
BPIC14 1114386.4 2490701.5 0.772 0.526 5.5 139.90
BPIC15f1 20385.6 90549.4 0.652 0.419 24.0 95.79
BPIC15f2 50042.2 120443.3 0.640 0.483 36.1 761.23
BPIC15f3 78199.7 231332.5 0.690 0.494 31.8 63.11
BPIC15f4 34433.4 131444.0 0.664 0.434 34.1 0.01
BPIC15f5 39903.1 134870.6 0.661 0.436 30.8 0.00
BPIC17 505341.9 3443057.9 0.777 0.358 14.4 0.00
BPIC19c1 1152607.5 1776714.2 0.598 0.499 3.7 434462.49
BPIC19c2 56603.5 2475331.5 0.799 0.183 4.3 347055.36
BPIC19c3 1194.1 11332.1 0.633 0.264 2.9 13745.14
BPIC20a 1649.7 101733.0 0.696 0.165 5.2 11984.67
BPIC20b 30722.0 273919.7 0.758 0.339 10.7 1746.48
BPIC20c 96618.4 413564.3 0.734 0.420 10.8 2573.42
BPIC20d 5488.8 56758.6 0.724 0.317 8.5 236.00
BPIC20e 1322.8 73131.6 0.704 0.189 5.2 3163.74
RTFMP 1892.3 831983.5 0.769 0.112 3.7 2174191.14
SEPSIS 40624.5 76528.7 0.696 0.522 9.1 5.56
PRT1 36311.9 236957.6 0.770 0.280 4.5 7689.03
PRT2 255222.9 302150.0 0.638 0.608 7.9 0.01
PRT3 31408.0 64170.9 0.656 0.491 8.4 0.00
PRT4 305234.0 1035205.9 0.818 0.518 7.1 738.05
PRT5 4.5 2050.0 0.270 0.055 6.0 590.90
PRT6 4079.4 19076.6 0.750 0.365 7.5 665.25
PRT7 3013.1 54130.7 0.745 0.341 8.2 0.00
PRT8 38225.6 44186.7 0.547 0.534 6.1 474.93
PRT9 21210.3 3628862.6 0.734 0.139 2.2 154278.43
PRT10 949.6 214831.2 0.805 0.242 1.6 17685299.33
PRT11 1207005.2 8588051.4 0.651 0.281 9.0 0.00
PRT12 54394.4 541576.6 0.852 0.276 4.3 132703.06
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(in BPMN format4) is equal to the number of nodes composing the process model, while the CFC of a (BPMN) process model
calculates the amount of branching induced by its split gateways [24].

Starting from the log complexity measurements and the process model quality measurements, we calculated the Pearson
correlation and the Kendall correlation [21] for each pair of corresponding measurement series (log complexity, process
model quality) and assessed their statistical significance. While the Pearson correlation focuses on the likelihood of an exist-
ing linear relation between two measurement series (e.g., between the magnitude of the event logs and the fitness of the
models discovered by IM), the Kendall correlation tells us whether two measurement series exhibit the same rank. The Ken-
dall correlation is particularly useful when two measurement series do not exhibit the same trend (e.g., a linear or an expo-
nential relation), yet they rank the objects of the measurements identically or similarly (to a certain degree, assessed via
statistical significance). In our context, the Kendall correlation allows us to understand if a log complexity measure calcu-
lated for a set of logs ranks the logs identically or similarly to the rank yielded by a process model quality measure. Further-
more, we conduct a regression analysis to study the potential to predict process model complexity based on log complexity.

We leverage the results of the correlation analysis to collect evidence that allowed us to answer RQ1. Then, we select a
subset of the log complexity measures that correlated the most with the quality measures of automatically discovered pro-
cess models, and we explore if and how they could be used to estimate apriori the quality of the automatically discovered
process models (answering RQ2). Finally, we compare the time performance of our novel entropy-based log complexity mea-
sures against the existing log complexity measures. All the experiments were run on an Intel Core i7-8565U@1.80 GHz with
32 GB RAM running Windows 10 Pro (64-bit) and Python 3.8.5 with no RAM limitation.

4.2. Results of correlation analysis

Tables 7 and 8, respectively, show the Kendall and Pearson correlations values of each pair of log complexity measure and
process model quality measure (for a total of 300 pairs). We highlight in bold and underline the correlation values that yield
a p-value less than or equal to 0:01 and a p-value less than or equal to 0:05. Both thresholds are traditionally used to identify
statistical significance.

We note that both the Pearson and Kendall correlations yield similar significance values, identifying 67 (Pearson) and 78
(Kendall) pairs of correlation measures with a p-value below 0:01. The rate of overlap between the identified pairs is 75% (54
4 bpmn.org
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Table 4
Complexity of the evaluation dataset - Part 2.

log structure affinity dev-random avg-dist. LZ t-comp magnitude

BPIC12 0.783 0.258 0.755 22.1 41378 173248 262200
BPIC13cp 0.375 0.560 0.545 2.7 912 1715 6660
BPIC13inc 0.313 0.644 0.577 6.7 6527 28280 65533
BPIC14 0.580 0.142 0.842 8.3 62106 224591 369485
BPIC15f1 0.975 0.229 0.880 20.6 3790 10367 21656
BPIC15f2 0.971 0.208 0.903 29.8 4496 17820 24678
BPIC15f3 0.951 0.216 0.895 23.3 7413 28553 43786
BPIC15f4 0.964 0.243 0.894 24.7 4798 16502 29403
BPIC15f5 0.972 0.224 0.894 26.6 4731 18789 30030
BPIC17 0.904 0.689 0.734 13.8 84060 283587 714198
BPIC19c1 0.240 0.411 0.481 23.8 18367 221868 283407
BPIC19c2 0.344 0.394 0.647 2.3 53117 21295 979942
BPIC19c3 0.375 0.466 0.580 3.5 593 625 5038
BPIC20a 0.865 0.541 0.617 1.3 7947 734 56437
BPIC20b 0.830 0.406 0.770 5.1 13401 9582 72151
BPIC20c 0.787 0.303 0.800 8.2 16519 25074 86581
BPIC20d 0.806 0.395 0.740 3.4 3932 1937 18246
BPIC20e 0.878 0.515 0.622 1.4 5596 618 36796
RTFMP 0.421 0.367 0.602 8.6 38212 1166 561470
SEPSIS 0.551 0.256 0.787 11.8 3115 12956 15214
PRT1 0.543 0.566 0.647 2.4 12388 13419 75353
PRT2 0.025 0.294 0.821 36.5 8826 45864 46282
PRT3 0.742 0.246 0.763 3.2 1541 13650 13720
PRT4 0.694 0.253 0.795 5.2 32584 68432 166282
PRT5 0.806 0.714 0.636 0.7 904 12 4434
PRT6 0.728 0.399 0.747 2.9 1471 1691 6011
PRT7 0.775 0.323 0.762 2.5 4183 1168 16353
PRT8 0.859 0.155 0.831 51.7 2846 8950 9086
PRT9 0.063 0.482 0.437 2.0 141857 7278 1808706
PRT10 0.798 0.142 0.626 1.6 6976 356 78864
PRT11 0.982 - 0.839 18.2 165919 278322 2099835
PRT12 0.355 0.236 0.730 2.3 28888 17397 163224
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pairs). As expected, we see that the Kendall correlation is looser than the Pearson correlation. If we consider pairs that cor-
relate with a p-value at 0:05, Kendall identifies 119 pairs while Pearson identifies 99 (17% less), with an overlap of 83% (90
pairs). Table 9 shows the overlap of statistical significance and the corresponding p-values. A pair of measures that correlate
negatively is identified with the dash symbol between brackets. To reinforce the statistical significance, in the following, we
refer only to the results reported in Table 9. The correlation summary reported in Table 9 can be used to analyze which log
complexity measures affect the process model quality measures the most and vice versa. This analysis allows us to answer
RQ1.

Focusing on the quality measures of the automatically discovered process models by ETM (columns 2 to 6, Table 9), we
notice that only one of the log complexity measures correlates with the precision and the CFC of ETM’s process models (with
a p-value at 0:05). This highlights that both the precision and the CFC of the process models discovered by ETM are not
affected by the complexity of the input log. A similar observation can be made for the fitness of the process models discov-
ered by IM. By design, IM always strives to discover a highly fitting process model [23]. Consequently, the overall complexity
of the input log does not influence the fitness of IM: no correlation exists between the log complexity measures and the fit-
ness of IM’s process models. Finally, also the CFC of the models discovered by SM appears to be resistant to the log complex-
ity, correlating with only three complexity measures: affinity, avg-dist, and TL-avg.

Next, we look at the process model quality measures that correlate the most with the log complexity measures. We find
that the fitness and size of the models discovered by ETM correlate both with 9 log complexity measures; the precision, F-
score, size, and CFC of the models discovered by IM correlate with 8 or 9 log complexity measures; and the fitness, F-score,
and size of the models discovered by SM correlate with 7, 11, and 7 log complexity measures, respectively. We note that
when the log complexity measures correlate with the process model accuracy measures (fitness, precision, and their F-
score), they almost always (48 out of 52 times) show a negative correlation. There is only one positive correlation recorded
for affinity, which measures the overlapping directly-follows relations observed in two event sequences. This shows that
some features of the process behavior – captured via the log complexity measures – may have a negative impact on the accu-
racy of the automatically discovered process models.

Turning our attention to the log complexity measures, we note that 40% of them (8 out of 20) do not correlate with any
process model quality measure. These log complexity measures are seq-e, nvar-e, granularity, lempel–ziv, magnitude, support,
DT (#), and TL-min. On the other hand, although, there is no log complexity measure that consistently affects all the quality
measures of all the automatically discovered process models, we can identify a subset that correlates with the majority. This
subset includes nseq-e, affinity, dev-random, variety, DT (%), avg-dist, and TL-avg. The latter two correlate with 12 out of 15
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Table 5
Complexity of the evaluation dataset - Part 3.

log support variety DT (%) DT (#) TL-min TL-avg TL-max

BPIC12 13087 24 33.4 4371 3 20 175
BPIC13cp 1487 4 12.3 183 1 4 35
BPIC13inc 7554 4 20.0 1511 1 9 123
BPIC14 41353 9 36.1 14928 3 9 167
BPIC15f1 902 70 32.7 295 5 24 50
BPIC15f2 681 82 61.7 420 4 36 63
BPIC15f3 1369 62 60.3 826 4 32 54
BPIC15f4 860 65 52.4 451 5 34 54
BPIC15f5 975 74 45.7 446 4 31 61
BPIC17 21861 18 40.1 8766 11 33 113
BPIC19c1 15129 5 20.9 3159 1 19 794
BPIC19c2 220810 8 1.2 2706 1 4 179
BPIC19c3 1027 4 10.1 104 2 5 19
BPIC20a 10500 17 0.9 99 1 5 24
BPIC20b 6449 34 11.7 753 3 11 7
BPIC20c 7065 51 20.9 1478 3 12 90
BPIC20d 2099 29 9.6 202 1 9 21
BPIC20e 6886 19 1.3 89 1 5 20
RTFMP 150370 11 0.2 301 2 4 20
SEPSIS 1050 16 80.6 846 3 14 185
PRT1 12720 9 8.1 1030 2 5 64
PRT2 1182 9 97.5 1152 12 39 276
PRT3 1600 15 19.9 318 6 8 9
PRT4 20000 11 29.7 5940 6 8 36
PRT5 739 6 0.10 1 6 6 6
PRT6 744 9 22.4 167 7 8 21
PRT7 2000 13 6.4 128 8 8 11
PRT8 225 55 99.9 225 2 40 350
PRT9 787657 8 0.01 79 1 2 58
PRT10 43514 19 0.01 4 1 1 15
PRT11 174842 310 3.0 5245 2 12 804
PRT12 37345 20 7.5 2801 1 4 27
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quality measures, which makes them the log complexity measures affecting the most the quality of the discovered process
models. It is worth noting that while the total number of distinct traces (DT(#)) does not correlate with any process model
quality measure, the percentage of distinct traces (DT(%)) correlates with more than 50% of them (8 out of 15).

Considering only the measures that correlate the most and selecting only the correlations with a p-value of 0:01, we are
left with the results shown in Table 10.

4.3. Results of regression analysis

We now want to investigate to what extent log complexity measures could be used to predict a process model quality
measure. To this end, for each log complexity measure that correlates with a process model quality measure in Table 10,
we assessed the residual errors (minimum, median, and maximum) and the coefficient of determination (R2) of the corre-
sponding linear regression model, where the log complexity measure is the predictor variable and the process model quality
measure is the outcome variable. The linear regression models that exhibit the highest R2 should be preferred, since R2 is
defined as 1� SSr

SSt
, where SSr is the residual sum of squares and SSt is the total sum of squares. In general, the higher R2 the more

accurate is the linear regression model. The results of this analysis are reported in Table 11. Looking at the process model
accuracy measures (fitnessETM, precisionIM, F-scoreIM, fitnessSM, and F-scoreSM), we note that the best complexity measures
to predict them are avg-dist (for ETM and IM) and nseq-e (for SM). This shows that the accuracy of the process models dis-
covered by ETM, IM, and SM is closely affected by the variation of process behavior recorded in the event logs, rather than the
absolute amount of process behavior. Therefore, automatically discovering a process model is likely to be more challenging
when the event log records a small amount of process behavior that varies greatly than when the event log records a huge
amount of process behavior that varies little. Looking at the model complexity measures SizeETM, CFCETM, CFCIM, and SizeSM,
one log complexity measure seems to highly affect them all, which is variety.

It is possible to generate more accurate regression models by using uncorrelatedmulti-predictors or non-linear regression
models (e.g., generalized additive models). Ideally, having an accurate regression model to estimate the quality of the auto-
matically discovered process models could save considerable time for process analysts, especially if an optimization is
required during process discovery [6,8]. In fact, one could select the automated process discovery algorithm to be used based
on the results of the regression model predictions. However, the design of such an accurate regression model and its system-
atic evaluation would deserve a separate study, a very different dataset (e.g., a large collection of event logs, even artificial),
and a different type of evaluation, as seen in previous studies [26]. We also note that seminal studies in that area have been
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Table 6
Quality measurements of the process models automatically discovered by ETM, IM, and SM.

ETM IM SM

Log Fit. Prec. F-score Size CFC Fit. Prec. F-score Size CFC Fit. Prec. F-score Size CFC

BPIC12 0.33 0.98 0.49 69 10 0.98 0.50 0.66 59 37 0.96 0.81 0.88 51 41
BPIC13cp 0.99 0.76 0.86 11 17 0.82 1.00 0.90 9 4 0.99 0.94 0.96 11 6
BPIC13inc 0.84 0.80 0.82 28 24 0.92 0.56 0.70 13 7 0.98 0.92 0.95 12 8
BPIC14 0.68 0.94 0.79 22 15 0.89 0.65 0.75 31 18 0.77 0.93 0.84 20 14
BPIC15f1 0.57 0.89 0.69 73 21 0.97 0.57 0.71 164 108 0.90 0.90 0.90 111 45
BPIC15f2 0.62 0.90 0.73 78 19 0.93 0.56 0.70 193 123 0.77 0.91 0.83 126 45
BPIC15f3 0.66 0.88 0.75 78 26 0.95 0.55 0.70 159 108 0.79 0.93 0.85 94 33
BPIC15f4 0.66 0.95 0.78 74 17 0.96 0.59 0.73 162 111 0.73 0.90 0.81 100 35
BPIC15f5 0.58 0.89 0.70 82 26 0.94 0.18 0.30 134 95 0.79 0.94 0.86 106 34
BPIC17 0.72 1.00 0.84 31 5 0.98 0.70 0.82 35 20 0.96 0.85 0.90 31 18
BPIC19c1 0.30 1.00 0.46 33 4 0.97 0.37 0.54 19 11 0.85 0.61 0.71 17 9
BPIC19c2 0.87 0.99 0.93 25 13 0.93 0.69 0.79 20 9 0.92 1.00 0.96 28 19
BPIC19c3 0.78 0.77 0.78 21 9 1.00 0.77 0.87 13 7 0.89 0.98 0.93 12 6
BPIC20a 0.88 0.43 0.58 23 10 0.95 0.86 0.90 34 19 0.97 0.78 0.87 33 16
BPIC20b 0.77 0.55 0.64 55 25 0.88 0.55 0.68 88 49 0.96 0.84 0.90 70 43
BPIC20c 0.67 0.92 0.77 68 32 0.74 0.32 0.44 100 62 0.97 0.78 0.86 146 113
BPIC20d 0.80 0.98 0.88 44 19 0.91 0.44 0.60 66 37 0.95 0.86 0.90 58 31
BPIC20e 0.89 0.88 0.88 35 16 0.92 0.87 0.90 38 21 1.00 0.87 0.93 37 19
RTFMP 0.79 0.98 0.87 46 33 0.99 0.70 0.82 34 20 1.00 0.97 0.98 22 17
SEPSIS 0.71 0.84 0.77 30 15 0.99 0.45 0.62 50 32 0.76 0.86 0.81 33 23
PRT1 0.99 0.81 0.89 23 12 0.90 0.67 0.77 20 9 0.98 0.99 0.98 29 18
PRT2 0.57 0.94 0.71 86 21 - - - 45 33 0.81 0.74 0.77 40 30
PRT3 0.98 0.86 0.92 51 37 0.98 0.68 0.80 37 20 0.83 0.91 0.87 32 17
PRT4 0.84 0.85 0.84 64 28 0.93 0.75 0.83 27 13 0.87 0.99 0.93 34 21
PRT5 1.00 1.00 1.00 10 1 1.00 1.00 1.00 10 1 1.00 1.00 1.00 10 1
PRT6 0.98 0.80 0.88 41 16 0.99 0.82 0.90 23 10 0.94 1.00 0.97 16 5
PRT7 0.90 0.81 0.85 60 29 1.00 0.73 0.84 29 13 0.91 1.00 0.95 30 11
PRT8 0.35 0.88 0.50 75 12 0.98 0.33 0.49 111 92 0.97 0.67 0.79 406 488
PRT9 0.75 0.49 0.59 27 13 0.90 0.61 0.73 28 16 0.92 1.00 0.96 30 20
PRT10 1.00 0.63 0.77 61 45 0.96 0.79 0.87 41 29 0.97 0.97 0.97 79 68
PRT11 0.10 1.00 0.18 21 3 - - - 549 365 - - - 712 609
PRT12 0.63 1.00 0.77 21 8 1.00 0.77 0.87 32 25 0.96 0.99 0.97 97 84

Table 7
Kendall correlation values. Bold and underlined values respectively highlight correlations at p < 0:01 and p < 0:05.

Log Comp. ETM IM SM

Measure Fit. Prec. F-
score

Size CFC Fit. Prec. F-
score

Size CFC Fit. Prec. F-
score

Size CFC

var-e �0.41 0.34 �0.16 0.16 �0.08 �0.17 �0.40 �0.40 0.07 0.12 -0.29 �0.23 �0.37 0.11 0.16

seq-e �0.25 0.24 �0.16 0.00 �0.01 -0.26 �0.18 �0.19 �0.01 0.03 �0.10 �0.02 �0.06 0.03 0.16

nvar-e 0.24 �0.03 0.19 �0.16 0.13 �0.18 0.22 0.20 �0.17 �0.15 0.10 0.21 0.38 �0.07 0.05
nseq-e �0.39 0.10 �0.25 0.37 0.13 �0.04 �0.43 �0.43 0.28 0.30 �0.48 -0.29 �0.61 0.26 0.16

LOD -0.31 0.20 �0.09 0.46 0.15 0.00 -0.32 -0.29 0.59 0.56 �0.37 �0.19 �0.43 0.45 0.32
granularity 0.19 �0.17 �0.02 -0.32 �0.10 �0.18 0.22 0.19 -0.30 -0.27 0.32 0.09 0.32 �0.19 �0.07

structure �0.17 0.08 �0.12 0.46 0.17 �0.01 �0.10 �0.09 0.60 0.54 �0.06 �0.23 -0.27 0.49 0.31
affinity 0.34 �0.10 0.26 �0.52 -0.29 �0.04 0.26 0.25 �0.46 �0.49 0.42 0.05 0.34 �0.49 �0.47

dev-
random

-0.32 0.16 �0.12 0.56 0.24 �0.03 �0.34 -0.32 0.60 0.59 �0.44 �0.11 �0.44 0.50 0.39

avg-dist. �0.62 0.25 �0.37 0.50 0.08 �0.03 �0.55 �0.55 0.40 0.43 �0.39 �0.36 �0.55 0.31 0.27
LZ �0.17 0.20 �0.14 �0.03 �0.03 �0.25 �0.11 �0.12 �0.02 0.02 �0.02 �0.04 0.03 0.01 0.14
t-comp �0.41 0.33 �0.13 0.17 �0.03 �0.17 �0.36 �0.36 0.10 0.15 -0.32 �0.18 �0.34 0.11 0.14

magnitude �0.16 0.20 �0.13 �0.02 0.00 �0.25 �0.11 �0.12 �0.05 �0.02 �0.02 �0.03 0.04 0.00 0.15
support 0.07 0.04 0.02 �0.24 0.00 �0.15 0.08 0.06 �0.24 �0.21 0.16 0.08 0.24 �0.17 �0.01
variety �0.39 0.13 -0.29 0.61 0.23 �0.05 -0.31 -0.29 0.87 0.86 �0.19 -0.31 �0.37 0.81 0.63

DT (%) �0.37 0.17 �0.18 0.36 0.02 0.08 �0.33 -0.33 0.30 0.32 �0.38 �0.19 �0.43 0.24 0.18

DT (#) -0.30 0.35 �0.05 0.06 �0.06 �0.13 -0.30 -0.30 0.03 0.07 �0.24 �0.18 �0.25 0.03 0.10

TL-min �0.08 0.10 0.12 0.27 0.16 0.27 �0.01 0.02 0.22 0.18 �0.26 0.10 �0.09 0.08 �0.03
TL-avg �0.50 0.23 -0.30 0.48 �0.01 0.00 �0.48 �0.45 0.47 0.46 �0.35 �0.40 �0.61 0.37 0.26
TL-max �0.41 0.25 -0.28 0.09 �0.25 �0.18 �0.41 �0.42 0.04 0.09 �0.21 -0.28 �0.39 0.11 0.16
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Table 8
Pearson correlation values. Bold and underlined values respectively highlight correlations at p < 0:01 and p < 0:05.

Log Comp. ETM IM SM

Measure Fit. Prec. F-score Size CFC Fit. Prec. F-score Size CFC Fit. Prec. F-score Size CFC

var-e �0.48 0.33 �0.34 �0.13 �0.30 �0.02 �0.21 �0.19 �0.18 �0.17 �0.27 -0.42 �0.50 �0.17 �0.10

seq-e �0.21 0.07 �0.17 �0.27 �0.31 �0.07 �0.05 �0.01 �0.27 �0.28 �0.02 �0.01 �0.02 �0.23 �0.14
nvar-e 0.13 �0.17 0.05 0.03 0.36 �0.24 �0.01 0.04 �0.14 �0.16 0.04 0.23 0.21 �0.19 �0.18

nseq-e �0.52 0.26 �0.32 0.53 0.17 �0.06 �0.59 �0.56 0.45 0.47 �0.64 -0.41 �0.71 0.37 0.28

LOD �0.32 0.22 �0.09 0.69 0.13 0.03 -0.39 -0.37 0.90 0.88 �0.65 �0.02 -0.42 0.29 �0.01

granularity 0.27 �0.26 0.03 0.08 0.50 0.02 0.20 0.19 �0.11 �0.08 0.19 0.15 0.23 0.01 0.03
structure �0.07 0.10 0.02 0.65 0.23 0.08 �0.15 �0.15 0.65 0.63 �0.19 �0.17 �0.25 0.39 0.20

affinity 0.43 �0.15 0.30 �0.68 �0.46 �0.08 0.46 0.41 �0.54 �0.57 0.56 0.09 0.43 �0.49 -0.37
dev-random �0.30 0.33 0.00 0.71 0.24 0.04 -0.41 -0.37 0.76 0.75 �0.55 �0.04 -0.38 0.47 0.26

avg-dist. �0.79 0.31 �0.58 0.64 �0.11 0.16 �0.65 �0.63 0.69 0.75 -0.39 �0.56 �0.71 0.76 0.66

LZ �0.13 �0.10 �0.17 �0.24 �0.22 �0.11 0.00 0.04 �0.24 �0.24 0.06 0.14 0.14 �0.19 �0.11
t-comp -0.46 0.37 �0.28 �0.09 �0.36 0.05 �0.18 �0.14 �0.15 �0.14 �0.16 -0.38 -0.40 �0.16 �0.11

magnitude �0.05 �0.14 �0.13 �0.26 �0.19 �0.08 0.00 0.04 �0.25 �0.25 0.09 0.17 0.19 �0.19 �0.12
support 0.04 �0.36 �0.16 �0.21 �0.07 �0.12 0.02 0.04 �0.19 �0.18 0.08 0.26 0.25 �0.13 �0.08
variety �0.47 0.15 �0.29 0.81 0.21 �0.10 �0.56 �0.56 0.98 0.98 -0.44 �0.23 -0.46 0.64 0.36

DT (%) �0.48 0.23 �0.27 0.49 �0.06 0.22 -0.45 -0.41 0.58 0.63 �0.55 �0.26 �0.56 0.60 0.52

DT (#) �0.22 0.32 �0.02 �0.18 �0.22 �0.09 �0.02 0.00 �0.19 �0.19 �0.22 �0.06 �0.18 �0.17 �0.10
TL-min 0.10 0.25 0.29 0.26 0.03 0.31 0.09 0.14 0.14 0.11 �0.22 0.18 0.01 �0.07 �0.14
TL-avg �0.66 0.34 -0.40 0.66 �0.12 0.15 �0.58 �0.55 0.78 0.81 �0.48 -0.45 �0.66 0.62 0.44
TL-max �0.65 0.29 �0.56 �0.03 -0.37 0.08 -0.46 -0.44 �0.06 �0.02 �0.16 �0.71 �0.67 0.19 0.27

Table 9
Overlapping of Pearson and Kendall statically significant correlated measures (at .01 or .05), negative correlation is highlighted with the symbol (-).

Log Comp. ETM IM SM

Measure Fit. Prec. F-score Size CFC Fit. Prec. F-score Size CFC Fit. Prec. F-score Size CFC

var-e .01(-) .01(-)
seq-e
nvar-e
nseq-e .01(-) .01 .01(-) .01(-) .05 .05 .01(-) .05(-) .01(-) .05
LOD .01 .05(-) .05(-) .01 .01 .01(-) .05(-)
granularity
structure .01 .01 .01 .05
affinity .05 .01(-) .05(-) .05 .01(-) .01(-) .01 .05 .01(-) .05(-)
dev-random .01 .05(-) .05(-) .01 .01 .01(-) .05(-) .01
avg-dist. .01(-) .01(-) .01 .01(-) .01(-) .01 .01 .05(-) .01(-) .01(-) .05 .05
LZ
t-comp .05(-) .05 .05(-)
magnitude
support
variety .01(-) .01 .05(-) .05(-) .01 .01 .05(-) .01
DT (%) .01(-) .01 .05(-) .05(-) .05 .05 .01(-) .01(-)
DT (#)
TL-min
TL-avg .01(-) .05(-) .01 .01(-) .01(-) .01 .01 .01(-) .05(-) .01(-) .01 .05
TL-max .01(-) .05(-) .05(-) .05(-) .05(-) .01(-)

Table 10
Log complexity measures and process model quality measures that correlate the most, with emphasis on correlations with p < 0:01.

Log Comp. ETM IM SM

Measure Fit. Size Prec. F-score Size CFC Fit. F-score Size

nseq-e .01(-) .01 .01(-) .01(-) .01(-) .01(-)
affinity .01(-) .01(-) .01(-) .01 .01(-)
dev-random .01 .01 .01 .01(-) .01
avg-dist. .01(-) .01 .01(-) .01(-) .01 .01 .01(-)
variety .01(-) .01 .01 .01 .01
DT (%) .01(-) .01 .01(-) .01(-)
TL-avg .01(-) .01 .01(-) .01(-) .01 .01 .01(-) .01(-) .01
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Table 11
Results of the regression analysis.

Outcome Predictor Residual Errors Predictor

Variable Variable min median max coeff. p-value R2

nseq-e �0.368 0.005 0.333 �0.747 0.003 0.275
avg-dist. �0.284 0.014 0.135 �0.013 0.000 0.632

ETM Fitness variety �0.533 0.040 0.223 �0.004 0.008 0.223
DT (%) �0.530 0.022 0.229 �0.003 0.007 0.234
TL-avg �0.398 0.024 0.180 �0.011 0.000 0.435
nseq-e �38.617 1.017 29.276 87.706 0.003 0.282
affinity �44.328 1.087 23.366 �93.835 0.000 0.463
dev-random �38.982 2.470 27.335 126.467 0.000 0.507

ETM Size avg-dist. �28.108 2.151 26.790 1.212 0.000 0.410
variety �20.198 �2.628 29.969 0.767 0.000 0.658
DT (%) �39.073 �1.568 31.732 0.408 0.006 0.239
TL-avg �38.768 1.606 31.796 1.268 0.000 0.432
nseq-e �0.383 0.030 0.331 �0.841 0.001 0.351

IM Precision avg-dist. �0.344 0.041 0.280 �0.011 0.000 0.423
TL-avg �0.330 0.012 0.292 �0.010 0.001 0.331
nseq-e �0.387 0.042 0.195 �0.636 0.001 0.316

IM F-score avg-dist. �0.318 0.047 0.177 �0.008 0.000 0.401
TL-avg �0.316 0.028 0.219 �0.007 0.002 0.300
affinity �67.971 �7.348 105.713 �177.023 0.002 0.295
dev-random �67.632 2.120 75.020 317.187 0.000 0.570

IM Size avg-dist. �80.604 �8.423 74.846 3.090 0.000 0.477
variety �31.157 0.109 20.143 2.192 0.000 0.963
TL-avg �93.232 �4.092 67.909 3.571 0.000 0.614
affinity �48.798 �4.414 64.821 �130.587 0.001 0.327
dev-random �46.816 0.205 44.763 220.020 0.000 0.558

IM CFC avg-dist. �57.225 �6.559 47.295 2.353 0.000 0.562
variety �16.869 �1.123 14.600 1.539 0.000 0.965
TL-avg �67.689 �3.600 43.697 2.598 0.000 0.661
nseq-e �0.147 0.010 0.132 �0.387 0.000 0.405
affinity �0.144 0.008 0.125 0.284 0.001 0.313

SM Fitness dev-random �0.141 0.023 0.102 �0.361 0.002 0.305
DT (%) �0.127 0.013 0.194 �0.002 0.001 0.308
TL-avg �0.155 0.018 0.151 �0.003 0.007 0.231
nseq-e �0.137 �0.002 0.089 �0.357 0.000 0.511

SM F-score avg-dist. �0.137 0.014 0.071 �0.004 0.000 0.497
DT (%) �0.221 0.001 0.070 �0.001 0.001 0.315
TL-avg �0.170 0.015 0.074 �0.004 0.000 0.438
affinity �93.412 �0.441 295.530 �226.293 0.006 0.243

SM Size dev-random �77.411 �11.069 311.668 279.926 0.008 0.224
variety �54.125 �9.066 284.199 2.017 0.000 0.411
TL-avg �108.224 �9.111 239.024 3.965 0.000 0.381
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conducted by Riberio et al. [36,35], however, neither taking into account the log complexity measures nor the novel auto-
mated process discovery algorithms designed in the past five years (including, Fodina [50] and Split Miner [3]). Furthermore,
Riberio et al. propose a black-box prediction system, which does not focus on the connection between log complexity mea-
sures and the quality of the discovered process model.

4.4. Results of computational performance

Finally, we compared the computational performance of all the log complexity measures, assessing their average, max-
imum, minimum, and median execution times over the 32 event logs. The results are shown in Table 12. We did not report
the execution times of derived measures (e.g., the percentage of distinct traces, which is derived from the total number of
distinct traces and support), or of ratios (e.g., our normalized graph entropy measures). We note that all the complexity mea-
sures have a median execution time below one second, with the exception of affinity with a median execution time of 9:6
seconds. Indeed, affinity was the slowest measure to be calculated, followed by our graph entropy-based complexity mea-
sures and avg-dist. However, while affinity has an average execution time well above a minute, our measures and avg-dist
have an average execution time in the order of seconds, which is reasonable given that these measures are not designed
to work in a real-time context.

4.5. Threats to validity

The findings reported in this study should be interpreted taking into account the size and variety of the 32 event logs of
our dataset. Although the event logs are a good approximation of event logs that one may find in real-world scenarios, both
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Table 12
Execution times (in seconds) of the complexity measures.

var-e seq-e LOD granularity structure affinity dev-random

AVG 22.1 21.7 0.2 0.2 0.6 148.4 0.8
MAX 397.5 384.2 2.2 1.8 5.8 2020.1 10.7
MIN < 0:1 < 0:1 < 0:1 < 0:1 < 0:1 < 0:1 < 0:1
MEDIAN 0.1 0.1 < 0:1 < 0:1 0.2 9.6 0.1

avg-dist. LZ t-comp magnitude support variety DT (%) TL-min

AVG 18.1 0.6 < 0:1 < 0:1 < 0:1 0.2 0.2 0.1
MAX 176.0 8.4 < 0:1 < 0:1 < 0:1 2.0 1.8 0.9
MIN < 0:1 < 0:1 < 0:1 < 0:1 < 0:1 < 0:1 < 0:1 < 0:1
MEDIAN 0.6 < 0:1 < 0:1 < 0:1 < 0:1 < 0:1 < 0:1 < 0:1
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in terms of complexity and variety of domains, they cannot possibly synthesize all possible business processes observable in
an industrial setting. It is interesting to note that the original submission of this study’s manuscript included only 24 event
logs [7] and that the additional 8 event logs were added following the reviewers’ suggestions. Nonetheless, the changes in
the statistical analysis were minor. For instance, the total number of pairs of measures that correlated according to both
Pearson and Kendall correlations increased from 84 to 90 (see Table 9). Even more importantly, the seven log complexity
measures that correlated the most did not change (Table 10), nor did the most robust predictors (Table 11).

Another threat to the validity of our evaluation is the selection of the quality measures of automatically discovered pro-
cess models, which in the past few years have been under scrutiny [42,41] in the process mining research community. How-
ever, these research studies showed that no existing precision measure is ideal, while newly designed ones are either
approximate [4] or computationally inefficient [32,34]. Although one may argue that one precision measure is better than
another, we note that the choice of the precision measure does not affect the results much. The findings are reliable and
accurate in light of the quality measures we used, which remain the most popular as of today.
5. Conclusions

With this paper, we provide two major contributions to measuring process complexity and to assessing process mining
algorithms. First, we analyzed existing measures for process complexity that are based on event logs. Each of these measures
emphasizes different complexity criteria including size, variation, and distance. We defined new measures of process com-
plexity based on graph entropy, which capture all three concerns of process complexity by adhering to monotonicity. Second,
we evaluated the identified set of process complexity measures, including our novel measures, using a benchmark collection
of event logs and their corresponding automatically discovered process models. The goal of our evaluation was to investigate
which empirical connections hold between the process complexity measures and the quality of discovered models. Our
results show that many process complexity measures (including our novel measure) correlate with the quality of the discov-
ered process models and that it is possible to use process complexity measures as predictors for the quality of process mod-
els discovered with state-of-the-art process discovery algorithms.

The findings we reported in this paper are important for process mining research, as they highlight that not only algo-
rithms but also empirical connections between input data complexity and output quality should be investigated. Our results
demonstrate the potential to examine the concept of process complexity and its corresponding measures in connection with
automated process discovery and there are various opportunities to extend this approach to related research problems. Addi-
tional aspects of event log data, such as data complexity, could be used to study connections with further output parameters,
such as the process model’s usefulness perceived by analysts.
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