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the existence of hyperbolic cohomology classes to the non-amenability of the 
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hyperbolic and atoroidal classes. This leads to both an application to symplectically 
atoroidal manifolds, and an improved understanding of recent attempts to find 
atoroidal classes.
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1. Introduction

The notion of hyperbolic cohomology classes was introduced by Gromov [11] under the name of 
d̃(bounded) classes. The paper [11] was concerned with Kähler manifolds whose Kähler classes are hy-
perbolic, and the more general case of hyperbolic classes represented by symplectic forms which need not 
be Kähler was considered by Polterovich [17] and Kȩdra [14]. The present note was motivated in part by 
these papers, and it answers some of the questions raised, explicitly or implicitly, in [14].

In Section 2 we investigate hyperbolic classes in the general context of simplicial complexes, without 
restricting to smooth manifolds. Our discussion proceeds along the lines of Gromov’s ideas as presented 
in [11,12]. In Theorems 2.4 (for degree two) and 2.5 (for higher degrees) we prove a kind of homological 
invariance with respect to classifying maps for the notion of hyperbolicity of a cohomology class. These 
results, which follow a pattern of results on homological invariance of other largeness properties established 
in the work of the first author [6,7], clarify the discussions in [11, Section 0.2] and in [14, Section 5].
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In Section 3 we discuss the relation between amenability of the fundamental group and the absence of 
hyperbolic cohomology classes using ideas of Brooks [4,5]. In Section 4 we give concrete answers to some 
questions formulated in [14]. Finally in Section 5 we show that the recent attempt by Neofytidis [16] to find 
atoroidal classes in connected sums is flawed, and we provide a corrected version of his discussion.

2. Aspherical, atoroidal, hyperbolic, and bounded classes

Let X be a topological space. A cohomology class w ∈ Hk(X; R) is called aspherical if its pullback to 
any sphere is zero. Using the universal coefficient theorem Hk(X; R) = Hom(Hk(X; R), R), one sees that 
a cohomology class w is aspherical if and only if it maps every homology class represented by a sphere to 
zero, that is, if the image of the Hurewicz homorphism πk(X) → Hk(X; R) lies in kernel of w. The subspace 
of all aspherical cohomology classes in Hk(X; R) will be denoted by V k

asph(X).
In degree two, we will also consider the subspace V 2

ator(X) ⊂ H2(X; R) of all atoroidal cohomology 
classes. A class is called atoroidal if it evaluates to zero on every homology class represented by a 2-torus.

Since there is a degree one map T 2 → S2 it follows immediately that

V 2
ator(X) ⊂ V 2

asph(X).

Moreover, these subspaces are natural in the following sense: if f : X → Y is a continuous map, then 
f∗V k

asph(Y ) ⊂ V k
asph(X) and f∗V 2

ator(Y ) ⊂ V 2
ator(X).

Note that V 1
asph(X) = 0 for every space X since every integral 1-cycle is represented by a loop, and that 

V k
asph(X) = Hk(X; R) for k ≥ 2 if X is aspherical (i.e. πk(X) = 0 for k ≥ 2). Furthermore, tori provide 

examples of aspherical spaces for which the atoroidal subspace is trivial.
Next, we want to define the notion of hyperbolic cohomology class. This is only possible on spaces for 

which cohomology classes can be represented by differential forms. Beyond smooth manifolds, this works 
for simplicial complexes, see for example [20].

Let X be a simplicial complex. A k-form ω on X consists of a smooth k-form ωσ for every simplex 
σ ⊂ X such that ωσ|τ ≡ ωτ whenever τ ⊂ σ is a subsimplex. The space of all k-forms is denoted by Ωk(X). 
Together with the exterior derivative this defines the de Rham complex of X. The following is the de Rham 
theorem for this general context:

Theorem 2.1 (de Rham, Thom). There is a natural isomorphism

Hk
dR(X)

∼=−→ Hk(X;R)

between the cohomology of the de Rham complex and real singular cohomology.

Analogously to the definition of differential forms, one defines Riemannian metrics for simplicial com-
plexes. A Riemannian metric g consists of a Riemannian metric gσ on every simplex σ of X such that 
gσ|τ ≡ gτ for τ ⊂ σ. Using this, we can make the following definition following Gromov [11,12]:

Definition 2.2. Let X be a finite simplicial complex. Denote the universal covering by p : X̃ → X. A co-
homology class w ∈ Hk(X; R) is called hyperbolic if the pullback p∗ω of a representing k-form ω has a 
primitive α ∈ Ωk−1(X̃) which is bounded with respect to some lifted Riemannian metric.

Note that this definition does not depend on the choice of the Riemannian metric since X is compact. If 
the pullback of one representative has a bounded primitive, then this holds for every representative. (The 
difference of two representing forms is the exterior derivative of a form on X, whose lift to X̃ is obviously 
bounded.)
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The subset V k
hyp(X) ⊂ Hk(X; R) of all hyperbolic classes is a subspace. If f : X → Y is a simplicial map, 

then obviously f∗V k
hyp(Y ) ⊂ V k

hyp(X). Since every continuous map may be approximated by a simplicial 
one, it follows that the hyperbolic subspace is natural with respect to continuous maps.

Note that V k
hyp(X) ⊂ V k

asph(X) for k ≥ 2 since every map Sk → X factorizes through the universal 
covering X̃ → X and hyperbolic classes are by definition cohomologous to zero on X̃. In [14], Proposition 
1.9, Kȩdra showed that every hyperbolic class of degree two is atoroidal (see also Section 3 below). Moreover, 
note that V 1

hyp(X) = 0. (This is a direct consequence of Theorem 3.2, but it is also rather obvious.)
We will also consider bounded cohomology classes. Let X be a topological space. Denote by Sk(X) the set 

of all singular k-simplices in X. The space of singular k-cochains is given by Ck(X; R) = {c : Sk(X) → R}, 
the vector space of all real functions on Sk(X). The bounded cochain group Ck

b (X) consists of all such 
functions which are uniformly bounded on Sk(X). The bounded cohomology Hk

b (X) is the cohomology of 
this subcomplex of the singular cochain complex. (More details and deep results on bounded cohomology 
can be found in Gromov’s paper [10].)

The image of the canonical homomorphism Hk
b (X) → Hk(X; R) is denoted by V k

b (X). The cohomology 
classes in this subspace are called bounded. This subspace is natural with respect to continuous maps, and 
Kȩdra [14, Theorem 2.1] proved that it is contained in the hyperbolic subspace. In fact, Kȩdra stated this 
only for closed manifolds M in place of finite simplicial complexes X, but the result is true in this generality 
with the same proof. Since the bounded cohomology of spheres and of tori is trivial, it is clear that bounded 
classes are always atoroidal and aspherical.

Let X be a finite simplicial complex. We have defined four subspaces of Hk(X; R) and seen that they 
fulfill the following relations:

V k
b (X) ⊂ V k

hyp(X) ⊂ V k
asph(X) respectively

V 2
b (X) ⊂ V 2

hyp(X) ⊂ V 2
ator(X) ⊂ V 2

asph(X).

Denote by π the fundamental group of X and by c : X → Bπ the classifying map of the universal 
covering. This is a map that induces the identity on fundamental groups and is uniquely determined up to 
homotopy by this condition. Without loss of generality we may assume that c : X ↪→ Bπ is the inclusion 
of a subcomplex such that the 2-skeleton of Bπ is contained in X. By the long exact cohomology sequence 
and the Hurewicz theorem, it follows that the induced homomorphism

c∗ : H2(Bπ;R) ↪→ H2(X;R)

is injective and the image of c∗ is V 2
asph(X).

Since V 2
asph(Bπ) = H2(Bπ; R), this may be rephrased by c∗(V 2

asph(Bπ)) = V 2
asph(X). By cellular approx-

imation every map T 2 → Bπ may be homotoped to a map T 2 → X ⊂ Bπ. Thus, if c∗w is atoroidal, then 
w has to be atoroidal too, that is, c∗(V 2

ator(Bπ)) = V 2
ator(X). Furthermore, c induces an isomorphism on 

bounded cohomology ([10], page 40). Hence, c∗(V 2
b (Bπ)) = V 2

b (X) follows.
In general, Bπ does not have the homotopy type of a finite complex (for example if π contains non-

trivial torsion elements). Therefore, the hyperbolic subspace is not defined for Bπ by Definition 2.2. That 
definition does not apply, because when a simplicial complex is not finite, different metrics are not bi-
Lipschitz equivalent, and so the notion of bounded primitive depends on the choice of metric. Nevertheless, 
there is the following definition due to Gromov [11, Subsection 0.2.C]:

Definition 2.3. A cohomology class w ∈ Hk(Bπ; Q) is called hyperbolic if its pullback to any finite simplicial 
complex is hyperbolic.
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The next theorem shows that in the situation above where X ⊂ Bπ contains the 2-skeleton the equality

c∗V 2
hyp(Bπ) = V 2

hyp(X) (1)

holds. Thus, the four subspaces in two-dimensional cohomology depend only on the fundamental group and 
on the classifying map of the universal covering.

Theorem 2.4. Let X and Y be two finite simplicial complexes, let c : X → Bπ be the classifying map of the 
universal covering, and let f : Y → Bπ be an arbitrary map. Let w ∈ H2(Bπ; R) be a cohomology class. If 
c∗w ∈ V 2

hyp(X), then f∗w ∈ V 2
hyp(Y ).

Proof. Without loss of generality we may assume that c : X ↪→ Bπ is the inclusion of a subcomplex such 
that the 2-skeleton of Bπ is contained in X. Since X and Y are finite there exists a finite subcomplex 
X ′ ⊂ Bπ that contains both X and f(Y ). We will show that w|X′ is hyperbolic. Then f∗w is hyperbolic 
by naturality and we are done.

Note that X ′ is obtained from X by attachment of finitely many cells of dimension at least 3. By induction 
it suffices to consider the case where only one such cell is attached. Let h : Sk−1 → X be the attaching map 
(with k ≥ 3). Then X ′ = X ∪hD

k and X̃ ′ = X̃ ∪(h×π) (Dk×π), i.e. the universal covering of X ′ is obtained 
by attaching a k-cell to X̃ along each lift of h.

Choose a representative ω ∈ Ω2(Bπ) of w. Then there is a bounded 1-form α on X̃ such that dα =
p∗(ω|X). Consider ω|Dk ∈ Ω2(Dk). Since H2

dR(Dk) = 0 there is a 1-form α′ ∈ Ω1(Dk) such that dα′ = ω|Dk .
Now we focus on one lift of h and the cell which is attached along this lift. For simplicity we will call 

them h and Dk. We have h∗α ∈ Ω1(Sk−1) with d(h∗α) = h∗(p∗ω). Therefore,

h∗α− p∗α′ ∈ ker(d : Ω1(Sk−1) → Ω2(Sk−1)).

Since k ≥ 3 the cohomology group H1
dR(Sk−1) = 0 and there exists a function f ∈ Ω0(Sk−1) such that 

df = h∗α− p∗α′. Thus, df is bounded by the sum of the bounds on α and α′. Choose an extension of f over 
Dk that satisfies the same bound.

We now extend α over Dk as p∗α′ + df . Then α ∈ Ω1(X̃ ′) is bounded and dα = p∗ω. �
The proof shows that the following extension to higher degrees is valid:

Theorem 2.5. Let X be a finite simplicial complex such that πi(X) = 0 for 2 ≤ i ≤ k − 1. Denote by 
c : X → Bπ1(X) the classifying map of the universal covering. Let f : Y → Bπ be an arbitrary map, and let 
w ∈ Hk(Bπ; R) be a cohomology class. If c∗w ∈ V k

hyp(X), then f∗w ∈ V k
hyp(Y ).

In this case we may assume that c : X → Bπ1(X) is an inclusion such that the k-skeleton of Bπ1(X) is 
contained in X. Thus, we do not have to attach cells of dimension less than k + 1 and the same proof as 
above goes through. Note that this does not allow one to prove a formula like (1), since it may happen that 
the higher skeletons of Bπ can not be chosen to be finite, see [19].

Remark 2.6. The above Theorem 2.4 is very similar to Theorem 5.1 of [14]. The discussion in [14] is entirely 
in the context of manifolds, and is difficult technically. Our approach, extending from manifolds to simplicial 
complexes and formulating homological invariance in this context, is more in line with the work of the first 
author [6,7]. The generalization to Theorem 2.5 is in the same spirit as Theorem 1.9 of [7].
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3. Amenable groups and hyperbolic classes

Consider a complete Riemannian manifold (M, g). We denote by λ0(M, g) the largest lower bound for 
the spectrum of the Laplacian extended to L2(M). If M is closed, then λ0(M, g) = 0 because the constant 
functions are in L2(M). Recall the following characterization of amenable coverings due to Brooks:

Theorem 3.1 ([5]). Let (M, g) be a closed Riemannian manifold, and let M̄ → M be a Galois covering with 
Galois group Γ. Then Γ is amenable if and only if λ0(M̄, ̄g) = 0, where ḡ denotes the lifted metric.

We now use this result to prove the following:

Theorem 3.2. Let X be a finite simplicial complex with amenable fundamental group. For all k we have

V k
hyp(X) = 0 .

Proof. Assume there is a nontrivial w ∈ V k
hyp(X). By the well known result of Thom, there is a map 

f : N → X from a connected closed orientable k-dimensional manifold N such that f∗w 	= 0 ∈ Hk(N ; R). 
We may assume without loss of generality that f∗ : π1(N) → π1(X) is surjective.

Consider the Galois covering N̄ = f∗X̃ of N . Its Galois group is π1(X), which by assumption is amenable. 
Thus, by Theorem 3.1, we have λ0(N̄ , ̄g) = 0 for any metric g on N .

Recall that the isoperimetric constant of a complete k-dimensional manifold (N̄ , ̄g) is defined as

i(N̄ , ḡ) = inf
Ω

Volk−1(∂Ω)
Volk(Ω) ,

where the infimum is taken over all relatively compact sets Ω ⊂ N̄ with sufficiently regular boundary. The 
Cheeger inequality [9] tells us that

1
4 i(N̄ , ḡ)2 ≤ λ0(N̄ , ḡ) ,

so that we conclude i(N̄ , ̄g) = 0. This will lead to a contradiction.
Suppose that f∗w is represented by the volume form ω of a Riemannian metric g – this is possible because 

f∗w 	= 0 in the top-degree cohomology of N . Then, on the one hand, p∗ω is the Riemannian volume form 
of ḡ. On the other hand, p∗ω = dα for some α which is bounded, as we see from the commutativity of the 
following diagram:

N̄

p

X̃

p

N
f

X

Now for any Ω ⊂ N̄ with sufficiently smooth boundary we can apply Stokes’s theorem to obtain

Volk(Ω) =
∫

Ω

p∗ω =
∫

∂Ω

α ≤ cVolk−1(∂Ω) ,

where c is any C0-bound for α. It follows that i(N̄ , ̄g) ≥ 1/c, contradicting the vanishing of the isoperimetric 
constant. This contradiction completes the proof. �
Remark 3.3. Proposition 1.9 and Theorem 6.7 of [14] are special cases of the above Theorem 3.2.
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The converse of Theorem 3.2 is not true for finite simplicial complexes. For example, if M is a closed 
hyperbolic three-manifold which is a real homology sphere, and X is obtained from M by removing the 
interior of a top-degree simplex, then V k

hyp(X) = 0 for all k, but the fundamental group of X is non-
amenable. However, if we restrict to closed oriented manifolds, then there is the following strong converse 
of Theorem 3.2 due to Gromov, Brooks, Sikorav and others:

Theorem 3.4. Let M be a closed oriented smooth n-manifold. If V n
hyp(M) = 0, then π1(M) is amenable.

Proof. One has to prove that if π1(M) is not amenable, then the lift of the volume form of any Riemannian 
metric g on M to M̃ admits a bounded primitive. By Theorem 3.1, the non-amenability of π1(M) is 
equivalent to the non-vanishing of λ0(M̃, ̃g). Using the converse of the Cheeger inequality due to Buser [8], 
this implies the non-vanishing of the isoperimetric constant i(M̃, ̃g). As explained in [4], [13, Chapter 6]
and [18], the non-vanishing of i(M̃, ̃g) leads to the existence of a bounded primitive for the volume form. See 
the paper of Sikorav [18] for a detailed proof not passing through Theorem 3.1, and Block and Weinberger [3]
for a different approach. �
4. Examples and applications

Gromov [12, Section 6C] showed that the inclusion V k
b (X) ⊂ V k

hyp(X) is usually strict in degrees k ≥ 3. 
His examples are of the following form: choose a closed orientable manifold M of dimension k − 1 with 
non-amenable fundamental group (this is where k ≥ 3 is used), and take X to be the product M ×S1. The 
fundamental group of X is non-amenable and therefore the top degree cohomology is equal to its hyperbolic 
subspace by Theorem 3.4. But since the simplicial volume ‖X‖ is zero due to the presence of a free circle 
action, it follows that V k

b (X) = 0 (see [10], page 17). This phenomenon shows in particular that Theorem 3.2
is not a consequence of the vanishing theorem for the bounded cohomology of amenable groups.

Gromov’s examples leave open the question whether the inclusion V 2
b (X) ⊂ V 2

hyp(X) may also be strict, 
and, in fact, he conjectured that it never is strict, which, together with the above examples for higher 
degrees, would completely resolve Question 1.16 of [14].

Kȩdra [14, Question 1.10] also asked whether every atoroidal cohomology class of degree two is hyperbolic. 
We now give a negative answer to this question using the following result of Barge and Ghys:

Theorem 4.1 ([2]). For every positive integer k there exists a finitely presentable nilpotent group Γ such that 
H2(BΓ; Z) contains a non-torsion element a that is not contained in the subgroup generated by all elements 
which are representable by surfaces of genus at most k.

Note that nilpotent groups are amenable. Therefore, for these groups V 2
hyp(BΓ) = 0 by Theorem 3.2. 

Consider a class w ∈ H2(BΓ; R) = Hom(H2(BΓ; Z), R) that sends the subgroup generated by all elements 
which are representable by surfaces of genus at most k to zero but that fulfills w(a) 	= 0. If k ≥ 1, then w
is atoroidal. Thus, we have:

Corollary 4.2. There exist finitely presentable groups Γ such that V 2
hyp(BΓ) = 0 and V 2

ator(BΓ) 	= 0.

These examples can be realized by symplectic forms on closed manifolds:

Corollary 4.3. There exist closed symplectic four-manifolds (M, ω) for which (the cohomology class of) ω is 
atoroidal but not hyperbolic.

Proof. We use the same construction as in Section 3.3 of [14], compare also [1,15].
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Let Γ be one of the groups from the construction of Barge and Ghys [2], and w ∈ H2(BΓ; R) a non-torsion 
atoroidal class. By the construction of Amorós et al. [1] there exists a Lefschetz fibration N over S2 with 
a section, with π1(N) = Γ, and such that ωF := c∗w evaluates non-trivially on the fiber F of N → S2. 
Let B be a surface of genus at least 2, and M the fiber sum of N with B × F along F . Then π : M → B

is a Lefschetz fibration with π1(M) = Γ × π1(B). If ωB denotes a generator for H2(B; R), then for all 
k ∈ R which are large enough, the cohomology class ω := ωF + kπ∗ωB is represented by a symplectic form 
constructed by the generalization of the Thurston construction from bundles to Lefschetz fibrations. On the 
one hand, ωF and ωB are both atoroidal, and therefore so is their linear combination ω. On the other hand, 
if ω were hyperbolic, then, because ωB is hyperbolic, it would follow that ωF would be hyperbolic, which 
would be a contradiction. �
Remark 4.4. In the examples constructed in the proof, more is true than was claimed in the statement of 
Corollary 4.3. Namely, not only is the class [ω] not hyperbolic, but the cohomology class of any symplectic 
form on a manifold M with the given fundamental group Γ × π1(B) fails to be hyperbolic. This is because 
V 2
hyp(M) = π∗V 2

hyp(B) is an isotropic subspace for the cup product on H2(M ; R), and so can not contain 
the class of any non-degenerate two-form. (Here π is the composition of the classifying map of M with the 
projection BΓ ×B → B.)

Remark 4.5. The examples in Corollary 4.3 exhibit the same behavior as Gromov’s examples mentioned 
above: in top degree the hyperbolic subspace V 4

hyp(M) is non-trivial, but the bounded subspace V 4
b (M)

vanishes. The former is due to the hyperbolicity of the volume form ωF ∧ π∗ωB , which follows from the 
hyperbolicity of ωB, without even appealing to Theorem 3.4. The latter is due to the amenability of Γ, 
which implies the vanishing of its bounded cohomology. Note that the sum of all the hyperbolic subspaces 
is always an ideal in the real cohomology ring, but this is not true for the bounded subspaces.

5. A failed attempt to find atoroidal classes

Here we prove the following special case of an additivity result under connected sums for the minimal 
genus function on the second homology.

Theorem 5.1. Let M1 and M2 be closed, connected, oriented n-manifolds, where n ≥ 3. If H2(M1; Z) and 
H2(M2; Z) both contain aspherical classes, in the sense that their images in real homology are not in the 
image of the real Hurewicz map, then H2(M1#M2; Z) contains a homology class that cannot be represented 
by a single copy of T 2.

The proof of the theorem uses the following lemma, which is an adaptation of [16, Lemma 3.5]. The proof 
of the lemma is an easy consequence of covering space theory.

Lemma 5.2. Let M be a connected n-manifold and u ∈ H2(M ; Z) a class whose image in real homology is 
not in the image of the real Hurewicz map. If u is toroidal, then every continuous map from a torus realizing 
u induces an injection on the fundamental group.

Proof of Theorem 5.1. The assumption that H2(Mi; R) contains an aspherical class means that the real 
Hurewicz map of Mi is not surjective. Therefore, the second integral homology contains a class ui of infinite 
order which cannot be represented by a sphere.

We will prove that u1 + u2 cannot be represented by a torus. Assume to the contrary that there exists 
a continuous map f : T 2 −→ M1#M2 such that f∗[T 2] = u1 + u2. If pi : M1#M2 −→ Mi denotes the 
collapsing map for i = 1, 2, then (pi ◦f)∗[T 2] = ui shows that ui is also toroidal. Since ui is not in the image 
of the real Hurewicz homomorphism of Mi, the homomorphism
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(pi ◦ f)∗ : π1(T 2) −→ π1(Mi) (2)

is injective by Lemma 5.2. Therefore,

f∗ : π1(T 2) → π1(M1#M2) = π1(M1) ∗ π1(M2)

is also injective. The Kurosh Subgroup Theorem shows that

im(f∗) ⊂ π1(M1) ∗ π1(M2)

is of the form

im(f∗) = F ∗G1 ∗G2 . (3)

Here F denotes a free group and the Gi are free products of subgroups of the conjugates of π1(Mi) inside 
the free product. Since im(f∗) ∼= Z2, two of the three factors in (3) must be trivial. First, we have F = 0, 
because Z2 is not free. But neither G1 nor G2 can be trivial due to the injectivity of (2). This contradiction 
proves that u1 + u2 cannot be represented by a single torus. �

The insistence on a single torus in the argument is essential. If we allow a disjoint union of two copies of 
T 2, then it may be possible to represent u1 + u2, since each of the two copies of T 2 can be used to hit one 
of the ui. In particular, if we assume that both ui are representable by tori, then their sum is in the vector 
space spanned by all classes represented by tori.

Theorem 5.1 and similar results do not imply the existence of atoroidal cohomology classes in connected 
sums. For any topological space with finitely generated homology in degree 2, the second homology with 
real coefficients carries a finite filtration by subspaces as follows:

0 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vk = H2(M ;R) ,

where Vi is the R-span of the integral classes representable by connected oriented surfaces of genus ≤ i. 
Thus in particular V0 is the image of the real Hurewicz map, and V1 is the span of the classes representable 
by spheres and tori.

Passing to the dual space H2(M ; R) = Hom(H2(M ; R), R) we find

0 = V ⊥
k ⊂ V ⊥

k−1 ⊂ . . . V ⊥
1 ⊂ V ⊥

0 ⊂ H2(M ;R) ,

where V ⊥
i is the annihilator of Vi. In particular, V ⊥

0 is the aspherical subspace V 2
asph, and V ⊥

1 is the atoroidal 
subspace V 2

ator.
Under the connected sum of manifolds, these subspaces just combine in the obvious way.

Lemma 5.3. Let M1 and M2 be connected n-manifolds with n ≥ 3. Then

V 2
ator(M1#M2) = p∗1V

2
ator(M1) ⊕ p∗2V

2
ator(M2) ,

where pi : M1#M2 −→ Mi denotes the collapsing maps.
In particular, M1#M2 has an atoroidal cohomology class if and only if at least one of the Mi does.

Proof. By the naturality of the atoroidal subspaces, p∗i maps the atoroidal subspace into the atoroidal 
subspace. Conversely, a non-zero cohomology class in V 2

ator(M1#M2) restricts non-trivially to at least one 
of the summands, and the restriction is also atoroidal. �



M. Brunnbauer et al. / Topology and its Applications 344 (2024) 108830 9
This shows that one cannot find atoroidal classes in connected sums, unless at least one of the summands 
contains atoroidal classes.

Example 5.4. Let us take M1 = M2 = Tn, and consider the connected sum M = Tn#Tn. Then a basis for 
H2 is represented by 2-tori, so for M1 and M2, but also for the connected sum M , the subspace V1 is all of 
the second homology. Therefore, the subspace of atoroidal classes, V ⊥

1 , is zero.

One can make up many other examples like this. One of the simplest ones is probably the connected sum 
of two copies of T 2 × S3.

Remark 5.5. Recently Neofytidis [16] argued that non-trivial connected sums often contain atoroidal classes. 
Our discussion above shows that the approach in Version 1 of [16] is fundamentally flawed, since it attempts 
to find atoroidal classes in connected sums when neither summand has such classes, and this would contradict 
Lemma 5.3 above.
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