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Abstract

Test statistics for sphericity and identity of the covariance matrix are
presented, when the data are multivariate normal and the dimension, p,
can exceed the sample size, n. The test statistics are shown to follow
an approximate normal distribution for large p, also when p >> n. The
statistics are derived under very general conditions, particularly avoiding
any strict assumptions on the traces of the unknown covariance matrix.
Neither any relationship between n and p is assumed. The accuracy of the
statistics is shown through simulation results, particularly emphasizing
the case when p can be much larger than n.
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1 Introduction

The need for estimation and testing of high dimensional covariance matrix in
multivariate set up has recently been galvanized by frequently encountered large
data sets, particularly, but not necessarily limited to, genetics, microarray, and
astronomy. The present manuscript focuses on two tests of covariance matrix
when the data are high dimensional. Precisely, suppose

Xk = (Xkla .. .,ka)l ~ Np(u,E),

k = 1,...,n, are n independent and identically distributed random vectors,
where g and 3 denote the mean vector and the covariance matrix, respectively.
The objective is to test the hypotheses

Hy :X=0’1 vs H:X#0%1

and
HOQ:E:I VS ngzE;&I,

particularly when p > n, where I is the identity matrix, and o2 > 0 is some
constant. The first of these hypotheses, Hy1, refers to the well-known sphericity



hypothesis, whereas Hypo is a convenient representation of a more general hy-
pothesis 3 = 33, where ¥ is any known positive definite covariance matrix.

There has been some interesting work on the tests of Hp; and Hpo, under
high-dimensional set up, over the last few years. Ledoit and Wolf (2002) discuss
the validity of the test statistics

2
1 S 1
U= “tr|—=—-1I]|, and V= —tr(S—1)% 1

for Hyy and Hyo, respectively, under high-dimensional settings, where S is the
sample estimator of 3, and tr denotes the trace. For n — oo, and p fixed, i.e.,
under n-asymptotics, the statistics U (John, 1971) and V' (Nagao, 1973) provide
asymptotically locally most powerful invariant tests, under normality.

Ledoit and Wolf examine the behavior of these statistics when p > n, under
some additional assumptions, particularly assuming that £ — ¢ € (0,00). They
show that, under normality, a test based on U is still consistent, even if p > n,
but the same is not true for V. They then propose a modified version of V' which
is valid to test Hpo under new assumptions. Birke and Dette (2005) extend the
work of Ledoit and Wolf by considering the same test statistics for the extreme
boundaries of concentration, i.e., when £ — ¢ € [0, 00]. Birke and Dette show
that the statistics are also valid for extreme cases, although their approximating
normal distributions needed to be derived through an approach different from
the usual delta method employed by Ledoit and Wolf.

Under similar assumptions on the traces of the covariance matrix, Srivastava
(2005) proposed test statistics for spherical, identity, and diagonal covariance
matrix. Assuming normality, the test statistics are shown to asymptotically
follow a normal distribution when p > n. The robustness of the same test
statistics to normality is then evaluated in Srivastava et al. (2011) under more
strict assumptions on the traces, and putting restrictions on the moments of the
underlying distribution. Chen et al (2010) have recently proposed tests for Hyy
and Hpo, assuming vanishing trace ratios of the unknown covariance matrix.
They do not assume normality, but place several restrictions, close to normal-
ity, on the moments of the underlying multivariate model.

In the sections to follow, new statistics for the hypotheses Hy; and Hys are
proposed under very general conditions, specifically trying to avoid the strict
trace assumptions on the covariance matrix, and putting any relationship be-
tween n and p. The accuracy of the statistics is shown to remain intact under
the most natural settings of the traces of the covariance matrices. The rest of
the article is organized as follows.

The test statistics are proposed in the next section. The performance of
the statistics is shown through simulation studies in Section 3. Section 4 sum-
marizes the results, and main theoretical derivations are collected in Appendix.



2 The proposed statistics

Let Xi = (Xg1s-- -, Xip) ~ Np(p,2), >0, k = 1,...,n, be the model, as
stated above. Without loss of generality, we assume p = 0.

Consider the hypotheses Hp; and Hpz, and the corresponding statistics U
and V in (1). They are computed using the sample covariance matrix S as a
plug-in estimator of X in

L= ) e )
b (étf(ﬁ) I) - [ltr(E)r " eep P
1 2 Los2y 2
and Etr(z -1 = pt (29) pt (%) +1, (3)

respectively. To study the behavior of (2) and (3), we need estimators of tr(3),
[tr(2)]2, and tr(X?), and for the use of the statistics for high dimensional set
up, the estimators must be consistent for large p, even if p > n. For X,
k=1,...,n, define A, = X} X} as a quadratic form, and Ay = XXy, k # [,
as a symmetric bilinear form. The estimators of the three traces, tr(X), [tr(2)]?,
and tr(3?), are given in the following definition.

Definition 2.1. Let Ay and Ay be as defined above. Then

1
B, = E;Alﬁ (4)

E2 = ﬁ Z ZAk’Aly (5)

k=1 1=1
——
k£l

Es = ﬁzz/ﬁl (6)

k=1 1=1
——
k£l

are the estimators of tr(X), [tr(X)]?, and tr(X?), respectively.

Note that, Fy, Fs and E3 are moment estimators of the respective traces,
as opposed to the plug-in estimators using sample covariance matrix S, given
in (1). The desired properties of the estimators are established in Lemma 2.2
below. The estimators are already discussed in Ahmad et al (2008, Equation
6), in the context of presenting a statistic for mean testing in high dimensional
longitudinal data, where it is proved that the estimators are unbiased and con-
sistent, and the consistency remains intact even if the dimension exceeds the
sample size. It is also interesting to note that the estimators in Equations (4)-
(6) are very closely related to the estimators used in Chen et al (2010) for the
construction of test statistics for Hg; and Hgs; see also Section 4.



The following lemma, proved in Appendix B, summarizes the basic prop-
erties of the estimators given in Definition 2.1.

Lemma 2.2. Let the estimators E1, Fs and Es3, be as given in Definition 2.1.
Then

BB = (),  Var(B) = %tr(EQ),
B(B) = (D) Ver(Ea) = ﬁ [(n— D= (D) + [1r(5)]7]
B(Es) = ()%  Var(Bs) = n(n“_ 5 [ =) + [r=?)]7]
Cov(E1, E3) = %tr(Z)tr(z%,
Cov(E1, E3) = %tr(23),
Couo(Es, E3) = n(ng, 5 (159 + (0 = iyt
where %E(EEJ; <O (L), Vi, j, whetheri=j ori+# j, i.e., the (co)variance

ratios are uniformly bounded in p.

In the next section, the test statistics for Hy; and Hys are constructed, based
on Definition 2.1 and the results of Lemma 2.2.

2.1 Test statistics for Hy; and Hy,

We use estimators given in Definition 2.1 to define the estimator of Equation
(2) as
pEs -~

Th=—"-1=1¢-1 7
1 E2 1/} ) ( )
where 1//; = % estimates ¢ = %‘ To compute asymptotic distribution

of T1, we need to compute the moments of T;. As Tj involves a ratio of two
correlated estimators, exact moments of 77 can not be computed. However, a
reasonable approximation of the first two moments can be obtained using the
bivariate delta method of moments (Lehmann, 1999). The moment approxima-
tion is based on a bivariate Taylor expansion, and the remainders of the two
moments vanish for large n (Casella and Berger, 2002, Ch. 5; Stuart and Ord,
1994, Ch. 10); see also Ahmad et al (2008).

Since, our main focus is on the application of 77 under high-dimensional set
up, we approach the problem of asymptotic normality from a slightly different,
and relatively simpler way. For this, we re-write T3 as

Ti+1  pEs [x(Z)*  Es/tr(Z?) ®)
(0 Ey  ptr(X?) Ey/[tr(X)]?
Following the same lines, to compute the test statistic for Hyps, we plug in the
relevant estimators from Definition 2.1 into Equation (3), and get

1 2
Ty = —F3— “Ey +1. (9)
p p



Clearly, T» is an unbiased estimator of Equation (3), or pT5 is an unbiased
estimator of tr(X —I)2. As Ty is simply a linear combination of the estimators,
computation of the moments of T is trivial. A closer look at Equation (9)
clues to the fact that the asymptotic normality of 77 and T, can be shown
simultaneously. We write,

[E3 — t2(2%)]

1 _ o
T, — ]Str(E -1)? = [E1 — tr(2)]

1 2
p p

s ) )
10

Now, the ratios of estimators to their corresponding traces in Equations (8) and
(10) are in the form of U-statistics (Lehmann, 1999, Ch. 6). The asymptotic
theory of U-statistics is, therefore, used to establish the approximate normality
of the test statistics. The proofs of the following two theorems follow from the
asymptotic theory of U-statistics, and are omitted; for details, see Koroljuk and
Borovskich (1994), and Lehmann (1999, Ch. 6).

Theorem 2.3. Let Ty be as defined in Equation (7). Then,

o ! (Tllzr L 1> 2y N0, 1), (11)

is the variance of the statistic (see Equation 8). In

as p,n — oo, where o>

particular, under Ho,
27y B N0, 1).
Theorem 2.4. Let Ty be as defined in Equation (7). Then,
o [T2 _ %tr(E _ 1)2} 2, N0, 1), (12)
2

as p,n — oo, where o7, is the variance of the statistic (see Equation 10). In
particular, under Hoo,

27, B N0, 1).

Some remarks regarding the two test statistics are in order. First, the null
distributions of both statistics are same. Further, these null distributions are
same as established by other researchers, for the same hypotheses; see, for ex-
ample, Ledoit and Wolf (2002), Srivastava (2005), Chen et al (2010). But, it
can be emphasized that the distributions presented in Theorems 2.3 and 2.4
do not depend on any strict assumptions, for example regarding traces of the
covariance matrix, or any relationship between n and p. The distributions are
derived under general conditions, particularly focusing the case when p can far
exceed n, as the practical high-dimensional situations demand. In this context,
it must be noted, as is also verified through simulations in Section 3, that the
approximating distributions are essentially developed for p — oo, disregarding
how large n is.



3 Simulation results

Table 1: ESTIMATED QUANTILES FOR T} AND T5

(Th) p
n 1-a 5 10 20 50 100 200 500 1000
10 0.90 0.913 0.900 0.900 0.906 0.908 0.900 0.904 0.906
0.95 0.949 0.959 0.956 0.951 0.956 0950 0.951 0.953
0.99 0.086 0.987 0.985 0.987 0.989 0.985 0.989 0.989
50 0.90 0.916 0.913 0.908 0.900 0.903 0.900 0.900 0.900
0.95 0.954 0.955 0.954 0952 0.95 0950 0.952 0.949
0.99 0.083 0.989 0.990 0.990 0.989 0.990 0.989 0.989
(12) P
n 1-a 5 10 20 50 100 200 500 1000
10 0.90 0.916 0.909 0.900 0.905 0.908 0.904 0.904 0.905
0.95 0.952 0.948 0.949 0951 0951 0950 0.951 0.952
0.99 0.080 0.978 0.983 0.986 0.986 0.988 0.987 0.989
50 0.90 0.919 0.902 0.902 0.900 0.900 0.898 0.899 0.900
0.95 0.956 0.953 0.950 0.947 0.950 0.948 0.949 0.948
0.99 0.084 0.985 0.980 0.988 0.990 0.988 0.992 0.989

Table 2: POWER OF TEST FOR 17 AND 15

(T1) P
s on 5 10 20 50 100 200 500 1000
cs 10 0.759  0.937 0.989 1.000 1.000 1.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
AR(1) 10 0.707 0.844 0.907 0.955 0.967 0.970 0.970 0.972
50 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000

(12) p
s on 5 10 20 50 100 200 500 1000
cs 10 0.650 0.894 0.980 0.999 1.000 1.000 1.000 1.000
50 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000
AR(1) 10 0.578 0.762 0.867 0.940 0.956 0.967 0.971 0.973
50 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 1 reports estimated quantiles for 77 (upper panel) and T, (lower panel)
for different pairs of n and p, and for three nominal quantiles 0.9, 0.95 and 0.99.
The small-n, large-p accuracy of both test statistics can be clearly evidenced
from the estimated values for n = 10 where p = 1000. As expected, the accuracy
of the statistics increases for increasing n, against any p, but this accuracy is
not damaged for any fixed n when p is allowed to increase. This validates the
high-dimensional consistency of the estimators used to construct the test statis-



tics. We observe an increasing stability of the estimated quantiles for increasing
n and p, where T3 slightly outperforms 75.

Table 2 reports power values for the two tests for the same pairs of n and p
as used for quantile estimation, and under compound symmetry (CS) and first-
order autoregressive, AR(1), covariance structures, where the nominal quantile
is fixed at 0.95. A CS covariance structure is defined as & = o2 [(1 — p)I + pJ],
where I is identity matrix, J is a matrix of 1s, and 02 and p are appropriate
constants. A covariance structure is AR(1) if Cov(Xy, X;) = o?pl*=U v k, 1.
For the computations reported in Table 2, it is assumed that 02 = 1, p = 0.5
for CS, and 0% = 1, p = 0.6 for AR(1).

It is observed that the power of both test statistics increases for increasing p
for any n, and also for increasing n against any p. The highest power is gener-
ated by the compound symmetric covariance pattern, followed by autoregressive
pattern. In general, it can be concluded that the test statistics have high power
for moderate n, say 10 or more, for any p < n. It must be noted that the power
pattern of the statistics for autoregressive covariance structure does not vary
significantly by changing p. The assumed p = 0.6 was taken only as a moderate
example value, but it was verified that similar results are produced by smaller
or larger values of the correlation coefficient.

The Autoregressive structure gives relatively low power, particularly for
small sample size, and power increases slowly for increasing n and p, but still for
n as moderate as 10 the power is high and increases for increasing dimension.
The compound symmetric structure is the closest violation of the null hypoth-
esis since any compound symmetric matrix can be orthonormally transformed
to a spherical matrix.

4 Summary and conclusions

Test statistics for sphericity and identity of high dimensional covariance matrix
are presented, under normality. The statistics, based on unbiased and consistent
estimators, follow approximate normal distribution, and are also valid when the
data are not high dimensional. The statistics are computed under very general
conditions, and do not require any specific assumptions regarding the underly-
ing covariance matrix. Further, no relationship between n and p is assumed.
Simulation results show that the statistics accurately control test size and have
high power even when the dimension is much larger than the sample size. The
power properties of the statistics are demonstrated to remain intact under a
variety of alternative hypothesis. The general behavior of the statistics is that
they are accurate, both for size control and power, for a moderate sample size
and any dimension.
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A Some basic results

For the proof of Lemma 2.2, we need the following basic results.

Theorem A.l. (Mathai and Provost (1992, Ch. 3); Mathai et al (1995, Ch.
2)) Let u, ~ N(0,%), and v, ~ N(0,X) X > 0, be random vectors, and A be
any symmetric matriz. Define Q = W' Au as a quadratic form, and B = u’Av
as a symmetric bilinear form. Then, the rth cumulants of Q and B are given as

e (Q) = 277 r — Ditr(AR)", r=1,2,...,
kn(B) — %(r CMrAS), r=1,2,..
respectively, where tr denotes the trace. Particularly, for r = 1 and 2, we have
E(Q) = tr(AY), Var(Q) = 2tr(AX)?
E(B) = 0, Var(B) = tr(AX)?,

assuming u and v are independent (see also Ahmad et al, 2008).

Lemma A.2. (Magnus, 1978, Lemma 6.2, page 209) Let u, ~ N (0,X), ¥ >0
be a random wvector, and A and B be two symmetric matrices. Define u’Au
and w'Bu be the quadratic forms. Then, the mean and variance of the product
z =u'Au-u'Bu are given as
E(z) = tr(AX)tr(BX)+ 2tr(AXBY)

Var(z) 32tr[(AZ)*(BE)?]

+ 16 [tr(AZBEX)® + tr(AZ) tr{(AZ)(BX)’} + tr(BX)tr{(AX)*(BX)}]

+ 4[tr(AZ)?*tr(BE)” + [tr(AZBY))* + tr(AZ)tr(BE)tr(AZBY)]

2 [[t(AD)*tr(BE)? + [t(BE)]*tr(AX)?] .

B Proof of Lemma 2.2

For unbiasedness and consistency of the estimators, see Ahmad et al (2008,
Appendix B). Then, we work on the covariances. We have

COV(EQ,Eg) = ’n,—l Z ZZ ov AkAla )a (13)
k=1 l=1 r=1 s=1
k#l r#s

where, from Theorem A.1, E(AzA4;) = [tr(2)]?, B(A2,) = tr(X?), for k # [ and
r # s. The covariance vanishes when k # r,l # s. The remaining cases are:
k=rl=s;k=lr#s;k#rl=s;k#rl#s Fork=Ir+#s
E(ArAAL,) = E(A)E(Ap4:,) = t(D)EX X, X)X X X,]
= tr(D)E[tr{Xp X X X X XL} = tr(T)E[X) XX, EX,]
= 2tr(2)tr(T?) + [tr(T)*tr(2?),



so that Cov(Ag A, A7,) = 2tr(Z)tr(Z?). For k = 7,1 = s, write

Ail(Ak + Al)2 = AilAi + AilAlQ + 2Ai1AkAl7

so that
1
E(AcAAL) = 5 [BIAR(Ax + A% - E(ARAD) — E(A347)]. (19)
o >0
Let Z = (XX;)', with Cov(Z) = <0 2) = IL®X = V(say). Then

Ap = %Z/AZ, A+ A = Z/BZ, A = Z/(JZ7 and A; = Z/DZ, where

01 I 0 I 0 0 0
A=t o) m=(o 1) oo o) mar=(5 1)

see Mathai (1992), and Mathai et al (1995, p 19). We need the following traces.
tr(AV) = 0; tr(BV) = tr(V) = 2tr(X); tr(CV) = tr(X) = tr(DV);
r(AV)? = 2tr(2?) = tr(BV)?; tr(CV)? = tr(2?) = tr(DV)?;
tr(AVBV) =0 = tr(AVCV) = tr(AVDV);
tr(AVBV)? = 2tr(2%); tr(AVCV)? = 0 = tr(AVDV)?;
[
[
[

o+

tr[(AV)3(BV)] = 2tr(Z3); tr[(AV)(BV)?] = 0; tr[(AV)?*(BV)?] = 2tr(Z*);
tr[(AV)?2(CV)] = tr(Z?); tr[(AV)(CV)?] = 0; tr[(AV)?(CV)?] = tr(2?);
tr[(AV)2(DV)] = tr(Z?); tr[(AV)(DV)?] = 0; tr[(AV)*(DV)?] = tr(Z?)

Since many of the traces vanish, the moments of Lemma A.2 reduce to the
following simple forms.

E(z) = 0
E(z?) = 32tr[(AX)*(BX)’] 416 [tr(AYBX)? + tr(BE)tr{(AX)*(BX)}]
+ 4tr(AX)*tr(BE)? + 2[tr(BE)*tr(AX)% (15)

Using these results, we obtain the following moments.

E(Z'AZ - Z'BZ)? 96tr(4) + 64tr(?)tr(X) + 16 [tr(22)]% + 16[tr(2))?tr(S?)
E(Z'AZ Z'CZ)? = 32te(3%) + 16tx(Z3)tx(Z) + 8 [tr(22)] + 4[tr(2))2tr(22)
E(Z'AZ-Z'DZ)? = E(Z'AZ-Z'CZ)?

which gives, from Equation (14),
E(ALAA2) = 4tr(2Y) + 4tr(Z*)tr(2) + [tr(Z)Ptr(Z?), (16)
so that Cov(AgA;, A7) = 4tr(E*) + 4tr(2*)tr(X). Finally,

8

COV(EQ, Eg) m

tr(Z4) + (n — Dtr(Z)tr(T)]. (17)

10



Further,

COV(EQ,Eg) 8 - 1
E@ P S a1 O( )

Now,
1 n n n
COV(Eg, El) = ﬁ Z Z Z COV(Akv AIQm)v (18)
nen k=11=1 7":1175'm
—
k # (Lm)

where Cov(Ag, A? ) = E(ArA?,)) — tr(2)tr(X?), from Theorem A.1. The co-
variance is zero for k # [ # m. The other two cases, k =1 # m and k =m # [
yield the same result. Then, for k = [ # m, we have

E(ArA7,) = EXXpX, X, X\ X,) = E[tr(Xp X}, XX, X, X")]
= BX,XpX,EX;) = 2tr(Z%) + tr(Z)tr(2?),

from Lemma A.2, so that Cov(Ay, A7 ) = 2tr(X?), and from Equation (20)

Cov(Es, Ey) = m [2n(n — 1){2tx(Z%)}] = %tr(}]?’)’ (19)
where,
Cov(Es,Er) 4 tr(X?) 4 1
tr(ZHtr(T) n(tr@?)tr(z)> =0T O<n>'
Finally,

CovBE) = s SOSTD Corddid,). (20)

k=11=1 m=1]#m
—_———

k # (Lm)

where Cov(Ag, AjAn) = E(ArAiA) — [tr(2)]?, from Theorem A.1. Then,
working on the same lines as for Cov(FEs3, E1), it can be shown that

Cov(Eq, Ey) = é’01"(22)tr(2), (21)
n
so that,

COV(El,EQ) 4 _ 1
EDaEE 0 O( )

11
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