
J. Log. Algebraic Methods Program. 139 (2024) 100975

Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming

journal homepage: www.elsevier.com/locate/jlamp

The generalised distribution semantics and projective families of

distributions ✩

Felix Weitkämper
Institut für Informatik, Ludwig-Maximilians-Universität München, Oettingenstr. 67, 80538 München, Germany

A R T I C L E I N F O A B S T R A C T

Keywords:

Distribution semantics

Projectivity

Exchangeability

Independence property

Stochastic block models

We generalise the distribution semantics underpinning probabilistic logic programming by
distilling its essential concept, the separation of a free random component and a deterministic
part. This abstracts the core ideas beyond logic programming as such to encompass frameworks
from probabilistic databases, probabilistic finite model theory and discrete lifted Bayesian
networks. To demonstrate the usefulness of such a general approach, we completely characterise
the projective families of distributions representable in the generalised distribution semantics and
we demonstrate both that large classes of interesting projective families cannot be represented in a
generalised distribution semantics and that already a very limited fragment of logic programming
(acyclic determinate logic programs) in the deterministic part suffices to represent all those
projective families that are representable in the generalised distribution semantics at all.

1. Introduction

The distribution semantics, first introduced explicitly by Poole [1] and Sato [2], kickstarted the development of probabilistic logic
programming, a paradigm that extends traditional logic programming with probabilistic primitives to enable probabilistic relational
programming with recursion. By cleanly separating the probabilistic part from the deterministic part, the distribution semantics
allows the use of techniques developed over decades of logic programming research, such as negation as failure which unlocks
recursion as a programming tool.

From this point of view, probabilistic logic programming is a specific set-up of logic programs over independent probabilistic
facts. There is no intrinsic reason, though, why the fundamental principle of separating probabilistic and logical components of a
statistical relational formalism should be limited to this specific set-up. In this paper, the distribution semantics is studied as the
abstract concept of defining a statistical relational specification by specifying an independent probabilistic part and an arbitrary
deterministic part on top of that.

There are several motivations for studying the concept in this generality.

The original motivation for the distribution semantics comes from probabilistic logic programming. In its classical formulation,
this is considered to be a Datalog program over independent probabilistic facts. However, the logic programming paradigm includes
far more than Datalog; its main proponent, Prolog, is a Turing-complete programming language whose support for metaprogramming

✩ This contribution was supported by LMUexcellent, funded by the Federal Ministry of Education and Research (BMBF) and the Free State of Bavaria under the
Excellence Strategy of the Federal Government and the Länder.
Available online 7 May 2024
2352-2208/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

E-mail address: felix.weitkaemper@lmu.de.

https://doi.org/10.1016/j.jlamp.2024.100975

Received 29 March 2023; Received in revised form 29 April 2024; Accepted 30 April 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
mailto:felix.weitkaemper@lmu.de
https://doi.org/10.1016/j.jlamp.2024.100975
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2024.100975&domain=pdf
https://doi.org/10.1016/j.jlamp.2024.100975
http://creativecommons.org/licenses/by/4.0/

Journal of Logical and Algebraic Methods in Programming 139 (2024) 100975F. Weitkämper

via higher-order predicates is a key feature. Already today the main implementations of probabilistic logic programming such as cplint
or ProbLog support higher-order predicates and meta-calls [3].

The concept of the distribution semantics is also key to probabilistic databases in the guise of the tuple-independent database
model [4]. As Datalog is but one of several query languages considered in the database community, combining the tuple-independent
database model with different query logics is very natural. In particular, aggregates are commonly supported by real-life database
query languages without being expressible in the classical probabilistic logic programming concept.

On the theoretical side, Cozman and Maua’s [5] probabilistic finite model theory centres around evaluating the expressivity
of different logics above independent probabilistic facts. By evaluating the distribution semantics as a general concept, one can
distinguish sharply between limitations on expressivity induced by the logic employed in the deterministic part as opposed to
intrinsic limitations occasioned by the separation of logic and probability.

Finally, sometimes models that appear to consist of several probabilistic layers can in fact be reduced to a single independent
probability distribution. This is true for lifted Bayesian networks based on discrete conditional probability tables, for instance. One
such case where the logic employed is very different from classical first-order or fixed-point logic is Koponen’s [6] lifted Bayesian
networks, which are formulated in terms of conditional probability logic. This logical language allows the expression of statistical
statements within the defining formulas of intensional predicates.

To show the potential of the general framework, we characterise the projective families of distributions obtainable in the generalised
distribution semantics.

Projectivity was recently introduced to the artificial intelligence literature [7,8] as a strong condition guaranteeing that marginal
probabilities are independent of the domain into which the constants invoked in a query are embedded.

However, they have been studied for decades in the field of pure inductive logic, where they are used to characterise degrees of
belief that rational agents could adopt about the world they might be inhabiting [9,10]. While their focus has traditionally been on
unary signatures, general polyadic signatures have recently been investigated in more detail [11].

Harnessing techniques developed in probability theory, Jaeger and Schulte [8] showed that projective families of distributions can
be represented by exchangeable arrays. However, existing statistical relational formalisms have proven unable to express the wide
range of possible projective families [12,13], and that in particular probabilistic logic programs are restricted to a narrow subclass
of projective families of distributions. Such results have heretofore been obtained for classical probabilistic logic programming from
the asymptotic theory of the concrete fixed-point logic involved in the deterministic part [12]. The zero/one laws of finite model
theory, on which such arguments are based, are very brittle, though. A dependency on, say, the number of domain elements being
even, would immediately invalidate such arguments, although they are easy to represent using database aggregates or Prolog-style
metaprogramming.

The generalised distribution semantics introduced here allows us to show that the reasons for this do not just lie in limitations
of the concrete logical and probabilistic framework used, but are inherent to the underlying concept of neatly dividing logic and
probability into loosely coupled components. We build on recent work from pure inductive logic [11] to obtain our characterisation,
and we see that the abstract and general assumptions of the generalised distribution semantics already severely limit the representable
projective families of distributions.

2. Frameworks

In this section, we introduce our main framework, the generalised distribution semantics, and we provide an alternative formula-

tion of projectivity that integrates well with the concept.

2.1. Preliminaries

Our setting is that of finite relational signatures, which are finite sets of relation symbols of given natural number arities. For such
a signature 𝐿 and finite set 𝐷, an 𝐿-structure with domain 𝐷 is given by a map that allocates to every 𝑛-ary relational symbol 𝑅 in 𝐿
a subset of 𝐷𝑛.

Expressions of the form 𝑅(𝑎1, … , 𝑎𝑛), for relation symbols 𝑅 of arity 𝑛 and 𝑎1, … , 𝑎𝑛 ∈ 𝐷 are known as ground atoms; they are
true in a structure 𝜔 with domain 𝐷, written as 𝜔 ⊧ 𝑅(𝑎1, … , 𝑎𝑛), if (𝑎1, … , 𝑎𝑛) lies in the image of 𝑅 under the map defining 𝜔.
In this case, 𝜔 is said to be a model of 𝑅(𝑎1, … , 𝑎𝑛). Ground atoms and their negations are known as ground literals, and their truth
values as well as those of more general Boolean combinations (ground formulas) are given as usual in first-order logic. We use notions
such 𝜑(𝑎) for a ground formula 𝜑 to express that only domain elements in 𝑎 occur in 𝜑.

If 𝜔′ and 𝜔 are 𝐿-structures with domains 𝐴 and 𝐵 respectively, then an embedding from 𝜔′ to 𝜔 is an injective map 𝜄 from 𝐴 to
𝐵 such that for all 𝑎1, … , 𝑎𝑛 ∈ 𝐴 and all 𝑛-ary relation symbols 𝑅 in 𝐿, 𝑅(𝑎1, … , 𝑎𝑛) is true in 𝜔′ if and only if 𝑅(𝜄(𝑎1), … , 𝜄(𝑎𝑛)) is
true in 𝜔′.

Definition 1. When introducing the following notation for 𝐿-structures, 𝐴 ⊆ 𝐵 are sets and 𝐿′ ⊆ 𝐿 are signatures.

• If 𝜔 is an 𝐿-structure with domain 𝐵, then the restriction of 𝜔 to 𝐴 is the 𝐿-structure 𝜔𝐴 on 𝐴 for which 𝜔𝐴 ⊧ 𝑅(𝑎) if and only
if 𝜔 ⊧ 𝑅(𝑎), for any relation symbol 𝑅 of 𝐿 and any tuple 𝑎 of elements of 𝐴. In this situation, 𝜔 is called an extension of 𝜔𝐴 to
2

𝐵. The inclusion map is always an embedding from 𝜔𝐴 to 𝜔.

Journal of Logical and Algebraic Methods in Programming 139 (2024) 100975F. Weitkämper

• If 𝜔 is an 𝐿-structure with domain 𝐴, then the reduct of 𝜔 to 𝐿′ is the 𝐿′-structure 𝜔𝐿′
with domain 𝐴 for which 𝜔𝐿′

⊧ 𝑅(𝑎) if
and only if 𝜔 ⊧ 𝑅(𝑎), for any relation symbol 𝑅 of 𝐿′ and any tuple 𝑎 of elements of 𝐴. In this situation, 𝜔 is called an expansion

of 𝜔𝐿′
to 𝐿.

Definition 2. For any signature 𝐿 and finite domain 𝐷 we define Ω𝐷
𝐿 to be the set of 𝐿-structures with domain 𝐷.

As an element of Ω𝐷
𝐿, an 𝐿-structure with domain 𝐷 is referred to as an 𝐿-world with domain 𝐷. A random 𝐿-world with domain

𝐷 is a probability distribution over the set of 𝐿-structures with domain 𝐷.

For any injective function of finite sets 𝜄 ∶𝐴 →𝐵, Ω𝐿(𝜄) ∶ Ω𝐵
𝐿 →Ω𝐴

𝐿 maps every 𝐿-structure 𝜔 with domain 𝐵 to the 𝐿-structure
𝜔𝜄 on domain 𝐴, which models 𝑅(𝑎) if and only if 𝜔 ⊧ 𝑅(⃗𝜄(𝑎)). If 𝜄 is the inclusion map of an 𝐴 ⊆ 𝐵, then 𝜔𝜄 is just the restriction of
𝜔 to 𝐴.

By viewing Ω𝐷
𝐿 as a probability space, a ground formula can be identified with the set of worlds satisfying it. In this way, a

random world defines not just the probabilities of individual worlds, but also of ground formulas.

We study not just individual random worlds, but general models defining a random world on any domain.

Definition 3. An 𝐿 family of distributions 𝑃 is a map taking any finite set 𝐷 as input and returning a random 𝐿-world 𝑃𝐷 on 𝐷.

2.2. Projectivity

Now we introduce projective families of distributions in a slightly more general way than Jaeger and Schulte [7,8].

Definition 4. Let 𝑃 be an 𝐿 family of distributions. Then 𝑃 is projective if for any two finite sets 𝐷′ and 𝐷, any injective map
𝜄 ∶𝐷′ ↪𝐷 and any 𝐿-structure 𝔛 on 𝐷′ the following holds:

𝑃𝐷′ (𝔛) = 𝑃𝐷({𝜔 ∈Ω𝐷
𝐿 ∣ 𝜔𝜄 =𝔛})

This notion of projectivity is a direct generalisation of the one advanced by Jaeger and Schulte [7,8]. More precisely, every
projective family of distributions in their sense extends uniquely to a projective family of distributions in our sense, and each of our
projective families of distributions extend a projective family in their sense [14, Proposition 1].

We illustrate this definition with toy ProbLog programs expressing homophily: Smokers are more likely to be friends with other
smokers.

Example 1. Consider this classic solution using a recursive dependency:

0.3 :: influences(X,Y).
0.2 :: starts_smoking(X).
0.2 :: friends(X,Y).
smokes(X) :- starts_smoking(X).
smokes(X) :- friends(X,Y), smokes(Y), influences(Y,X).

Consider a domain in which there is only a single individual. In that case, the probability for this individual to start smoking is 0.2,
as the second clause can only be lead to smoking if there is a smoking friend.

In a domain with two individuals, there is a second way for an individual to smoke, namely that the other individual starts
smoking, is a friend and then influences that individual. Therefore, the probability of smoking increases. Thus, the model is not
projective since the probability of the single-person world in which that person smokes increases by embedding it into a larger
domain.

Now consider another way of modelling the correlation between smoking and friendship:

0.3 :: smokes(X).
0.1 :: become_friends(X,Y).
0.3 :: smoke_together(X,Y).
friends(X,Y) :- become_friends(X).
friends(X,Y) :- smokes(X), smokes(Y), smoke_together(X,Y).

In this program, the probability for any individual to smoke is always 0.3, regardless of the size of the domain. Similarly, the
probability of friendship depends only on the probability that each of two individuals smoke, that they smoke together and that they
become friends. Each of these are independent of the remainder of the domain, and therefore this model induces a projective family
of distributions. More generally, any determinate ProbLog program (whose clause bodies only contain variables also occurring in the
3

head of that clause) induces a projective family of distributions [7].

Journal of Logical and Algebraic Methods in Programming 139 (2024) 100975F. Weitkämper

Projectivity has broad implications for both learning and reasoning across domain sizes. Its definition guarantees immediately
that marginal probabilities do not change when computed in differently sized domains, and Jaeger and Schulte [7] have shown
that under some additional assumptions, projective families of distributions allow for statistically consistent parameter estimation
from subdomains. For several reasons, this is particularly important for statistical relational formalisms such as probabilistic logic
programming. Firstly, the general specification of a model independently of a fixed domain is one of the main attractions of using a
statistical relational model. If the behaviour of that model on domains of different sizes is intransparent or undesired, this undermines
the generality of the specification. Secondly, parameter fitting in statistical relational models is generally difficult, as it usually relies
on inference [15, Chapter 7]. Under the usual complexity-theoretic assumptions, marginal inference itself is generally intractable
even for restricted languages [16,17], and therefore parameter fitting directly on large domains can be infeasible. Jaeger and Schulte’s
results on statistical consistency [7] open up the possibility of learning on random sampled subsets of the target domain without
distorting the estimated parameters, avoiding inference directly on the large target domain.

In pure inductive logic, projective families of distributions are studied in the guise of exchangeable probability functions, which
operate on countably infinite domains [10]. The equivalence of projective families and exchangeable probability functions is well-

known, and follows from the equivalence of exchangeable distributions on infinite domains and projective families of distributions.
In the following, we uniformly adopt the terminology of projective families of distributions throughout, even when referring to
concepts from pure inductive logic. A thorough technical investigation of these and more general notions of projective families can
be found in [14].

2.3. The distribution semantics

The key idea of the distribution semantics is to split the complex distribution into two parts, one purely probabilistic (‘free’) and
one purely deterministic. We first introduce the probabilistic part.

Definition 5. A free 𝐿-family of distributions is a projective family of distributions 𝑃 defined from a weight function 𝑤 ∶ 𝐿 → (0, 1)
by setting

𝑃𝐴(𝜔) =
⎛⎜⎜⎜⎝

∏
𝑎∈𝐴,𝑅∈𝐿
𝜔⊧𝑅(𝑎)

𝑤(𝑅)
⎞⎟⎟⎟⎠
×
⎛⎜⎜⎜⎝

∏
𝑎∈𝐴,𝑅∈𝐿
𝜔⊧¬𝑅(𝑎)

(1 −𝑤(𝑅))
⎞⎟⎟⎟⎠
.

It is easy to see that any such weight function indeed defines an 𝐿-family of distributions 𝑃𝑤 .

Example 2. On any node set 𝐷, consider a random directed graph, with an edge relation 𝐸 in which there is an probability 𝑝 that
𝐸(𝑎, 𝑏) holds for any 𝑎, 𝑏 ∈𝐷, independently for all pairs (𝑎, 𝑏) of nodes in 𝐷. This is a free 𝐿-family of distributions, where 𝐿 = {𝐸}
and 𝑤(𝐸) = 𝑝.

We now turn to the deterministic part.

Definition 6. A choice of expansions (from 𝐿′ to 𝐿) is a family of maps Π ∶ Ω𝐷
𝐿′

→Ω𝐷
𝐿 for all finite sets 𝐷 such that Π(𝜔) expands

𝜔 for all 𝜔 ∈Ω𝐷
𝐿′

.

Definition 7. A generalised probabilistic logic program (or generalised PLP) (𝑃 , Π) is an 𝐿 family of distributions whose data is given
by a free 𝐿′ family of distributions 𝑃 and a choice of expansions Π from 𝐿′ to 𝐿, for an 𝐿′ ⊆ 𝐿. For any finite set 𝐷 and every
Δ ⊆Ω𝐷

𝐿, the probability of Δ under (𝑃 , Π) is given by 𝑃𝐷(Π−1(Δ)).

We can now see the different application areas mentioned in the introduction as special cases of generalised probabilistic logic
programs.

Example 3. Probabilistic logic programs under the distribution semantics [1,2,18] are the paradigmatic examples. They are gener-

alised probabilistic logic programs in which the choice of expansions is given by a Datalog program, or a program in the fragment of
Prolog supported by the probabilistic logic programming language or system used.

Queries over tuple-independent probabilistic databases [4] can be seen as generalised probabilistic logic programs in which the
choice of expansions is given by an expression in the associated query language.

The relational Bayesian network specifications studied in Cozman and Maua’s probabilistic finite model theory [16,5] are gener-

alised probabilistic logic programs in which the choice of extensions is given by a first-order formula. Analogous to the work done
in finite model theory, it would be very natural in this context to study generalised probabilistic logic programs whose choices of
extensions are given by other logical formalisms such as counting logics, higher-order or fixed-point logics.

Finally, Koponen’s lifted Bayesian networks [6] are generalised probabilistic logic programs whose choice of extensions are given
4

by formulas in conditional probability logic [19, Proposition 1].

Journal of Logical and Algebraic Methods in Programming 139 (2024) 100975F. Weitkämper

A particularly simple subclass is those whose choice of expansions is given by quantifier-free formulas.

Definition 8. A choice of expansions Π from 𝐿′ to 𝐿 is determinate if for every 𝑅 ∈ 𝐿 ⧵𝐿′ there is a quantifier-free 𝐿′-formula 𝜑𝑅

such that 𝑅(𝑎1, … , 𝑎𝑛) is true in Π(𝜔) if and only if 𝜑𝑅(𝑎1, … , 𝑎𝑛) is true in 𝜔.

A determinate probabilistic logic program is a generalised probabilistic logic program whose choice of expansions is determinate.

Weitkämper [12] showed that determinate probabilistic logic programs correspond exactly to those whose choice of expansions
is given by a determinate logic program, which can even be chosen to be acyclic, and that all such generalised probabilistic logic
programs are projective.

3. Classification of projective generalised probabilistic logic programs

3.1. Strong independence property

We identify projective generalised PLP as those satisfying the strong independence property, first isolated in the context of pure
inductive logic [10] by Ronel and Vencovská [11].

An important auxiliary concept in the analysis is the 𝑔-trace, which is usually defined in terms of formulas satisfied by a given
random world:

Definition 9. Let 𝜔 be an 𝐿-world. Then the 𝑔-ary (syntactic) trace tr𝑔(𝜔) of 𝜔 is defined as the set of all ground literals 𝜑 with at
most 𝑔 constants that hold in 𝜔. A 𝑔-ary trace over a domain 𝐷 is a 𝑔-ary trace over any 𝐿-world with domain 𝐷. A 𝑔-ary trace over
𝐿 is a trace over the domain {1, … , 𝑔}.

Let 𝜑 be a quantifier-free 𝐿-formula whose variables have been ground to elements of a domain. Then 𝜑 mentions a tuple 𝑎1, … , 𝑎𝑛

if there is an atomic subformula 𝑅(𝑏1, … , 𝑏𝑚) of 𝜑 such that {𝑎1, … , 𝑎𝑛} ⊆ {𝑏1, … , 𝑏𝑚}.

Example 4. Consider a 2-coloured directed graph 𝐺, equipped with a loop-free binary edge relation 𝐸 and a unary colour relation
𝐶 , where 𝐶(𝑎) denotes one colour and ¬𝐶(𝑎) the other. Then the 1-ary trace of 𝐺 is the collection of all literals of the form 𝐶(𝑎) or
¬𝐶(𝑎) for nodes 𝑎 in 𝐺, denoting the colour of every node, as well as the set of literals ¬𝐸(𝑎, 𝑎) for nodes 𝑎, expressing that 𝐺 is
loop-free. The 2-ary trace of 𝐺 includes all literals of the type 𝐸(𝑎, 𝑏) or ¬𝐸(𝑎, 𝑏), as well as those included in the 1-trace. The 2-trace
therefore completely specifies the coloured graph 𝐺.

Note that the 𝑘-trace of an 𝐿-world completely specifies that world, where 𝑘 is at least the highest arity occurring in 𝐿.

Since semantic concepts fit better into our framework than criteria defined in terms of quantifier-free formulas, we give equivalent
semantic notions:

Definition 10. Let 𝜔 be an 𝐿-structure. Then the 𝑔-ary (semantic) trace of 𝜔 is defined as the set of all worlds 𝜔′ on the same domain
as 𝜔 such that for every subset 𝐷 of that domain of cardinality not exceeding 𝑔, 𝜔′

𝐷
= 𝜔𝐷 . A 𝑔-ary trace over a domain 𝐷 is a 𝑔-ary

trace over an 𝐿-world with domain 𝐷.

Let 𝜑 be a set of 𝐿-structures with domain 𝐷. Then 𝜑 mentions a tuple of distinct elements 𝑎1, … , 𝑎𝑛 of 𝐷 if there are 𝜔1 and 𝜔2
such that 𝜔1𝐷′ = 𝜔2𝐷′ for all 𝐷′ ⊆ 𝐷 with {𝑎1, … , 𝑎𝑛} ⊈ 𝐷′ and 𝜔1 ∈ 𝜑, but 𝜔2 ∉ 𝜑.

Proposition 1. The semantic trace of a possible world 𝜔 is exactly the models of the syntactic trace of 𝜔.

Whenever a formula 𝜑 does not (syntactically) mention a tuple, then the models of 𝜑 do not (semantically) mention it. When a set does
not mention a tuple semantically, this set is the set of models of a sentence which does not (syntactically) mentions that tuple.

Proof. We first show the statement for traces. Let 𝜃 be the syntactic trace of 𝜔. Then for any world 𝜔′ satisfying 𝜃 and every subset
𝐷 of cardinality 𝑔, 𝜔′

𝐷 has the same 𝑔-trace over 𝐷, namely the restriction of 𝜃 to 𝐷, which completely specifies 𝜔′
𝐷 . Conversely, if

𝜔′
𝐷 = 𝜔𝐷 for all 𝐷 of cardinality 𝑔, then 𝜔′ satisfies the same formulas with entries from 𝐷 as 𝜔, for all 𝑔-tuples of entries 𝐷. This

implies that 𝜔′ satisfies 𝜃.

We now show the statement for mentions. Let 𝜑 not (syntactically) mention 𝑎1, … , 𝑎𝑛. Then for all atoms 𝜆 in 𝜑, there is an
𝑎𝜆 ∈ {𝑎1, … , 𝑎𝑛} that does not occur in 𝜆. Let 𝜔1𝐷 = 𝜔2𝐷 for all 𝐷 omitting an 𝑎𝑖 and let 𝜔1 ⊧ 𝜑. This implies that 𝜔1𝐷 and 𝜔2𝐷
agree on the truth value of all atoms whose parameters are contained in such a 𝐷, in other words, on all those atoms for which there
is an 𝑎𝜆 ∈ {𝑎1, … , 𝑎𝑛} that does not occur in 𝜆. Thus 𝜔1𝐷 and 𝜔2𝐷 agree on the truth value of all atoms in 𝜑, and thus on the truth
value of 𝜑 itself. Conversely, let �̃� be a set of worlds that does not mention a tuple 𝑎1, … , 𝑎𝑛. Then let 𝜑 be defined as follows:

For every 𝜔 ∈ �̃�, let 𝜑𝜔 be the conjunction of the |𝐷|-traces of 𝜔𝐷 for all 𝐷 which omit at least one 𝑎𝑖. Then 𝜑 is defined as the
disjunction of the 𝜑𝜔 for all 𝜔 ∈ �̃�. Clearly, 𝜑 does not mention 𝑎1, … , 𝑎𝑛. It remains to show that the set of models of 𝜑 is exactly
�̃�. Every element 𝜔 of �̃� is a model of 𝜑 since it satisfies 𝜑𝜔. To see that the converse is true, let 𝜔′ ⊧ 𝜑. Then 𝜔′ ⊧ 𝜑𝜔 for an 𝜔 ∈ �̃�.
5

This implies that 𝜔′
𝐷 = 𝜔𝐷 for all 𝐷 omitting an 𝑎𝑖. By the semantic mentioning condition, this implies that 𝜔′ ∈ �̃�. □

Journal of Logical and Algebraic Methods in Programming 139 (2024) 100975F. Weitkämper

Proposition 2. A generalised probabilistic logic program defines a projective family of distributions if and only if its associated choice of
expansions Π commutes with restrictions and extensions, that is, if for any injective 𝜄 ∶𝐴 →𝐵, the following square commutes:

Ω𝐿′
𝐴

Ω𝐿
𝐴

Ω𝐵
𝐿′

Ω𝐵
𝐿

Π

Ω𝐿′ (𝜄)

Π

Ω𝐿(𝜄)

This can also be expressed by saying that in this situation, Π◦𝜋 = 𝜋◦Π.

Proof. To make the role of generalised probabilistic logic programs in this argument more transparent, we cast this proof in the
language of category theory. All notions we refer to here can be found in Chapter 1 of Leinster’s [20] textbook, or in any other
introduction to category theory. In the following, let SETinj denote the category of finite sets, with injective maps as morphisms,
and let MEAS denote the category of finite measure spaces, with measure-preserving maps as morphisms. For any category CAT, let
CATop denote the opposite category. Then a projective 𝐿-family of distributions 𝑃 is precisely a contravariant functor from SETinj
to MEAS which extends Ω𝐿. In fact, every projective family of distributions is an equivalence of categories from SETinj

op to its
image Im(𝑃), the subcategory of MEAS whose objects are the measure spaces 𝑃𝑤(𝐴) for a finite set 𝐴 and whose morphisms are
the measure-preserving maps induced by injective functions between finite sets. Consider the functor Δ from Im(𝑃) to SETinj

op that
maps 𝑃𝑤(𝐴) to 𝐴 and maps any morphism to the injective function inducing it. This is well-defined. Indeed, for any 𝜄 ∶ 𝐴 ↪ 𝐵 and
any 𝑎 ∈𝐴 we can consider the structure 𝜔 with domain 𝐵 in which for an arbitrary relation 𝑅, 𝑅(𝜄(𝑎), … , 𝜄(𝑎)) is true and 𝑅 is false
for all other tuples. Then Ω𝐿(𝜄)(𝜔) is the structure with domain 𝐴 in which 𝑅 holds for (𝑎, … , 𝑎) and no other tuple. Thus Ω𝐿(𝜄)
uniquely identifies 𝜄(𝑎), for any 𝑎 ∈𝐴. By construction, Δ is an inverse of 𝑃𝑤(𝐴), and by projectivity it is indeed a functor.

In particular, the free part 𝑃 of the logic program induces such an equivalence of categories. Hence the generalised PLP is
functorial if and only if the map Π∗ from Im(𝑃) to MEAS induced by Π is functorial (where the underlying set of Π∗((Ω𝐷

𝐿′
, 𝜇)) is

Ω𝐷
𝐿′

and the probability measure is the pushforward measure of 𝜇 under Π, i.e. Π∗(𝜇)(Δ) = 𝜇(Π−1(Δ))).
This is encapsulated in the commutativity of the following diagram,

(Ω𝐿′
𝐴

,𝜇𝐴) (Ω𝐿
𝐴
,Π∗𝜇𝐴)

(Ω𝐵
𝐿′

, 𝜇𝐵) (Ω𝐵
𝐿,Π∗𝜇𝐵)

Π

Ω𝐿′ (𝜄)

Π

Ω𝐿(𝜄)

As the maps here coincide with the maps in the requirements of the proposition, the “only if” direction follows immediately.

“If”: If Π satisfies the requirements in the proposition, then this diagram clearly commutes. It suffices therefore to show that the
restriction map from (Ω𝐵

𝐿, Π∗𝜇𝐵) to (Ω𝐿
𝐴
, Π∗𝜇𝐴) is measure-preserving, that is, that for any 𝜔 ∈Ω𝐿

𝐴
,

𝜇𝐴(Π−1({𝜔})) = 𝜇𝐵Π−1{(𝜋−1(𝜔))}.

However, since by the requirements of the proposition Π−1{(𝜋−1(𝜔))} = 𝜋−1{(Π−1(𝜔))}, this follows from the fact that 𝜋 is measure-

preserving with respect to 𝜇𝐵 and 𝜇𝐴. □

Corollary 1. Let (𝑃 , Π) be a projective generalised PLP, where 𝑃 is a free 𝐿′ family of distributions and Π a choice of expansions from
𝐿′ to 𝐿. Let 𝜔1, 𝜔2 be 𝐿′-structures and let 𝑔 ∈ ℕ such that the 𝑔-trace of 𝜔1 coincides with the 𝑔-trace of 𝜔2. Then the 𝑔-trace of Π(𝜔1)
coincides with the 𝑔-trace of Π(𝜔2).

Proof. For any 𝐴 = {𝑎1, … , 𝑎𝑔} contained in the intersection of the domains of 𝜔1 and 𝜔2, consider the restrictions 𝜔1,𝐴 and 𝜔2,𝐴.
Since the 𝑔-traces of 𝜔1 and 𝜔2 coincide, Π(𝜔1,𝐴) = Π(𝜔2,𝐴). By the theorem above, Π(𝜔1)𝐴 = Π(𝜔1,𝐴) and Π(𝜔2)𝐴 = Π(𝜔2,𝐴), and
since 𝐴 was arbitrary with cardinality not exceeding 𝑔, this shows that the 𝑔-trace of Π(𝜔1) coincides with the 𝑔-trace of Π(𝜔2). □

Definition 11. Let 𝐿 be a signature with maximal arity 𝑟. A projective 𝐿-family of distributions 𝑃 satisfies the Strong Independence
Principle (SIP) if the following holds:

Let 0 ≤ 𝑔 < 𝑟 and let 𝜑 and 𝜓 be ground quantifier-free formulas with values in a domain 𝐷 that mention no joint 𝑔 + 1-set of
constants. Furthermore, let 𝜃 be a 𝑔-ary trace for the elements occurring in both 𝜑 and 𝜓 . Then

𝑃𝐷(𝜑 ∩𝜓 ∣ 𝜃) = 𝑃 (𝜑 ∣ 𝜃) ⋅ 𝑃 (𝜓 ∣ 𝜃).

From Proposition 1 we can immediately deduce that the SIP is equivalent to what we call semantic SIP, where “trace” and
“mentioning” are replaced by “semantic trace” and “semantic mentioning” respectively.

Ronel and Vencovská [11, Theorem 1] give a concrete characterisation of projective distributions with SIP.
6

The projective distributions with SIP are exactly those obtainable as follows:

Journal of Logical and Algebraic Methods in Programming 139 (2024) 100975F. Weitkämper

Given a signature 𝐿, for each domain 𝐷 = {𝑎1, … , 𝑎𝑛}, the construction proceeds by induction on 𝑔, starting at 𝑔 = 1 and
proceeding to the highest arity of relation symbols in 𝐿. For every 𝑔, we construct a distribution over the 𝑔-traces over 𝐷. When 𝑔
is the highest arity of relation symbols occurring in 𝐿, a 𝑔-trace over 𝐷 completely specifies a world on this domain and therefore a
distribution over 𝑔-traces over 𝐷 is the same as a distribution over 𝐿-worlds with domain 𝐷.

So let 𝛾1, … , 𝛾𝑙 be an enumeration of the 1-traces over 𝐿. Then specify 𝑝1, … , 𝑝𝑙 ∈ [0, 1] with 𝑝1 +⋯ + 𝑝𝑙 = 1. For every 𝑎 ∈𝐷,
choose the 1-trace of 𝑎 independently, where 𝛾𝑖 is chosen with probability 𝑝𝑖. This results in a distribution over the 1-traces over 𝐷.

Assume we are given a distribution over the 𝑔-traces over 𝐷.

We extend this to a distribution over the 𝑔 + 1-traces over 𝐷 by defining conditional on every distribution over 𝑔-traces a
distribution over 𝑔 + 1-traces extending that 𝑔-trace. We obtain our overall distribution over 𝑔 + 1-traces by first choosing a 𝑔-trace
according to the distribution from the last step and then choosing an extension according to the newly-defined distribution. So specify
for every 𝑔-trace 𝜃 over {1, … , 𝑔 + 1} whose extensions to 𝑔 + 1-traces over 𝐿 are 𝛾𝜃,1, … , 𝛾𝜃,𝑘, real numbers 𝑝𝜃,1, … , 𝑝𝜃,𝑘 ∈ [0, 1]
such that (1) 𝑝𝜃,1 +⋯ + 𝑝𝜃,𝑘 = 1 for every 𝑔-trace 𝜃 and (2) such that 𝑝𝜃,𝑖 = 𝑝𝜃′ ,𝑗 whenever the worlds described by 𝛾𝜃,𝑖 and 𝛾𝜃′ ,𝑗 on
{1, … , 𝑔 + 1} are isomorphic (the latter requirement is necessary to ensure exchangeability of the resulting distribution). Then for
every sequence 𝑎 ∶= 𝑎𝑖1

, … , 𝑎𝑖𝑔+1
of 𝐷-elements with strictly ascending indices, let 𝜃𝑎 be the 𝑔-trace over {1, … , 𝑔 + 1} induced by

the 𝑔-trace over 𝐷 by identifying 𝑗 ∈ {1, … , 𝑔 + 1} with 𝑎𝑖𝑗
, and choose among the extensions 𝛾𝜃𝑎,ℎ of 𝜃𝑎 independently and with

probability 𝑝𝜃𝑎,ℎ
. This results in a distribution over the 𝑔 + 1-traces over 𝐷.

The parameters of the construction are the (𝑝𝑖) and (𝑝𝜃,𝑖), and choosing different values for these parameters generates all possible
projective families of distributions with SIP.

Remark 1. If the signature is binary, the projective families satisfying SIP are exactly the relational block models introduced by
Malhotra and Serafini [13]. Thus SIP distributions can thus also be seen as a higher-arity relational version of stochastic block
models [21].

Example 5. We illustrate the procedure with a classical relational block model on a signature 𝐿 = {𝑃 , 𝐸} of coloured graphs, where
𝑃 is unary and 𝐸 is binary:

There are four possible 1-traces over 𝐿, stating whether 𝑃 (1) is true or false and whether 𝐸(1, 1) is true or false. Let 𝛾1 express
that both are false, 𝛾2 express that 𝑃 (1) is true and 𝐸(1, 1) is false, 𝛾3 express that 𝑃 (1) is false and 𝐸(1, 1) is true and 𝛾4 express
that both are true. Thus one can specify 𝑝1, 𝑝2, 𝑝3 and 𝑝4, the probabilities of each of the four possibilities. If we want to define a
distribution over loop-free graphs in which 𝑃 is determined completely randomly, we can set 𝑝1 = 𝑝2 = 0.5 and 𝑝3 = 𝑝4 = 0. Then
for every pair of nodes (𝑎, 𝑏), there are four possibilities for the edge relation: (1) There can be no edge, (2) there is an edge from 𝑎
to 𝑏 but not vice versa, (3) there is an edge from 𝑏 to 𝑎 but not vice versa, and (4) there are edges both from 𝑎 to 𝑏 and vice versa.
Say that we want to define a distribution over undirected graphs, and that there should be a higher likelihood for two edges to be
connected if both nodes satisfy 𝑃 . Then we might set 𝑝𝜃,1 to be 0.3 if 𝜃 implies that both nodes satisfy 𝑃 , and 0.1 if not, and set 𝑝𝜃,4
to be 0.7 and 0.9 respectively. Since we want to enforce only undirected graphs, we set all 𝑝𝜃,2 and 𝑝𝜃,3 to zero.

Then the overall distribution over coloured graphs on a given node set is defined by first throwing a fair coin for every node
to determine whether the node satisfies 𝑃 or not, and then to go through all pairs of nodes and throw a biased coin to determine
whether the pair of nodes is connected by an edge or not. The bias of that coin depends on whether the two nodes both satisfy 𝑃 or
not.

The SIP now says that if we condition on all the information about a given subgraph, i.e. whether their nodes satisfy 𝑃 and
whether they are connected by an edge, then the events of distinct sets of other points being connected to the nodes in that subgraph
in some particular configuration are independent. This conditioning is important: Consider nodes 𝑎, 𝑏 and 𝑐. Then the probability of
𝑎 being connected to 𝑏 or 𝑐 is higher if 𝑎 satisfies 𝑃 . Thus, the event of 𝑎 and 𝑏 being connected is not unconditionally independent
on 𝑎 and 𝑐 being connected, as knowing the former makes 𝑃 (𝑎) and thus also the latter event more likely. However, as soon as
we condition on whether 𝑎 satisfies 𝑃 or not, this dependence disappears and the two events are now conditionally independent as
postulated by the SIP.

3.2. Projective generalised probabilistic logic programs

In this subsection, we will prove our main result, characterising the distributions induced by projective generalised probabilis-

tic logic programs. To ease reading, we frequently identify a generalised PLP with its induced family of distributions, and call a
generalised PLP projective if it induces a projective family of distributions.

Theorem 1. Every projective generalised PLP satisfies SIP.

Proof. We show that every projective generalised PLP satisfies semantic SIP. So let (𝑃 , Π) be a projective generalised PLP.

Let 𝜑1, 𝜑2 ⊆ Ω𝐿
𝐷

not mention any joint 𝑔 + 1-tuple and let 𝜃 be a 𝑔-ary trace over a world 𝜔(𝜃) with domain 𝐷. We show that
Π−1(𝜃) is a 𝑔-ary trace over 𝐷 or the empty set, and that Π−1(𝜑1) and Π−1(𝜑2) do not mention any joint 𝑔 + 1-tuple. Then we can
derive the statement from semantic SIP for free distributions.
7

1. “Π−1(𝜃) is a 𝑔-ary trace over 𝐷 or the empty set.”

Journal of Logical and Algebraic Methods in Programming 139 (2024) 100975F. Weitkämper

Let Π−1(𝜃) be nonempty. Then the following equalities demonstrate that Π−1(𝜃) is a 𝑔-ary trace over 𝐷:

Π−1(𝜃) = {𝜔 ∈Ω𝐿′
𝐷 ∣ Π(𝜔)𝐷𝑖

= 𝜔(𝜃)𝐷𝑖
∀𝐷𝑖⊆𝐷∶|𝐷𝑖|=𝑔}

= {𝜔 ∈Ω𝐿′
𝐷 ∣ Π(𝜔𝐷𝑖

) = 𝜔(𝜃)𝐷𝑖
∀𝐷𝑖⊆𝐷∶|𝐷𝑖|=𝑔}

= {𝜔 ∈Ω𝐿′
𝐷 ∣ 𝜔𝐷𝑖

∈Π−1(𝜔(𝜃)𝐷𝑖
)∀𝐷𝑖⊆𝐷∶|𝐷𝑖|=𝑔}

= {𝜔 ∈Ω𝐿′
𝐷 ∣ 𝜔𝐷𝑖

= 𝜔(𝜃)𝐿
′

𝐷𝑖
∀𝐷𝑖⊆𝐷∶|𝐷𝑖|=𝑔}

2. “Π−1(𝜑1) and Π−1(𝜑2) do not mention any joint 𝑔 + 1-tuple”. We show that generally whenever 𝜑 does not mention a 𝑔 + 1-

tuple, then Π−1(𝜑) does not mention a 𝑔 + 1-tuple either. So let 𝑎1, … , 𝑎𝑔+1 be a tuple of distinct elements of 𝐷 and 𝜔1 and 𝜔2
𝐿′-worlds with domain 𝐷 such that 𝜔1𝐷′ = 𝜔2𝐷′ for all 𝐷′ ⊆ 𝐷 omitting an 𝑎𝑖 and 𝜔1 ∈ Π−1(𝜑).
It remains to show that Π(𝜔2) ∈ 𝜑. By the assumptions on 𝜑, it suffices to show that Π(𝜔1)𝐷′ = Π(𝜔2)𝐷′ for all 𝐷′ ⊆ 𝐷 omitting
an 𝑎𝑖.

This follows from

Π(𝜔1)𝐷′ = Π(𝜔1𝐷′) = Π(𝜔2𝐷′) = Π(𝜔2)𝐷′ .

3. Every free distribution satisfies semantic SIP.

So let (𝑃 , Π) be a projective generalised PLP, and let 𝜑1 and 𝜑2 not mention a joint 𝑔-ary trace. Further let 𝜃 be a 𝑔-ary trace. We
want to show that 𝜑1 and 𝜑2 are conditionally independent over 𝜃. The conditional probabilities of 𝜑1, 𝜑2 and 𝜑1 ∩𝜑2 over 𝜃 under
(𝑃 , Π) are given by the probabilities of Π−1(𝜑1), Π−1(𝜑2) and Π−1(𝜑1 ∩ 𝜑2) over Π−1(𝜃) respectively. By the analysis above, the
strong independence statement follows directly from the strong independence property for the free distribution 𝑃 . □

Generalised probabilistic logic programs always have a non-zero likelihood of inducing a completely symmetric model, since all
random predicates may be simultaneously true or false. This is formalised in the following definition.

Definition 12. Let 𝜃𝑔+1 be a 𝑔 + 1-ary trace over a world 𝜔 with domain {𝑎1, … , 𝑎𝑔+1} and let 𝜃𝑔 be the 𝑔-ary trace of 𝜔. Then
𝜃𝑔 ⊆ 𝜃𝑔+1 is a symmetric extension if for every permutation 𝜌 of 𝑎1, … , 𝑎𝑔+1, if tr𝑔

(
Ω𝐿(𝜌)(𝜔)

)
= 𝜃𝑔 , then tr𝑔+1

(
Ω𝐿(𝜌)(𝜔)

)
= 𝜃𝑔+1 A

projective family of distributions 𝑃 is called essentially asymmetric if there is a 𝑔-ary trace 𝜃(𝑎1, … , 𝑎𝑔+1) such that 𝑃{𝑎1,…,𝑎𝑔+1}(𝜃𝑔) > 0
and

𝑃{𝑎1 ,…,𝑎𝑔+1}
(
{tr𝑔+1(𝜔) symmetric extension of 𝜃 ∣ 𝜔 ⊧ 𝜃}

)
= 0.

Proposition 3. Let (𝑃 , Π) be a projective generalised PLP. Then its induced distribution is not essentially asymmetric.

Proof. Note first that since 𝑃 is a free distribution, every random 𝐿′-world has non-zero probability, where 𝐿′ is the signature of
the free random predicates. Let 𝜃 be a 𝑔-ary trace with domain {𝑎1, … , 𝑎𝑔+1} such that (𝑃 ,Π){𝑎1 ,…,𝑎𝑔+1}(𝜃) > 0. By Corollary 1, the
𝑔-trace only depends on the 𝑔-trace in 𝐿′. So there is a random 𝐿′ world �̃� on 𝑎1, … , 𝑎𝑔+1 such that Π(𝜔′) ⊧ 𝜃 for all 𝜔′ whose
𝑔-trace coincides with that of �̃�. Then let 𝜔 be the 𝐿′ world for which the 𝑔-trace coincides with �̃� and all atomic formulas with
𝑔 + 1 different entries are false. We claim that Π(𝜔) is not an asymmetric extension of �̃�. Let 𝜌 be a permutation of 𝑎1, … , 𝑎𝑔+1 such
that tr𝑔

(
Ω𝐿(𝜌)(𝜔)

)
= 𝜃. Then in particular the 𝑔-ary 𝐿′-trace of 𝜔 is invariant under 𝜌. This implies that the 𝑔 + 1-trace of 𝜔 is also

invariant under 𝜌, since all atomic formulas with 𝑔 + 1 different entries are false in 𝜔 and having 𝑔 + 1 different entries is conserved
under 𝜌. Thus the 𝑔 + 1-ary trace of Π(𝜔) is also invariant under 𝜌 as desired. □

To formulate the other direction of the argument, we need to pass from generalised probabilistic logic programs to their reducts.

Definition 13. Let 𝑃 be an 𝐿 family of distributions and let 𝐿′ ⊂ 𝐿 be signatures. Then the reduct 𝑃 ′ of 𝑃 to 𝐿′ is the 𝐿′ family of
distributions mapping a finite set 𝐷 to the random 𝐿′-world 𝑃 ′

𝐷 , defined by

𝑃 ′
𝐷(𝔛) ∶= 𝑃𝐷(𝜔 ∈Ω𝐷

𝐿 ∣ 𝜔𝐿′ =𝔛).

In other words, the probability of a world under the reduct of 𝑃 is the probability that 𝑃 gives to the set of its expansions.

Finally, the reduct of a generalised probabilistic logic program is the reduct of its induced family of distributions.

Theorem 2. Every projective family of distributions that has the strong independence property and is not essentially asymmetric is the reduct
of a determinate generalised PLP.

Proof. We use the explicit characterisation of families of distributions with the strong independence property from Subsection 3.1. So
8

let the 𝛾𝑖 and 𝛾𝜃,𝑖 be the possible traces, as in the discussion in Subsection 3.1. The goal of the construction is to define a distribution

Journal of Logical and Algebraic Methods in Programming 139 (2024) 100975F. Weitkämper

over the 𝑛-traces for every subset of size 𝑛 in accordance with the given parameters (𝑝𝑖) and (𝑝𝜃,𝑖), for every 𝑛 not exceeding the
highest arity of predicates in 𝐿.

We have to solve two problems simultaneously:

• We have to define a distribution over the 𝛾 s in accordance with the given parameters (𝑝𝑖) and (𝑝𝜃,𝑖). This leads to a distribution
for every ordered tuple of size 𝑛.

• We have to define a local ordering on 𝑎1, … , 𝑎𝑛. Coupled with the solution of the other problem, this results in a distribution for
every (unordered) subset.

To facilitate our argument, we write Π as a determinate logic program, using ← to denote the clause constructor. They can be
read as first-order formulas using Clark’s Completion [22], so that if 𝑄(�⃗�) is the head of clauses 𝑄(�⃗�) ← 𝐁𝟏(�⃗�), … , 𝑄(�⃗�) ← 𝐁𝐧(�⃗�), then
𝑄(�⃗�) is true if any of the 𝐁𝐢(�⃗�) are true. Within a clause body, the comma separator is read as a conjunction operator.

We begin with the first issue, revisiting the classical approach to representing annotated disjunctions in probabilistic logic pro-

gramming going back to Vennekens et al. [23]. Assume we want to define a distribution where for any given 𝑎1, … , 𝑎𝑛, exactly one
of

𝑄1(𝑎1,… , 𝑎𝑛),… ,𝑄𝑚(𝑎1,… , 𝑎𝑛)

is true, the probability of 𝑄𝑖(𝑎1, … , 𝑎𝑛) is 𝑝𝑖 and the choices are independent for different 𝑎1, … , 𝑎𝑛. We introduce new free 𝑛-ary
predicates 𝑅𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1, with probabilities 𝑤(𝑅𝑖) ∶=

𝑝𝑖∏𝑖−1
𝑗=1

(
1−𝑤(𝑅𝑗)

) , and then define in Π the following definitions for 𝑄𝑖:

𝑄1(�⃗�)←𝑅1(�⃗�). (1)

𝑄2(�⃗�)←𝑅2(�⃗�),¬𝑅1(�⃗�). (2)

⋮ (3)

𝑄𝑚−1(�⃗�)←𝑅𝑚−1(�⃗�),¬𝑅𝑚−2(�⃗�),… ,¬𝑅1(�⃗�) (4)

𝑄𝑚(�⃗�)← ¬𝑅𝑚−1(�⃗�),… ,¬𝑅1(�⃗�). (5)

We proceed by induction on 𝑔. For 𝑔 = 1, we introduce auxiliary unary predicates 𝑄𝑖 and 𝑅𝑖 for 𝛾1, … , 𝛾𝑚 as above. We identify
𝑄𝑖 with 𝛾𝑖 using the rules

𝑃 (𝑥)←𝑄𝑖(𝑥)

whenever an atom 𝑃 (𝑎) is contained in 𝛾𝑖.
So assume that we have induced the correct distribution on 𝑔-traces. For every 𝑔-trace 𝜃 over 𝑎1, … , 𝑎𝑔+1 we could now introduce

auxiliary 𝑔 + 1-ary predicates 𝑄𝜃,𝑖 and 𝑅𝜃,𝑖 as above to match the prescribed distribution on 𝛾𝜃,1, … , 𝛾𝜃,𝑛.

However, we need to address the second issue, as we currently have conflicting information from the 𝑅𝜃,𝑖 for every permutation
of 𝑎1, … , 𝑎𝑔+1. Thus, we need to use the information on the validity of free predicates for 𝑎1, … , 𝑎𝑔+1 to induce an ordering and
thereby fix a privileged permutation.

Because the distribution is not essentially asymmetric, we can assume without loss of generality that 𝛾𝜃′,1 is a symmetric exten-

sion of nonzero conditional probability for any 𝑔-ary trace 𝜃′. Furthermore, we choose 𝛾𝜃′,1 and 𝛾𝜃′′ ,1 to be isomorphic extensions
whenever 𝜃′ and 𝜃′′ are isomorphic.

Let 𝑝min be the minimum of the probabilities of 𝛾𝜃′ ,1 for all 𝑔-ary traces 𝜃′. We form a 𝑔 + 1-ary annotated disjunction of
new 𝑔 + 1-ary auxiliary predicates Ord𝑔+1,𝑖 with 𝑘 disjuncts, each of which have equal probability 1

𝑘
. We choose 𝑘 such that for

a given 𝑎1, … , 𝑎𝑔+1 the probability that there is a disjunct Ord𝑔+1,𝑗 and a nontrivial permutation 𝜌 with Ord𝑔+1,𝑗 (𝑎1, … , 𝑎𝑔+1) ∧
Ord𝑔+1,𝑗 (𝜌𝑎1, … , 𝜌𝑎𝑔+1) is less than 𝑝min. We call that probability 𝑝sym. This is always possible, since the probability of two disjuncts
coinciding among the fixed number of possible permutations limits to 0 as the number of disjuncts 𝑘 increases.

In this way, we can assign the entire case of two coinciding disjuncts to the symmetric extension, where there is no problem at all
with being unable to define an ordering. We mark this case with a specific predicate 𝑄′

𝜃,1. The residual probability of 𝛾𝜃,1 can then
be captured precisely by a second predicate 𝑄𝜃,1, leading to an exact expression of the original distribution.

More precisely, we proceed as follows. Let 𝑅𝜃,0 be defined by a rule saying that 𝑅𝜃,0(𝑎1, … , 𝑎𝑔+1) holds if and only if two
of the Ord-disjuncts coincide for permutations of 𝑎1, … , 𝑎𝑔+1. Note that 𝑅𝜃,0 itself is permutation invariant, that is, it holds for
one permutation of its arguments if and only if it holds for all permutations of its arguments. Whenever 𝑅𝜃,0 is false, we only
consider the annotated disjunction over the 𝑅𝜃,𝑖(𝑎1, … , 𝑎𝑔+1) for that permutation (𝑎1, … , 𝑎𝑔+1) for which Ord𝑔+1,𝑗 (𝑎1, … , 𝑎𝑔+1)
is true for the highest 𝑗 among permutations. Since all permutations have a different such 𝑗, the maximum is uniquely deter-

mined. We define 𝑅𝑔+1,max(𝑎1, … , 𝑎𝑔+1) to be true if and only if (𝑎1, … , 𝑎𝑔+1) is the unique permutation with the maximal 𝑗 such
that Ord𝑔+1,𝑗 (𝑎1, … , 𝑎𝑔+1) is true. Whenever 𝑅𝜃,0(𝑎1, … , 𝑎𝑔+1) is false, 𝑅𝑔+1,max(𝑎1, … , 𝑎𝑔+1) is true for exactly one permutation of
𝑎1, … , 𝑎𝑔+1, and whenever 𝑅𝜃,0(𝑎1, … , 𝑎𝑔+1) is true, 𝑅𝑔+1,max(𝑎1, … , 𝑎𝑔+1) is false for all permutations of 𝑎1, … , 𝑎𝑔+1.

Finally we can proceed with the annotated disjunction for
9

𝑄′
𝜃,1,𝑄𝜃,1,𝑄𝜃,2,… ,𝑄𝜃,𝑛,

Journal of Logical and Algebraic Methods in Programming 139 (2024) 100975F. Weitkämper

where 𝑄′
𝜃,1 holds with probability 𝑝sym, the probability of 𝑄𝜃,1 is the difference between 𝑝𝜃,1 and 𝑝sym, and the atoms in 𝛾𝜃,1 are set

to hold whenever 𝑄′
𝜃,1 or 𝑄𝜃,1 holds. Let 𝑅𝜃,0 be the auxiliary predicate corresponding to 𝑄′

𝜃,1, and then form the auxiliary rules
and probabilities as before, but appending 𝑅𝑔+1,max(𝑎1, … , 𝑎𝑔+1) to every rule as follows (where the arguments have been omitted
for readability and are always assumed to be 𝑥1, … , 𝑥𝑔+1).

𝑄′
𝜃,1 ←𝑅𝜃,0.

𝑄𝜃,1 ←𝑅𝜃,1,𝑅𝑔+1,max.

𝑄𝜃,2 ←𝑅𝜃,2,¬𝑅𝜃,1,𝑅𝑔+1,max.

⋮

𝑄𝜃,𝑛 ← ¬𝑅𝑛−1,… ,¬𝑅1,𝑅𝑔+1,max.

Since 𝑅𝑔+1,max holds for exactly one permutation whenever 𝑅𝜃,0 is false, the rules for 𝑄𝜃,1 and below fire for exactly one
permutation, so there is no conflict between different permutations. When 𝑅𝜃,0 holds, it holds for all permutations, but there is still
no conflict since all 𝛾𝜃,1 are symmetric and different permutations have isomorphic 𝜃, hence isomorphic 𝛾𝜃,1 . □

Example 6. Consider a signature with a single binary relation 𝑃 . Then the possible 1-traces of a 1-element set {𝑎} are the 2 traces
where 𝑃 (𝑎, 𝑎) either holds or does not. Each pair of these 1-traces can be extended to a 2-trace which additionally specifies which
(neither, one or both) of 𝑃 (𝑎, 𝑏) and 𝑃 (𝑏, 𝑎) hold.

A distribution on these 1-traces simply specifies a probability with which 𝑃 (𝑥, 𝑥) holds for any element 𝑥. It is modelled by an
annotated disjunction with two mutually exclusive unary predicates 𝑄1 and 𝑄2 as in Equation (1) as well as the additional rule

𝑃 (𝑥,𝑥)←𝑄1(𝑥).

Disregarding the issue of fixing an ordering, for every 1-trace 𝜃 of a 2-element set {𝑎, 𝑏} the four extensions 𝛾𝜃,1, … , 𝛾𝜃,4 could be
accommodated by 𝑄𝜃,1, … , 𝑄𝜃,4, which are made to be mutually disjoint with the correct probabilities. For the sake of this example,
assume that for any such 𝜃, in 𝛾𝜃,1 𝑃 (𝑎, 𝑏) holds, but 𝑃 (𝑏, 𝑎) does not hold. The additional rules could take a form such as

𝑃 (𝑥, 𝑦)←𝑄𝜃,1(𝑥, 𝑦),𝑄1(𝑥),𝑄1(𝑦)

where 𝜃 specifies that 𝑎 and 𝑏 satisfy the trace encoded by 𝑄1. However, the issue arising now is that in a single possible world,
𝑄𝜃,1(𝑎, 𝑏) could hold alongside 𝑄𝜃,1(𝑏, 𝑎). In that case, the 𝑄𝜃,𝑖 carry conflicting information, since one of them specifies that exactly
𝑃 (𝑎, 𝑏) should hold and the other that exactly 𝑃 (𝑏, 𝑎) should hold. The logic program as written above would deduce that both hold,
which is in fact compatible with neither of the two types.

The proof overcomes this issue by defining additional auxiliary predicates which probabilisitically enforce a preferred ordering
on {𝑎, 𝑏}. If the ordering (𝑎, 𝑏) is selected, then 𝑃 (𝑎, 𝑏) holds, and if the ordering (𝑏, 𝑎) is selected, then 𝑃 (𝑏, 𝑎) holds. Due to the
probability of drawing a completely symmetric set of random facts, it cannot be ruled out that no ordering can be selected; however,
the probability of this can be made arbitrarily small, so that all those cases can be assigned to one particular symmetric extension.

4. Discussion and conclusion

We introduced a functorial definition of projectivity and the generalised distribution semantics, capturing the core idea of the
distribution semantics independently of the deterministic framework that is used on top of it.

The main results of the paper showed that all projective families of distributions that can be represented in the generalised
distribution semantics satisfy the Strong Independence Property, which restricts models to a stochastic block model construction as
well as an additional property that ensures that symmetry is possible. In practice, one is less interested in the total distribution of a
probabilistic logic program and more in its reducts; the free component of the probabilistic logic program is usually seen as “error
terms” or “choice predicates” that are marginalised out, and the deterministic part will often contain auxiliary predicates too.

Consider for instance a ProbLog program for a stochastic block model modelling smokers being more likely to be friends with
other smokers. This could involve the following typical probabilistic clause:

0.8 :: friends(X,Y) :- smokes(X), smokes(Y).

To express this in the distribution semantics, the probability annotation is translated to the clauses

friends(𝑋,𝑌)← smokes(𝑋), smokes(𝑌),u(𝑋,𝑌). (6)

0.8 ∶∶ u(𝑋,𝑌), (7)

where u is an additional binary predicate added to the language. The distributions we are ultimately interested in are over worlds in
the original language, without the additional predicate u.

Thus the main results give a complete characterisation of the reducts of projective generalised probabilistic logic programs as
10

exactly the reducts of projective families of distributions with the SIP that are not essentially asymmetric. Indeed, by Theorem 1 and

Journal of Logical and Algebraic Methods in Programming 139 (2024) 100975F. Weitkämper

Proposition 3, every reduct of a projective generalised PLP is a reduct of a projective family of distributions with the SIP that is not
essentially asymmetric. By Theorem 2, every such family of distributions is a reduct of a projective (generalised) PLP, and since the
reduct of a reduct is itself a reduct, the claim follows.

Unfortunately SIP is not conserved under reduct, since reducts of traces are usually not traces in the smaller signature. However,
the (Constant) Independence Property, a much studied weaker condition than SIP, is clearly preserved (see [10,11] for more background
on this notion and the context of the following paragraphs):

Definition 14. A family of distributions satisfies IP if the following holds:

Let 𝜑 and 𝜓 be quantifier-free 𝐿 formulas whose variables have been ground to elements of a domain, and who do not mention
any joint element. Then the probability of 𝜑 ∧ 𝜓 is the product of the probabilities of 𝜑 and 𝜓 .

Therefore every reduct of a projective generalised PLP satisfies IP, which precludes modelling dependencies between the validity
of relation symbols for different tuples in a projective way. In unary signatures, the situation is clearer: There, IP and SIP coincide,
and the families that can be modelled are precisely those which are expressible by independently choosing 1-traces for every ele-

ment according to a prescribed probability for every 1-trace. The restrictiveness of this fragment can be gleaned from de Finetti’s
representation theorem, which uniquely represents any projective family of distributions over a unary signature as an infinite mixture

of such basic distributions [10, Chapter 9].

This leads into the next dimension of generalisation: In general, probabilistic logic programming also allows propositions, that
is, 0-ary predicates. These straightforwardly extend the distributions that can be represented as reducts by allowing finite mixtures
of the distributions that can be represented without them [12]. It is clear that neither of the independence properties generalise to
mixtures of distributions. In the unary case, this allows for representing finite mixtures of the basic distributions. However, the (non-

trivial) distributions of “Carnap’s continuum”, the fundamental distributions of unary pure inductive logic, are all infinite mixtures
and therefore cannot be represented by generalised PLP [10, Chapter 16].

In the polyadic, the situation is more complicated. Unlike in the unary case, not every projective family of distributions is an infi-

nite mixture of distributions with SIP. Indeed, all infinite mixtures of SIP distributions share a strengthened notion of exchangeability
known as signature exchangeability [11]. In the binary case, it is known that a projective distribution has signature exchangeability if
and only if it is an infinite mixture of SIP distributions; in higher arities this is still open. However, signature exchangeability is not
conserved under reducts either, and we do not know of a weaker property implied by it that is conserved.

It is also worthwhile to compare our results with Malhotra and Serafini’s recent analysis of projective 2-variable Markov logic
networks [13]. They claim to show that projective Markov logic networks that only use two variables in any formula are precisely
the relational block models, or, in other words, precisely those with SIP. However, in a Markov logic network with real-valued
weights, every possible world has positive probability, which must therefore be included as an implicit additional assumption to
SIP. This additional assumption is in fact stronger than not be essentially asymmetric, and therefore we can conclude that every
projective Markov logic network for which every formula uses at most two variables can be expressed as the reduct of a determinate
probabilistic logic program. Note however that the two-variable assumption is a significant restriction, since it limits attention to
at most binary relations and does not allow for the expression of concepts like transitivity. Indeed, inference in the fragment of
two-variable Markov logic networks is tractable and admitting of a closed form solution, while the general problem of inference in
Markov logic networks is intractable [24]. Thus, bringing our understanding of general projective Markov logic networks to the same
level as our understanding of (generalised) probabilistic logic programs is a promising avenue for future research.

As the generalised distribution semantics is formulated abstractly, it captures any possible method to allocate a unique model
to every choice of probabilistic facts. This includes traditional probabilistic logic programming based on Datalog programs with
stratified negation as well as any extension of stratified negation that pins down a unique model, for instance logic programs with
unique stable models. Note also that the setting we adopt here requires a relational signature, and therefore does not support
function symbols or compound terms in the queries or in the free part of the program. However, this does not constrain any auxiliary
predicates or procedures used within the definition of the logical part of the program.

Other extensions of logic programming such as answer set programming or disjunctive logic programming go beyond this and
support programs with several stable models. There are different approaches for adding probabilistic facts to such extensions. A
recently popular one is the credal semantics proposed by Lukasiewicz [25], which essentially allocates a set of probability distribu-

tions corresponding to the stable models of the logic program; Cozman ans Mauá [26] provides an in-depth treatment of how this
approach can be carried out for answer set programs. However, since the credal semantics does not specify a single random world
for a domain, it does not result in a family of distributions in the sense discussed here.

One way to retain a unique probability distribution over models of a domain is to assume the principle of indifference. This means
simply dividing the weight equally between each of the multiple stable models. This concept has been realised in the languages P-

Log [27] and Probabilistic Disjunctive Logic Programming [28] for answer set programming and probabilistic disjunctive logic
programming respectively.

Such a set-up is outside the generalised distribution semantics, since we no longer allocate a unique extension to every intensional
world. Indeed, we can see that it is not generally possible to extend the intensional signature and obtain any P-log program or
disjunctive logic program as a reduct, since both can define essentially asymmetric models. Take for instance the answer set program
11

𝑅(𝑥, 𝑦)← ¬𝑅(𝑦,𝑥), 𝑥 ≠ 𝑦.

Journal of Logical and Algebraic Methods in Programming 139 (2024) 100975F. Weitkämper

The stable models of this answer set program are precisely those where each two nodes 𝑎 and 𝑏 are connected by exactly one directed
edge, either from 𝑎 to 𝑏 or from 𝑏 to 𝑎. By the principle of indifference, every such model is allocated equal probability; however,
none of them are symmetric.

The same argument applies to probabilistic disjunctive logic programming, using the disjunctive logic program

𝑅(𝑥, 𝑦) ∨𝑅(𝑦,𝑥),

in place of the answer set program given above.

This shows that beyond the limitations of the concrete fragment of Prolog implemented in a probabilistic logic programming
language, the foundational underpinnings of the distribution semantics as a deterministic program over probabilistic facts is itself
restrictive of the families of distributions that can be represented. We have seen that in the case of projective families of distributions,
particularly simple families that allow for marginal inference independent of the domain size, improving the power of the logic used
to define the deterministic component does not increase expressivity beyond quantifier-free first-order formulas (or equivalently
determinate logic programs). Furthermore, by giving an explicit description of the expressible projective families as reducts of
relational stochastic block models, we see that the vast majority of projective families remain out of reach of formalisms based
directly on the distribution semantics.

CRediT authorship contribution statement

Felix Weitkämper: Writing – review & editing, Writing – original draft, Methodology, Investigation, Funding acquisition, Formal
analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] D. Poole, Probabilistic Horn abduction and Bayesian networks, Artif. Intell. 64 (1) (1993) 81–129, https://doi .org /10 .1016 /0004 -3702(93)90061 -F.

[2] T. Sato, A statistical learning method for logic programs with distribution semantics, in: L. Sterling (Ed.), Logic Programming, Proceedings of the Twelfth
International Conference on Logic Programming, Tokyo, Japan, June 13–16, 1995, MIT Press, 1995, pp. 715–729.

[3] L. De Raedt, A. Kimmig, Probabilistic (logic) programming concepts, Mach. Learn. 100 (1) (2015) 5–47, https://doi .org /10 .1007 /s10994 -015 -5494 -z.

[4] D. Suciu, D. Olteanu, C. Ré, C. Koch, Probabilistic Databases, Synthesis Lectures on Data Management, Morgan & Claypool Publishers, 2011.

[5] F.G. Cozman, D.D. Mauá, The finite model theory of Bayesian network specifications: descriptive complexity and zero/one laws, Int. J. Approx. Reason. 110
(2019) 107–126, https://doi .org /10 .1016 /j .ijar .2019 .04 .003.

[6] V. Koponen, Conditional probability logic, lifted Bayesian networks, and almost sure quantifier elimination, Theor. Comput. Sci. 848 (2020) 1–27, https://

doi .org /10 .1016 /j .tcs .2020 .08 .006.

[7] M. Jaeger, O. Schulte, Inference, learning, and population size: projectivity for SRL models, in: Eighth International Workshop on Statistical Relational AI
(StarAI), 2018, arXiv :1807 .00564.

[8] M. Jaeger, O. Schulte, A complete characterization of projectivity for statistical relational models, in: C. Bessiere (Ed.), Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, IJCAI 2020, ijcai.org, 2020, pp. 4283–4290.

[9] R. Carnap, Logical Foundations of Probability, University of Chicago Press, 1950.

[10] J. Paris, A. Vencovská, Pure inductive logic, perspectives in logic, in: Association for Symbolic Logic, Ithaca, NY, Cambridge University Press, 2015.

[11] T. Ronel, A. Vencovská, The principle of signature exchangeability, J. Appl. Log. 15 (2016) 16–45, https://doi .org /10 .1016 /j .jal .2015 .11 .002.

[12] F. Weitkämper, An asymptotic analysis of probabilistic logic programming, with implications for expressing projective families of distributions, Theory Pract.
Log. Program. 21 (6) (2021) 802–817, https://doi .org /10 .1017 /S1471068421000314.

[13] S. Malhotra, L. Serafini, On projectivity in Markov logic networks, in: M. Amini, S. Canu, A. Fischer, T. Guns, P.K. Novak, G. Tsoumakas (Eds.), Machine Learning
and Knowledge Discovery in Databases - European Conference, ECML PKDD 2022, Grenoble, France, September 19-23, 2022, Proceedings, Part V, in: Lecture
Notes in Computer Science, vol. 13717, Springer, 2022, pp. 223–238.

[14] F. Weitkämper, Projective families of distributions revisited, Int. J. Approx. Reason. 162 (2023) 109031, https://doi .org /10 .1016 /J .IJAR .2023 .109031.

[15] L.D. Raedt, K. Kersting, S. Natarajan, D. Poole, Statistical Relational Artificial Intelligence: Logic, Probability, and Computation, Synthesis Lectures on Artificial
Intelligence and Machine Learning, Morgan & Claypool Publishers, 2016.

[16] F.G. Cozman, D.D. Mauá, The complexity of Bayesian networks specified by propositional and relational languages, Artif. Intell. 262 (2018) 96–141, https://

doi .org /10 .1016 /j .artint .2018 .06 .001.

[17] G. Van den Broeck, K. Kersting, S. Natarajan, D. Poole (Eds.), An Introduction to Lifted Probabilistic Inference, MIT Press, 2021.

[18] F. Riguzzi, Foundations of Probabilistic Logic Programming: Languages, Semantics, Inference and Learning, 2nd edition, Publishers, River, 2023.

[19] F. Weitkämper, Statistical relational artificial intelligence with relative frequencies: a contribution to modelling and transfer learning across domain sizes, CoRR,
arXiv :2202 .10367 [abs], 2022, arXiv :2202 .10367.

[20] T. Leinster, Basic Category Theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2014.

[21] P.W. Holland, K.B. Laskey, S. Leinhardt, Stochastic blockmodels: first steps, Soc. Netw. 5 (2) (1983) 109–137, https://doi .org /10 .1016 /0378 -8733(83)90021 -7.

[22] K.L. Clark, Negation as Failure, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1987, pp. 311–325.

[23] J. Vennekens, S. Verbaeten, M. Bruynooghe, Logic programs with annotated disjunctions, in: B. Demoen, V. Lifschitz (Eds.), Logic Programming, 20th Inter-

national Conference, ICLP 2004, Saint-Malo, France, September 6-10, 2004, Proceedings, in: Lecture Notes in Computer Science, vol. 3132, Springer, 2004,
12

pp. 431–445.

https://doi.org/10.1016/0004-3702(93)90061-F
http://refhub.elsevier.com/S2352-2208(24)00029-4/bibB2A0920DF3515E0A137F21985D8205E9s1
http://refhub.elsevier.com/S2352-2208(24)00029-4/bibB2A0920DF3515E0A137F21985D8205E9s1
https://doi.org/10.1007/s10994-015-5494-z
http://refhub.elsevier.com/S2352-2208(24)00029-4/bibC9AC1BAFEB186B5CC512F54C30444BC4s1
https://doi.org/10.1016/j.ijar.2019.04.003
https://doi.org/10.1016/j.tcs.2020.08.006
https://doi.org/10.1016/j.tcs.2020.08.006
http://refhub.elsevier.com/S2352-2208(24)00029-4/bib70C6797EB9D2FE8AC2C8A3B9C4909F1Fs1
http://refhub.elsevier.com/S2352-2208(24)00029-4/bib70C6797EB9D2FE8AC2C8A3B9C4909F1Fs1
http://refhub.elsevier.com/S2352-2208(24)00029-4/bibA58F29F92E8FF440B47651061286DDBBs1
http://refhub.elsevier.com/S2352-2208(24)00029-4/bibA58F29F92E8FF440B47651061286DDBBs1
http://refhub.elsevier.com/S2352-2208(24)00029-4/bibD8C36CC4CE7DEB27C5797983140A6C0Bs1
http://refhub.elsevier.com/S2352-2208(24)00029-4/bibC36C18F200575F09BADB3380B66F835Fs1
https://doi.org/10.1016/j.jal.2015.11.002
https://doi.org/10.1017/S1471068421000314
http://refhub.elsevier.com/S2352-2208(24)00029-4/bib100C31736B37F7402AF46FB991D8EB62s1
http://refhub.elsevier.com/S2352-2208(24)00029-4/bib100C31736B37F7402AF46FB991D8EB62s1
http://refhub.elsevier.com/S2352-2208(24)00029-4/bib100C31736B37F7402AF46FB991D8EB62s1
https://doi.org/10.1016/J.IJAR.2023.109031
http://refhub.elsevier.com/S2352-2208(24)00029-4/bib0E2C41F9E9BE5D137D2ED4BA80ECBB6Ds1
http://refhub.elsevier.com/S2352-2208(24)00029-4/bib0E2C41F9E9BE5D137D2ED4BA80ECBB6Ds1
https://doi.org/10.1016/j.artint.2018.06.001
https://doi.org/10.1016/j.artint.2018.06.001
http://refhub.elsevier.com/S2352-2208(24)00029-4/bib07CCB345B7CCFFAA2C8F70DFE29AE7EEs1
http://refhub.elsevier.com/S2352-2208(24)00029-4/bibDFEAEBB336A342F66EC4C8ABA127D935s1
http://refhub.elsevier.com/S2352-2208(24)00029-4/bibA4FE904EAE1C9B608D9C06F246BC4621s1
http://refhub.elsevier.com/S2352-2208(24)00029-4/bibA4FE904EAE1C9B608D9C06F246BC4621s1
http://refhub.elsevier.com/S2352-2208(24)00029-4/bib35903994E650E1F2E2901E22470ACC10s1
https://doi.org/10.1016/0378-8733(83)90021-7
http://refhub.elsevier.com/S2352-2208(24)00029-4/bib96EFF6A746FD14D934B447B35746F072s1
http://refhub.elsevier.com/S2352-2208(24)00029-4/bib170DF4CB58D202BF911B2130D2902F17s1
http://refhub.elsevier.com/S2352-2208(24)00029-4/bib170DF4CB58D202BF911B2130D2902F17s1
http://refhub.elsevier.com/S2352-2208(24)00029-4/bib170DF4CB58D202BF911B2130D2902F17s1

Journal of Logical and Algebraic Methods in Programming 139 (2024) 100975F. Weitkämper

[24] S. Malhotra, L. Serafini, Weighted model counting in FO2 with cardinality constraints and counting quantifiers: a closed form formula, in: Thirty-Sixth AAAI
Conference on Artificial Intelligence, AAAI 2022, Virtual Event, February 22 - March 1, 2022, AAAI Press, 2022, pp. 5817–5824.

[25] T. Lukasiewicz, Probabilistic description logic programs, Int. J. Approx. Reason. 45 (2) (2007) 288–307, https://doi .org /10 .1016 /j .ijar .2006 .06 .012.

[26] F.G. Cozman, D.D. Mauá, The joy of probabilistic answer set programming: semantics, complexity, expressivity, inference, Int. J. Approx. Reason. 125 (2020)
218–239, https://doi .org /10 .1016 /j .ijar .2020 .07 .004.

[27] C. Baral, M. Gelfond, J.N. Rushton, Probabilistic reasoning with answer sets, Theory Pract. Log. Program. 9 (1) (2009) 57–144, https://doi .org /10 .1017 /
S1471068408003645.

[28] L. Ngo, Probabilistic disjunctive logic programming, in: E. Horvitz, F.V. Jensen (Eds.), UAI ’96: Proceedings of the Twelfth Annual Conference on Uncertainty in
13

Artificial Intelligence, Reed College, Portland, Oregon, USA, August 1-4, 1996, Morgan Kaufmann, 1996, pp. 397–404.

http://refhub.elsevier.com/S2352-2208(24)00029-4/bib605670BF8BAF6C49537CB86371C867BFs1
http://refhub.elsevier.com/S2352-2208(24)00029-4/bib605670BF8BAF6C49537CB86371C867BFs1
https://doi.org/10.1016/j.ijar.2006.06.012
https://doi.org/10.1016/j.ijar.2020.07.004
https://doi.org/10.1017/S1471068408003645
https://doi.org/10.1017/S1471068408003645
http://refhub.elsevier.com/S2352-2208(24)00029-4/bib113B644949AA1A0A02E3101453252010s1
http://refhub.elsevier.com/S2352-2208(24)00029-4/bib113B644949AA1A0A02E3101453252010s1

	The generalised distribution semantics and projective families of distributions
	1 Introduction
	2 Frameworks
	2.1 Preliminaries
	2.2 Projectivity
	2.3 The distribution semantics

	3 Classification of projective generalised probabilistic logic programs
	3.1 Strong independence property
	3.2 Projective generalised probabilistic logic programs

	4 Discussion and conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

