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A B S T R A C T   

Objectives: Dentists’ diagnostic accuracy in detecting periapical radiolucency varies considerably. This systematic 
review and meta-analysis aimed to investigate the accuracy of artificial intelligence (AI) for detecting periapical 
radiolucency. 
Data: Studies reporting diagnostic accuracy and utilizing AI for periapical radiolucency detection, published until 
November 2023, were eligible for inclusion. Meta-analysis was conducted using the online MetaDTA Tool to 
calculate pooled sensitivity and specificity. Risk of bias was evaluated using QUADAS-2. 
Sources: A comprehensive search was conducted in PubMed/MEDLINE, ScienceDirect, and Institute of Electrical 
and Electronics Engineers (IEEE) Xplore databases. Studies reporting diagnostic accuracy and utilizing AI tools 
for periapical radiolucency detection, published until November 2023, were eligible for inclusion. 
Study selection: We identified 210 articles, of which 24 met the criteria for inclusion in the review. All but one 
study used one type of convolutional neural network. The body of evidence comes with an overall unclear to high 
risk of bias and several applicability concerns. Four of the twenty-four studies were included in a meta-analysis. 
AI showed a pooled sensitivity and specificity of 0.94 (95 % CI = 0.90–0.96) and 0.96 (95 % CI = 0.91–0.98), 
respectively. 
Conclusions: AI demonstrated high specificity and sensitivity for detecting periapical radiolucencies. However, 
the current landscape suggests a need for diverse study designs beyond traditional diagnostic accuracy studies. 
Prospective real-life randomized controlled trials using heterogeneous data are needed to demonstrate the true 
value of AI. 
Clinical significance: Artificial intelligence tools seem to have the potential to support detecting periapical ra-
diolucencies on imagery. Notably, nearly all studies did not test fully fledged software systems but measured the 
mere accuracy of AI models in diagnostic accuracy studies. The true value of currently available AI-based 
software for lesion detection on both 2D and 3D radiographs remains uncertain.   

1. Introduction 

Endodontology is a dental specialty that deals with problems related 
to the root canal system. Non-surgical root canal treatment is commonly 
used to treat diseases related to the pulp and tissues surrounding the root 
of teeth. Accurately diagnosing the specific condition affecting the pulp 
and periapical tissues is crucial for successful treatment. Failure to do so 
can lead to pain and negatively impact the overall treatment plan [1]. 

A thorough endodontic examination includes a dental and medical 
history, clinical evaluation, and radiologic assessment. The latter allows 
the detection of periapical radiolucencies, indicating an inflammatory 

response to a bacterial load due to infected necrotized pulp tissue, an 
unsatisfactory root canal treatment, a cancerous lesion, a cystic lesion, 
or a manifestation of a systemic disease [2]. The prevalence of periapical 
radiolucencies has been determined at 5 % and 6.40 % in two 
meta-analyses conducted on 300,861 and 679,414 teeth, respectively 
[3,4]. 

Periapical radiolucencies can be assessed using two-dimensional 
(2D) and three-dimensional (3D) imagery. While 3D data like cone 
beam computed tomography (CBCT) provide more robust and accurate 
assessments [5], guidelines discourage routine 3D assessments for per-
iapical diagnostic purposes [6] due to the significantly higher radiation 
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dose required and the time, expertise, and costs associated with 
obtaining and interpreting 3D data [7]. 

Artificial Intelligence (AI) refers to the ability of a computer or a 
computer-controlled system to exhibit behaviors similar to humans, 
perform tasks such as logical reasoning, motion, speech, and sound 
perception, and carry out various activities in a manner resembling 
intelligent beings. An increasing wealth of studies focus on AI to detect 
periapical radiolucencies in 2D and 3D imagery [8]. At the same time, 
the consistency of findings and the robustness of the overall body of 
evidence is not well established. The present review systematically 
identified and appraised studies on AI for detecting periapical radiolu-
cencies and quantitively synthesized the obtained accuracy data using 
meta-analysis. 

2. Methods 

Reporting of this study follows the PRISMA checklist [9]. 

2.1. Studies and search 

Our search and inclusion and exclusion criteria were determined 
using the PICOS scheme. The Population was patients receiving dental 
radiographs, the Intervention was AI used to detect periapical radiolu-
cencies, and the Control was a reference test established by clinicians, 
histological analysis, or CBCT. Our Outcome looked at accuracy or its 
derivates, like the area under the curve. Only diagnostic accuracy 
studies were included. 

Two researchers conducted the systematic search independently and 
duplicative. Their agreement was assessed using Cohen’s kappa. In case 
of a disagreement, a third reviewer was consulted as a tiebreaker. The 
following electronic databases were searched: Medline via PubMed, 
Institute of Electrical and Electronics Engineers (IEEE) Xplore, and Sci-
enceDirect. The search strategy can be seen in the Appendix. 

Accompanying the electronic search, a manual search was conducted 
on the following resources: reference lists of the included papers and 
identified reviews (cross-referencing), three journals (01/2000 to 11/ 
2023), namely the Journal of Endodontics, the International Endodontic 
Journal, and the Journal of Dental Research. 

2.2. Data extraction 

Details on the study design and the results of the included studies 
were extracted into a spreadsheet, encompassing information about the 
authors, publication year, study aims, datasets used for training and 
validation, information on labeling, information on preprocessing and 
augmentation, the specific AI algorithm employed, the outcome in any 
form of accuracy, and comparison with dentists or any other standard of 
care, if available. 

2.3. Risk of bias 

The risk of bias was determined by two independent examiners using 
Quadas-2 [10], a tool for the Quality Assessment of Diagnostic Accuracy 
Studies. Studies were evaluated for patient selection, index test, refer-
ence test, flow, and timing. Applicability concerns for patient selection, 
index, and reference tests were assessed. Disagreements were resolved 
by discussion. 

2.4. Meta-analysis 

Meta-analysis was conducted using MetaDTA (v2.0, Shinyapps, 
RStudio, Boston, USA) [11,12], an online tool for meta-analysis of 
diagnostic accuracy studies. Studies were included if the number of true 
positive, true negative, false positive, and false negative diagnostic cases 
were provided. Pooled sensitivity and specificity of the included studies 
with 95 % confidence intervals were determined using random-effects 

modeling, assuming individual study estimates to vary but to come 
from a joint underlying distribution with an unstructured between-study 
covariance matrix [13,14]. We also generated hierarchical summary 
receiver operating characteristic (HSROC) curves, including summary 
points, confidence, and predictive regions, estimated as described else-
where [15], via generalized linear mixed effect modeling using the 
glmer function in the R-package lme4 [13,14,16]. 

3. Results 

3.1. Search and included studies 

The electronic searches yielded 210 records (Fig. 1). No additional 
articles were included through the manual search. After removing 
duplicate and irrelevant titles, 43 records remained. Of these, five arti-
cles could not be obtained; fourteen were excluded based on the full-text 
review, resulting in 24 articles being included. Cohen’s kappa between 
reviewers was 0.84, showing almost perfect agreement. The list of 
excluded studies and the reason for their exclusion is in Appendix 
Table S3. 

Table 1 below lists all studies with study features. Table S2 in the 
Appendix shows the outcomes of the included studies. 

Studies differed in their aims, imaging method, dataset size, refer-
ence standard, model structure, and performance measurements. Most 
studies used a type of convolutional neural network (CNN) [17,18,21, 
22,24–38,40]. Ten studies performed segmentation [17,18,25,26,29,30, 
32,35,37,40], 11 studies classification [19–21,23,24,29,31,34,36,38, 
39] and six object detection [21,22,27,28,33,38]. Two combined object 
detection and classification [29,41] and one classification and segmen-
tation [35]. 

Twelve studies used periapical radiographs as test data [17,18, 
20–22,26,27,31–34,36], seven studies panoramic radiographs [23,24, 
28,30,37,41] and six CBCT [19,25,29,35,39,40]. Twenty-one studies 
[17–25,28–37,39,40] labeled the reference set the same way they 
labeled the test data. Fifteen studies [17,18,20–24,28,30–34,36,37] 
relied on 2D radiological diagnosis to create a reference test. Six out of 
the twenty-one used a 3D radiological method, CBCT [19,25,29,35,39, 
40]. One study [27] chose to label the reference set in CBCT, while 
another imaging method was used on the test set. Only one study [38] 
supported radiological diagnoses with histopathology and clinical tests 
to establish the reference test. One study [26] did not specify how la-
beling is done. 

Five studies [17,19,21,27,29] employed only one dentist to establish 
the reference test, and 13 studies [18,23,24,30–38,40] two or more 
dentists. In six studies [20,22,25,26,28,39], who or how many experts 
established the reference tests remained unclear. 

Reported performance measurements were highly heterogeneous. 
Sensitivity and specificity were most common, while only four studies 
[25,31,33,35] reported true positive, true negative, false positive, and 
false negative diagnostic cases. 

3.2. Bias analysis of included studies 

The risk of bias is displayed in Table 2 and Fig. 2. 
If a study showed a low risk of bias in 2 or more areas without any 

high risk of bias, it was graded as low risk. If a study showed a high risk 
of bias in any area, it was graded as having a generally high risk of bias. 
Studies other than these two groups were graded as unclear risk of bias. 
Out of 24 articles, seven showed a low risk of bias [17,24,25,27–29,38]; 
eight had an unclear risk of bias [21–23,30–32,37], and eight had a high 
risk of bias [18–20,26,34–36,40]. 

For the patient selection domain, studies had generally unclear to 
high risk of bias, mainly because the methodology for selecting positive 
and negative image cases was often not adequately described. Without 
clear criteria or a detailed process for how these cases were chosen, it 
was difficult to ascertain if the samples truly represented the broader 
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population. This lack of detail raises questions about the generalizability 
of the study results. 

In the index test domain, the risk of bias was mainly evaluated as low 
to unclear. The primary issue here was the examiners’ lack of blinding 
for the reference test when establishing the index tests, which could 
obviously lead to biased results. 

The reference standard domain frequently showed an unclear risk of 
bias, mainly as it was not substantiated whether the reference tests were 
sufficiently reliable, valid, and precise to detect the condition of interest. 

The flow and timing domain also typically had an unclear risk of bias 
because many studies did not report the chronological order in which 
the index and reference tests were performed. Ideally, these tests should 
be performed independently (see above) but in timely juxtaposition to 
avoid changes in the target condition (e.g., a CBCT to establish the 
reference test should not have been taken months after the panoramic 
used for the index test). Notably, this may not always be relevant (e.g., 
when both tests are established on the same image). 

The patient selection domain generally posed an unclear risk of 
applicability problems when considering the studies’ relevance to real- 
world settings. Due to uncertainty about their representativeness, it is 
uncertain whether the selected patient populations in specific studies 
can be replicated in future studies. 

The index test domain posed a low risk of applicability issues. The 
architectural and modeling parameters used in the studies were largely 
replicable and well-described, meaning that other researchers or 

practitioners could use similar methods and expect comparable results. 
The reference standard domain had an unclear risk of applicability 

problems. In nearly all the studies, the reference tests were based on 
experts’ opinions rather than objective measures. Since experts’ opin-
ions can vary widely, the validity and reliability of the reference stan-
dard are doubtful. Moreover, the strategy to uniform the varying 
opinions was not always clear and is generally not scientifically sub-
stantiated (instead, different kinds of “common practices” have been 
established, while for none a robust scientific justification is available). 

3.3. Meta-analysis 

Figs. 3 and 4 show the specificity and sensitivity of each study in a 
forest plot, respectively; the pooled specificity (95 % CI) was 0.96 (0.91, 
0.98); the pooled sensitivity was 0.94 (0.90, 0.96). 

Fig. 5 displays the HSROC and the computed 5 % confidence and 95 
% predictive regions. HSROC provides a comprehensive method to 
evaluate diagnostic test accuracy across multiple studies. It considers the 
variability between studies and accounts for the potential correlation 
between sensitivity and specificity, offering a more robust summary of 
diagnostic performance. This is particularly useful when there is het-
erogeneity in study results, as the HSROC allows for the inclusion of 
random effects to provide a summary estimate. 

Fig. 1. Selection process.  
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Table 1 
Features of all included studies.  

Author Year Description Aim of Study Used Imaging 
Method 

Data Size 
(Training/ 
Test) 

Labeling on Labeling Done by Data 
Augmentation 

Model Structure Performance 
Measurements 
and Outcomes 

Comparison 
with Dentists 
other than 
Labelers 

Ari, T. et al. 
[17]. 

2022 Automatic Feature 
Segmentation in Dental 
Periapical Radiographs 

Segmentation Periapical 
Radiographs 

292 
(266/26) 

Periapical 
Radiographs 

1 Oral Radiologist 
with 12 Years of 
Experience 

No CNN Sensitivity: 0.92 
Precision: 0.85 
F1-Score:: 0.86 

No 

Bayrakdar, I. 
S. et al. 
[18]. 

2022 U-Net for Apical Lesion 
Segmentation on 
Panoramic Radiographs 

Segmentation Periapical 
Radiographs 

470 
(380/47) 

Periapical 
Radiographs 

3 Oral Radiologists 
with At Least 3 
Years of Experience 

Yes CNN Sensitivity:0.92 
Precision: 0.84 
F1-Score: 0.88 

No 

Calazans, M. 
A.A. et al. 
[19]. 

2022 Automatic Classification 
for Periapical Lesions in 
CBCT 

Classification CBCT 885 
(na) 

CBCT 1 Oral Radiologist 
with 10 Years of 
Experience 

Yes Siamese 
Concatenated 
Network 
a CNN 

Accuracy: 0.70 
Sensitivity: 0.64 
Precision: 0.76 
Specificity: 0.76 
F1-Score: 0.70 

No 

Caputo, B. 
et al. [20]. 

2000 Analysis of Periapical 
Lesions using Statistical 
Textural Features 

Classification Periapical 
Radiographs 

108 
(30/78) 
108 
(50/58) 

Periapical 
Radiographs 

na na A three-layers, 
Feedforward, 
Backpropagating 
Neural Network 
a CNN 

TP Rate: 0.69 
FP Rate: 0.09 

No 

Chen, H. 
et al. [21]. 

2021 Dental Disease Detection 
on Periapical Radiographs 
Based on Deep 
Convolutional Neural 
Networks 

Object 
Detection and 
Classification 

Periapical 
Radiographs 

2900 
(na) 

Periapical 
Radiographs 

1 Dentist with More 
Than 5 Years of 
Clinical Experience 

na CNN IoU: 0.69 
Precision: 0.52 
Sensitivity: 0.52 

No 

Chuo, Y. 
et al. [22]. 

2022 A High-Accuracy 
Detection System: Based 
on Transfer Learning for 
Apical Lesions on 
Periapical Radiograph 

Object 
Detection 

Periapical 
Radiographs 

760 
(662/98) 

Periapical 
Radiographs 

na Yes 4 different CNNs Accuracy 
AlexNet: 0.96 
ResNet101: 0.95 
ResNet50: 0.94 
GoogleNet: 0.88 

No 

Ekert, T. 
et al. [23]. 

2019 Deep Learning for 
Radiographic Detection of 
Apical Lesions 

Classification Panoramic 
Radiographs 

2579 
(2238/341) 

Panoramic 
Radiographs 

A Majority Vote of 6 
Independent, 
Experienced 
Dentists 

Yes na AUC: 0.85 
Sensitivity: 0.65 
Specificity: 0.87 
PPV: 0.49 
NPV: 0.93 

No 

Endres, M.G. 
et al. [24]. 

2020 Development of a Deep 
Learning Algorithm for 
Periapical Disease 
Detection in Dental 
Radiographs 

Classification Panoramic 
Radiographs 

3099 
(2902/102) 

Panoramic 
Radiographs 

Four OMF Surgeons 
with Experiences 
Ranging from 5 to 
20 Years 

na CNN PPV: 0.67 
F1-Score: 0.58 
AP: 0.60 

Yes 

Ezhov, M. 
et al. [25] 

2020 Clinically Applicable 
Artificial 
Intelligence System for 
Diagnosis of CBCT 

Segmentation CBCT 2800 
(na) 

CBCT Dental and OMF 
Radiologists 

No CNN Sensitivity: 1.00 
Specificity: 0.84 

Yes 

Fatima, A. 
et al. [26]. 

2023 Deep Learning-Based 
Multiclass Instance 
Segmentation for Dental 
Lesion Detection 

Segmentation Periapical 
Radiographs 

534 
(453/81) 

na Experienced 
Radiologists and 
Dentists 

Yes CNN mAP: 0.85 
Sensitivity: 0.89 
Precision: 0.86 
F1-Score: 0.89 
mIoU: 0.71 

No 

Hamdan, M. 
H. et al. 
[27]. 

2022 Deep Learning for 
Detecting Apical 
Radiolucencies on 
Periapical Radiographs 

Object 
Detection 

Periapical 
Radiographs 

184 
(na/130) 

CBCT 1 Oral-maxillofacial 
Radiologist with 10 
Years of Experience 

Yes CNN AFROC-AUC: 0.89 
Specificity: 0.73 
Sensitivity: 0.93 

Yes 

(continued on next page) 
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Table 1 (continued ) 

Author Year Description Aim of Study Used Imaging 
Method 

Data Size 
(Training/ 
Test) 

Labeling on Labeling Done by Data 
Augmentation 

Model Structure Performance 
Measurements 
and Outcomes 

Comparison 
with Dentists 
other than 
Labelers 

Kim, C. et al. 
[28]. 

2022 Tooth-Related Disease 
Detection System Based on 
Panoramic Images and 
Optimization Through 
Automation 

Object 
Detection 

Panoramic 
Radiographs 

10,000 
(na) 

Panoramic 
Radiographs 

Radiologists with 
20-Year Experience 

na R-CNN 
ResNet 
Inception 

Precision: 0.82 
Sensitivity: 0.95 
Specificity: 0.89 

No 

Kirnbauer, B. 
et al. [29]. 

2022 Automatic Detection of 
Periapical Osteolytic 
Lesions on CBCT Using 
Convolutional Neuronal 
Networks 

Classification 
and 
Segmentation 

CBCT 144 
(2128 ROI) 

CBCT 1 Oral Surgeon No CNN Sensitivity: 0.97 
Specificity: 0.88 
TP rate: 0.97 
FN rate: 0.03 
TN rate: 0.88 
FP rate: 0.12 

No 

Krois, J. et al. 
[30]. 

2021 Generalizability of Deep 
Learning Models for 
Dental Image Analysis 

Segmentation Panoramic 
Radiographs 

1300 
(1000/300) 
650 
(500/150) 
650 
(500/150) 

Panoramic 
Radiographs 

4 Specialists 
1 Expert for 
Validation 

Yes CNN F1-Score: 0.54 
Sensitivity: 0.48 
Precision: 0.64 
Specificity: 1.00 

Yes 

Li, C.W. et al. 
[31]. 

2021 Detection of Dental Apical 
Lesions Using CNNs on 
Periapical Radiograph 

Classification Periapical 
Radiographs 

460 
(322/138) 

Periapical 
Radiographs 

3 Dentists Yes CNN Accuracy: 0.93 
Specificity: 0.90 
Sensitivity 0.95 
Precision: 0.92 

No 

Moidu, N. 
et al. [32]. 

2022 Deep Learning for 
Categorization of 
Endodontic Lesions 
Along the Periapical Index 

Segmentation Periapical 
Radiographs 

1950 
(1250/250) 

Periapical 
Radiographs 

3 Endodontists Yes CNN Sensitivity: 0.92 
Sensitivity: 0.76 
Precision: 0.86 
F1-Score: 0.89 
Matthews 
Coefficient: 0.71 

No 

Ngoc, V. 
et al. [33]. 

2021 Periapical Lesion 
Diagnosis Support System 
Based on X-ray 
Images Using Machine 
Learning 

Object 
Detection 

Periapical 
Radiographs 

1130 
(1000/130) 

Periapical 
Radiographs 

2 Experienced 
Endodontists 

na CNN Sensitivity: 0.89 
Specificity: 0.98 
Accuracy: 0.96 

No 

Sajad, M. 
et al. [34]. 

2019 Automatic Lesion 
Detection in Periapical X- 
rays 

Classification Periapical 
Radiographs 

534 
(453/81) 

Periapical 
Radiographs 

1 Radiologist and 1 
Dentist 

Yes CNN for extraction 
K-nearest Neighbor 
Learning 
Support Vector 
Machine for 
classification 

Accuracy: 0.79 No 

Setzer, F. 
et al. [35]. 

2020 Computer-aided Detection 
of Periapical Lesions in 
CBCT 

Segmentation CBCT 20 
(16/4) 

CBCT 1 Radiologist, 1 
Endodontist, 1 Oral 
Radiology Fellow 

No CNN Sensitivity: 0.93 
Specificity: 0.88 
PPV: 0.87 
NPV: 0.93 
DICE: 0.67 

No 

Shafi, I. et al. 
[36]. 

2023 Apical Lesion Detection 
Using Deep Learning and 
the Internet of Things 

Classification Periapical 
Radiographs 

534 
(453/81) 

Periapical 
Radiographs 

2 Dentists with More 
Than 10 Years of 
Experience 

Yes CNN for extraction 
K-nearest Neighbor 
Learning 
Support Vector 
Machine for 
classification 

Accuracy: 0.98 
Precision: 0.76 
Sensitivity: 0.75 
F1 Score: 0.75 

No 

Song, I. S. 
et al. [37]. 

2022 Deep learning-based 
Apical Lesion 

Segmentation Panoramic 
Radiographs 

1000 
(800/100) 

Panoramic 
Radiographs 

3 Oral and 
Maxillofacial 
Radiologists with 

Yes CNN Precision: 0.74 
Sensitivity: 0.74 
F1-Score: 0.74 

No 

(continued on next page) 

U
. Pul and F. Schw

endicke                                                                                                                                                                                                                   



Journal of Dentistry 147 (2024) 105104

6

4. Discussion 

In this systematic review and meta-analysis, we assessed the diag-
nostic accuracy of AI, mainly deep neural networks (nearly all CNNs), in 
detecting periapical radiolucency on different radiological imaging 
modalities. We identified 24 studies using different image modalities, 
modeling tasks, and setups, with an overall unclear or high risk of bias 
and a range of applicability concerns. The quantitative synthesis of four 
studies, reporting data in sufficient detail to allow meta-analysis, 
confirmed that AI has high sensitivity and specificity. Notably, given 
the paucity of comparable data, conducting further subgroup or strati-
fied analysis and yield estimates for specific image modalities or 
modeling tasks was impossible. Comparisons of the AI against the cur-
rent standard of care, unaided dentists, were extremely scarce. 

The diagnostic accuracy of dentists for detecting periapical radiolu-
cency on both 2D and 3D radiographs has been reported to range be-
tween 53 and 90 % [43–46]. As the reliability of clinical pulpal vitality 
tests is questioned [47], supporting unreliable clinical tests with 
inconsistent radiological diagnoses makes diagnosing pulpal and peri-
apical health highly subjective. A wide range of deep neural networks 
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Table 2 
Risk of bias according to the QUADAS-2 tool [10].   

PATIENT 
SELECTION 

INDEX 
TEST 

REFERENCE 
STANDARD 

FLOW AND 
TIMING 

Ari, T. et al. 
[17]. 

Low Low Low Low 

Bayrakdar, I.S. 
et al. [18]. 

High High High Unclear 

Calazans, M.A. 
A. et al. [19]. 

High Unclear High Unclear 

Caputo, B. et al. 
[20]. 

High High Low Low 

Chen, H. et al. 
[21]. 

Unclear Low Unclear Unclear 

Chuo, Y. et al. 
[22]. 

Unclear Unclear Unclear Unclear 

Ekert, T. et al. 
[23]. 

Unclear Unclear Low Unclear 

Endres, M.G. 
et al. [24]. 

Low Low Low Low 

Ezhov, M. et al. 
[25]. 

Unclear Low Low Unclear 

Fatima, A. et al. 
[26]. 

High High High Unclear 

Hamdan, M.H. 
et al. [27]. 

Unclear Low Low Unclear 

Kim, C. et al. 
[28]. 

Low Low Unclear Unclear 

Kirnbauer, B. 
et al. [29]. 

Unclear Low Low Unclear 

Krois, J. et al. 
[30]. 

Low Unclear Unclear Unclear 

Li, C.W. et al. 
[31]. 

Unclear Unclear Unclear Unclear 

Moidu, N. et al. 
[32]. 

Unclear Low Unclear Unclear 

Ngoc, V. et al. 
[33]. 

Low Unclear Unclear Unclear 

Sajad, M. et al. 
[34]. 

High Unclear Unclear Unclear 

Setzer, F. et al. 
[35]. 

High Unclear Unclear Unclear 

Shafi, I. et al. 
[36]. 

High Unclear Unclear Unclear 

Song, I. S. et al. 
[37]. 

Unclear Low Unclear Unclear 

Ver Berne, J. 
et al. [38]. 

Unclear Low Low Unclear 

Yilmaz E. et al. 
[39]. 

High Low High Unclear 

Zheng, Z. et al. 
[40]. 

High Unclear Unclear Unclear  
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have been employed to assist dentists in this task, with networks 
becoming deeper over time. Moreover, the range of tasks also increased, 
with earlier studies focusing on classification, while more recent studies 
also employ segmentation or object detection as well as combinations of 
those. Notably, some studies attempted to transform segmentation or 
object detection tasks into classification outcomes, which yield metrics 
interpretable for clinicians. In our meta-analysis, we included such 
classification outcomes if they came from object detection and seg-
mentation studies. Future object detection and segmentation studies 
should consider possible data synthesis and should provide their 

findings on both pixel and tooth levels, respectively. This would allow 
gauging the clinical usefulness of a developed AI (it remains unclear if 
pixel classification accuracy of 50, 60, or 70 % is useful or not). 
Generally, our review calls for standardization in reporting and out-
comes to allow critical appraisal, comparison between studies, and 
synthesis. 

Another element introducing heterogeneity and risk of bias was the 
reference test against which the performance of the AI was constituted 
(and on which the AI was trained). Five studies [17,19,21,27,29] 
employed only one dentist to establish this reference test, while in six 

Fig. 2. Bias analysis and applicability concerns of included studies.  
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studies [20,22,25,26,28,39], it was unclear who or how many experts 
established it. This is highly relevant, as models trained and tested on 
data from only one annotator will not exceed that annotator’s perfor-
mance, which is why guidelines recommend multiple annotators 
assessing each image independently. Notably, once this is concluded, it 
remains unclear how best to establish one label from the multitude of 
inputs. Ekert et al. [23] have demonstrated the impact of different 
schemes in unifying multiple annotations into one reference test. 
Moreover, the reference test was mainly established on 2D radiographs – 
which are known to allow only limited accuracy for detecting periapical 
lesions; 3D radiographs [19,25,29,35,39,40] and histological assess-
ment [48] or a combination of imagery and clinical tests [38] was 
scarce, likely as most studies were conducted retrospectively, where the 
availability of further data sources (like 3D images or tests) is limited. 

Another problem frequently encountered was possible overfitting 
and, consequently, limited generalizability. Overfitting occurs if 
training and validation datasets are small and homogeneous. To limit 
overfitting, augmentation strategies like cropping or rotating, etc., are 

applied while still relying on data originating from the same source. For 
most studies, it remains impossible to gauge the full extent of overfitting, 
as no testing on truly independent datasets was performed. Using data 
from centers in Germany and India, Krois et al. [30] demonstrated the 
lack of generalizability of their developed model to detect apical lesions 
on panoramic radiographs; further research into this direction is needed. 

The overall body of evidence comes with an overall unclear or high 
risk of bias and several applicability concerns, according to QUADAS-2 
[10]. QUADAS-2 assesses the risk of bias and applicability across four 
domains: patient selection, index test, reference standard, and flow and 
timing. Each domain is evaluated for bias, and the first three are assessed 
for applicability concerns. This tool helped us identify methodological 
weaknesses, such as unclear patient selection and lack of blinding in 
index tests. Using QUADAS-2, we provided a transparent assessment of 
study quality, highlighting strengths and limitations to inform the reli-
ability of our meta-analysis results and advance understanding of 
diagnostic test performance. 

None of the studies was performed on a fully random sample of pa-
tients (which is generally true for studies involving radiographs, though, 
as these are usually taken not for surveillance purposes but on the basis 
of a medical justification in a clinical setting). The reference test and the 
limited heterogeneity in test data have been discussed. Generally, 
limited reporting detail led to unclear classification of risk of bias and 
applicability concerns for many studies. Future studies should aim to 
better adhere to reporting guidelines in the field [49]. Overall, our 
confidence in any conclusions drawn from this review needs to be 
limited. 

On the basis of this review, a range of research gaps can be identified. 
First, future studies should focus less on applying different (novel) ar-
chitectures on the existing small datasets and more on the impact of 
methodological aspects (like establishing the reference test and het-
erogeneity in data) on model performance and generalizability. Larger 
multi-centric datasets are needed for this purpose. These may only be 
established by international consortia, which could then focus on 
developing ways to benchmark models against one (or several) repre-
sentative, systematically, and reliably annotated datasets. The ITU/ 
WHO Focus Group AI For Health (soon WHO/ITU/WIPO Global Initia-
tive AI For Health) is one such consortium. Notably, these consortia will 
require large-scale heterogeneous datasets; accessing and pooling such 
sets of sensitive data come with certain restrictions, i.e. implementing 
data sharing agreements in compliance with local jurisdiction and suf-
ficient de-anonymization. 

Second, the true impact of deep learning on clinicians, clinical care, 
and health services should be determined. The assessment of commer-
cially available AI systems seems warranted, as it remains unclear how 
dentists use these systems, how their usage impacts diagnostic processes 
and decision-making, and how patients benefit (or not) from this new 
technology. Lastly, such assessments need different study designs 
beyond the prevailing diagnostic accuracy studies. Randomized real- 
world trials and nested health economic and health behavioral assess-
ments may be needed. 

AI systems designed to detect periapical lesions have the potential to 
impact clinical practice significantly. With AI-supported detection, 
dentists can more accurately identify lesions, especially in cases where 
the lesions are small or ambiguous. Early and accurate detection can 
lead to timely interventions, improving treatment outcomes and pre-
serving dental structures. Additionally, AI can standardize the diag-
nostic process, reducing variability between practitioners and ensuring 
consistent care for patients. Notably, AI-aided users may also show a 
higher number of diagnostic or therapeutic interventions given a 
potentially lower specificity than unaided users, which may then come 
with detrimental health and economic outcomes [50]. 

AI tools can also serve as educational resources, enhancing diag-
nostic skills and confidence among dental students and less experienced 
dentists. Integrating AI into daily practice can streamline workflows, 
saving dentists time and allowing them to focus more on patient care. 

Fig. 3. Forest plot of specificity: mean and 95 % confidence intervals of spec-
ificity values are provided; studies are ordered alphabetically. 

Fig. 4. Forest plot of sensitivity: mean and 95 % confidence intervals of 
sensitivity values are provided; studies are ordered alphabetically. 
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This study is subject to several limitations. First, the scarcity of 
reliable research data imposes constraints on the studies eligible for 
inclusion in the meta-analysis. The limited number of included studies 
and their relatively small sample sizes significantly curtail the statistical 
robustness of our analysis. Second, there is an absence of consensus 
regarding optimal procedures for conducting meta-analyses of diag-
nostic accuracy studies. We have adopted the MetaDTA Tool. This tool 
mandates the availability of true positive (TP), true negative (TN), false 
positive (FP), and false negative (FN) values from the studies. Utilizing 
other recommended meta-analysis methodologies [51–53] such as 
metaDAS, midas, and metandi may have facilitated the inclusion of a 
greater number of studies in the analysis, thereby enhancing its 
comprehensiveness and generalizability. Fourth, all included studies 
were retrospective in nature. While the inclusion of prospective studies 

would have been preferable to mitigate selection bias, such studies were 
not available. Last, nearly all studies employed CNNs, which constrains 
our ability to draw a conclusive assessment of the broader applicability 
of AI within this domain. 

This is the second meta-analysis available assessing the accuracy of 
deep learning in detecting periapical lesions. A previous meta-analysis 
[54] showed a similarly high accuracy (0.93) but a lower specificity 
(0.85). Notably, the authors were less strict on including studies in their 
meta-analysis: One study [31] was included twice, as two models were 
developed – while both were tested on the same test data. Two studies 
[29,32] that reported only the percentage of true and false positives and 
negatives were included, whilst it remains unclear how accurate any 
transformation into total numerical values is. A recent systematic review 
[55] on the matter included only nine studies [18,23,24,31–33,35,56, 

Fig. 5. Hierarchical summary receiver operating characteristic (HSROC) plot. Individual studies are shown as circles on the HSROC area; each circle’s size indicates 
the study’s weight within the provided random-effects meta-analysis. HSROC shows sensitivity and specificity median values along calculated predictive and 
confidence regions [42]. 
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57], all of which were included in our review, and did not perform a 
meta-analysis. 

5. Conclusions 

AI has shown promise in accurately identifying radiographic peri-
apical lesions, potentially assisting dentists in improving diagnostic ac-
curacy and consistency. To fully harness this potential, future research 
should focus on robust validation of AI to detect periapical lesions 
through prospective, randomized controlled trials on diverse pop-
ulations. Collaborative efforts to create large, systematically annotated 
datasets will help enhance model development and benchmarking. 
Additionally, it is essential to conduct comprehensive assessments of 
AI’s economic and behavioral impact to understand its influence on 
clinical decision-making and patient outcomes. Practical integration of 
AI tools into dental workflows, with user-friendly interfaces, will ensure 
that these systems complement clinical practice without adding 
complexity. While challenges remain, the prospects for AI in enhancing 
the detection of periapical lesions are promising, offering significant 
benefits for both practitioners and patients. 
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