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Abstract
In the pursuit of efficient optimization of expensive-to-evaluate systems, this paper investigates a
novel approach to Bayesian multi-objective and multi-fidelity (MOMF) optimization. Traditional
optimization methods, while effective, often encounter prohibitively high costs in
multi-dimensional optimizations of one or more objectives. Multi-fidelity approaches offer
potential remedies by utilizing multiple, less costly information sources, such as low-resolution
approximations in numerical simulations. However, integrating these two strategies presents a
significant challenge. We propose the innovative use of a trust metric to facilitate the joint
optimization of multiple objectives and data sources. Our methodology introduces a modified
multi-objective (MO) optimization policy incorporating the trust gain per evaluation cost as one
of the objectives of a Pareto optimization problem. This modification enables simultaneous
MOMF optimization, which proves effective in establishing the Pareto set and front at a fraction of
the cost. Two specific methods of MOMF optimization are presented and compared: a holistic
approach selecting both the input parameters and the fidelity parameter jointly, and a sequential
approach for benchmarking. Through benchmarks on synthetic test functions, our novel approach
is shown to yield significant cost reductions—up to an order of magnitude compared to pure MO
optimization. Furthermore, we find that joint optimization of the trust and objective domains
outperforms sequentially addressing them. We validate our findings with the specific use case of
optimizing particle-in-cell simulations of laser-plasma acceleration, highlighting the practical
potential of our method in the Pareto optimization of highly expensive black-box functions.
Implementation of the methods in existing Bayesian optimization frameworks is straightforward,
with immediate extensions e.g. to batch optimization possible. Given their ability to handle various
continuous or discrete fidelity dimensions, these techniques have wide-ranging applicability in
tackling simulation challenges across various scientific computing fields such as plasma physics
and fluid dynamics.

1. Introduction

Black-box functions are systems where only the input-output relationship is considered without knowledge
of the internal workings. Optimization of such systems is crucial in various fields such as computer science,
engineering, and physics [1–6].

There exist various properties that can make black-box functions very difficult to optimize, such as the
well-known ‘curse of dimensionality,’ which makes optimization increasingly difficult as the number of input
dimensions grows. Moreover, many optimization problems involve multiple objectives, which can be
challenging to define or even conflicting in nature. These kind of multi-objective (MO) optimization
problems arise in diverse research domains [7] including, but not restricted to, the design of photonic crystal
filters [8], aerospace design problems [9] and robotics [10]. MO problems can be solved by directly
examining different trade-offs between various objectives and selecting an optimal combination that leads to
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the desired outcome. This concept is embodied by Pareto efficiency, visualized as the Pareto front, which
represents a set of optimal trade-offs between competing objectives. Finding this Pareto front is usually
referred to asMO optimization and various techniques have been developed to tackle them [11]. Among the
most popular are techniques based on evolutionary algorithms [12] and, increasingly in recent years,
Bayesian optimization [13]. While evolutionary algorithms focus on the efficient combinations of successful
(‘fit’) parameters, Bayesian techniques try to approximate the unknown black box function with fast
surrogate models for its mean and variance. Incorporating multiple information sources into the
optimization process can further improve efficiency, especially when dealing with costly black-box functions.
Such information sources may have different levels of ‘fidelity’, an example being simulations with different
numerical resolutions that approximate underlying physical processes.Multi-fidelity (MF) optimization can
leverage information from different sources, each with varying levels of fidelity, accuracy, or computational
cost [14]. Using this information, MF optimization can provide more informed decision-making while
reducing the overall cost.

In this article, we detail an approach that expands the scope of MO optimization to encompass varied
fidelity levels, allowing us to build the Pareto front more economically using cost-efficient approximations of
the core black box function. Central to our method is the inclusion of an objective that embodies the
information content-termed ‘trust’-which can be seamlessly optimized alongside other objectives using
proven numerical strategies from the realm of MO optimization. The manuscript is structured as follows:
after an introduction to Bayesian optimization via Gaussian process regression (2.1), we discuss common
acquisition functions used for single-objective, single-fidelity optimization (2.2). We then outline how these
policies are generalized to either MF (2.3) or MO (2.4) optimization. In section 3 we use these concepts to
devise policies to perform combinedmulti-objective, multi-fidelity (MOMF) optimization, either in a joint
fashion via trust (3.1) or in a sequential manner (3.2). We benchmark our results for different test functions
to understand the behavior of proposed multi-objective MF algorithms (3.3). Lastly, we apply our
trust-based MOMF (Trust-MOMF) algorithm to a real-world application. The example is taken from
computational physics where simulations are optimized (3.4). In section 4 we summarize our results and give
an outlook on potential applications.

2. Background and related work

In this section, we provide an overview of the key components of Bayesian optimization, including Gaussian
processes (GPs) and acquisition functions, and discuss their extension to multi-objective or MF optimization
[15]. The models underlying most Bayesian optimization are GPs, which explicitly define a probability
distribution over possible function values across the input space and describe a black-box objective function
as a distribution over functions in a continuous domain [16]. GPs consist of a mean function, which
represents the average value of the objective function, and a kernel function, which captures the relationship
between different points in the parameter space [17]. Prior information about the function can be
incorporated either in the mean function or the kernel [18]. In many cases the prior mean is assumed to be
zero throughout the parameter space and all the prior information is encoded in the kernel function. As the
black-box function is evaluated at specific positions, the GP is updated based on these evaluations. In
essence, the GP combines the prior information about the objective function with the evaluated data
resulting in a so-called posterior distribution that also defines a probability distribution over function values.
A function usually denoted as an acquisition function uses this posterior distribution to predict the next
possible best position to evaluate the objective function. By optimizing the acquisition function, which is
computationally efficient, the problem of optimizing the expensive black-box function is transformed into
optimizing the acquisition function [19].

2.1. Acquisition functions for single-objective, single-fidelity optimization
Acquisition functions encompass a broad class of functions that can be constructed using the posterior
distribution of the GP model. The effectiveness of an acquisition function is assessed based on its ability to
converge to the global optimum, with minimal evaluations of the objective function. This can be best
illustrated through a series of diagrams shown in figure 1, depicting the iterations of Bayesian optimization
loop starting from three initial points. After constructing a GP model with a mean (solid blue line) and
variance (shaded region), an acquisition function is derived (bottom plot). This acquisition function is then
optimized, often using gradient methods, to identify its maximum, which corresponds to the next evaluation
point for the black-box objective function. The choice of the acquisition function significantly impacts the
convergence of Bayesian optimization towards the global optimum. This section provides an overview of
some widely recognized acquisition function policies discussed in the existing literature. We would like to
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Figure 1. Consecutive iterations of Bayesian optimization (maximization) of the Forrester test function defined in appendix. Top:
the dashed black line represents the true function that is being optimized. The blue line is the GP regression mean with a shaded
region around it representing the standard deviation of the probability distribution for the function value. The blue dots are the
points that were evaluated. Arrows indicate the next measurement point suggested by the respective acquisition functions from
the bottom plot, showing the different prioritization towards exploration and exploitation. Bottom: evaluations of three different
metrics, expected improvement (EI, equation (2)), max-value entropy search (MES, equation (5).) and upper confidence bound
(UCB, equation (1) with κ= 2) for each step in the upper plot.

note that the development of acquisition functions is still an active area of research, with some recent
contributions using for instance distance correlation [20] or deep neural networks [21].

Assuming that the objective function has been evaluated n times generating a data set Dn = {(x1,y1),
(x2,y2), . . .,(xn,yn)}, these acquisition functions propose the optimal choice for the subsequent evaluation
point, denoted as xn+1. Please note that x is a vector of input parameters while the function output y is a
single scalar value for this section. This selection is achieved through the optimization of a derived metric,
taking into account the information from previously evaluated points. Specifically, the next evaluation point
is given by xn+1 = argmaxx∈X A(x|Dn), where X is the input parameter domain and A(x|Dn) represents one
of the acquisition functions given the dataset Dn detailed below.

One widely used acquisition function is the upper confidence bound (UCB) policy [22], which is
alternatively referred to as the lower confidence bound for minimization tasks. The UCB acquisition
function is expressed as:

UCB(x|Dn) = µn (x)+κσn (x) , (1)

where µn(x) and σn(x) denote the mean and the standard deviation of the function value under the posterior
distribution p(y|x,Dn), respectively, derived from GPs. The hyperparameter κ is used to balance exploration
and exploitation. UCB is popular due to its simplicity and effectiveness in practice.

Another well-known acquisition function in Bayesian optimization is expected improvement (EI) [23],
which suggests the next evaluation point based on the EI over the current optimal objective value y∗. The EI
acquisition function is expressed as:

EI(x|Dn) = E
[
max

(
fn+1 (x)− y∗,0

)]
, (2)

where, max( fn+1(x) is drawn from the posterior distribution and E denotes the expectation symbol,
representing an average over the probability distribution defined by the Gaussian process (GP) model. A
variation of EI is the knowledge gradient (KG) acquisition function [23, 24], which relies entirely on the
posterior model. KG selects the next evaluation point based not on the best observable value but on the best
value of the posterior mean. The KG acquisition function is given by:

KG(x|Dn) = E
[
max
x ′∈X

(µn+1 (x
′))

]
− max

x ′∈X
(µn (x

′)) , (3)

where the terms µn+1(x) and µn(x) represent the posterior mean of the GP after n+ 1 and n evaluations,
respectively. The term µn+1(x) represents the posterior mean of the GP after including an additional data
point (x, f(x)), where f(x) is the realization of the stochastic process at location x. This captures the updated
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belief about the function based on the new data point. The term µn(x) represents the prior belief before the
new data point is included. KG is more exploratory than EI as it is influenced by posterior changes
throughout the domain.

Information-theoretic acquisition functions utilize the mutual information I(x;x∗) between a specific
location in the parameter domain and the observed data set. One such function is Entropy Search (ES) [25],
represented mathematically as:

ES(x|Dn) =H(p(x∗|Dn))−E(H(p(x∗|Dn,x, f(x)))) , (4)

where H denotes Shannon’s entropy and p(x∗|Dn) refers to the probability distribution for the position of
the maximum given currently observed data. Moreover, p(x∗|Dn,x, f(x)) is the probability distribution for
the position of the maximum given data Dn as well as x and f(x), where f(x) is drawn from the GP trained on
Dn. The left term in the equation represents the entropy of the posterior distribution of the maximizing
location x∗, while the right term depicts an expectation over the entropy of the posterior after an additional
sample. In higher-dimensional input spaces, evaluating the mutual information between the point to be
queried and the maximizing location x∗ becomes challenging. To address this, computationally more
efficient variations have been introduced. MES [26] utilizes the mutual information between the maximum
value y∗ rather than x∗. The MES acquisition function is formulated as:

MES(x|Dn) =H(p(y∗|Dn))−E(H(p(y∗|Dn,x, f(x)))) . (5)

MES offers comparable or even better performance than ES while being significantly faster to compute
[26]. It should be noted that MES may perform sub-optimally in certain conditions since it assumes noiseless
observations only [27].

2.2. MO, single-fidelity optimization
As we outlined in the introduction, there exist many use cases in which the objective consists of multiple
sub-goals. One can think of these sub-goals as a vector of solutions, which has to be reduced to a scalar
number to be compatible with conventional numerical optimization schemes. This reduction, or
scalarization, is often not straightforward and the weights given to each sub-goal are usually found
empirically. A potent strategy for such use cases is MO optimization, where one tries to increase the diversity
of solutions. In this case, the function that is being maximized can be expressed as a vector of functions

f(x) =

f(1) (x)
f(2) (x)
. . .


that are evaluated to yield output vectors

y(x) =

y(1) (x)
y(2) (x)
. . .

 .

The optimum solution in this case consists of a solution vector. A useful concept describing this situation of
not just a single optimum but a set of optimal points in the multi-dimensional objective space is the Pareto
efficiency [11], which is visualized as the Pareto front (P). To describe the Pareto front, the notion of
domination is outlined in definition 1. The Pareto front is composed of a set of non-dominated points in the
output space as shown in figure 2.

One of the simplest algorithms for MO optimization is Pareto Efficient Global Optimization (ParEGO)
proposed by Knowles [30]. ParEGO is a scalarization-based approach in which a single-objective optimizer is
employed to find the Pareto front. In this algorithm, scalarization is achieved using a weighted sum of the
objective functions with random weights generated at each iteration. The main advantage of ParEGO over
other scalarization methods is that the random weights allow for exploring the Pareto front for a diverse set
of solutions without predefining the weights or relying on user preferences. By iteratively running this
algorithm with new weights, it becomes possible to approximate the entire Pareto optimal set.

Alternatively, one can reframe the MO problem as a single-objective optimization by using a new
objective that implicitly increases solution diversity. One such criterion is the Hypervolume (HV) Indicator.
HV is defined as the n-dimensional volume of the output subspace covered from a reference point, always
taken to be zero in this work, to a set of points in the objective space. Using this definition of HV, we can then
proceed to define Hypervolume Improvement (HVI) as

HVI(P,y) =HV(P ∪ y)−HV(P) . (6)

4



Mach. Learn.: Sci. Technol. 5 (2024) 015056 F Irshad et al

Figure 2. Pareto front. Illustration of how a multi-objective function f(x) = y acts on a two-dimensional input space x = (x1,x2)
and transforms it to the objective space y = (y1,y2) on the right. The entirety of possible input positions is uniquely color-coded
on the left and the resulting position in the objective space is shown in the same color on the right. The Pareto front is the
ensemble of points that dominate others, meaning points that give the highest combination of y1 and y2. The corresponding set of
coordinates in the input space is called the Pareto set. Note that both the Pareto front and the Pareto set may be continuously
defined locally, but can also contain discontinuities when local maxima get involved. In this example, f is a modified version of
the Branin–Currin function from [28, 29] that exhibits a single, global maximum in y2 but multiple local maxima in y1, see also
illustration in the center.

Equation (6) describes the difference between the current HV and one with an additional output point y
[31]. If the set of points making up P already dominate y then HVI= 0, because there is no HV gained by
adding the point y.

HVI can be used to generalize the EI policy described in section 1.2 to the MO scenario. First proposed
by Emmerich et al [32], this method is called Expected Hypervolume Improvement (EHVI). Following the
definition from Yang et al [31], we can write this as

EHVI(x|Dn) = E(HVI(P,y)) =

ˆ
HVI(P,y) p(y|x,Dn) dy. (7)

This infill criterion has been demonstrated to achieve a good convergence to the true Pareto front [33–35].
A common criticism of the EHVI acquisition function has been the time complexity involved in

calculating it. A first closed-form calculation of EHVI was implemented by Emmerich et al [36] with a
computational complexityO(n3 logn) for a 2D output space. Over the years with efforts by Hupkens et al
[37], Emmerich et al [38] and Yang et al [39] the time complexity for 2D and 3D case has been reduced to
O(n logn). In this work an implementation of EHVI available on BoTorch based on estimating gradients
using auto-differentiation is used as described by Daulton et al [40]. This exploits the high number of cores
that are available with modern GPUs to make EHVI optimization fast and applicable to real-world scenarios.
While we have focused our discussion on EHVI, it should noted that information theoretic acquisition
functions such as entropy search can also be adapted to MO scenarios [41, 42].

2.3. Single-Objective, MF optimization
In many real-world optimization problems, multiple information sources with varying degrees of fidelity are
available. These sources can provide different levels of accuracy, typically with a trade-off between data
fidelity and cost. Integrating such MF data into single-objective optimization algorithms is an essential way
to improve the optimization process [14, 43–47].

Let us denote the input search parameters as x ∈ X and the fidelity parameters as s ∈ S where X and S
are the input and fidelity spaces respectively. Importantly, in our GP model, fidelity s is treated as a regular
input dimension alongside x. This means that fidelity s is accounted for in the kernel of the GP, allowing us
to make probabilistic inferences conditioned on both x and s. For more details on the choice of GP kernels,
the reader is referred to appendix. The goal is to build a surrogate model that incorporates information from
f(x, s). The challenge in MF optimization is to effectively balance the trade-off between information and cost
while ultimately finding a global maximum at the target fidelity. This target fidelity usually corresponds to
the highest fidelity which is also the most expensive information source.

One intuitive solution to this problem is the two-step approach proposed by Lam et al [48]. In this
approach, the selection of the next point to probe in x is done separately from the fidelity choice s. To achieve
this, Lam et al use an EI policy that is evaluated at the target fidelity only. Lower fidelity measurements are
implicitly incorporated into this process, as they affect the surrogate model at the highest fidelity. Once a
suitable position has been identified in x, the ideal fidelity for probing this point is chosen by comparing the
predicted reduction in uncertainty or gain in knowledge with the computational cost involved.

An alternative approach is to combine both the selection of the next point and the weighting by the
expected knowledge gain per unit cost in a single step. Notably, MES and KG acquisition functions can be
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adapted with minor changes for this kind of MF optimization. For KG [49, 50], the acquisition function is
conditioned on the best value of the posterior mean at the target fidelity s∗ (maxx∈X ( f(x, s∗))) rather than
the best value of the posterior mean. In the case of MES, the mutual information between the maximum
value y∗ at the highest fidelity and the data set is maximized. This gain of information is then divided by the
computational cost that is a function of fidelity s [51]. The resulting MF MES acquisition function is then
given by a simple modification to equation (5):

MF−MES(x, s|Dn) =
MES(x|Dn)

cost(s)
. (8)

Similar MF policies can be developed for other exploratory acquisition functions, such as the UCB
[52, 53].

3. BayesianMOMF optimization

So far we have reviewed established techniques for MOMF optimization. However, these methods are usually
applied in isolation and, as we have seen, MO optimization seeks to solve problems where the objective
consists of several sub-objectives, whereas MF optimization leverages data from multiple information
sources with varying fidelity to optimize a single objective function. Both techniques offer unique benefits in
their respective areas, but there are many real-world problems where the integration of both techniques
would be beneficial. This leads us to the idea of joint MOMF optimization, a method that incorporates both
MOMF aspects into a single optimization framework. Several compelling reasons motivate the pursuit of
such an integrated optimization approach:

(i) Efficiency: joint MOMF optimization efficiently leverages the strengths of both MOMF optimization.
The MO aspect ensures diverse solution coverage, thoroughly exploring different areas of the solution
space. Concurrently, MF optimization minimizes the necessity of costly high-fidelity evaluations by
using cheaper, lower-fidelity data sources where possible. This dual approach leads to a more effective
balance between exploration and exploitation, thereby improving the overall optimization process.

(ii) Feasibility: the complexity and cost of evaluating multiple objectives can often limit the feasibility of
MO optimization, particularly in real-world scenarios where such evaluations may involve physical
experiments or high-fidelity simulations. By incorporating MF optimization into the process, the
MOMF approach leverages lower-fidelity, less costly models during the exploration phases. This
considerably reduces the need for expensive high-fidelity evaluations, making the optimization process
more manageable and feasible, even for scenarios where traditional MO optimization would be
prohibitively expensive or time-consuming.

(iii) Robustness: the joint approach enhances the robustness of the optimization process by mitigating the
risk of over-reliance on low-fidelity data. This risk is prevalent in single-objective MF optimization and
could introduce bias if the lower-fidelity models are inaccurate. By incorporating multiple objectives
into the optimization process, the search strategy becomes more diversified, leading to a more robust
and reliable optimization outcome.

(iv) Improved DecisionMaking:MOMF optimization offers a more comprehensive understanding of the
trade-offs involved in optimization tasks by allowing decision-makers to analyze the interplay between
different objectives at varying levels of fidelity. This in-depth understanding facilitates more informed
and holistic decision-making, ultimately leading to better optimization outcomes.

Despite these apparent benefits, MOMF optimization remains an emerging area of research. A first paper
reporting such an approach for discrete fidelity levels was recently published by Belakaria et al [54]. Their
MES for MO Bayesian optimization is based on the maximization of mutual information between the Pareto
front and the search domain. Being mostly motivated by applications in neural network training, the
approach from this paper is however limited to scenarios where higher fidelities yield higher objective values.
The assumption that the objective values at lower fidelities are always upper-bounded by the values at the
highest fidelity does not hold true for many use cases, such as numerical simulations of physical systems.
Here we present two new approaches for Bayesian MOMF optimization that remedy these issues and are
furthermore much simpler to implement for practitioners. We first introduce a holistic approach to combine
MOMF optimization using trust. This method can select both the input parameters x and the fidelity
parameter s jointly. To benchmark this approach, we also introduce a second method that selects the input
parameters x and the fidelity parameter s sequentially.
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Algorithm 1. Trust-based Multi-Objective Multi-Fidelity Optimization (Trust-MOMF).

Inputs:
• Probed dataset Dn

• Gaussian process models GP1, . . . ,GPk
• Fidelity function s, cost function C(s)
• Total computational budget Ctotal

Outputs: Optimal Pareto front P∗

1: Initialization:
Generate ninit initial data points Dn

Fit Gaussian process models GP1, . . . ,GPk
Initialize Pareto front P = ∅
Initialize spent budget Cspent = Cinit

2: While Cspent < Ctotal do
3: Optimization step:

Optimize the Trust-MOMF acquisition function, equation (10)

(xn+1, sn+1)← argmaxx,s
[
EHVI(x,s)|D)

C(s)

]
4: Probe problem at selected position and fidelity:

yn+1← Problem(xn+1, sn+1)
5: Data andmodel updates:

Update dataset Dn+1← Dn ∪{(xn+1, sn+1,yn+1)}
Re-fit Gaussian process models GP1, . . . ,GPk
Update Pareto front P
Increment Cspent by C(sn+1) and n by 1

6: Terminate

3.1. Trust-based optimization
Our proposed optimization scheme hinges on the joint optimization of a function and our trust in the
information source that yields the results. We use ‘trust’ to express our confidence level in the outcomes
generated by the information source at various levels of fidelity. This formulation allows us to recast MF
optimization as a MO problem, with trust θ(s) and output objectives f(x) forming the two poles of
optimization. Hence, we aim to optimize the following function output:

f(x, s) =

(
f(x)
θ (s)

)
. (9)

The trust objective θ(s) is central to the proposed optimization scheme. High fidelity sources, usually
more costly, are intrinsically more trustworthy than their low fidelity counterparts due to their higher
accuracy and reliability, and thus, trust is a function that grows monotonically with fidelity. In the simplest
case, one can assume that there is a constant increase in trust as the fidelity parameter is raised and
correspondingly, the trust would be equal to the fidelity itself, θ(s) = s. A more rigorous approach may
involve an actual measure of trust, e.g. linking the notion of trust to concepts such as mutual information. In
these scenarios, the trust objective can be seen as an approximation that reflects the average mutual
information shared across fidelities. For numerous circumstances, like simulations where the outputs at
increasing fidelity converge, an appropriate trust curve follows approximately θ(s)≈ tanh(s). We discuss the
influence of the trust objective on the optimizer in more detail in section 3.3.3.

As discussed in section 2.2, we can optimize a problem of the form equation 9. using, for instance, EHVI.
This acquisition function strives to increase the joint HV encapsulated within the Pareto front of f(x, s) and
θ(s). Due to the ascending nature of trust value, the optimizer is predisposed to probe points with the highest
trust. In a MF context where computational or experimental costs are not uniform, the acquisition function
can be normalized by incorporating a cost penalty, specifically by dividing the value of the acquisition
function by the corresponding cost (section 2.3). This adjustment to the acquisition function ensures that
the optimization process selectively probes the point that maximizes the ratio of EHVI to the associated
computational or experimental cost. As a result, the acquisition function optimizes our knowledge of the
Pareto front and Pareto set on a per-unit-cost basis. The final acquisition function is then written as

Trust-MOMF(x, s|Dn) =
EHVI(x, s|Dn)

cost(s)
. (10)

where EHVI(x, s) signifies that the complete objective comprises both the normal output objectives and the
trust objective. The entire structure of this approach for Trust-MOMF optimization is outlined in
algorithm 1.
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Figure 3.Multi-fidelity optimization via HV improvement of a modified Forrester function. Left:mean and variance (shaded
curve) of the fitted GP after 40 iterations of the optimizer. The true values are indicated as dashed lines. Note the small variance
close to the maximum at all fidelity values. Center:map of the objective values f1(x, s) and sampled points colored according to
the iteration number. This illustrates how the optimizer first explores at low fidelity and then moves along the Pareto set. Right:
same optimization in the objective space, showing how the optimizer tries to increase the HV, which is simply the area in 2D,
below the Pareto front.

The algorithm starts with a random initialization of n points that result in a data set Dn = {(x1, s1,y1),
(x2, s2,y2), . . .,(xn, sn,yn)}. With this data set, k number of GP models are fitted corresponding to k output
objectives. The initial cost Cinit utilized until this point is the cost undertaken to generate the Dn. After the
initialization, the acquisition function is optimized to yield both the new input and fidelity position where
the problem is then probed. This generates a new data sample (xn+1, sn+1,yn+1) that is used to update the
data set and re-fit the GP models. The last step is to update the spent cost Cspent and check whether we
exceeded our computational budget Ctotal. The process is terminated when the spent cost becomes greater or
equal to our available computational budget.

Figure 3 exemplifies the optimization of a 1D Forrester function by integrating information from lower
fidelity data that incur reduced cost. In this test case, trust is assumed linear (θ(s) = s) and the cost is modeled
as C(s) = exp[a · s], with a= 5, rendering an evaluation at maximum fidelity (s= 1) approximately 150 times
costlier than at minimum fidelity (s= 0). This cost function can be substituted with any other monotonically
increasing function. A key assumption of the Trust-MOMFmethod is that the Pareto set, which underlies the
Pareto front, belongs to a similar region in the search space, thereby facilitating efficient translation of
information across fidelities. It is important to note that this method, akin to all MF approaches that leverage
knowledge transfer, becomes less efficient if the Pareto set experiences significant shifts between fidelities.

Finally, we would like to point out that this method can be expanded to include multiple fidelity
dimensions s(m) wherem represents the number of fidelity dimensions. This is especially useful for
multi-dimensional numerical models with individual resolution parameters for each dimension. Depending
on the problem, these individual fidelity dimensions can either be managed via a single, unified trust
objective or treated as separate dimensions within the optimization problem. However, it should be noted
that the EHVI algorithm does not scale efficiently to many output dimensions, and the sequential MOMF
method introduced in the next section may be a more suitable alternative when numerous fidelity
dimensions need to be optimized individually. The different fidelity dimensions can also be discrete or
categorical in nature where they take on finite values. The trust-MOMF method still applies but the
optimization of the acquisition functions needs to be adapted. One example is mixed acquisition function
optimization as performed in botorch for input spaces that include both continuous and discrete input
parameters.

3.2. Sequential optimization
While we have so far discussed the benefits and implementation of joint Trust-MOMF optimization, an
alternative approach worth exploring is a sequential version of the MOMF optimization. This sequential
optimization scheme, inspired by the work of Lam et al [48] on single-objective optimization, separates the
selection of the next position to probe and the fidelity choice into two distinct steps, thus bringing a different
perspective to MF optimization. In the following, we will present and discuss this method, outlining its main
principles, operational procedures, and potential benefits. This sequentialMOMF approach will also serve as
a benchmark to evaluate the extent to which our problems benefit from a joint optimization strategy.
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Algorithm 2. Sequential MOMF optimization (Seq. MOMF).

Inputs:
• Probed dataset Dn

• Gaussian process models GP1, . . . ,GPk
• Fidelity function s, cost function C(s)
• Total computational budget Ctotal

Outputs: optimal Pareto front P
1: Initialization:

Generate ninit initial data points Dn

Fit Gaussian Pprocess models GP1, . . . ,GPk
Initialize Pareto front P = ∅
Initialize spent budget Cspent = Cinit

2: while Cspent < Ctotal do
3: Position selection step:

Perform expected hypervolume improvement, equation (7), at maximum fidelity:
xn+1← argmaxx∈X [EHVI(f(x)|Dn, s= 1)]

4: Fidelity selection step:
Normalize Data y→ y ′

Scalarize output objectives: yscalar =
∑k

i=1 ai · y
′
i

Fit a Gaussian process model GPscalar on scalarized output objective
Perform max-value entropy search, equation (8), on GPscalar at selected position xn+1

sn+1← argmaxs∈S [MF-MES(xn+1)]
5: Probe problem at selected position and fidelity:

yn+1← Problem(xn+1, sn+1)
6: Data andmodel updates:

Update dataset Dn+1← Dn ∪{(xn+1, sn+1,yn+1)}
Re-fit Gaussian process models GP1, . . . ,GPk
Update Pareto front P
Increment Cspent by C(sn+1) and n by 1

7: Terminate

In this scheme, the first step after initialization is to get a candidate position in the input space xn+1. This
position selection step is identical to conventional MO optimization, see section 2.2. In algorithm 2 and the
subsequent examples, we use EHVI for this task. Once the candidate point is identified, we can move on to
fidelity selection. For this step, the GP first needs to be scalarized at this particular position. Here this is done
by summing all the objectives with equal weights. This is done to avoid any preference between objectives
and is motivated by the fact that all the objective functions change at a similar scale (due to a normalization
step in the data processing that scales outputs of all objectives to the range [0,1]). Alternatively, one could
employ other scalarization schemes such as the weighted Chebyshev method or penalty boundary
intersection [55]. Once the GP returns a scalar output, we can apply a MF acquisition function (see
section 2.3) to select a suitable fidelity setting sn+1. Here we use the MF-MES method that maximizes
information gain versus cost, but other methods such as those based on KG would also be suitable. After
probing the problem at the selected position and fidelity (xn+1, sn+1), the dataset and GPs are updated and
the optimization loop restarts until the allotted computational budget is met.

As we will discuss in section 3.3, this relatively straightforward implementation of a MOMF policy
already provides a significant speedup compared to pure MO optimization. An advantage of this scheme is
the negligible computational overhead compared to pure MO optimization, as the information gain across
fidelities only needs to be calculated at the already selected candidate point.

3.3. Comparison and benchmark
In this section, we will describe the results of our proposed Trust-based and sequential MOMF algorithms on
synthetic test functions. All benchmarking is performed by modifying existing implementations of MES and
EHVI in the BoTorch package [56] to the multi-objective, MF problem.

Test functions. To assess the performance of the methods and estimate the cost reduction factors, we use
MF modifications of the popular maximizing Branin–Currin (2D) and Park (4D) test functions. The
function definitions for the Branin–Currin and Park are given in the appendix. The cost function for the
different fidelities is modeled as an exponential function of the form C(s) = exp[a · s] with a= 4.7 to result in
a ratio of about 120:1 between the highest (s= 1) and lowest (s= 0) fidelity. The number of iterations for the
MOMF algorithms was fixed to 120 while the MO single-fidelity optimization referred to as MO ran for 80
iterations. For the MO optimization, the total cost was 9600 while the MOMF algorithms stopped at variable
costs ranging from 1500 to 4000.

9



Mach. Learn.: Sci. Technol. 5 (2024) 015056 F Irshad et al

Figure 4. Benchmark with 2D-Branin-Currin problem. Top Left: hypervolume of a single representative trial expressed as a
percentage of the total hypervolume versus total cost for both MOMF versions and single-fidelity MO. Top Right: the number of
points taken at different fidelites for the representative trials is shown on the top left. The Trust-MOMF method takes more
iterations at intermediate fidelities when compared with the sequential MOMF method which has relatively high peaks at fidelity
0 and 1. Bottom Left: the Pareto front for each of the three algorithms for the same trial at a cost of 500 (indicated by the dashed
line in the figure on the top left). The dashed black line represents an estimated Pareto front calculated from 10 000 random
points. The Trust-MOMF optimization has already found values in the trade-off region and close to the individual maxima of the
Branin and Currin functions. The sequential MOMF method is approaching the maximum of the Branin function but both
sequential MOMF optimization and MO algorithms have yet to explore the trade-off points. Bottom Right: the Pareto front for a
cost of 1000 cost for a single representative trial, clearly shows how the Trust-MOMF method has reached an accurate
representation of the estimated Pareto front while the conventional, single-fidelity MO algorithm has only discovered a small
region of the Pareto front at this cost.

Initialization. Both MOMF algorithms are initialized with five starting points that are randomly
distributed in the input search space. The single-fidelity MO optimizer is initially configured with a single
point at the highest fidelity s= 1. Thus, it starts at an initial cost of C(1)≈ 120. Meanwhile, the fidelity of the
initial points for the MOMF optimizers is drawn from a cost-aware probability distribution of the form
p(s)∝ 1/C(s), which results, on average, in a five-times lower initialization cost. Given the influence of initial
points on the performance of optimization, we conduct each optimization run 10 times with different
initializations to acquire more robust statistics on algorithm convergence.

HV calculation. After an optimization run is completed, the HV shown in benchmarks is calculated. For
this calculation, the points taken during the optimization run are used as training inputs for a GP model
while a random input sample of 10 000 points at the highest fidelity are taken as test inputs. From these
10 000 points, we determine a set of non-dominated points, which are then used to calculate the HV at each
iteration. It is important to note that this HV estimate is based on expectation value instead of samples from
the GP. We do not incorporate model confidence, as done for instance in EHVI. Because of this, the
estimation may change or even decrease as the model is updated with new points, see for instance sequential
MOMF method at cost∼600 in figure 4. This effect is minimized as the GP model becomes more certain of
its predictions. Note that in the first two iterations due to a lack of training points for the GP model we
obtain a large set of non-dominated points making this calculation computationally expensive, thus without
any loss of information this calculation is performed after four iterations. This accounts for the graph
starting from a cost of 480 for MO optimizations in the subsequent figures.

3.3.1. Results
Branin-Currin test function. In figure 4 an optimization of the MF versions of Branin and Currin [28, 29]
functions is shown. A single representative trial that was close to the mean HV as a function of cost is
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depicted on the top left. The regular steps along the cost axis for MO optimization indicate a fixed cost at the
highest fidelity, while for both the MOMF optimizations it can be seen that step sizes are irregular. The
MOMF algorithms take a few points at intermediate fidelities before taking a high fidelity point. This can
also be seen in the top right of the figure where the distribution of selected fidelities is shown for each
algorithm. Interestingly, we observe a different behavior between the two MOMF algorithms. The sequential
MOMF method takes considerably more points at the lowest fidelity, while the Trust-MOMF optimization
takes much more intermediate fidelity points, possibly because of the joint optimization of both input and
fidelity space.

The bottom part of figure 4 depicts the behavior of the Pareto front at two different costs. The
black-dashed line represents the true Pareto front calculated using 10 000 random points. Here it can be seen
that the Trust-MOMF method already has a good coverage of the trade-off region and the maximum of the
Currin function. The MO and sequential MOMF algorithms at a cost of 500 have much less HV coverage. At
a cost of 1000, the MO optimization has optimized the Branin function but still has not explored the
trade-off region. The sequential MOMF algorithm at a cost of 1000, is in a similar state as that of
Trust-MOMF optimization at a cost of 500. Meanwhile, the Trust-MOMF optimization has reached near
97% HV coverage.

For the estimation of the cost advantage, we use the average HV cost curves from ten runs (shown at the
left in figure 6). Taking 90% convergence as a threshold, there is an order of magnitude cost advantage for the
Trust-MOMF optimization over the MO optimization. The MO algorithm converged to 90% at about a cost
of 6000 while the Trust-MOMF method reached the same HV at a cost of 530, resulting in a cost reduction
factor of∼ 11. Moreover, the Trust-MOMF method converged to a higher HV percentage (99%) when
compared with the final convergence of 94% for MO optimization.

Park test function. figure 5 depicts a representative trial run results of the same three algorithms for the
optimization run of modified Park functions [57]. The top left sub-figure shows the HV percentage covered
versus the total cost for the MOMF and MO optimization runs. The Park problem shows a similar behavior
regarding the fidelity distribution, i.e. the sequential MOMF method concentrates on points at minimum
(s= 0) and maximum(s= 1) fidelity, while the Trust-MOMFmethod takes more intermediate fidelity points.
On the bottom two plots of figure 5, we see the evolution of the Pareto fronts for the 3 optimizers. The
Trust-MOMF method already at a cost of 500 has converged to a HV coverage of 94%, hence its Pareto front
at a cost of 750 is close to the true Pareto front. The sequential MOMF method also has started exploring the
trade-off region and consequently pushes out the Pareto front slightly up to a cost of 1500, as shown on the
right. The MO optimization at the cost of 750 has found points close to Park 2 maximum and thus explores
the trade-off region at a cost of 1500. The cost advantage estimation is again done using the mean HV versus
total cost curves generated using 10 trials as shown in figure 6. The MO algorithm converged to a HV of
89.8% at a cost of about 7600, whereas the Trust-MOMF optimization reached 90% HV coverage at a cost of
about 560. This results in a cost reduction factor of about 13, similar to the Branin–Currin problem.

3.3.2. Discussion
For both test functions considered we have observed significant cost reduction in finding the Pareto front of
each problem using either the joint trust-based or sequential MOMF optimization. The joint optimization
generally outperforms sequential optimization, hinting at its better use of available information within the
joint search domain. It should be noted that the cost reduction is intrinsically linked to the cost ratio between
the lowest and highest fidelity. In our examples, this ratio was 1:120, and thus, the highest possible cost
reduction by taking only the lowest fidelity data points would be 120. Averaging the fidelity of the
Trust-MOMF optimizations over 10 trials and 150 iterations for both Branin–Currin and Park functions
yields s≃ 0.30 and s≃ 0.32, respectively. This results in an average cost of 4.3 and 4.6 per iteration, while the
conventional MO optimization is fixed to a cost of 120. Thus, a cost reduction of 26 is the maximum that
could be achieved if the information gain were the same at all fidelity levels. However, this is generally not the
case and low-cost approximations do normally not carry as much information as the highest fidelity. In our
case, we see a cost reduction of about half this best possible value, i.e. a cost reduction factor of 13 in both
considered test cases. The cost reduction factor can be even higher when the ratio between the cost at the
highest and the lowest fidelity is increased. For instance, at a maximum cost ratio of 1200:1 for the
Branin–Currin problem we measure a cost reduction factor of 44 for convergence to 90% of the HV.

3.3.3. Understanding the trust objective
The trust objective in the optimizations of the Branin–Currin and the Park functions was defined as a linear
function of the fidelity parameter. This trust objective serves to quantify the amount of information that can
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Figure 5. Benchmark with 4D-Park1,2 problem. Top Left: hypervolume of a single representative trial expressed as a percentage of
the total hypervolume versus total cost for both MOMF versions and single-fidelity MO. Top Right: the number of points taken at
different fidelites for the representative trials shown on the left. The Trust-MOMF method in this case has a higher number of
points taken at the highest fidelity. This is because once it has converged it takes 6 points at the highest fidelity to increase
hypervolume. The sequential MOMF optimization as seen in the Branin–Currin case takes fewer intermediate fidelity points
when compared to the Trust-MOMF optimization. Bottom Left: the Pareto front for each of the three algorithms for the same trial
at a cost of 750 (indicated by the dashed line in the figure on the top left). The area represents the amount of Pareto front covered
by each algorithm. The Trust-MOMF method has already converged to almost 95% of the total hypervolume. The sequential
MOMF optimization also converged but to a lower overall hypervolume. The MO optimization at this cost has only found a
maximum of Park 2 function. Bottom Right: the Pareto front for a cost of 1500 shows little changes in both MOMF Pareto fronts,
but a better coverage for the MO Pareto front. At this cost, the MO optimization still has not reached the hypervolume that the
Trust-MOMF optimization reached at a cost of 750.

be obtained through probing different fidelities. A linear function implies a constant increase in information
as the fidelity parameter is incrementally raised. Combining a linear function θ(s) = s for the trust objective
and an exponential cost function cost(s) = exp(−5s), we get atrust-versus-cost trade-off in the Trust-MOMF
objective of the form s · exp(−5s). This trade-off reaches its analytical maximum at s= 0.2, which is close to
the mean fidelity adopted by the Trust-MOMF method during optimization. However, the mean fidelity
during optimization was higher because the objective functions depend on and increase with the fidelity.

We can also use the trust objective to encapsulate the convergence behavior of the optimization problem.
As an example, we could select a converging trust function such as θ(s) = sexp(−s) defined over the domain
s ∈ [0,1]. This function is monotonically increasing but with diminishing returns. Note that the combination
with a cost function of the form cost(s) = exp(−4s) yields the same trust-versus-cost trade-off and thus, the
same optimum at s= 0.2. In all cases, this optimum serves as an estimate for the potential speedup attainable
when employing Trust-MOMF with a specific trust objective function and cost function. In appendix, we
have shown tests conducted at different cost ratios and different cost functions that shift this analytical
maximum. A lower cost ratio leads to a higher analytical maximum and thus a higher mean fidelity. This
results in an overall higher cost and a lower speedup when using the Trust-MOMF method. In the case of a
linear cost function as depicted in appendix, there is no analytical maximum and hence the cost ratio does
not affect the outcome of the optimization as can be seen from the two different cost ratios.

3.4. Application to particle-in-cell (PIC) simulations of laser-plasma acceleration
In this section, we present an application from computational physics that makes full use of the new joint
MOMF acquisition function to speed up optimization.

12



Mach. Learn.: Sci. Technol. 5 (2024) 015056 F Irshad et al

Figure 6.Mean Hypervolume with the shaded region indicating the standard deviation of 10 trials for Branin–Currin and Park
functions. Left:mean Hypervolume as a percentage of the total for 10 trials of Branin–Currin optimization is illustrated. The total
cost is in the log scale to depict the large differences in the cost. The dips seen in the curve around 900 are due to the method of
calculating the hypervolume described earlier. When considering convergence to 90% hypervolume an order of magnitude cost
difference is seen between Trust-MOMF optimization and MO optimizations. Right: the mean hypervolume of 10 trials for the
Park functions is shown. Here again, considering a convergence to 90% almost an order of magnitude advantage is seen between
the Trust-MOMF optimization and MO optimizations.

PIC Simulation code. One promising application area for MOMF optimization is computational physics.
Here we are going to discuss an example from the realm of laser-plasma interactions, which are governed by
the Vlasov–Maxwell equations. This kind of system is often simulated using the PIC method [58], where the
Maxwell equations are solved on a numerical grid, and the Vlasov equation is solved continuously using a set
of macroparticles. The need to compute the trajectories of millions of simulated particles and their fields
makes PIC simulations computationally quite costly. For our example, we used the FBPIC which is an
open-source Python code frequently used for simulations of laser or plasma wakefield accelerators [59].
FBPIC is a GPU-based code that uses several approximations, making it a relatively ‘lightweight’ PIC code,
with typical runtimes on the order of tens of minutes for test runs and several hours or days for production
runs on a single high-end GPU. Extensive scans at production run resolution are hence prohibitively
expensive, making this an ideal test case for the use of a MF optimization.

Optimization Parameters. In our example, the laser wakefield accelerator generates quasi-mono energetic
electron beams with GeV-level energies and charge of up to a few hundred picocoulomb (pC), similar to the
conditions reported in Götzfried et al [60]. The optimization goal was to produce beams near a target energy
of 300MeV with low bandwidth and high charge. The input parameters that were controlled during this
optimization were the laser focus, the plateau plasma electron density, as well as the shape of the plasma
profile (upramp and downramp length). The output objectives are the total charge in the beam, the distance
of mean energy to the target energy and the standard deviation of the energy spectrum. The distance to the
target energy and the standard deviation are minimization objectives while the charge is to be maximized.
This makes the optimization a 4× 3 D optimization, making it difficult to depict the Pareto surface. Since
these are expensive simulations we also only use the Trust-MOMF method to optimize and compare it with
MO optimization.

Cost function and resolution. The cost function for the FBPIC simulations considered here scales as an
exponential of the form C(s) = exp[a · s] with a= 5 resulting in a ratio of about 150:1. This cost function was
chosen as it approximates the cost increase as a result of increasing the resolution in our FBPIC simulations.
For FBPIC simulations that use cylindrical coordinates, defining χ = 1+ 3s, each of these is scaled by a
factor of 4 between low and high fidelity, i.e.∆r=∆r0/χ,∆z=∆z0/χ, pθ = 5χ, where∆r and∆z is the
mesh size in the radial and axial direction, while the pθ is the macro-particle number in the azimuth
direction. The ranges are chosen based on experience from convergence studies. The total computational
budget for each run was capped at 30 h.
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Figure 7. Benchmark with PIC simulations of laser wakefield accelerator using a 4D input space. Left:mean hypervolume from 10
trials for the Trust-MOMF method and the MO optimization expressed as a percentage vs the time taken in minutes. The shaded
region indicates the standard deviation calculated from the 10 trials. For each run, the computational budget was 30 hours. The
sequential MOMF algorithm was excluded because of limited computational and time resources when optimizing with
simulations.Right: the number of points taken at different fidelities for both the Trust-MOMF optimization and the MO
optimization for a single trial.

HV reference. For FBPIC simulations the true HV is unknown, hence the estimation of the HV fraction is
based on an ideal ‘utopia’ point and a reference ‘nadir’ point for the worst performance. In this instance, we
choose:

• Utopia point: 1 nC charge, 0MeV bandwidth, 0MeV distance to target energy
• Nadir point: 0 nC charge, 1 GeV bandwidth, 1GeV distance to target energy.

The maximum volume from this would be 1 nC·GeV2. We note that this value itself has little meaning since
it can be changed by either changing the Utopia or the Nadir point. The more meaningful criteria used for
comparing the MO and the Trust-MOMF optimization is the fractional HV gained.

Results. In figure 7 we see that the Trust-MOMF algorithm outperforms the MO optimization by
converging to a HV of about 85% while the MO optimization in this budget converged to a HV of about
63%. The MO optimization was run for 8 more hours but still it failed to reach a HV of more than 73%. Also
shown in figure 7 is the fidelity distribution which shows that the Trust-MOMFmethod takes a large number
of simulations with fidelity of less than 0.5, thus efficiently making use of these faster, low-resolution
simulations. Comparing the costs we see that the Trust-MOMF method in this case provides a cost reduction
factor of about 6, which is similar to the gain we previously estimated with test functions. These encouraging
results confirm the usefulness of joint MOMF for expensive numerical simulations in physics.

4. Summary and outlook

In conclusion, we have successfully demonstrated the practical implementation of simultaneous MF and MO
optimization, achieving substantial cost reductions—over an order of magnitude—for test problems with a
cost ratio of 1:120. Our Trust-MOMF method showed superior convergence towards a higher HV compared
to single-fidelity MO optimization approaches. We furthermore observed that the joint Trust-MOMF policy
consistently outperforms the sequential MOMF strategy, indicating the beneficial use of joint information
across objectives and fidelities. We also discussed the theoretical upper limit for the cost reduction factor,
which can be amplified further by widening the cost ratio between the highest and lowest fidelity levels.

The significance of these findings lies in the substantial cost-efficiency MOMF optimization offers,
particularly for applications aiming to optimize multiple objectives where access to lower fidelity data is
available. Our approach, which builds upon existing acquisition functions, is easily implementable within
optimized Bayesian optimization frameworks such as BoTorch [56]. It can be seamlessly extended, for
instance, to batch optimization.

Our work contributes a key optimization tool for complex problems in fields such as physics and
engineering, where simulations with varying degrees of accuracy are commonly used. Moreover, it holds
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potential for any domain where there is an advantage in optimizing different objectives while also having
access to less costly evaluations. The flexibility of our approach is underscored by its adaptability to any other
MO, single-fidelity acquisition function—a trust objective can be introduced and the acquisition value
penalized by cost. Additionally, our MOMFmethods can be extended to include multiple fidelity dimensions,
offering the prospect of efficient optimization over different resolution parameters in numerical simulations.

Code samples for the benchmark cases are available online for further exploration and experimentation.
As we look to the future, we anticipate the increasingly broad application and continued evolution of MF and
MO optimization techniques.
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Appendix

A.1. Notation

Notation Description

x, y , f , s bold notation for vectors
f(1), f(2), . . ., f(k) index k of objective functions
x, y input and output vector
f , s vector of objective functions and fidelity vector

A.2. Definition
Definition 1. A point p1 = (y1,y2, . . . ,yn) in an n-dimensional output space is defined as non-dominated if
there does not exist another point p ′

2 = (y ′1,y
′
2, . . . ,y

′
n) such that p

′
2 satisfies both:

n∧
i=1

(y ′i ⩾ yi) and
n∨

i=1

(y ′i > yi) ,

where
∧n

i=1 represents the logical ANDoperation applied across all n conditions, indicating that all inequalities
y ′i ⩾ yi must hold simultaneously for i = 1,2, . . . ,n. The

∨n
i=1 represents the logical OR operation, meaning

that at least one of these inequalities must be strict.

A.3. Additional benchmarks
In this section, we study the effect of different cost functions and cost ratios on the Trust-MOMF acquisition
function. All of the tests conducted in this section are on the modified MF MO Branin–Currin functions. In
figure A1, on the left side the ratio between the maximum and minimum cost was kept to 120 as in the main
benchmarks while for the graph on the right, this ratio was reduced to 10. The Trust-MOMF method still
reaches a higher HV in less cost but the advantage is decreased from a higher cost ratio. In figure A2, the cost
function is no longer an exponential but a linear function with two different cost ratios between the
maximum and minimum cost. The difference between the cost ratios with a linear cost function is not as
pronounced as in the case of exponential functions. This effect is already explained in detail in section 3.3.3.

A.4. GP Kernel choice
Many studies motivated by applications such as neural network training use an exponential decay kernel and
a zero mean prior by default. In this paper, we have k number of GP1,GP2, . . .,GPk models modelling k
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Figure A1. Benchmark with Branin–Currin functions with two different cost ratios of an exponential cost function.

Figure A2. Benchmark with Branin–Currin functions with two different cost ratios of a linear cost function.

objective functions f1, f2, . . ., fk(x). Each of these functions also has an input fidelity parameter s that implies
greater accuracy with higher values. We have chosen a Matern 5/2 kernel to model the fidelity dependence,
which has shown significantly better performance on our test and application cases than the exponential
decay kernel.

A.5. Test functions
In this section, we describe the analytical functions used to benchmark the performance of our algorithm. As
this is one of the first studies on combined MOMF optimization, we could not directly use test functions
from the literature but had to modify them to incorporate an additional fidelity input dimension and exhibit
trade-off behavior between the objectives.

A.5.1. Modified MF forrester function
The original Forrester function is

f(x) = (6x− 2)2 · sin(12x− 4)+ 7.025

and we use the following modified version as a MF reference case:

f(x, s) = D(s) · [E− g(x, s)]

where

g(x, s) = A(s) · f [x− 0.2(1− x · s)]+B(s) · (x− 0.5)−C(s)

with A= 0.5+ 0.5s, B= 2− 2s, C= 5s− 5, D= 1.5− 0.5s and E= 25. The most important differences to
other MF versions of this function are that it contains a fidelity- and position-dependent shift
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x̃(x, s) = x− 0.2(1− x · s), is inverted for maximization (E− g(x, s) term), the value of the maxima along the
fidelity is decreasing (D(s) term) and the maxima are continuously connected from at low to high fidelity.

A.5.2. Modified MF, MO branin-currin function
Two popular functions used for optimization benchmarking are Branin–Currin functions which were also
modified. The usual form of the Branin function is

B(x) = a
(
x2 − bx21 + cx1 − r

)2
+ p(1− t)cos(x1)+ p,

where values of the constants were taken to be a= 1, b= 5.1/(4π2), c= 5/π, r= 6, p= 10, t= 1/(8π) and
the form of Currin function is

C(x) =

[
1− exp

(
− 1

2x2

)]
2300x31 + 1900x21 + 2092x1 + 60

100x31 + 500x21 + 4x1 + 20
.

Both of these functions were modified to make the range of input and output values to be between 0 and 1,
i.e. xi,yi ∈ [0,1]∀i = [1,2]. The modified form that was used for the Branin is

B(x, s) =−
[
a
(
x22 − b(s)x211 + c(s)x11 − r

)2
+ p(1− t(s))cos(x11)+ p

]
where x11 = 15x1 − 5, x22 = 15x2, a= 1, b(s) = 5.1/(4π2)− 0.01(1− s), c(s) = 5/π− 0.1(1− s), r= 6,
p= 10, t(s) = (1/(8π))+ 0.05(1− s) was used. The x11 and x22 are used to scale the original domain of the
Branin to [0,1]. The main difference is the addition of fidelity parameter s which for a value of 1 yields the
original Branin function and since we are maximizing the problem a minus sign is added. The modified form
for the Currin function is

C(x, s) =−
[[

1− (0.1)(1− s)exp

(
− 1

2x2

)]
2300x31 + 1900x21 + 2092x1 + 60

100x31 + 500x21 + 4x1 + 20

]
where again the main difference is the addition of fidelity term 1− s and the addition of a minus sign for
maximization.

A.5.3. Modified MF MO park functions
For a benchmark of the MOMF problem in higher dimensions, MF versions of Park 1 and Park 2 functions
were used. The original form of the Park functions is

P1 (x) =
x1
2

[√
1+(x2 + x23)

x4
x21

− 1

]
+(x1 + 3x4)exp [1+ sin(x3)]

P2 (x) =
2

3
exp(x1 + x2)− x4 sin(x3)+ x3.

Wemodified the above two Park functions adding a fidelity dimension (s). To achieve a reasonable Pareto
front for optimization, the two functions were also slightly modified. The location of the Pareto set was also
modified to not have all the optimizing points in the corners of the 4D hypercube. A last modification is
shifting the Pareto front of the Park functions by subtraction to place a higher importance on the trade-off
region. The final form of the two modified Park functions is

P1 (x, s) = A(s) [T1 +T2 −B(s)]/22− 0.8

T1 =

[
x1 + 0.001(1− s)

2

]
.

[√
1+(x2 + x23)

x4
x21

]
T2 = (x1 + 3x4)exp [1+ sin(x3)]

P2 (x, s) = A(s)

[
5− 2

3
exp(x1 + x2)− (x4) sin(x3)A(s)+ x3 −B(s)

]
/4− 0.7

where A(s) = (0.9+ 0.1s) and B(s) = 0.1 ∗ (1− s). Both Park functions now contain a fidelity parameter s.
These Park functions are evaluated on a transformed input space

[x1,x2,x3,x4]→
[
1− 2(x1 − 0.6)2 ,x2,1− 3(x3 − 0.5)2 ,1− (x4 − 0.8)2

]
.
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