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Einleitung

Verkehr ist ein zentraler Bestandteil des menschlichen Lebens. Ein leistungsfihiges Ver-
kehrswesen und ein hoher Grad an Mobilitét fiir die Bevolkerung sind Bedingungen fiir eine
moderne Gesellschaft, fiir Wirtschaftswachstum und daraus folgend fiir Beschéftigung und
Wohlstand.

Verkehr ermdglicht die aktive Teilnahme am gesellschaftlichen Leben und bietet jedem Men-
schen individuelle Bewegungsfreiheit. Denn Mobilitdt (Bewegung) entsteht immer, wenn es

zu Ortsverdinderungen kommt, sei es durch Wohnen, Arbeiten, Freizeitgestaltung etc.

Jedoch bringt Verkehr nicht nur positive Aspekte mit sich. Die verursachten Emissionen
sind sowohl im Hinblick auf Schadstoffe als auch auf Larm hoch. Weiter kommt es durch

Riicksichtslosigkeit oder Fahrlassigkeit immer wieder zu Unfillen.

Um die positiven aber auch negativen Auswirkungen des Verkehrssektors beurteilen zu
kénnen, werden in den verschiedensten Bereichen Daten erhoben. Man spricht von Sozia-
lindikatoren, genauer gesagt von Verkehrsindikatoren. Mithilfe dieser Indikatoren kann man
einen Teil zur Berechnung von Lebensqualitéit beitragen, die iiber Indikatoren aus 14 Le-

bensbereiche messbar gemacht werden soll.

In dieser Arbeit werden ausgewahlte Verkehrsindikatoren aus dem Straflienverkehr statistisch
insbesondere auf Strukturbriiche untersucht. Die Daten behandeln Auswirkungen von Ver-
kehrsunféllen wie zum Beispiel Sachschaden oder Personenschaden, Getdtete oder Verletzte.
Es wird untersucht, ob die Indikatoren iiber die Jahre annéhernd konstant bleiben, oder ob
es zu einer stirkeren Verdnderung in der Struktur kommt. Dieses Verfahren tritt oft bei
der statistischen Zeitreihenanalyse auf, bei der die Daten nach der diskreten Variable Zeit
geordnet sind.

Man spricht von einem Strukturbruch, wenn sich iiber eine lange Zeitreihe hinweg ein gelten-
des Muster verdndert. Das bedeutet, wenn bei einer Regressionsanalyse sich die Parameter
signifikant veréndern. Dabei werden das Verfahren der modellbasierten rekursiven Partitio-
nierung und das Verfahren der generalisierten M-Fluktuationstests angewendet, bei denen

jeweils das geltende Modell in Submodelle aufgeteilt wird und somit eine separate Anpas-



sung der Daten in den einzelnen Segmenten vorgenommen wird.

Die Arbeit ist folgendermaflen aufgebaut:

In Kapitel 1 wird der allgemeine Begriff Sozialindikator vorgestellt, insbesondere wie So-
zialindikatoren entstanden sind und wie man heute man IThnen umgeht und welche Eigen-
schaften sie erfiillen sollten.

Auf die Wichtigkeit und die Problematik des Verkehrssektors wird in Kapitel 2 genauer
eingegangen. Dabei werden speziell demografische und 6kologische Herausforderungen be-
trachtet.

Im dritten Kapitel der statistischen Analyse von Strukturbriichen werden die Verfah-
ren zur Entdeckung von Strukturbriichen, die modellbasierte rekursive Partitionierung und
das Verfahren des M-Fluktuationstests, benutzt und am Beispiel des Verkehrsindikators
Getotete angewendet. Auflerdem wird zu Beginn der Analyse das lineare Regressionsmodell
und die Zeitreihenanalyse kurz vorgestellt.

Zum Schluss in Kapitel 4 wird die Arbeit noch kurz zusammengefasst und ein Ausblick
fiir weitere mogliche Analysen erstellt.

Es wird noch darauf hingewiesen, dass sich alle genannten Beispiele auf den Verkehrssektor
beziehen, die meisten mit Bezug auf die Variable Getotete.

Die Auswertung und die Ergebnisse der restlichen Variablen befinden sich kurz zusammen-

gefasst auf der beigelegten CD.



Kapitel 1

Sozialindikatoren

1.1 Begriffserkldrung

Der Begriff Indikator lédsst sich vom lateinischen Wort . indicare” ableiten, welches iibersetzt
,anzeigen, melden“ bedeutet. Ein Indikator ist also allgemein gesehen ein beobachtbarer be-
ziehungsweise ein messbarer Anzeiger fiir bestimmte Sachverhalte, welcher dem Menschen
gewisse Informationen liefert [Blumes, 2010]. Soziale Indikatoren beziehen sich somit auf

bestimmte Sachverhalte aus dem Bereich der Sozialwissenschaften.

Soziale Indikatoren, auch Sozialindikatoren genannt, kann man als statistische Messinstru-
mente definieren mit denen das Niveau und die zeitliche Entwicklung sozialer Probleme
und Ereignisse gemessen werden kénnen. Weiter werden sie auch als ein représentatives
Bild einer Gesellschaft angesehen, da sie {iberwiegend quantitative Daten zusammenfassen.
Sie geben Auskunft iiber Lebensqualitdt, den Gesamtzustand und die Entwicklungen einer
Gesellschaft und bieten eine Moglichkeit zur Beobachtung der Wohlfahrtsentwicklung. So-
ziale Indikatoren sollten einfach, dennoch prézise, eindeutig und aussagefdhig sein. Um die
Aussagefiahigkeit zu gewéhrleisten, werden die zugrunde liegenden Daten zusammengefasst
dargestellt und z.B. nach Geschlecht aufgeschliisselt, was die Qualitdt der Informationen
erhoht [Weiss, 2010].

Ublicherweise unterscheidet man zwischen Mittel- und Resultatindikatoren. Unter Mittelin-
dikatoren versteht man den Ist-Zustand eines Prozesses. Dies bedeutet, dass die Intervention
gemessen wird, zum Beispiel das Verkehrsrisiko pro 1000 Einwohner in Deutschland. Resul-
tatindikatoren stellen die Auswirkungen dieser Prozesse dar, zum Beispiel die Unfallrate.
Wird das Verhéaltnis dieser beiden Indikatoren betrachtet, so ergibt sich die Effizienz der
Intervention. Dabei steht der Mittelindikator im Zéahler und der Resultatindikator im Nen-
ner. Als Beispiel dient hierbei die Entwicklung der Anzahl der Fahrzeuge mit Neuzulassung

in Abhéngigkeit von der Unfallrate.



Somit kann man vier Arten von Kennzahlen unterscheiden. Einfache Kennzahlen, die ver-
schiedene Sachverhalte aus dem sozialen Bereich beschreiben, Mittelindikatoren, die Inter-
ventionen messen, Resultatindikatoren, die die Auswirkungen der Prozesse genauer erklaren
und Verhéltniskennzahlen, die Verhéltnisse zwischen Mittel- und Resultatindikatoren dar-
stellen [Thiirk and Riedel, 2005].

1.2 Entstehung

Die Sozialindikatorenforschung entstand Mitte der sechziger Jahre in den USA. In einem
Projekt der Weltraumbehoérde NASA aus dem Jahre 1962 wurden die moglichen gesellschaft-
lichen Nebenwirkungen des Raumfahrtprogramms fiir die amerikanische Gesellschaft unter-
sucht. Die Untersuchung kam zu dem Ergebnis, dass geeignete Daten schlichtweg fehlten.

Der Leiter dieses Projekts Raymond A. Bauer prigte zudem den Begriff ,,social indicators®.

Durch dieses Projekt wurden weitere Forschungen in Gang gesetzt und Versuche unternom-
men, die Lebensbedingungen zusammenhéngender als zuvor zu beschreiben. Der Durch-
bruch der Anerkennung von Sozialindikatoren gelang mit dem im Jahre 1966 entstande-
nen Expertengremium, welches im Rahmen eines Regierungsauftrags eine Art Prototyp
eines Sozialberichts mit dem Titel , Toward a social report® entwickelte, der im Jahr 1969
veroffentlicht wurde [Habich et al., 1994].

Vorlaufer sozialer Indikatoren existieren ungeachtet dessen wohl schon so lange wie die
Statistik selbst.

In der Geschichte gibt es etliche Beispiele fiir die Verwendung von Sozialindikatoren, die

wegweisende und bedeutende Erkenntnisse brachten.

Anzufithren ist zum Beispiel die Untersuchung von Geburten und Sterbefillen von John
Graunt, der in seinem Buch ,Natural and Political Observations mentioned in a followi-
ng Index, and made upon the Bills of Mortality“ aus dem Jahr 1662 die Geburten und
Todesfille in London zwischen 1604 und 1661 zusammenstellt. Graunt war von dem Ge-
danken geleitet worden, ,erfahren zu wollen, wie viele Menschen wohl existieren von jedem
Geschlecht, Stand, Alter, Glauben, Gewerbe, Rang oder Grad etc. und wie durch selbiges
Wissen Handel und Regierung sicherer und requlierter gefiihrt werden kdnnten; weil, wenn
man die Bevilkerung in erwdhnter Zusammensetzung kennt, so kénnte man den Verbrauch
in Erfahrung bringen, den sie bendtigen wiirde; auf dass Handel dort erhofft wiirde, wo er
unmdglich ist“ [Romeike and Hager, 2009, Seite 34-35].



Aber auch der englische Statistiker William Petty (1623-1687), und die in Deutschland
agierenden Johan Peter Siifmilch (1707-1767) und Caspar Neumann (1648-1715) sind hier
zu nennen. Bereits im 17. und 18. Jahrhundert versuchten Petty und Jeremy Bentham (1748-

1832) die offentliche Moral zu erfassen, heute wiirde man es innere Sicherheit bezeichnen.

Daraufthin wurde erkannt, dass detaillierte Informationen iiber verschiedene Lebensberei-

che wichtig sind und man diese sammeln und analysieren sollte [Buttler, 1976].

1.3 Gegenwirtige Situation

Heutzutage gibt es in der Bundesrepublik Deutschland ein ausgereiftes Indikatorensystem,
das mit 14 Lebensbereichen einen Grofiteil aller mehr oder weniger interessierenden Gréfien
abdeckt. Zudem kann man die Indikatoren auch auf andere Weise gliedern. Die Aufteilung

der Indikatoren in ihre erfassten Bereiche unterscheidet sich je nach Institution.

So unterscheidet das Statistische Bundesamt Deutschland (DESTATIS) zwischen Konjunk-
turindikatoren, Strukturindikatoren, Nachhaltigkeitsindikatoren, zu denen die Umweltindi-
katoren gerechnet werden und weiteren sonstigen Indikatoren [DESTATIS, 2010b).

GESIS, das Leibniz-Institut fiir Sozialwissenschaften, arbeitet mit dem ,, System Sozialer
Indikatoren® fiir die Bundesrepublik Deutschland, das vierzehn Lebensbereiche mit knapp
400 Indikatoren und iiber 3000 Zeitreihen umfasst. Der Zeitraum der Beobachtungen be-
ginnt in den fiinfziger Jahren bis heute. Zu den Lebensbereichen zdhlen Bevolkerung, so-
ziookonomische Gliederung und Schichteinstufung, Arbeitsmarkt und Beschéftigungsbeding-
ungen, Einkommen und seine Verteilung, Einkommensverwendung und Versorgung, Ver-
kehr, Wohnung, Gesundheit, Bildung, Partizipation, Umwelt, Offentliche Sicherheit und
Kriminalitit, Freizeit und Mediennutzung als auch allgemeine WohlfahrtsmaBe [Noll, 2010a].
Die meisten Indikatoren messen den Grad, inwieweit wohlfahrtsbezogene gesellschaftliche
Werte und Ziele in den ausgewéhlten Lebens- oder Politikbereichen erreicht werden. Man
geht davon aus, dass alle Bereiche fiir die individuelle Wohlfahrt wichtig und von politischem
Interesse sind [Noll, 2010b].

Nicht nur in Deutschland sondern in zahlreichen Léndern werden Indikatoren zur Mes-

sung der Lebensbedingungen der Bevolkerung beschlossen und angewendet.

In Europa fiihrte eine Liste von Indikatoren der OECD dazu, dass die meisten westlichen

Staaten regelmifig Ubersichten {iber unterschiedliche Kriterien der Lebensbedingungen er-
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stellen.

Zudem ist fiir Europa das Européische System sozialer Indikatoren zu nennen, das ne-
ben den 27 EU-Léndern noch Norwegen und die Schweiz als auch Japan und die USA
als Referenzgesellschaften umfasst. Dieses européische System ist von Bedeutung, da somit

Dauerbeobachtungen von individueller Lebensqualitédt verglichen werden kénnen.

Deshalb sollten die Indikatoren bestimmten Voraussetzungen entsprechen [Noll, 2010c]:

e Beachtung einer , européischen Dimension*
e Einbeziehung von neuen Dimensionen in den Bereichen Wohlfahrt und sozialer Wandel

e Benutzung der besten Datenquellen und Gewéhrleistung von internationaler Vergleich-
barkeit

Allerdings hat man festgestellt, dass Sozialindikatoren keine Zauberformeln sind, ,die sich
irgendwann einmal aus vollentwickelten sozialwissenschaftlichen Theorien erschlieffen, son-
dern sie sind - einfach und schwierig zugleich - nichts anderes als: relevante Statistiken zur
Messung personlicher Bedirfnisse und gesellschaftlicher Leistungen.“ [Buttler, 1976, Seite
161t.].

Es handelt sich einfach um eine Aufstellung relevanter Statistiken, um den Begriff Lebens-
qualitat besser operationalisieren, also messbar machen zu kénnen. Problematisch dabei ist,
dass Bereiche die nur schwer quantitativ fassbar sind, schnell {ibergangen werden. Aller-
dings sind diese Bereiche genauso wichtig und man muss versuchen diese mit Hilfe neuer
Indikatoren zu messen. Denn nicht nur das was bereits zahlenméfig erfasst wird, ist von
Bedeutung [Buttler, 1976].

1.4 Eigenschaften

Sozialindikatoren haben verschiedene Eigenschaften die im Weiteren genauer betrachtet wer-

den.

Objektive vs. Subjektive Indikatoren

Grundsétzlich wird zwischen objektiven und subjektiven Indikatoren unterschieden. Objek-
tive Indikatoren liefern Informationen iiber Sachverhalte, die unabhéngig von individuellen
Empfindungen und Bewertungen ermittelt werden kénnen. Somit kénnen objektive Indika-
toren auf unterschiedlichste Art und Weise gewonnen werden und beruhen nicht ausschlief3-

lich auf Befragungen. Zwar werden in der amtlichen Statistik etwa {iber den Mikrozensus
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oder der Einkommens- und Verbrauchsstichprobe objektive Indikatoren via Befragungen er-
hoben, allerdings konnte man an diese Informationen auch iiber andere Wege gelangen. Bei
subjektiven Indikatoren hingegen werden die Individuen nicht nur als Informanten sondern
unmittelbar als Instanzen herangezogen. Sie spiegeln die perstnlichen Beurteilungen, An-
sichten und Wahrnehmungen wieder. Deshalb konnen subjektive Indikatoren ausschliefSlich
iiber Befragungen erhoben werden. Im Bereich Verkehr stehen die objektiven Indikatoren im

Vordergrund, so dass die folgenden Ausfithrungen darauf Bezug nehmen [Noll, 2000, Seite 4].
Prinzipien

Neben der Unterscheidung zwischen objektiven und subjektiven Indikatoren gibt es ge-
wisse Anforderungen an soziale Indikatoren, die sich aus dem Verwendungszusammenhang
heraus ergeben. Dabei unterscheidet man zwischen Anforderungen an einzelne Indikatoren
und Anforderungen an die Gesamtheit aller Indikatoren. Die Prinzipien beziehen sich auf
das Problem der sozialen Ausgrenzung, lassen sich jedoch auf viele weitere Arten von Indi-

katoren anwenden.

Als allgemeine Kriterien fiir einzelne Indikatoren konnen gelten: Erstens dass der Kern
eines Problems aufgezeigt wird und fiir den Sachverhalt relevant ist. Denn ohne genaue
Definition eines Problems koénnen diese linder- oder bundesweit oder international nicht
verglichen werden. Zweitens sollten die Indikatoren robust und statistisch valide sein, d.h.
der Indikator zeigt genau den Sachverhalt an der definiert worden ist. Als drittes Kriterium
ist zu nennen, dass Indikatoren nicht manipulierbar sein sollten. Daher ist es gut zu wissen,
ob die Daten aus sicheren Quellen stammen. Viertens sollten die Indikatoren die Eigenschaft
der nationalen und internationalen Vergleichbarkeit, Klassifizierbarkeit und Vollstandigkeit
erfiillen. Das letzte Kriterium stellt sicher, dass die Daten zeitnah und kontrollierbar erho-
ben werden und keine iiberméflige Belastung fiir die Biirger darstellt.

Fiir die Gesamtheit der Indikatoren sollten zusétzliche Kriterien erfiillt sein. Zum einen
wire es gut, wenn die Indikatoren {iber verschiedene zu messende Dimensionen ausgewogen
sind. Weiter sollte das Gewicht der einzelnen Indikatoren gleich sein und die Indikatoren
sollten beim Vergleich keine Widerspriichlichkeit vorweisen, denn ansonsten kann es zu
Missverstdndnissen und Irritationen kommen. Auflerdem sollten sie transparent sein, das

bedeutet, jeder sollte die Funktion der Indikatoren verstehen kénnen [Atkinson et al., 2002].

Funktionen sozialer Indikatoren

Zu den bisherigen genannten Eigenschaften gibt es zudem noch verschiedene Funktionen, die

soziale Indikatoren in ihrer Anwendung im Zusammenhang mit sozialen Problemen erfiillen.
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e Identifizierungsfunktion: Erkennung von sozialen Problemen und deren Definition

e Gewichtungsfunktion: Bestimmung von Aussagen iiber die Grofle und die Sachlichkeit

sozialer Probleme

e Vergleichsfunktion: Vergleich zwischen unterschiedlichen gesellschaftlichen Systemen

beziiglich sozialer Probleme

e Beobachtungsfunktion: Dauerbeobachtung sozialer Probleme und Beurteilung ihrer

Entwicklungen

e Antizipationsfunktion: Funktion der Indikatoren als ,, Frithwarnsignale® fiir zukiinftige

Entwicklungen

e Evaluationsfunktion: Unterstiitzung zur Beurteilung der Wirkungen sozialpolitischer

Mafinahmen

Im Verkehrssektor finden speziell die Beobachtungs- und Antizipationsfunktion Anwendung.
Die Verkehrsdaten liegen hauptséchlich {iber verschiedene Jahre vor und werden iiber Dau-
erbeobachtungen fortgefiihrt. Somit kann man sie auch als Frithwarnsignale bezeichnen, da

sie Grundlage fiir Vorhersagen sind [Bohle, 1981].
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Kapitel 2

Bedeutung und Herausforderungen
des Verkehrs

2.1 Begriffserkliarung

Den Begriff Verkehr assoziieren viele Menschen mit dem Straflenverkehr, da dieser am mei-
sten wahrgenommen und genutzt wird. Zum StraBlenverkehr gehdren sowohl die Verkehrs-
mittel als auch die Verkehrswege und nicht zuletzt Tankstellen und Parkplatze. Allerdings
zéhlen nicht nur der StraBlenverkehr sondern auch der Schienenverkehr, die Binnenschiff-
fahrt, die Seeschifffahrt, der Luftverkehr, Rohrleitungen und der Nachrichtenverkehr zum
Oberbegriff Verkehr [DESTATIS, 2006].

Die Rohrleitungen und der Nachrichtenverkehr lassen sich zu sonstigen Verkehr zusammen-

Was gehért zum Verkehr?

Giterverkehr sonstiger Verkehr
|Rohr|eitungen Machrichtenverkehr |
Individual- Offentlicher || StraRen- Eisenbahn- See- Binnen- Luftfahrt
Verkehr Personen- Verkehr verkehr verkehr schifffahrt
verkehr
I \\
Motorisierter Nicht motarisierter| [Offentlicher Personenverkehr|[Seeverkehr Binnen- Luftfahrt
Individualverkehr| | Individualverkehr | | mit Bussen und Bahnen schifffahrt

Abbildung 2.1: Was gehort zum Verkehr? [DESTATIS, 2006]
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fassen. Hingegen konnen die anderen Teilbereiche des Verkehrs je nach Nutzung sowohl zum
Personenverkehr als auch zum Giiterverkehr gezéhlt werden. Wobei beim Personenverkehr
noch weiter zwischen Individualverkehr und dem offentlichen Personenverkehr unterschie-
den wird.

Verkehrstote beziehen sich hauptséchlich auf den Individualverkehr, also zum Personenver-
kehr, da iiber 90% der Verkehrstode im Strafienverkehr auftreten [Gesundheitsberichterstat-
tung des Bundes, 2010].

Ohne den Verkehr wiirde die moderne Volkswirtschaft nicht funktionieren, denn dieser spielt
eine zentrale Rolle. Durch Verkehr wird Mobilitit erst moglich, die den einzelnen Menschen
die Moglichkeit zur aktiven Teilnahme am gesellschaftlichen Leben gibt und als ein hohes
Mafl an individuellen Freiheiten gilt [Deutsches Zentrum fiir Luft-und Raumfahrt, 2010].
Neben der Mobilitdt der Menschen darf die der Giiter nicht vergessen werden, denn sie
gewihrleisten letztlich arbeitsteilige Wirtschaften und Wertschépfung in allen Wirtschafts-
sektoren [DESTATIS, 2009]. Verkehr erméglicht sowohl Tourismus und Freizeitaktivitidten

als auch nationale und internationale Arbeitsteilung.

Verkehr bedeutet aber auch Belastung, wie etwa durch Unfille, Larm und Luftverschmut-
zung [DESTATIS, 2008|.

Deshalb steht der Verkehr im Spannungsfeld zwischen Wachstum und Umwelt. Die Ge-
sellschaft verlangt nach immer mehr Mobilitdt, jedoch muss ein gutes Mittelmafi mit der
Umwelt gefunden werden, da die stdndig wachsende Nachfrage nach Verkehr nicht allein
durch den Bau neuer Infrastrukturen und durch die Offnung der Mirkte bewiltigt werden
kann. Ein modernes Verkehrssystem muss in wirtschaftlichen, sozialen und o6kologischen

Bereichen auf Dauer tragbar sein [Komission der européischen Gemeinschaften, 2001].

2.2 Bedeutung des Verkehrs

Dass der Sektor Verkehr von zentraler Bedeutung ist, zeigt die immer weiter zunehmende
Nachfrage nach Mobilitét. In der Bundesrepublik Deutschland entfallen im Jahr 2008 etwa
3.6% des Bruttoinlandsprodukts und ca. 4.2% der Arbeitsplitze auf den Bereich Verkehr
[Bundesministerium fiir Verkehr Bau und Stadtentwicklung, 2009]. Dieser Anteil beschreibt
nur unzureichend die Wichtigkeit dieses Sektors, da bei der Berechnung die funktionale Seite
des Verkehrs nicht beriicksichtigt wird.

In der Européischen Union (EU) betragt der Anteil eines weit gefassten Begriffs des Ver-

kehrssektors ca. 7% am europiischen Bruttoinlandsprodukt und etwa 5% der Arbeitsplitze.
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Dabei zéhlen zu den Arbeitsplidtzen sowohl die Verkehrsdienstleistungen als auch der Fahr-

zeugbau.

Die Bedeutung des Verkehrs liegt aber auch darin, dass gegen die Belastungen, wie Unfille,
Larm und Luftverschmutzung, Mafinahmen ergriffen werden miissen. Das angesprochene
Spannungsfeld zwischen Wachstum und Umwelt benétigt Verbesserungen und Einschréankung-
en. Denn der Ausbau der Verkehrsinfrastruktur fordert Lebensrdume fiir die Tier- und
Pflanzenwelt. Auch im Bereich der Umwelt sind noch viele Verbesserungen erforderlich,
denn der Anstieg an Treibhausgasemissionen war im Vergleich zu 1990 in keinem anderen
Wirtschaftssektor der EU so hoch wie im Verkehrssektor. Um dem entgegenzuwirken wurden
unter Anderem strenge Emissionsnormen fiir bessere Luftqualitit eingefithrt [Européische
Komission: Generaldirektion Energie und Verkehr, 2009]. In der Bundesrepublik Deutsch-
land ist zum Beispiel die Einfiihrung von Umweltzonen in Grofistddten zu nennen, welche
zur Verringerung der gefahrlichen Feinstaubpartikel und zur Verbesserung der Luftqualitit

beitragen sollen.

Im Folgenden werden wichtige Herausforderungen an den Bereich Verkehr diskutiert, die
moglicherweise einen groflen Einfluss auf die Entwicklung des zukiinftigen Verkehrs haben
konnten. Es werden ausgewéhlte demografische und okologische Herausforderungen genau-
er betrachtet, das jedoch nicht bedeutet, dass in anderen Bereichen nicht ebenso wichtige

Entscheidungen zu treffen sind.

2.3 Demografische Herausforderungen

Aus demografischer Sicht ist es schwierig vorauszusagen, welche Entwicklungen am meisten
Einfluss auf den zukiinftigen Verkehr haben werden. Zwei wichtige Aspekte, die dem Ver-
kehrssektor in Zukunft noch vor Schwierigkeiten und Herausforderungen stellen konnten,

werden im Weiteren genauer betrachtet.

Alterung

Ein grofles Problem stellt die Alterung der Bevolkerung dar. In der Bundesrepublik Deutsch-
land leben heute etwa 82 Millionen Menschen, im Jahr 2060 wird die Bevolkerung nur mehr
65 Millionen Menschen umfassen. Allerdings wird sich die Altersstruktur erheblich &ndern.
Diese Entwicklung der Bevolkerung lisst sich gut in den Alterspyramiden (Abbildung 2.2)

ablesen. Im Jahr 2010 betréagt der Anteil der iiber 65-jahrigen 21% an der Gesamtbevolkerung,

dies wird sich voraussichtlich bis zum Jahr 2060 auf 34% an der Gesamtbevolkerung erhéhen.
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Das bedeutet, dass 2060 wohl jeder Dritte iiber 65 Jahre alt sein wird. Diese Prognose ist
jedoch vage, denn Annahmen iiber Bevolkerungsverinderungen sind eventuell unzureichend

beriicksichtigt.
Bei der Bevilkerungsvorausberechnung wurden folgende Annahmen getroffen:

e Die Geburtenhéufigkeit bleibt anndhernd konstant bei 1,4 Kindern je Frau.

e Die Lebenserwartung fiir Neugeborene liegt im Jahr 2060 fiir Jungen bei 85,0 Jahren
und fiir Médchen bei 89,2 Jahren.

e Der jahrliche Wanderungssaldo betrégt 100 000 Personen.

Altersaufbau: 2010 Altersaufbau: 2060
Deutschland Deutschland
L] 100
Q0 -9

JRE— - 80 .

Manner

Abbildung 2.2: Alterspyramiden im Vergleich zwischen 2010 und 2060 [DESTATIS, 2010a]

In der Grafik ist zu erkennen, dass die Zahl der Geburten immer weiter zuriickgehen wird
und die Zahl der zwischen 20- und 64-jahrigen abnehmen wird. Im Jahr 2010 betrigt der
Anteil der 20 bis 64-jahrigen 61% an der Gesamtbevolkerung, dieser wird im Jahr 2060
auf nur mehr 50% sinken. Auflerdem sieht man die zunehmende Lebenserwartung, da die
Gelbeinfirbung (oberes Drittel) iiber 90 Jahre eine grofiere Fliche abdeckt als im Jahr 2010.

Der Altenquotient gibt die Anzahl der Menschen im Rentenalter je 100 Personen im Er-
werbsalter an. 2010 kommen dem zufolge 34 Rentner auf 100 Personen im Alter zwischen
20 und 64 Jahren. 2060 betridgt der Altenquotient, bei den gegebenen Annahmen 67 [Bun-

desministerium fiir Arbeit und Soziales, 2010].

Warum stellt Alterung der Gesamtbevolkerung eine Herausforderung fiir den Verkehrssek-

tor dar?
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Menschen ab einem gewissen Alter verreisen in der Regel weniger als zuvor, dennoch ist
die Tendenz zu Reisen der Senioren von heute um einiges gréfler als bei den Generationen
davor. Diese Entwicklung wird sich vermutlich weiter fortsetzen, denn sie wird unterstiitzt
von besserer Gesundheit, einem umfangreicheren Reiseangebot und besseren Fremdspra-

chenkenntnissen.

Das Problem fiir den Verkehrssektor in einer dlter werdenden Gesellschaft liegt vor al-
lem darin, dass mehr 6ffentliche Mittel im Bereich der Gesundheitsfiirsorge und Pflege und
im Bereich der Rentenzahlungen benétigt werden. Somit wird der Anteil der 6ffentlichen
Mittel fiir den 6ffentlichen Verkehr sinken und die Bereitstellung und Instandhaltung von

Verkehrsinfrastrukturen einschranken.
Zuwanderung

Der zweite Aspekt fiir den Verkehrssektor ist die Zuwanderung. Die Zuwanderung wirkt
auf dem Arbeitsmarkt der Alterung entgegen. Bei der Bevilkerungsvorausberechnung geht
man von einem Wanderungssaldo von 4100.000 Personen aus. Da dieser Wert positiv ist
iiberwiegen somit die Zuwanderungen die Abwanderungen. Dennoch wurde bis vor wenige
Jahre noch mit einem Wanderungssaldo von 4+200.000 Personen gerechnet. Griinde fiir diese
sinkende Zuwanderung ist zum einen der Riickgang der Anzahlen deutschstammiger Aus-
wanderer, schlechte Aussichten auf Beschaftigungsmoglichkeiten fiir Zuwanderer und eine
strenge Asylpolitik. Dies kénnte einen Wettbewerb um qualifizierte Einwanderer zwischen
den OECD-Léandern unterstiitzen, so dass ein Zuwanderungssaldo von iiber 100.000 Perso-

nen als unwahrscheinlich angesehen werden koénnen [Canzler, 2010].

Fiir den Verkehr ist Zuwanderung dennoch eine grofie Unterstiitzung, denn Zuwanderer
halten Verbindungen mit ihren Herkunftslindern, was zu einem verstéarkten Personen- und
Warenverkehr iiber die Grenzen fithren kann. Weiter wird die Mobilitat der Arbeitnehmer
mit zunehmender Vertiefung des Binnenmarktes zunehmen [Européische Komission: Gene-
raldirektion Energie und Verkehr, 2009].

2.4 Okologische Herausforderungen

Umweltbelastungen

Die 6kologischen Herausforderungen liegen wie bereits angesprochen bei den enormen Um-

weltbelastungen die der Verkehr mit sich bringt. Ziel sollte sein, dass in allen Bereichen
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die schwerwiegenden Umweltbelastungen angegangen werden. Zum Beispiel tréigt der Ver-
kehrssektor zur Verringerung der Treibhausgasemissionen eine Schliisselrolle, da der Anstieg
in diesem Wirtschaftssektor am hochsten ist. In einigen européischen Landern liegt eine
gefdhrlich hohe Belastung durch Luftverschmutzung und Larm vor. Speziell die Konzentra-
tion von PM10, Feinstaub, iibersteigt in mehreren Gebieten den Grenzwert von 2005, hier

ist der Verkehr die zweitwichtigste Quelle.

Diese Mafinahmen sind in Zukunft notwendig, da bekannt ist, dass Umweltbelastungen
den Klimawandel weiter vorantreiben und dieser auch Auswirkungen auf den Verkehrssek-
tor haben wird. So fiithrt zum Beispiel der Anstieg des Meeresspiegels zur Schwichung von
Kiisteninfrastrukturen und Héafen. Auch starke Unwetter konnen die Sicherheit verschieden-
ster Verkehrsmittel beeintrichtigen und ihren Einsatz beschrianken. Fluten und Hochwasser

als auch Dirren konnen den Binnenschiffsverkehr behindern.

Verknappung fossiler Brennstoffe

Die Verknappung fossiler Brennstoffe ist speziell fiir den internationalen Schiffsverkehr von
Bedeutung, da momentan der Transport von fossilen Brennstoffen etwa die Hélfte des Vo-

lumens der Transporte auf See ausmacht.

Ol ist eine der wertvollsten Ressourcen fiir unser Leben, denn es ist eine der wichtigsten
Energiequellen. Die Olvorrite schwinden, aber die Nachfrage nach Erdsl und anderen Brenn-
stoffen wird die Preise weiter in die Hohe treiben. Die bestehenden Olquellen kénnen den
steigenden Bedarf nicht mehr decken. Es bleibt nicht aus, dass neue Technologien zur Ener-
gieerzeugung eingesetzt werden miissen. Die vermehrte Nutzung von Energien erneuerbarer
Quellen fiihrt durch technologische Fortschritte und Massenproduktion zu einer deutlichen
Preisreduzierung. Dadurch werden Investitionen in die neuen Energiequellen zunehmen. Die
Errichtung entsprechender Infrastrukturen und die lange Nutzungsdauer von Fahrzeugen

werden den Prozess jedoch hinauszogern.

Verstadterung

Eine weitere Herausforderung fiir den Verkehrssektor liegt in der immer weiter zunehmenden
Verstadterung. Der Anteil an Menschen die in Stadten wohnt, betrug im Jahr 2007 72% der
EU-Bevolkerung und soll bis zum Jahr 2050 auf 84% ansteigen. In Deutschland lebten 2007
etwa 88% der Bevolkerung in Stiadten [Auswirtiges Amt der Bundesrepublik Deutschland,
2007]. Der Grund fiir die Verstadterung liegt darin, dass die rdaumliche Nidhe von Menschen
und Wirtschaftstatigkeiten Vorteile mit sich bringt.
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In Europa hebt sich in den letzten 50 Jahren der Anstieg der Bevolkerung in stadtischen
Gebieten gegeniiber dem Anstieg der Wohnbevoélkerung ab. Diese Verdnderung stellt eine
Herausforderung fiir den Nahverkehr dar, da es mit einer Forderung nach mehr Individual-
verkehr einhergeht und zudem Staus und Umweltprobleme vermehrt auftreten. Bereits 40%
der CO5 -Emissionen werden durch den Nahverkehr verursacht. Weiter haben die Transport-
unternehmen ihren Ursprung in stddtischen Randgebieten, so dass Verkehrsiiberlastungen in
Stédten auch negative Auswirkungen im Uberlandverkehr bringen [Européische Komission:
Generaldirektion Energie und Verkehr, 2009].

2.5 Sozialindikatoren im Bereich Verkehr

Sozialindikatoren im Bereich Verkehr sind zum Beispiel das Verkehrsrisiko, die Unfallra-
te, Verletzte und Getotete im StraBlenverkehr oder aber in anderen Bereichen, Umweltver-
schmutzung durch bestimmte Verkehrsmittel usw. Verkehr umfasst somit Nachhaltigkeitsin-
dikatoren aber auch Strukturindikatoren. Die Analyse auf Strukturbriiche behandelt in der
vorliegenden Arbeit ausschliellich den Indikator Getotete im StraBlenverkehr. Dabei handelt
es sich um einen Resultatindikator, da die Anzahl der tédlich Verungliickten ein Resultat
des Verkehrsrisikos ist.

Verkehr ist einer der 14 Lebensbereiche von GESIS, der zur Operationalisierung des Begriffs
Lebensqualitédt beitragt. Denn ist zum Beispiel die Zahl der Getoteten im Straflenverkehr
sehr hoch, wirkt sich dies negativ auf die Lebensqualitéit aus, da man einer stédndigen Gefahr
im Verkehr ausgesetzt ist.

Dass es sich bei der Variable Getotete tatsidchlich um einen Sozialindikator handelt, kann
man iiber die Erfiillung der Anforderungen an Indikatoren iiberpriifen. Die Daten iiber Ver-
kehrstote werden zeitnah jéhrlich erhoben und stellen keine Belastung fiir die Bevolkerung
dar, denn sie werden von den Registern der Polizei erfasst. Somit entstammen die Daten

aus sicheren Quellen und sind nicht manipulierbar.

Wenn Daten aus staatlichen oder halbstaatlichen Einrichtungen, aus Statistischen Amtern
oder aus sozialwissenschaftlichen Datenarchiven vorliegen, die fiir Sekundéranalysen be-
reitgestellt werden, spricht man von prozessproduzierten Daten. Die Daten werden in den
genannten Institutionen in den jeweiligen Arbeitsbereichen gesammelt und durch Verwal-
tungsvorgange erzeugt. Der Vorteil liegt darin, dass es sich um ein nichtreaktives Messverfah-
ren handelt, d.h. die Daten unterliegen nicht der Gefahr, dass sie beeinflusst oder gefélscht
werden kénnen [Ghanbari, 2002].

Auflerdem kann man die Daten international vergleichen, denn die Angaben sind in Ab-
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solutzahlen gegeben, sodass man sie in das gewiinschte Format leicht uméndern kann. Je-
doch muss man die Definition von Verkehrstoten des jeweiligen Landes beriicksichtigen. In
Deutschland zéhlen bis 1952 die am Unfalltag Verstorbenen Personen zu den Getoteten. Seit
1953 zdhlen zu den Getoteten im Straflenverkehr die Personen, die auf der Stelle getotet

werden oder die innerhalb von 30 Tagen an Unfallfolgen sterben [DESTATIS, 2010d].
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Kapitel 3

Statistische Analyse von

Strukturbriichen

3.1 Daten

Die folgende Analyse basiert auf Daten, die das Statistische Bundesamt der Offentlichkeit
zur Verfiigung stellt, d.h. bei den Daten handelt es sich um prozessproduzierte Daten.
Es handelt sich um Zeitreihen ab dem Jahr 1950 bis zum Jahr 2008 und behandelt das
Thema Straflenverkehr. Der Datensatz enthélt die Variablen Unfille, Getotete, Verletzte,
Verungliickte, Sachschaden und Personenschaden jeweils in Absolutzahlen gemessen. Um
diese zu normieren, ist zusétzlich noch die Variable Bevolkerung mit in den Datensatz auf-
genommen.

Bei den genannten Variablen handelt es sich um ausgewéhlte Verkehrsindikatoren, die in
der folgenden Analyse auf Strukturbriiche untersucht werden.

Unfille: Unter einem Verkehrsunfall versteht man ein plotzliches und meistens fiir einen
Beteiligten ungewolltes Ereignis im StraBlenverkehr, bei dem Personen- oder Sachschaden
entstehen. Hochststand der polizeilich registrierten Verkehrsunfille war bisher das Jahr 1999
mit iiber 2,4 Millionen Unfillen. Zu Beachten ist allerdings, dass Bagatellschéden, die privat
geregelt werden, nicht beriicksichtigt sind.

Getotete: Unter der Variable Getotete versteht man die Anzahl der bei einem Verkehrs-
unfall todlich Verungliickten Personen. Im Jahr 1970 kamen {iber 19000 Personen im Stra-
Benverkehr ums Leben. Seitdem wurden viele verschiedene Mafinahmen, wie zum Beispiel
Gurtanlegepflicht, Geschwindigkeitsbeschriankungen etc. ergriffen um die Verkehrssicherheit
zu verbessern. Dass diese Mafinahmen erfolgreich durchgesetzt werden, zeigt der aktuelle
Tiefststand von 4152 Personen im Jahr 2009.

Verungliickte: Bei der Variable Verungliickte handelt es sich um die Personen, die bei ei-
nem Verkehrsunfall entweder leichtverletzt, schwerverletzt oder getotet wurden. Der Grofiteil

in dieser Gruppe wird von den Leichtverletzten abgedeckt, das heifit von Personen, die nicht
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stationdr behandelt werden miissen. Die Zahl der Verungliickten hat im Jahr 1970 mit mehr
als 550000 Personen ihr Maximum erreicht, das bis zum Jahr 2008 auf knapp 400000 redu-
ziert werden konnte [ADAC, 2010].

In dieser Arbeit wird, wie bereits erwdahnt, nur die Auswertung der Variablen ,, Getotete“
vorgestellt. Das bedeutet, dass sich alle Beispiele und Ausfithrungen hauptséchlich auf diese

Variable beziehen.

3.2 Zeitreihenanalyse

Unter einer Zeitreihe versteht man eine nach der Zeit geordnete Abfolge von Beobachtungen.
Dabei muss der zeitliche Abstand zwischen den Beobachtungen gleich bleiben, um spétere
Interpretationen zu erméglichen. Die Zeit kann z.B. in Minuten, Stunden, Tagen, Jahren
usw. gemessen werden.

Ein Phéanomen, dass oft bei der Zeitreihenanalyse auftritt ist, dass die Beobachtungen oft
zeitverzogert mit sich selbst korreliert sind. Darunter ist zu verstehen, dass Beobachtungen
an verschiedenen Zeitpunkten zusammenhéngen, und dass man von heutigen Beobachtun-
gen eventuell auf spétere Beobachtungen schlieffen kann.

Wenn bei direkt aufeinander folgenden Messungen ein solcher Zusammenhang besteht,
spricht man von Autokorrelation erster Ordnung. Es kann natiirlich auch Autokorrelation
héherer Ordnung vorliegen, wenn sich Autokorrelation mit groflerer Zeitverzogerung ergibt
[Brosius, 1997].

Bei den vorliegenden Daten handelt es sich um Zeitreihen genannter Verkehrsindikatoren
und nicht um einzelne Stichproben. Ob auch hier Autokorrelation beliebiger Ordnung vor-
handen ist wird spéter genauer untersucht. Auflerdem wird versucht Verdnderungen der
Indikatoren iiber die Zeit zu finden, darzustellen und zu interpretieren. Dazu wird der Kon-

text linearer Modelle gewéhlt.

Beispiel 3.1. Getotete im Straflenverkehr - Zeitreihenanalyse

Die Daten werden fiir die Analyse in eine Zeitreihe iibertragen, wobei die gemes-
sene Einheit der Zeit den Jahren entspricht. In Abbildung 3.1 ist zu erkennen,
dass die Daten ab 1950 zunéchst stark ansteigen. Im Jahr 1970 war, wie bereits
erwahnt, die Zahl der im Verkehr Getoteten am hochsten. Seitdem hat die Zahl
der Verkehrstoten bis 1990 abgenommen und im Jahr 1990 kam es zu einem
erneuten Anstieg. Seit 1991 nimmt die Zahl der Verkehrstoten stetig ab.

Allein bei der Betrachtung einer Zeitreihe lésst sich eine gewisse Struktur erken-

nen. Zunéchst steigt diese an, dann fillt sie bis zum Jahr 1990 ab, dort gibt es
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Abbildung 3.1: Zeitreihe der Variablen Getotete pro 10000 Einwohner

erneut einen kleinen Anstieg und seitdem fallt sie stetig ab. Ob tatséchlich Struk-
turbriiche in der Zeitreihe zu finden sind, wird in den Abschnitten 3.4 und 3.5
gezeigt. Allerdings ist an der Zeitreihe zu erkennen, dass der Indikator Getotete
als Grundlage fiir Vorhersagen dienen kann und somit als Frithwarnsignal be-

zeichnet werden kann.

3.3 Lineares Regressionsmodell

Zu Beginn der Analyse wird ein Spezialfall des linearen Regressionsmodells, das einfache

lineare Regressionsmodell betrachtet:
Yi=Po+ biwi+e; i=1,...,n

Dabei sollen die Eigenschaften der Zielvariablen (Zufallsgrifie) y; durch die Kovariable x;
erklart werden. Y kann auch als abhdngige Variable und die Kovariable x als erkldrende
Variable oder Regressor bezeichnet werden. Ein entscheidendes Merkmal bei der Modellie-
rung ist, dass der Zusammenhang zwischen der Zielvariable und der erklédrenden Variable
sich nicht eindeutig als Funktion f(z;) von z; darstellen ldsst, sondern dieser durch zuféllige
Storungen verzerrt ist. Diese zufillige Abweichung e wird auch als Fehlerterm, Storgrifle,
Residuum oder stochastische Komponente bezeichnet. Die Funktion f(z;) nennt man syste-

matische Komponente.
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Diese entspricht dem Erwartungswert E(y;|z;), d.h.
yi=f(z;)) +&=Eyilz) +& =0+ Pzi+e i=1,....n

Die allgemeine Beziehung wird als linear angenommen [Fahrmeir et al., 2007, Seite 19-20].

Beispiel 3.2. Getotete im Straflenverkehr - Lineare Einfachregression

Aus dem Datensatz wird die Variable Getotete gewéhlt. Es wird nun ein linearer
Zusammenhang zwischen der Zielgrofle Getotete pro 10000 Einwohner und der

Kovarible Jahr modelliert:
Getotete; = By + (1 - Jahr; + ¢; (3.1)

Alternativ lésst sich sagen, dass die erwartete Anzahl an todlich Verungliickten
Personen sich als eine lineare Funktion der Variable Jahr darstellen ldsst. In
Abbildung 3.2 ist gut zu erkennen, dass ein linearer Zusammenhang nicht die

ideale Anpassung fiir die Daten ist.
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Abbildung 3.2: Streudiagramm zwischen den Variablen Getotete und Jahr mit eingezeich-
neter Regressionsgeraden
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3.3.1 Annahmen im linearen Regressionsmodell

In der linearen Einfachregression werden iiber den Zufallsfehler ¢, Annahmen gemacht.
(1) E(g)=0

(2) V(g)=o0?

(3) €li=1,...,n stochastisch unabhéngig

(4) ¢ ~N(0,0?%)

Annahmen (1) und (2) implizieren, dass ¢; unabhingig und identisch verteilt ist. Die Ei-
genschaft, dass alle Fehlerterme gleich grole Varianzen besitzen bezeichnet man als Ho-
moskedastizitit. Die Normalverteilungsannahme (4) bendtigt man zur Konstruktion von

Konfidenzintervallen und Teststatistiken.

Um die unbekannten Parameter By und [; des betrachteten Modells zu schitzen, wendet
man die Methode der kleinsten Quadrate (KQ-Methode) an.

(5o Br) = arg gjuﬁn Z(Z/z — Bo — Bizy)?
i —

Dabei werden die geschétzten Parameter Bo und Bl so bestimmt, dass die Summe der qua-
dratischen Abweichungen minimal wird. Indem man die Schitzungen in die Modellgerade

einsetzt, erhdlt man die geschitzte Regressionsgerade [Fahrmeir et al., 2007, Seite 21-22].

3.3.2 Uberpriifung der Modellannahmen auf Giiltigkeit

Die Giiltigkeit der Modellannahmen lassen sich iiber sogenannte Residualplots oder iiber
geeignete Testverfahren iiberpriifen. Insbesondere interessiert man sich fiir die Unkorreliert-

heit und Homoskedastizitat der Storgrofien und fiir die Linearitat der Kovariablen.

Unkorreliertheit der Storgréfien

Speziell bei Zeitreihen ist die Annahme der Unkorreliertheit der Stérgréfien unrealistisch.
Oft treten autokorrelierte Storgréfien auf, die im einfachsten Fall aus einer linearen Bezie-
hung zwischen den Storungen ¢; zum Zeitpunkt ¢ und den Stérungen €; 1 der Vorperiode
besteht.

€ = P€i—1 T U;
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Dabei sind die u; unabhéngig und identisch verteilte Zufallsvariablen. Hierbei handelt es
sich um Autokorrelation 1. Ordnung.

Autokorrelation tritt dann auf, wenn eine Fehlspezifikation des Regressionsmodells vorliegt.
Griinde in Zeitreihen konnen nicht beobachtbare relevante Kovariablen sein, die einen zeit-
lichen Trend oder saisonale Schwankungen aufweisen.

Um die Annahme der Unkorreliertheit der Stérgrofien zu iiberpriifen, kann man den Durbin-

Watson-Test auf vorliegende Autokorrelation durchfithren. Dieser testet die Hypothesen
Hy:p=0 gegen H;:p#0

und besitzt die Teststatistik

g = 2izalé = é)’
i €

Aus der Teststatistik lédsst sich folgender Zusammenhang ableiten.

Daraus folgt wegen —1 < p < 1, dass 0 < d < 4. Die Nullhypothese wird folglich abgelehnt
wenn die Teststatistik d Nahe bei 0 oder 4 liegt.

Eine Testentscheidung ist sehr schwierig, da bei der Bestimmung der Verteilung der Test-
statistik Abhéngigkeit zur Designmatrix vorliegt. Es gibt jedoch eine Teillosung fiir die eine
Entscheidung moglich ist [Fahrmeir et al., 2007, Seite 136-144].

p=0 =0
Hio abishnen Ha beibe ha ften Hi able hnen
e e A —— e ]
1 I 1 1 1 1 1
T T T T L
a du do 2 A-da 4du 4 d
A A
Ko Ervbsch et ung Kieirem B iachomicune

Abbildung 3.3: Annahme- und Ablehnbereiche beim Durbin-Watson-Test

Homoskedastizitéit der Varianzen der Storgrofien

Wenn homoskedastische Varianz der Stoérgréfien vorliegt, schwanken die Beobachtungen
zufillig um die Regressionsgerade. Liegt keine Homoskedastizitét vor, werden die Fehler ¢;
in Abhéngigkeit von der Zielvariable y bzw. von einer oder mehreren Kovariablen z; sy-
stematisch grofler oder kleiner. Falls keine Homoskedastizitét vorliegt nennt man dies auch
heteroskedastische StorgroBen. Zur Uberpriifung ob Heteroskedastizitit vorliegt werden die

Residuen untersucht. Ein moglicher Test auf Heteroskedastizitét ist der Breusch-Pagan-Test
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mit den Hypothesen
Hy:a;=...=0=0 gegen H;:a; # 0fiir mindestens ein j
Dabei ist der Test auf einem multiplikativen Modell fiir die Fehlervarianz aufgebaut:

o} =0 h(og + o1zi + - + agzig)

Die Funktion i héngt nicht von 7 ab und 2, ..., 2, stellen Kovariablen dar, von denen ein
Einfluss auf die Varianz erwartet wird.

Fiihrt man den Test durch, benttigt man eine Hilfsregression

Wobei ¢; die Residuen und 63;, der ML-Schétzer fiir 6% des linearen Modells mit homoske-
dastischen Fehlern darstellen. Die Teststatistik lautet:

=1

Falls keine Heteroskedastizitdt vorliegt gilt §; ~ g. Daraus lédsst sich schlieffen, dass man
die Nullhypothese ablehnen wird, wenn T umso gréfler ist. Unter Hj ist die Teststatistik
asymptotisch x2-verteilt mit q Freiheitsgraden, also T ~ x2 und T ist unabhiingig von
der Funktion h. Die Nullhypothese wird abgelehnt, wenn die Teststatistik T grofler als das
(1 — a)-Quantil der Xg-Verteilung ist. Eine geeignete Mafinahme bei Vorliegen von Heteros-
kedastizitét ist Variablentransformation [Fahrmeir et al., 2007, Seite 128-133].

Linearitat der Kovariablen

Zur Uberpriifung, ob die Kovariablen tatséichlich einen linearen Einfluss haben gibt es den
RESET-Test. Der RESET (Regression Equation Specification Error Test)-Test von Ram-
sey (1969) dient zur Feststellung, ob das Modell korrekt oder fehlspezifiziert ist, zum Bei-
spiel durch vernachléssigte Variablen oder durch eine falsche funktionale Form. Hierzu wird
zundchst ein lineares Modell {iber die KQ-Methode geschétzt. Die geschétzten Parameter
werden in das Modell eingesetzt und es wird iiberpriift ob die Variable y durch Hinzu-
nahme von Variablen 2,93,y ... ins Modell besser erklirt werden kann. Dabei dienen
die Variablen 32, 3, y%, ... als mogliche Approximationen fiir z.B. vernachliissigte Variablen

[Rottmann and Auer, 2010]. Daraus resultiert folgende Beziehung:

y=Pr+ 0% +. ..+ 610" +e
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Die Nullhypothese testet nun, ob die Parameter der hinzugefiigten Variablen alle den Wert
Null annehmen, also
H()I 5120 \V/Z:]_,Jf—l

Wird die Nullhypothese abgelehnt, kann man daraus schlieflen, dass ein Spezifikationsfehler
vorliegt, jedoch nicht welcher Art. Die zugehorige Teststatistik lautet

R2-R3
T = 1’:;% ~F(k—1,n—k)
n—k

Hierbei steht R, fiir das Ursprungsmodell, R; fiir das Modell mit moglichen Spezifikations-
fehler, n ist die Stichprobengréfie und k steht fiir die Anzahl der Parameter im Ramsey
Modell. Ist die F-Statistik signifikant, weist dies auf einen Spezifikationsfehler hin [Woold-
ridge, 2009, Seite 303-304].

Beispiel 3.3. Getotete im Straflenverkehr - Lineare Einfachregression

Nach der KQ-Methode ergeben sich fiir das Modell (3.1) die Parameterschétzer
By = 44.6809 und B; = —0.0218. Somit erhilt man die Gleichung

~

f(Jahr) = 44.6809 — 0.0218 - Jahr

Daraus ergibt sich folgende Interpretation fiir den Steigungsparameter . Erhoht
sich die Variable Jahr um eine Einheit, also um ein Jahr, so nimmt die Zahl der
Getoteten pro 10000 Einwohner um 0.0218 ab. Das Bestimmtheitsmafl R? be-
sagt, dass durch die erkldrende Variable Jahr 49.72% der Daten erklirt werden.
Mit knapp 50% ist die Anpassung an die Daten recht gut.

Wie bereits erwédhnt, lassen sich die Modellannahmen sowohl iiber Residual-
plots als auch iiber geeignete Testverfahren iiberpriifen.

Schon in Abbildung 3.2 kann man erkennen, dass Autokorrelation in den Daten
vorliegt, da auf positive (negative) Absténde der einzelnen Beobachtungspunkte

zur Regressionsgeraden meistens wiederum positive (negative) Abstéinde folgen.

Betrachtet man die Residualplots, erhélt man vier Grafiken zur Analyse der Modellannah-

men.
e Residualplot, dabei werden die Residuen gegen die angepassten Werte abgetragen.

e ()Q-Plot, bei dem die standardisierten Residuen gegen die theoretischen Quantile einer

Standard-Normalverteilung gegeniibergestellt werden.

29



e Scale-Location Plot, diesmal werden die Wurzeln der standardisierten Residuen zu den

angepassten Werten betrachtet.

e Leverage Plot, bei dem Datenpunkte mit sehr grofien individuellen Einfluss auf die

Anpassung erkannt werden konnen, und zusétzlich noch die Hohenlinie der Cook s

Distance eingezeichnet ist [Ligges, 2005, Seite 140-141].

Residuals

IStandardized residualsl

15

1.0

0.5

o
o

08 10 12 14 16 18 20

Fitted values

Scale-Location

08 10 12 14 16 18 20

Fitted values

Standardized residuals

Standardized residuals

Normal Q-Q

-1 0 1 2

Theoretical Quantiles

Residuals vs Leverage

7| --- cook's distance 10

T
0.00

T T T T T
0.02 0.04 0.06

Leverage

Abbildung 3.4: Residualplots zur Uberpriifung der Annahmen der linearen Einfachregres-

sion
Im Residualplot sollten die Stérungen zuféllig um Null schwanken, das heifit es
wird die Annahmen E(¢;) = 0 iiberpriift. Weiter kann man systematische Abwei-
chungen in den Residuen erkennen, die aufzeigen, dass das Modell unvollsténdig
ist. In dem Beispiel mit der Variable Getotete schwanken die Beobachtungen
nicht zufillig um die Null sondern es ist eindeutig eine Struktur zu erkennen,
also weisen die Residuen systematische Schwankungen auf.
Beim QQ-Plot (Quantil-Quantil-Plot) mit nach der Gréfle geordneten Beob-
achtungen, werden die Residuen gegen ®~!(i/(n + 1)),i = 1,...,n abgetragen,
wobei @1 die Quantilfunktion der Standardnormalverteilung ist. Somit wird in
diesem Diagramm die Annahme der normalverteilten Fehler iiberpriift, indem
man die Residuen mit ideal normalverteilten Beobachtungen vergleicht. In dem
Beispiel liegen die Daten einigermafien gut auf der Geraden der ideal normal-
verteilten Beobachtungen, nur an den Réndern weichen die Datenpunkte ab.
Eventuell kann man ein besseres Ergebnis erreichen, wenn die Daten transfor-

miert betrachtet werden.
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Der Scale-Location Plot stellt /|7;| (fiir die standardisierten Residuen r;) gegen

y; dar. Dabei werden die standardisierten Residuen folgendermafien berechnet:

€;

Vi = T—F/——
o 1—hn

mit Ay als Diagonalelemente der Hat-Matrix H = X (X7 X)71X7T. Dies dient
zur Uberpriifung der Annahme, dass die Fehler identisch verteilt sind, genauer
gesagt, dass Varianzhomogenitit vorliegt V(e;) = 2. In der Grafik zeigt sich,
dass die Annahme verletzt ist, d.h. es liegt Autokorrelation vor.

Der Leverage Plot, bei dem die standardisierten Residuen gegen den Leverage
abgebildet sind zeigt, dass in den Daten wenig Ausreiflerbeobachtungen vorhan-
den sind. Somit liegen wenig extreme Beobachtungen vor [Kleiber and Zeileis,
2008, Seite 94-98].

Fithrt man die genannten Testverfahren auf das spezifizierte Modell mit Ziel-
variable Getotete und Kovariable Jahr durch, erhélt man die folgenden Tester-
gebnisse. In R benotigt man zur Durchfithrung der Tests das package lmtest
[Hothorn et al., 2010b].

Zunéchst der Durbin-Watson Test:

> dwtest(get10000~Jahr, data=strafie)
Durbin-Watson test

data: get10000 © Jahr
DW = 0.1441, p-value < 2.2e-16

alternative hypothesis: true autocorrelation is greater than O

Die Teststatistik, hier mit DW bezeichnet, hat einen Wert von 0.1441, das be-
deutet der Wert liegt nahe der Null. Auch der p-Wert ist sehr klein, sodass man
insgesamt zu dem Ergebnis kommt, dass die Nullhypothese abgelehnt wird, das
heifit, es liegt Autokorrelation in den Daten vor.

Testet man auf Heteroskedastizitdt kommt man zu folgenden Ergebnis:

> bptest(get10000~Jahr, data=strafle)
studentized Breusch-Pagan test

data: getl10000 ~ Jahr
BP = 11.6971, df = 1, p-value = 0.000626
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Die Teststatistik wird abgelehnt, wenn sie einen grolen Wert annimmt und die
Teststatistik grofer ist als das (1—a)-Quantil der x?-Verteilung. Hier nimmt der
Vergleichswert x3 o5 den Wert 3.8415 an und ist somit kleiner als die Teststatistik
zu einem Signifikanzniveau von 5%. Der p-Wert bestétigt das Ergebnis, da er
sehr klein ist. Das heifit die Nullhypothese wird abgelehnt und man kann daraus
schliefen das zudem Heteroskedastizitét in den Daten vorliegt.

Der Test auf Linearitdt der Kovariablen ergibt:

> resettest(get10000~Jahr, data=strafle, type="regressor", power=2)
RESET test

data: getl10000 © Jahr
RESET = 56.4669, dfl = 1, df2 = 56, p-value = 4.886e-10

Da auch hier der p-Wert einen sehr kleinen Wert aufweist wird ebenfalls die
Nullhypothese abgelehnt, d.h. es liegt ein Spezifikationsfehler in den Daten vor,

man kann jedoch nicht sagen welcher Natur er ist.

3.3.3 Bestimmung des Grades der Autokorrelation

Nachdem man Kenntnis davon hat, dass in den Daten Autokorrelation vorliegt, ist die Be-
stimmung der Ordnung wichtig um darauf reagieren zu konnen.

Um die Ordnung der Autokorrelation bestimmen zu kénnen, benétigt man ein sogenanntes
Autokorrelationsdiagramm. In diesem Diagramm lésst sich sowohl die Autokorrelations-
funktion als auch die partielle Autokorrelationsfunktion darstellen.

Die Autokorrelationsfunktion zeigt an, ob die betrachteten Variablen unabhéngig vonein-
ander sind, oder ob sie in Beziehung stehen. Dabei trifft oft zu, dass sich die Werte der
betrachteten Variable in benachbarten Einheiten, z.B. Jahren, relativ &hnlich sind, und sich
erst grofere Unterschiede fiir weiter auseinanderliegende Jahre ergeben [Brosius, 1997].
Untersucht man die Beziehung zwischen der Zeitreihe und einer um k Zeiteinheiten ver-
schobenen Zeitreihe, so weifl man nicht, ob der Zusammenhang direkt gilt, oder ob dieser

Zusammenhang durch dazwischen liegende Punkte entstanden ist. Deshalb wird fiir diesen

— e

Zusammenhang die partielle Autokorrelationsfunktion berechnet, da diese die Wirkungen

der dazwischen liegenden Beobachtungen eliminiert [Prof. Dr. W. Hussy, 2005].
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Beispiel 3.4. Getotete im Straflenverkehr - Bestimmung des Grades der

tokorrelation

Um den Grad der Autokorrelation zu bestimmen, wird das Autokorrelations-
diagramm und die partielle Autokorrelation jeweils fiir die Variable Getotete
betrachtet (Abbildung 3.5). In R ben6tigt man hierfiir das package tseries [Hor-
nik, 2009]. In der linken Grafik (3.5) zeigt das Diagramm, die Autokorrelationen
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verschiedener Ordnungen, d.h. die Stdrke der Autokorrelation fiir unterschied-
liche Lags. Bei einem Lag (deutsch: Verschiebung) handelt es sich um eine um
k Zeitpunkte verschobene Zeitreihe. Ist k = 1, liegt demnach eine Verschiebung
um ein Jahr vor und die Autokorrelation ist am stéarksten. Die eingezeichneten
gestrichelten Linien sind die 95%- Konfidenzintervalle. Liegen die Korrelationen
der verschiedenen Lags iiber den Signifikanzgrenzen, kann man von Autokorre-

lation ausgehen.

Die Korrelationen nehmen mit hherem Lag ab, jedoch sind bis zu einer Verzoger-
ung von 11 Jahren signifikante positive Korrelationen abzulesen. Um herausfin-
den zu konnen, ob die Korrelationen direkt gelten, wird die partielle Autokorre-
lation betrachtet.

In der rechten Grafik (3.5) ist zu erkennen, dass die Autokorrelation erster Ord-
nung genauso hoch ist wie davor. Alle anderen Korrelationen sind nicht mehr

signifikant, und positive und negative partielle Autokorrelationen wechseln sich
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scheinbar zufillig ab.
Deshalb lasst sich vermuten, dass in diesem Beispiel Autokorrelation erster Ord-

nung vorliegt [Brosius, 1997].

3.3.4 Moglichkeiten zur Bereinigung von Autokorrelation

Es gibt Moglichkeiten, mit denen man vorhandene Autokorrelation bereinigen kann. Hier
liegt Autokorrelation erster Ordnung vor, das heiffit Beobachtungen direkt aufeinander fol-
gender Messungen stehen im Zusammenhang. Es werden zwei Méglichkeiten vorgestellt mit
denen man Autokorrelation bereinigen kann.

Zum einem gibt es den sogenannten Lag-Operator, der hier die Zeitreihe um eine Einheit,
also um ein Jahr, verschiebt. Wenn man diesen Lag-Operator zusétzlich im linearen Modell
beriicksichtigt, kann man die Autokorrelation oftmals bereinigen, d.h. in dem neuen Modell
ist keine Autokorrelation mehr zu beobachten.

Zum anderen gibt es den Differenzen-Operator, der die Differenz zwischen der jetzigen
Zeitreihe und der um eine Einheit verschobenen Zeitreihe beriicksichtigt. Nimmt man die-
sen Operator mit ins lineare Modell, so ldasst sich ebenfalls Autokorrelation bereinigen.
Zusétzlich konnte man unter Beriicksichtigung dieser Operatoren auf Strukturbriiche testen,

wird in dieser Arbeit jedoch nicht durchgefiihrt.

Im folgenden werden die genannten Operatoren genauer vorgestellt:
Beim Lag-Operator handelt es sich um einen linearen Operator, der die Zeitreihe um eine

Periode verzogert. Er ist definiert als
L.l’t = Tt—1-

Dabei sind folgende Rechenregeln zu beachten
o [0=1
e La = a, wenn a konstant ist
o L(Lzy) = L?1y = x4_»

Das bedeutet, dass L° als Konstante eins definiert ist, weiter gilt, dass eine Konstante nicht
um eine Periode verschoben werden kann. Berechnet man den Lag von einem Lag so ergibt
sich eine zeitliche Verschiebung um zwei Einheiten.

Der Differenzen-Operator lédsst sich aus dem Kontext des Lag-Operators ableiten. Die erste

Differenz ist definiert als

AZCt =Xt — Xp—1 — T — th = (1 — L):Ct
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Dabei entspricht A dem Konstrukt (1 — L) [Greene, 2008].

Beispiel 3.5. Getotete im Straflenverkehr - Bereinigung von Autokorrelation

Um das lineare Modell von der vorhandenen Autokorrelation erster Ordnung
zu bereinigen, werden nun zusétzlich entweder der Lag- oder der Differenzen-
Operator mit beriicksichtigt. Die Ergebnisse aus R sind in Anhang A zu finden.
Zunéchst wird der Lag-Operator beriicksichtigt. Dazu benétigt man zunéchst
eine Zeitreihe der Variable Getotete pro 10000 Einwohner. Der Lag, hier mit
getl bezeichnet, wird zuséchtlich zur Variable Jahr als Kovariable im linearen

Modell eingesetzt.

getts<- ts(straBe$get10000, start=1950, end=2008, frequency=1)
get_dat<- ts.intersect(getts, getl=lag(getts, -1), jahrl=straBe$Jahr[-1])
summary(lm(getts~getl + jahrl, data=get_dat))

Das R? dieses neuen Modells ist 0.9459, das heifit die Anpassung an die Daten
iiber dieses Modell ist sehr gut. Betrachtet man die Residuenplots zur Annah-
meniiberpriifung so ist zu erkennen, dass jetzt im Residualplot, die Storungen
zufillig um Null schwanken, d.h. es liegen keine systematischen Schwankungen
vor. Im Scale-Location Plot zeigt sich, dass nun Varianzhomogenitét vorliegt,
und somit keine Autokorrelation mehr.

Wird der Differenzen-Operator beriicksichtigt, muss man erst den Lag einer Pe-
riode definieren. Beim linearen Modell wird nun die Differenz als Zielvariable

und das Jahr als Kovariable festgelegt.

#Lag in Datensatz mit aufnehmen um Differenz berechnen zu konnen
straBe$lagl <- NA

for(i in 2:dim(straBe) [1]){

straBe$lagl[i] <- straBe$get10000[i-1]

+

straBekomp <- straBe[2:58,]

straBekomp$dif <- (straBekomp$get10000-straBekomp$lagl)

summary (1m(dif~Jahr, data=straBekomp))

In diesem Modell nimmt das R? einen Wert von 0.9958 an, d.h. die Anpassung
ist nahezu perfekt. Betrachtet man auch hier die Residuenplots, kommt man zu

einem dhnlichen Ergebnis, vor allem dass keine Autokorrelation mehr vorliegt.
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3.3.5 Konsequenzen bei verletzten Annahmen

Es wurden bereits die Annahmen des linearen Modells und deren Uberpriifung auf Verlet-
zungen diskutiert. Des Weiteren wurden Moglichkeiten zur Bereinigung von Autokorrelation
vorgestellt. Nun sollen Konsequenzen diskutiert werden, die aus Annahmenverletzungen re-

sultieren.

Eine vorhandene Annahmenverletzung impliziert nicht, dass das benutzte Modell nicht ge-
eignet ist.

Wie man mit Autokorrelation umgehen kann wurde in Abschnitt 3.3.4 geschildert. Das
heif3t, wenn Autokorrelation erster Ordnung vorliegt, besteht die Moglichkeit den Lag- bzw.
den Differenzen-Operator mit zu beriicksichtigen. Auflerdem gilt bei Autokorrelation, dass
die Schétzer nach wie vor konsistent und unverzerrt sind. Allerdings sind sie nicht mehr effi-
zient, das heifit sie besitzen nicht mehr die kleinste Varianz. Zudem kann man keine t-Tests
mehr durchfiihren. Dieselben Konsequenzen ergeben sich bei Heteroskedastizitdt. Wenn man
Schatzverfahren anwendet, z.B. durch Beriicksichtigung einer der genannten Operatoren, die
die Verletzungen dieser Annahmen beriicksichtigt, so erhélt man effizientere Schéatzer und
man kann t-Tests durchfiihren.

Ist die Annahme der Normalverteilung verletzt lassen sich Signifikanztests zumindest noch

asymptotisch durchfiihren.

Daraus lédsst sich schlieen, dass Annahmenverletzungen zwar zu einem fehlspezifizierten
Modell fiithren, die Schétzer dennoch konsistent und unverzerrt sind. Sie sind zwar nicht
mehr effizient, lassen sich allerdings durch verschiedene Méglichkeiten wieder in effiziente

Schitzer umwandeln [Brimmer, 2002].

3.4 Modellbasierte Rekursive Partitionierung

In parametrischen Modellen werden Strukturverdnderungen durch Parameterinstabilitdten
beschrieben. Wird diese Instabilitdt ignoriert, verlieren Parameterschitzungen an Bedeu-
tung, Inferenz ist stark verzerrt und Vorhersagen fehlt es an Genauigkeit. In der Zeitrei-
henregression versteht man unter Strukturverdnderungen die Verdnderung der Beziehung
zwischen den abhéngigen und den erkldrenden Variablen iiber die Zeit.

Zur Berechnung von Parameterinstabilitdten gibt es eine Vielzahl an Tests. Hier wird die
Rahmenstruktur des generalisierten M-Fluktuationstests verwendet, die als Werkzeug zur
Konstruktion von Parameterinstabilitéitstest in den verschiedensten Situationen dient. Ba-
sierend auf diesem System lésst sich eine Klasse von Tests fiir generalisierte lineare Regres-
sionsmodelle bilden, z.B. sogenannte Poisson- oder Logit-Modelle.

Ein Test zur Uberpriifung auf Parameterinstabilititen wird folgendermaBen gebildet:

36



Zuerst wahlt man eine geeignete Schétzfunktion, mit der man auf Parameterinstabilitit
im geschéitzen Modell testet. Das Ergebnis, das sich aus der Schwankung innerhalb des
Prozesses ergibt, wird als Teststatistik bezeichnet. Diese wird dann mit der Verteilung der
Zielfunktion verglichen [Zeileis and Hornik, 2007].

Aufbauend auf diese Ideen wird innerhalb des Framework ein segmentiertes parametrisches
Modell angepasst, indem ein Baum berechnet wird. Die Zielfunktion des Modells wird so-
wohl zur Schitzung der Parameter als auch der sogenannten Bruchpunkte verwendet. Die
dazugehorigen Scores werden in jedem Punkt auf Parameterinstabilitéten getestet, um her-
ausfinden zu koénnen, nach welcher Variable partitioniert werden soll. Vorteil bei diesem
Vorgehen ist, dass die Zielfunktion neben der Parameterschétzung auch zur Partitionierung

verwendet werden kann [Zeileis et al., 2008].

3.4.1 Segmentierte Modelle

Betrachtet wird ein parametrisches Modell mit Beobachtungen Y und ein k-dimensionaler
Vektor mit Parametern . Fiir n Beobachtungen Y; (i = 1,...,n) kann das Modell durch

Minimierung der Zielfunktion ¥ (Y, #) beziiglich der Parameterschéitzung 6 berechnet werden

n

0 = arg min > U(Y;,0)

Schéatzer dieser Art schlieen bekannte Schétztechniken wie zum Beispiel die Methode der
kleinsten Quadrate (OLS) oder der Maximum-Likelihood (ML) Methode unter den M-
Schétzern ein. Im Fall von OLS entspricht ¥ der Fehlerquadratsumme und im Fall von
ML der negativen Log-Likelihood.

In vielen Situationen ist es unrealistisch anzunehmen, dass eine einzige globale Funktion
fiir alle n Beobachtungen eine gute Anpassung erreicht. Aber es ist eventuell moglich die
Beobachtungen nach Kovariablen zu partitionieren (aufteilen), sodass in jeder lokalen Zelle
der Partition ein gut angepasstes Modell resultiert. In diesem Fall kann man den Ansatz
der rekursiven Partitionierung basierend auf | Partitionsvariablen Z; (j = 1,...,1) anwen-
den um eine gute Approximation in dieser Partition zu erhalten.

Wenn die richtige Partition bekannt ist, erhélt man die Schitzung des Parameters 6, der die
globale Zielfunktion minimiert, durch Berechnung der lokalen optimalen Parameterschiatzungen
0 in jedem Segment.

In der Strukturbruchanalyse gibt es nur eine Partitionsvariable (/ = 1) die Zeit, mit der
man die optimale Aufteilung einfach finden kann. Damit nicht jede Beobachtung ein eigenes
Segment erhilt, werden diese Fille iiber eine Minimalanzahl an Beobachtungen pro Segment

ausgeschlossen [Zeileis et al., 2008].
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3.4.2 Algorithmus der modellbasierten rekursiven Partitionierung

Die Grundidee des modellbasierten rekursiven Partitionierens ist es, das volle Modell das
die gesamte Stichprobe umfasst in Submodelle (Unterknoten) aufzuteilen. Dabei liegt jedem
Submodell ein eigenes Modell zugrunde. Um feststellen zu konnen, ob eine Aufteilung (Split)
des Modells notwendig ist, wird ein Fluktuationstest durchgefiihrt, der auf Parameterinsta-
bilitaten testet (Kapitel 3.5.2). Liegt eine nachweisbare signifikante Instabilitét durch einige
partitionierende Variablen Z; vor, wird das Modell in B lokale, optimale Segmente auf-
geteilt und das Vorgehen wird wiederholt. Werden keine neuen signifikanten Instabilitdten
gefunden stoppt der Rekursionsprozess. Grafisch erhélt man einen Baum, bei dem jedes Sub-
modell (oder Ast) vom gleichen Typ ist. Genauer lassen sich die Schritte des Algorithmus

darstellen:

1. Passe das Modell zunéchst fiir alle Beobachtungen im derzeitigen Modell durch Schéatzung

von 6 mittels Minimierung der Zielfunktion ¥ an.

2. Uberpriife ob die Parameterschiitzungen iiber alle geordneten Z;, ..., Z; stabil sind.
Liegt Instabilitét vor, wéhlt man die dazugehdrige Variable Z; mit der héchsten Pa-

rameterinstabilitdt, d.h. mit dem kleinsten p-Wert.

3. Berechne die Bruchpunkte (Splitpunkte) die ¥ entweder fiir eine feste oder fiir eine

angepasste Anzahl von Splits lokal optimieren.

4. Teile das Modell in Submodelle auf und wiederhole das Vorgehen.

Die Schritte 1-3 werden im Weiteren genauer beschrieben.

3.4.2.1 Parameterschitzung

Es kann gezeigt werden, dass die Schitzung 6 auch berechnet werden kann, wenn die Be-

dingung erster Ordnung
d w0 = 0
i=1

gelost wird. Dabei ist

ov(Y,0)
Y 0) = ———
v = o

die Score- oder Schatzfunktion zu ¥(Y,#). Die Scorefunktion, bewertet an den geschétzten
Parametern 1; = (Y}, 0) fiir n Beobachtungen (i = 1, ..., n), wird dann im néichsten Schritt
auf systematische Abweichungen zum Mittelwert 0 gepriift.

3.4.2.2 Test auf Parameterinstabilititen

In diesem Schritt mochte man herausfinden, ob die Parameter des angepassten Modells

iiber alle Partitionsvariablen Z; stabil sind, oder ob eine Aufteilung der Stichprobe nach
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einer der Variablen Z; mogliche Instabilitédten aufdeckt und somit die Anpassung verbessert.
Die Idee Parameterinstabilititen aufzudecken liegt darin, zu iiberpriifen, ob die Scores @Zz
zufillig um ihren Mittelwert 0 schwanken oder systematische Abweichungen von 0 iiber
die Z; aufweisen. Diese Abweichungen konnen iiber den empirischen Fluktuationsprozess

iiberpriift werden
[nt]

Wit) = J P72 "y (zy) (0<t<1)

i=1
Dabei steht o(Z;;) fir den Anordnungsprozess welcher den Beobachtungen Z; die Rénge
im Vektor Z; = (Zy;,...,Zy;)" nimmt. Daher ist W;(¢) der partielle Summenprozess der
Scores geordnet nach der Variable Z;, mit der Zahl der Beobachtungen n skaliert und einer
sinnvollen Schiitzung J fiir die Kovarianzmatrix COV (1(Y, 0)).

Zeileis and Hornik [2007] zeigen, dass der empirische Fluktuationsprozess zu einer Brown-
schen Briicke W° konvergiert.

Wie die Strukturbruchanalyse genau funktioniert wird im Abschnitt 3.5 genauer vorgestellt.

3.4.2.3 Aufteilung

In diesem Schritt des Algorithmus wird das angepasste Modell nach der Variablen Z; in ein
segmentiertes Modell mit B Segmenten aufgeteilt, wobei B entweder fest ist oder bestimmt
werden muss. Bei einer fixierten Anzahl von Splits konnen zwei konkurrierende Aufteilungen

einfach verglichen werden indem man die segmentierten Zielfunktionen Zle > er (Y, 0)

i€l
vergleicht.

Man unterscheidet die Aufteilung nach numerischen und kategorialen Variablen.
Somit sind zwei Strategien zu unterscheiden. Einerseits kann man immer bindre Splits ver-
wenden, z.B. indem man eine fixierte Anzahl an Segmenten B = 2 wéhlt. Andererseits kann
man B fiir numerische Variablen bestimmen indem man immer B = (' fiir kategoriale Va-
riablen verwendet. C' entspricht der Anzahl an Kategorien. Das vorliegende Beispiel greift
auf die erste Strategie zuriick, denn es gilt B = 2.

Hiermit ist die erste Iteration des rekursiven Partitionierungsalgorithmus beendet. Die
Schritte 1-3 werden solange in jedem Submodell wiederholt, bis keine weiteren signifikanten

Instabilitdten im zweiten Schritt entdeckt werden [Zeileis et al., 2008].

Beispiel 3.6 Getotete im Straflenverkehr - Rekursive Partitionierung

Im Folgenden wird nun das Prinzip der rekursiven Partitionierung auf den vorlie-
genden Datensatz angewandt. Es wird also getestet, ob sich die Beziehung zwi-
schen der Zielvariable Getotete pro 10000 Einwohner und der erkldrenden Varia-
ble Jahr in ihrer Struktur verindert. Beispiele dafiir wiren etwa eine Anderung

des Steigungsparameters oder des Intercepts oder des gesamten zugrundeliegen-
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den Modells.

Wenn sich die bestehende Beziehung veréndert erhélt man als Ergebnis einen
Baum, bei dem in jeder Untergruppe der Aufteilung ein eigen angepasstes pa-
rametrisches Modell resultiert. Um die optimale Aufteilung (Split) zu erhalten,
wird jede Beobachtung auf eine vorliegende Parameterinstabilitéit getestet. In
diesem Beispiel ist festgelegt, dass nach der Variablen Jahr partitioniert wird.
Das Verfahren der modellbasierten rekursiven Partitionierung wird angewandt,
da man gesehen hat, dass eine lineare Anpassung iiber alle Daten kein optimales
Ergebnis liefern konnte.

Deshalb wird nun untersucht ob eine Aufteilung des Datensatzes in Submodelle
die Daten besser anpassen kann. Damit nicht jede einzelne Beobachtung eine ei-
genes Modell darstellt wird als Minimum der Beobachtungen in einem Segment
10 Beobachtungen festgelegt.

In R kann man das Prinzip der modellbasierten rekursiven Partitionierung iiber
die Funktion mob() im package party durchfithren [Hothorn et al., 2010a]. Die
Formel fiir R um das Problem der modellbasierten rekursiven Partitionierung zu
iibertragen ist folgendermaflen aufgebaut: y ~ x1 + ... + xk | z. Dabei ist z die
Partitionierungsvariable Jahr, y ist die Zielvariable Getotete pro 10000 Einwoh-
ner des linearen Modells und x1 + ... + xk sind die erklarenden Variablen. In
diesem Beispiel gibt es nur eine erkldrende Variable Jahr, d.h. es gibt nur x1.
Fiihrt man die modellbasierte rekursive Partitionierung in R durch erhélt man

folgenden Output:

Fluctuation tests of splitting variables:
Jahr

statistic 3.097530e+01

p.-value 5.958644e-06

Best splitting variable: Jahr

Perform split? yes
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> mobl <- mob(get10000 ~ Jahr | Jahr, data=straBe, model=linearModel,
+ control = mob_control(alpha = 0.05, bonferroni = TRUE, minsplit =
+ trim = 0.01,

+ objfun = deviance, breakties = FALSE, parm = NULL, verbose = TRUE)
+ )



Node properties:
Jahr <= 1972; criterion = 1, statistic = 30.975

Fluctuation tests of splitting variables:
Jahr

statistic 5.227469

p.value 0.197557

Best splitting variable: Jahr

Perform split? no

Fluctuation tests of splitting variables:
Jahr

statistic 2.133294e+01

p.value  4.344947e-04

Best splitting variable: Jahr

Perform split? yes

Node properties:

Jahr <= 1990; criterion = 1, statistic = 21.333

Der Algorithmus der Partitionierung wird somit durchlaufen. Es wird ausgege-
ben, dass ein Split bei der Variable Jahr durchgefiihrt wird, da der p-Wert bei
einer Teststatistik von 30.975 signifikant ist. Weiter erhélt man die Information,
dass der Split im Jahr 1972 erfolgt, d.h. der Datensatz wird in zwei Submodelle
von 1950 bis 1972 und von 1973 bis 2008 aufgeteilt. Nun wird getestet, ob in dem
Segment ab 1950 eine weitere Unterteilung sinnvoll ist. Hierbei weist der p-Wert
keine Signifikanz mehr auf, somit wird diese Teilstichprobe nicht weiter aufge-
teilt. Daraufhin wird das zweite Segment ab 1973 auf Parameterinstabilitéiten
untersucht. Im Jahr 1990 kommt es zu einer weiteren Aufteilung, da auch hier
der p-Wert signifikant ist.

Das Ergebnis wird grafisch in einem Baum dargestellt. In dem Baum (Abbildung
3.6) ist die beschriebene Situation anschaulich dargestellt. Im ersten Schritt wird
der Datensatz im Jahr 1972 unterteilt. Daraus ergibt sich eine Subgruppe mit n

= 23 Beobachtungen als sogenannter Endknoten. Der Datensatz mit den Beob-
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<1972 >1972

<1990 >1990
Node 2 (n = 23) Node 4 (n = 18) Node 5 (n = 18)
00, 2 n 2 ]
147 1 K 1 X
1944.2 2013.8 1944.2 2013.8 1944.2 2013.8

Abbildung 3.6: Baum basierend auf linearer Regression fiir die Variable Getotete pro 10000
Einwohner

achtungen ab 1973 wird im Jahr 1990 nochmals aufgrund von Parameterinsta-
bilitédt geteilt. Hierbei ergeben sich die zwei weiteren Segmente mit jeweils n =
18 Beobachtungen.

In den jeweiligen Teilstichproben wird nun ein eigensténdiges lineares Modell
angepasst. Schon allein in der Grafik lassen sich Unterschiede bei den Steigun-
gen erkennen. Die linearen Anpassungen in den einzelnen Segmenten scheinen

sehr viel besser zu sein, als es die lineare Anpassung iiber alle Daten ist.

> lapply(splitdat, function(x){
+ summary (1lm(get10000 ~ Jahr,data=x))})

#lLineares Modell fiir erstes Submodell von 1950 bis 1972

Call:
lm(formula = get10000 ~ Jahr, data = x)

Residuals:

Min 1Q Median 3Q Max
-3.726e-01 -8.433e-02 6.569e-05 1.282e-01 2.691e-01
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Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) -1.040e+02 1.065e+01 -9.764 2.94e-09 **x*
Jahr 5.400e-02 5.431e-03 9.942 2.14e-09 *x*x

Signif. codes: O ’**x’ 0.001 ’x*x’ 0.01 ’x> 0.05 >.” 0.1 7 ’ 1

Residual standard error: 0.1728 on 21 degrees of freedom
Multiple R-squared: 0.8248, Adjusted R-squared: 0.8164
F-statistic: 98.85 on 1 and 21 DF, p-value: 2.144e-09

#Lineares Modell fiir das Submodell ab 1973 bis 1990

Call:
lm(formula = get10000 ~ Jahr, data = x)

Residuals:
Min 1Q Median 3Q Max
-0.176006 -0.041671 0.007969 0.054444 0.141395

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 137.077150 8.051807 17.02 1.13e-11 **x
Jahr -0.068423 0.004063 -16.84 1.33e-11 *x*x

Signif. codes: O ’***x’ 0.001 ’**’ 0.01 ’x’ 0.05 >.” 0.1 ’ * 1
Residual standard error: 0.08944 on 16 degrees of freedom
Multiple R-squared: 0.9466, Adjusted R-squared: 0.9432
F-statistic: 283.5 on 1 and 16 DF, p-value: 1.334e-11

#Lineares Modell fiir das Submodell ab 1990 bis 2008

Call:
Im(formula = get10000 ~ Jahr, data = x)

Residuals:
Min 1Q Median 3Q Max
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-0.056801 -0.015321 -0.001067 0.017100 0.064685

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 97.013149 2.614384 37.11 <2e-16 *x*
Jahr -0.048051 0.001308 -36.75 <2e-16 *xx*

Signif. codes: O ’*xx’ 0.001 ’*x’ 0.01 ’x’ 0.056 ’.” 0.1 ’ 1

Residual standard error: 0.02878 on 16 degrees of freedom
Multiple R-squared: 0.9883, Adjusted R-squared: 0.9876
F-statistic: 1351 on 1 and 16 DF, p-value: < 2.2e-16

Betrachtet man die R? der einzelnen linearen Modelle so ist zu erkennen, dass
sich die Anpassung, im Vergleich zum linearen Modell iiber alle Daten, stark ver-
bessert. Im ersten Segment (Node 2) ist das Modell mit einem R? von 82.48%
schon sehr gut angepasst. Die Anpassung im zweiten Modell ist mit einem R?
von 89.44% noch ein bisschen besser wie im ersten Modell. Im dritten und letz-
ten Modell betriigt das R? 98.83%. Die Anpassung ist nahezu perfekt.

Im ersten Modell betrigt die Steigung der Geraden 0.054, d.h. sie steigt an. Im
zweiten Modell nimmt die Steigung einen Wert von -0.068 an, das bedeutet, dass
diese Gerade abfillt. Im dritten Segment ist die Steigung ebenfalls negativ mit

einem Wert von -0.048.

Natiirlich stellt sich die Frage, warum in den Jahren 1972 und 1990 Struktur-
briiche auftreten. Es kann nicht eindeutig bestimmt werden, warum in diesen
Jahren Strukturbriiche vorkommen. Allerdings lassen sich Vermutungen auf-
stellen, zum Beispiel durch einschneidende Ereignisse im Bereich Verkehr. Je-
doch konnen auch einfach z.B. technische Verbesserungen zu diesen strukturel-
len Verdnderungen gefiihrt haben.

Der Bruch im Jahr 1990 konnte somit daraus resultieren, dass in diesem Jahr
die deutsche Wiedervereinigung stattfand. Dies hatte zur Folge, dass im Jahr
1990 die Zahl der Verkehrstoten kurz anstieg, seitdem jedoch stetig abnimmt.
Der Strukturbruch im Jahr 1972 ist wohl eine Folge daraus, dass im Jahr 1972 das
Tempolimit 100 km/h auf Landstrafien eingefiihrt wurde [DESTATIS, 2010c].
Diese Beschrankung der Geschwindigkeit auf Landstralen hatte einen positiven
Effekt, da sich die Anzahl der im Straflenverkehr Gettteten positiv &nderte und

sehr stark zuriickging.
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Da vorher bei der Anpassung eines linearen Modells iiber alle Daten Annah-
men verletzt waren, werden diese nun fiir die einzelnen Endknoten iiberpriift.
Jede Zeile mit ihren vier Residualplots steht jeweils fiir ein Submodell. In den
vier Spalten befinden sich somit Residualplot, QQ-Plot, Scale-Location Plot
und Leverage Plot. Betrachtet wird zunéchst der Residualplot. Die Werte der
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Abbildung 3.7: Residualplots fiir die einzelnen Splits zur Annahmeniiberpriifung

StorgroBien sollten auch hier zufallig um die Null schwanken um die Annahme
E(e;) = 0 zu erfiillen. Fiir die Daten ab 1950 bis 1972 ist diese Annahmen nicht
erfiillt, da eine Struktur zu erkennen ist. Ab 1972 ist fiir beide Submodelle die
Annahme erfiillt. Die Annahme der normalverteilten Fehler ist in allen Untermo-
dellen recht gut erfiillt, da man bedenken muss, dass in den jeweiligen Gruppen
wenig Daten vorhanden sind. Die Varianzhomogenitét ist fiir die Daten ab 1973
weitestgehend vorhanden, nur im ersten Untermodell liegt Varianzheterogenitét
vor. In allen drei Modellen sind wenig bis keine Ausreifler zu erkennen.

Schliellich ldsst sich sagen, dass sich die Anpassung in den einzelnen Segmenten
stark verbessert hat. Die Annahmen des linearen Modells sind in den Submodel-
len Node 4 und Node 5 nicht mehr verletzt, Ausnahme ist das Submodell Node
2, bei dem nicht alle Annahmen erfiillt sind. Wie man mit verletzten Annahmen

vorgehen kann wurde bereits gezeigt.
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3.5 Generalisierte M-Fluktuationstests auf Parameter-

instabilititen

3.5.1 Generalisierter M-Fluktuationsprozess

Um die generalisierten M-Fluktuationstests durchfiihren zu kénnen, muss zunéchst eine ge-
nerelle Klasse von Fluktuationsprozessen entwickelt werden, die Parameterinstablilitdten in
parametrischen Modellen aufdecken kénnen.

Zunéchst wird ein Modellrahmen definiert. Es werden n vektorwertige unabhéngige Beob-
achtungen angenommen

Y~ F(0) (i=1,...,n),

die zu einer Verteilung F mit k-dimensionalem Parameter 6; verteilt sind. Der Index ¢ =
1,...,n steht fiir die nach der Zeit geordneten Beobachtungen einer externen Variable.
Die Nullhypothese lautet

Hy:0,=6y (i=1,...,n)

und testet, ob die Parameter iiber die Zeit konstant bleiben. Daher benétigt man auch
die Anordnung nach der Zeit, denn héitte man diese nicht, kénnte man eine auftretende
Strukturdnderung nicht sinnvoll interpretieren.

Es wird nun auch hier, wie beim modellbasierten rekursivem Partitionieren, der empirische

Fluktuationsprozess

Int]
Wit) = J P72 "y (zy) (0<t<1)

=1

betrachtet, der nach Zeileis and Hornik [2007] gegen eine Brownsche Briicke konvergiert.

Die Annahme der unabhéngigen Beobachtungen ist héufig, speziell bei der Zeitreihenanaly-
se verletzt. Es gibt mehrere Ansétze um die vorgestellte Methode auf abhingige Daten zu
iibertragen. Verwendet man zum Beispiel die ML-Methode so kénnen die Parameter {iber
die Likelihood oder eine bedingte Likelihood bestimmt werden, aus dem der Fluktuations-

prozess abgeleitet werden kann [Zeileis and Hornik, 2007].

3.5.2 Generalisierte M-Fluktuationstests

Der generalisierte M-Fluktuationstest ist ein allgemeiner Ansatz zum Testen auf Parameter-
stabilitdten und wurde durch Zeileis and Hornik [2007] entwickelt. Es wird die M-Schétzung
zur Schitzung der Parameter 6 verwendet, da diese viele Schétztechniken durch eine sinn-
volle Wahl der Scorefunktion 1) enthélt.
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3.5.2.1 Bestimmung des Scores
Die haufigste Wahl fiir v ist die partielle Ableitung der Zielfunktion ¥

U(y.0) = _aq;g;, o)

wobei ¥ die Residuenquadratsumme oder die Log-Likelihood sein konnte, wenn man fiir 6 die
Methode der kleinsten Quadrate oder die ML-Schétzung verwendet. In beiden Féllen fiithrt
die kumulative Summe erster Ordnung 1) zum vorher beschriebenen Fluktuationsprozess.
Liegt eine Misspezifikation vor wird die Scorefunktion oder Schétzfunktion v direkt gewéhlt,
z.B. robuste M-Schétzung oder Quasi-Maximum-Likelihood welche fiir verletzte Annahmen

von Standardmodellen bekannt sind.

3.5.2.2 Teststatistiken

Es werden die empirischen Fluktuationsprozesse verwendet, da diese Abweichungen von der
Nullhypothese auf Parameterstabilitat aufdecken konnen. Bereits die Betrachtung von Gra-
fiken kann Informationen liefern, ob Hj verletzt ist oder nicht. Allerdings ist eine bildliche
Betrachtung nicht ausreichend, deshalb werden Tests basierend auf empirischen Fluktuati-
onsprozessen abgeleitet, bei denen die Fahigkeit als erklarendes Instrument erhalten bleibt.
Die Strategie zur Konstruktion der Teststatistik ist eine Funktion A zu beriicksichtigen, die
sich auf den Fluktuationsprozess bezieht [Zeileis and Hornik, 2007]. Die Teststatistik ist also
von der Form A(efp).

In Stichproben vom Umfang n ist der Fluktuationsprozess eine Matrix (efp;(i/n));; mit
1 = 1,...,n entsprechend den ,Zeit-“ Punkten und mit j = 1,...,k entsprechend den
unabhingigen Komponenten des Prozesses, die normalerweise Komponenten des Parame-
tervektors @ sind. Daraus lassen sich zwei Strategien zur Konstruktion von Teststatistiken
ableiten:

1. Der Prozess wird zuerst iiber die Zeit aggregiert und es ergeben sich £ unabhéngige uni-
variate Teststatistiken, wovon jede mit einer Komponente des Prozesses verbunden ist.

2. Es wird erst iiber die Komponenten aggregiert und man erhélt einen Fluktuationsprozess,

der den Zeitpunkt eines moglichen Strukturbruches erkennen kann.

Die zweite Strategie wéhlt man, wenn man an der Frage interessiert ist, wann ein Struk-
turbruch auftritt. Dies ldsst sich auch grafisch iiberpriifen, z.B. indem man iiberpriift, ob
der Prozess eine bestimmte Grenze b(t) = c - d(t) iiberschreitet, wobei ¢ fiir das Signifi-
kanzniveau und d(t) fiir die Form der Grenze stehen. Bei der ersten Strategie kann man,
wenn die allgemeine Hypothese abgelehnt wird, die Komponenten von 6, die die Instabilitéat

verursachen, identifiziert werden: Alle Komponenten die eine signifikante Statistik haben,
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z.B. die einen Grenzwert c iiberschreiten, sind im Konflikt mit der Nullhypothese.

Das bedeutet, dass in vielen Situationen die Funktion A in zwei Komponenten aufgeteilt
werden kann: Ay und Ao, die jeweils iiber Zeit und Komponenten aggregieren. Géngige
Werte fiir A sind das absolute Maximum L., der Mittelwert oder der Durchschnitt.
Typische Funktionen Ay, beinhalten ebenfalls die Maximumnorm L, oder die quadrierte
euklidische Norm L. Abhéngig von der Durchfithrung der Aggregation, wie schon vorge-
stellt, kann entweder die Zeit der Verdnderung oder die Komponenten, die dadurch bestimmt

werden, identifiziert werden [Zeileis, 2006].

Die Visualisierung von all diesen Teststatistiken enthélt Informationen iiber das Zeitin-

tervall der Anderung (falls vorhanden) und ist ein méchtiges erklarendes Instrument.

Der Modellrahmen der generalisierten M-Fluktuationstest umfasst viele Strukturbruchtests,
mit denen man auf Parameterinstabilitdten testen kann. Dazu zdhlen basierend auf OLS der
CUSUM und der MOSUM Test, Score basierte Tests und Statistiken basierend auf Lagrange
multiplier Tests. Ein Uberblick iiber mogliche Teststatistiken ist in Zeileis [2005] gegeben.
Jeder dieser Tests, aus dem Framework, kann auf den Algorithmus der rekursiven Parti-
tionierung angewendet werden. Jedoch sind zwei Teststatistiken hervorzuheben, da diese
einmal fiir metrische und einmal fiir kategoriale Partitionierungsvariablen Z; besonders ge-
eignet sind.

Ist die Variable metrisch so gilt folgende Teststatistik:

W)

i=i,...7 \ 1 n

. . —1
1 n—1
Asup v (W) = max (— : )

2

Das ist die Maximum Lagrange-multiplier Statistik, auch supLM Statistik genannt. Sie
testet gegen die Alternative, dass nur ein einziger Bruchpunkt im Intervall [i,7] vorliegt.

Ist hingegen die Variable kategorial (mit ¢ = 1,...,C Kategorien) ist folgende Teststatistik

e
n

Dabei ist A;, die Erhoéhung iiber die ¢ — te Kategorie. Diese Teststatistik ist invariant ge-

besser geeignet:

L]~ i

n

c
)\XZ(WJ) = Z

2

geniiber der Umordnung der C' Kategorien. Die Teststatistik deckt Instabilitdten iiber die
C Teilstichproben auf [Strobl et al., 2010].

Aus den vielen Teststatistiken wird hier nur der Double Maximum Test genauer betrachtet

[Zeileis et al., 2008].

Die Double Maximum Teststatistik ist ndmlich die einzigste Funktion, die fiir beide Kom-
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ponenten von A, Agme und Acomp, Interpretationen ermoglicht. Die Teststatistik lautet:

efp;(i/n)

b(i/n)

Dabei wird die Maximumnorm L., zur Aggregation in beide Richtungen verwendet. Die

max max
i=1,..,n j=1,...k

Nullhypothese wird abgelehnt, wenn das Maximum eine Grenzfunktion b(t) iiberschreitet,

welche normalerweise als konstant, z.B. b(t) = 1 angenommen wird [Zeileis, 2006].

Beispiel 3.7 Getotete im Stralenverkehr - M-Fluktuationstests

Um Tests auf Parameterinstabilititen im Rahmen des empirischen Fluktuations-
prozesses durchfithren und sinnvoll interpretieren zu kénnen, miissen die Daten
zunéchst in eine Zeitreihe iibertragen werden. Wie bei der modellbasierten rekur-
siven Partitionierung wird getestet, ob die Variable Getotete annédhernd konstant
verlduft, oder ob signifikante Strukturverdnderungen auftreten. In R kann man
den generalisierten empirischen Fluktuationsprozess mit der Funktion gefp()
durchfiihren, dazu benotigt man das package strucchange [Zeileis et al., 2010].

Nun wird der Double Maximum Test auf die Zeitreihe angewendet.

Beim Double Maximum Test wird nun also auf Parameterinstabilitit getestet.
Wird ein kritischer Wert ¢ gekreuzt, liegt ein Strukturbruch in den Daten vor.
Der Test auf Strukturbruch wird in R {iber die Funktion sctest (structural

change test) durchgefiihrt.

> seatbelt<- ts(straBel,c(1,12)], start=1950, end=2008, frequency=1)
> scus.seat <- gefp(get10000 ~ Jahr, data=seatbelt, fit = 1m)

> sctest(scus.seat, functional = maxBB)
M-fluctuation test

data: scus.seat
f(efp) = 2.4917, p-value = 1.620e-05

Das Ergebnis des Tests zeigt, dass in den Daten ein Strukturbruch vorliegt, da
der p-Wert signifikant ist. Grafisch ist das Ergebnis in Abbildung 3.8 dargestellt.
Es bestitigt sich, dass in den Daten eine strukturelle Anderung vorliegt, denn

ein kritischer Wert ¢ wird sogar mehrmals gekreuzt.

Durch das Testverfahren weifl man, dass ein Strukturbruch oder mehrere Struk-

turbriiche in den Daten vorliegen, nur noch nicht genau wann sie auftreten. Nun
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M-fluctuation test
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Abbildung 3.8: Ergebnis des M-Fluktuationstests: Double Maximum Test

wird ein Modell gesucht, welches die Strukturbriiche mit beriicksichtigt. Wenn
die Briiche plétzlich auftreten fiithrt dies dazu, dass die Daten, wie beim modell-
basierten rekursivem Partitionieren, in Segmente aufgeteilt werden und in jedem
Submodell das Modell angepasst wird. Bei linearen Regressionsmodellen ist der

Aufbau folgendermafien
yt:xtTB(j)+et, t=n;1+1,...,n5, j=1,...,m+1

Dabei ist j = 1,...,m der Index im jeweiligen Segment und SY) steht fiir die
segmentspezifischen Regressionskoeffizienten. Die Indizes {nq,...,n,,} bezeich-
nen die Anzahl der unbekannten Punkte, an denen gesplittet wird.

Um die Bruchpunkte schétzen zu kénnen wird die generelle Methode von Bai
und Perron [1998, 2003] verwendet, die in R in der Funktion breakpoints()

implementiert ist.

Die Zahl dieser Bruchpunkte ist im Voraus nicht bekannt. Eine Moglichkeit
die optimale Anzahl zu erhalten ist es, fir m = 0,1,... Briiche das Modell
zu wihlen, welches zum Beispiel das Informationskriterium BIC(Bayesianisches
Informationskriterium) minimiert. Eine andere Moglichkeit besteht darin, ein

Modell mit m + 1 Segmenten und m Bruchpunkten zu finden, fiir das die Resi-
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duenquadratsumme(RSS) minimiert wird.

Das RSS und das BIC sind in der linken Grafik von Abbildung 3.9 abgebildet.
Das BIC hat sein Minimum eindeutig bei drei Bruchpunkten, die Residuen-
quadratsumme(RSS) hat ihr Minimum bei m = 4 Briichen obwohl kein grofler
Unterschied zu m = 3 und m = 5 zu erkennen ist [Kleiber and Zeileis, 2008,
Seite 169-176].

Somit ist ein Modell mit drei Briichen optimal. In R erh&lt man diese iiber

die Funktion breakpoints().

> get_bp <- breakpoints(get10000 ~ Jahr, data=seatbelt)
> get_bp

Optimal 4-segment partition:

Call:
breakpoints.formula(formula = get10000 ~ Jahr, data = seatbelt)

Breakpoints at observation number:
8 23 41

Corresponding to breakdates:
1957 1972 1990

Die optimale Partition besteht demnach aus vier Segmenten mit drei Knoten in
den Jahren 1957, 1972 und 1990. Fiir die jeweiligen Segmente kann man sich, wie

bei der Funktion mob (), die Koeffizienten der linearen Modelle ausgeben lassen.

> coef (get_bp)
(Intercept) Jahr

1950 - 1957 -284.15833 0.14622743
1958 - 1972  -82.22395 0.04291554
1973 - 1990 137.07715 -0.06842293
1991 - 2008 97.01315 -0.04805132

Die Unterschiede bei den Koeffizienten sind gut zu erkennen. Im ersten Segment
ist der Intercept negativ mit -284.16, die Steigung ist jedoch positiv mit einem
Wert von 0.15. Im zweiten Segment von 1958 bis 1972 besitzen die Koeffizienten
die selben Vorzeichen, unterscheiden sich jedoch zahlenméflig. Hier betrédgt der

Intercept lediglich -82.22 und die Steigung nimmt einen Wert von 0.04 an. Im
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dritten Segment ist der Intercept mit 137.08 positiv und hat eine negative Stei-
gung von -0.07, d.h. die Gerade fallt im Gegensatz zu den Geraden der ersten
beiden Segmente ab. Im vierten und letzten Segment ist der Intercept mit 97.01
geringer wie im dritten Segment und die Gerade hat ebenfalls eine negative Stei-

gung von -0.05.

Wie bei der modellbasierten rekursiven Partitionierung treten in den Jahren 1972
(Einfithrung von Tempolimit 100 km/h auf Landstraen) und 1990 (Wiederver-
einigung von Deutschland) Bruchpunkte auf. Zusétzlich resultiert bei diesem

Verfahren ein Bruchpunkt im Jahr 1957. Ein moglicher Grund fiir diese struktu-

BIC and Residual Sum of Squares
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50
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-50
1
T
2
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0 1 2 3 4 5 6 1950 1960 1970 1980 1990 2000 2010

Number of breakpoints Time

Abbildung 3.9: Linke Grafik: BIC und RSS fiir segmentiertes Modell. Rechte Grafik: Be-
obachtete und gefittete segmentierte Zeitreihe mit eingezeichneten Bruchpunkten und da-
zugehorigen Konfidenzintervallen

relle Verdnderung ist wahrscheinlich die Einfithrung der Héchstgeschwindigkeit
von 50 km/h innerhalb von Ortschaften [DESTATIS, 2010c].

Die Zeitreihe kann man grafisch mit ihren Bruchpunkten und den dazugehorigen
Konfidenzintervallen darstellen (rechte Abbildung 3.9). Zudem ist die gefittete
Zeitreihe iiber die beobachtete Zeitreihe eingezeichnet. Es ist gut zu erkennen,

dass die einzelnen linearen Anpassungen die Daten besser erklaren.
Beide vorgestellten Verfahren, modellbasierte rekursive Partitionierung und M-

Fluktuationstests, dienen dazu Parameterinstabilitdten aufzudecken und zu iden-

tifizieren. Um eine optimale Anpassung an die Daten zu bekommen, werden diese
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in Segmente aufgeteilt und somit die Bruchpunkte bestimmt. Es ergeben sich
zwei identische Aufteilungen in den Jahren 1972 und 1990. Die Teilung des Da-
tensatzes im Jahr 1957 resultiert nur im Verfahren des M-Fluktuationsprozesses.
Auch wenn man die Minimalzahl an Beobachtungen im modellbasierten rekur-
siven Partitionierungsprozess ignoriert, erhélt man im Jahr 1957 keinen Struk-

turbruch.

Dabher stellt sich die Frage, weshalb beim Verfahren iiber die M-Fluktuationstests
ein Strukturbruch mehr in den Daten auftritt als beim Verfahren der modellba-
sierten rekursiven Partitionierung.

Beim partitionieren nach einer einzigen Variable, typischerweise der Zeit, gibt

es mehrere Moglichkeiten auftretende Bruchpunkte zu schétzen.

Bei der modellbasierten rekursiven Partitionierung wird zum Auffinden von
Strukturbriichen der Algorithmus mit seinen vier Schritten durchlaufen. Dabei
beginnt man mit der Anpassung eines Modells iiber alle Beobachtungen durch
Minimierung der Zielfunktion. Darauthin wird auf Parameterinstabilitidt gete-
stet und die Bruchpunkte berechnet, die die Zielfunktion lokal optimieren. Das
Modell wird somit in Submodelle aufgeteilt und der Algorithmus wird auf das
Neue durchlaufen bis keine signifikanten Parameterinstabilitdten mehr zu ent-
decken sind. Das heifit bei diesem Verfahren wird die Zielfunktion lokal in jedem
Schritt geschétzt.

Betrachtet man hingegen das Verfahren iiber die M-Fluktuationstests wird eine
andere Moglichkeit zum Entdecken von Strukturbriichen angewendet. Hier wer-
den alle Bruchpunkte simultan und nicht lokal in jedem Schritt geschétzt. Das
heifit das Modell ist in diesem Fall beziiglich der Zielfunktion in allen Bruch-

punkten simultan, also gleichzeitig, optimal [Zeileis et al., 2008].
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Kapitel 4
Zusammenfassung und Ausblick

Letztlich ldsst sich die Auswertung des Verkehrsindikators Getotete pro 10000 Einwohner
folgendermaflen zusammenfassen. Die Anwendung des einfachen linearen Regressionsmo-
dells hat gezeigt, dass eine lineare Anpassung nicht optimal fiir die Gesamtheit der Daten
ist. Es sind einige Annahmen verletzt worden, man hat jedoch auch gesehen, dass es ver-
schiedene Moglichkeiten gibt mit verletzten Annahmen umzugehen.

Bei der Durchfithrung der modellbasierten rekursiven Partitionierung basierend auf linearer
Regression wurde das Modell in Submodelle aufgeteilt. Durch Anwendung dieses Verfahrens
wurden in den Jahren 1972, evtl. durch Einfiihrung von Tempolimit 100 km/h auf Landstra-
Ben, und 1990, evtl. durch die deutsche Wiedervereinigung, Strukturbriiche entdeckt. Fiir
die drei resultierenden Submodelle ist die Anpassung nahezu perfekt. Uber das Verfahren
des generalisierten empirischen Fluktuationstests, welches auch beim Verfahren der modell-
basierten rekursiven Partitionierung angewendet wurde, ergaben sich fiir den Indikator drei
Strukturbriiche. Zusétzlich zu den zwei bereits genannten Briichen, resultierte im Jahr 1957
ein Weiterer, wahrscheinlich durch die Einfithrung von Tempolimit 50 km /h in Ortschaften.
Dieser zusétzliche Strukturbruch resultiert daraus, dass die Bruchpunkte nicht nur lokal in

jedem Schritt sondern simultan geschétzt werden.

Auflerdem lésst sich feststellen, dass der Verkehrsindikator Getotete als Frithwarnsignal
und somit als Grundlage fiir Vorhersagen gilt. Jedoch wird sich die Pradiktion des linearen
Modells nicht immer weiter fortsetzen, denn eine stetige Abnahme an Verkehrstoten seit
dem Jahr 1991 wird nicht zur Folge haben, dass diese in der Zukunft bei Null enden wird.
Das heifit man kann nicht annehmen, dass es irgendwann keine Verkehrstoten mehr geben
wird. Die Anzahl wird sich vermutlich an einem bestimmten Zeitpunkt stabilisieren, aber
nicht weiter abfallen.

Fiir die Zukunft ergibt sich durch die Auswertung der Analyse eine neue Forschungsfrage.
Denn es wurde die modellbasierte rekursive Partitionierung berechnet, obwohl das lineare

Modell fiir die verwendeten Daten nicht addquat war.
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Anhang

A Ergebnisse der linearen Modelle mit dem Lag- bzw.

dem Differenzen-Operator

#Ergebnis des linearen Modells mit dem Lag-Operator
> summary (lm(getts~getl + jahrl, data=get_dat))

Call:
Im(formula = getts ~ getl + jahrl, data = get_dat)

Residuals:
Min 1Q Median 3Q Max
-0.221581 -0.045855 0.004796 0.031293 0.414614

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.936239 2.739801 4 .357 5.82e-05 ***

getl 0.848713 0.044053 19.266 < 2e-16 **x
jahril -0.005919 0.001361 -4.349 5.96e-05 *x**
Signif. codes: O “xxx” 0.001 “**x~ 0.01 "x~ 0.056 ~.7 0.1 "~ 1

Residual standard error: 0.1258 on 55 degrees of freedom
Multiple R-squared: 0.9459, Adjusted R-squared: 0.944
F-statistic: 481.1 on 2 and 55 DF, p-value: < 2.2e-16

#Ergebnis des linearen Modells mit dem Differenzen-Operator

> summary (1lm(dif~Jahr, data=strafekomp))
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Call:
Im(formula = dif ~ Jahr, data = strafekomp)

Residuals:
Min 1Q Median 3Q Max
-0.3351883 -0.0533256 0.0004222 0.0423697 0.4550610

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 5.437963 2.207345 2.464 0.0169 =
Jahr -0.002751 0.001115 -2.466 0.0168 =*

Signif. codes: 0O “**%x” 0.001 “*x~ 0.01 "~ 0.0 .7 0.1 "~ 1

Residual standard error: 0.1385 on 55 degrees of freedom
Multiple R-squared: 0.09958, Adjusted R-squared: 0.08321
F-statistic: 6.082 on 1 and 55 DF, p-value: 0.0168
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Abbildung 1: Residualplots fiir lineares Modell mit Lag-Operator
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