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Abstract

Differential item functioning (DIF) can lead to an unfair advantage or disadvantage
for certain subgroups in educational and psychological testing. Therefore, a variety of
statistical methods has been suggested for detecting DIF in the Rasch model. Most
of these methods are designed for the comparison of pre-specified focal and reference
groups, such as males and females. Latent class approaches, on the other hand, allow to
detect previously unknown groups exhibiting DIF. However, this approach provides no
straightforward interpretation of the groups with respect to person characteristics.

Here we propose a new method for DIF detection based on model-based recursive
partitioning that can be considered as a compromise between those two extremes. With
this approach it is possible to detect groups of subjects exhibiting DIF, which are not pre-
specified, but result from combinations of observed covariates. These groups are directly
interpretable and can thus help understand the psychological sources of DIF.

The statistical background and construction of the new method is first introduced by
means of an instructive example, and then applied to data from a general knowledge quiz
and a teaching evaluation.

Keywords: item response theory, IRT, Rasch model, differential item functioning, DIF, struc-
tural change, multidimensionality.

1. Introduction

In educational and psychological testing, the term differential item functioning (DIF) ‘means
that the probability of a correct response among equally able test takers is different for various
racial, ethnic, gender [or other] subgroups. A given educational or psychological test consisting
of many items with significant DIF may be unfair for certain subgroups, and it is important
to identify these items, so that they can be improved or deleted from the test’ (Westers and
Kelderman 1991).

A variety of statistical methods is available for detecting DIF in the Rasch model. While
some of these methods are explicitly designed to detect DIF in individual items, such as the
item-specific Wald test (Fischer and Molenaar 1995), others are global goodness-of-fit tests
for the Rasch model that also respond to DIF, such as the likelihood ratio test (Andersen
1972). Most of these methods are based on the comparison of the item parameter estimates
between two or more pre-specified groups of subjects, such as males and females as focal and
reference groups. This class of model tests includes the widely used graphical test as well as
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the most recent approaches based on a mixed model representation (Rijmen, Tuerlinckx, De
Boeck, and Kuppens 2003; den Noortgate and De Boeck 2005).

The advantage of model tests for given groups is that, if DIF is detected, the results can
be interpreted straightforwardly in terms of, e.g., wich items are easier or harder to solve
for which group. This can give valuable hints at the psychological sources for the differential
functioning of the items, and how it can be eliminated or avoided in future versions of the test,
as also pointed out by Stout (2002): ‘...if reading-comprehension test items of paragraphs
that discuss the physical sciences are discovered to display DIF against women, then the
test specifications for future versions of such a reading comprehension test might exclude
physical-science-based paragraphs’.

On the other hand, in all above mentioned approaches only those groups that are explicitly
proposed by the researcher are tested for DIF. Variables typically proposed for testing include
age, gender, ethnicity and language, depending on the objective of the assessment (cf., e.g.,
Gelin, Carleton, Smith, and Zumbo 2004; Perkins, Stump, Monahan, and McHorney 2006;
Woods, Oltmanns, and Turkheimer 2009; Pedraza, Graff-Radford, Smith, Ivnik, Willis, Pe-
tersen, and Lucas 2009). However, if in later analyses a group difference is found in a variable
that has not been explicitly tested for DIF, it cannot be ruled out that this effect is only an
artefact due to unnoticed DIF.

At the other extreme, the latent class (or mixture) approach of Rost (1990) can be considered
as the most stringent test for the Rasch model, because it tests for item parameter differences
between all possible groups of subjects — regardless of person covariates. In this sense, the
latent class approach is a very stringent model test, but it provides no straightforward inter-
pretation of the groups. Therefore, often latent class approaches are used only as a first step
in the analysis, where the second step is to attempt to describe the latent classes by person
covariates for interpretability (see, e.g., Cohen and Bolt 2005; Hancock and Samuelsen 2007;
de Meij, Kelderman, and van der Flier 2008, and the references therein).

Here, we propose a new statistical approach for detecting DIF in the Rasch model that can be
considered a compromise between the two former approaches — testing only predefined (and
hence easy to interpret) groups vs. testing all possible groups but loosing interpretability.
The idea for the new method is to recursively test all groups that can be defined based on
(interactions of) the available covariates, thus preserving interpretability, but still exploring
a very wide set of potential sources of DIF.

In the next section, the rationale and technical details of the new method are first explained
by means of a simple artificial example. Two applications to a general knowledge quiz and a
teaching evaluation are presented in Section 3. The method is freely available as a software
implementation in the add-on package psychotree (Zeileis, Strobl, Wickelmaier, and Kopf
2010) for the R system for statistical computing (R Development Core Team 2010).

2. A new method based on recursive partitioning

The new method for detecting groups of subjects with DIF is based on the technique of model-
based recursive partitioning, that employs statistical tests for structural change adopted from
econometrics. Model-based recursive partitioning is a semi-parametric approach. The aim
is to detect differences in the parameters of a statistical model between groups of subjects
defined by combinations of covariates.
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Table 1: Summary statistics for the covariates of the instructive example (artificial data).

Variable Summary statistics

Gender male: 109 female: 91
xmin x0.25 xmed j x0.75 xmax

Age 16 31 45 45.84 60 74

Motivation 1 2 3 3.38 5 6

Model-based recursive partitioning is related to the method of classification and regression
trees (CART, Breiman, Friedman, Olshen, and Stone 1984; see Strobl, Malley, and Tutz 2009
for a thorough introduction), where the covariate space is recursively partitioned to identify
groups of subjects with different values of a categorical or continuous response variable. As an
advancement of this approach, in model-based recursive partitioning it is the parameters of a
parametric model — rather than the values of a single response variable — that vary between
groups. Such parameters could be, e.g., intercept and slope parameters in a linear regression
model or, as in our case, the item parameters of a Rasch model that may vary between groups
of subjects.

This principle is now first illustrated by means of an artificial instructive example, before
the technical details are addressed in the next sections: The data for the instructive example
consist of the simulated responses of 200 subjects to 20 items, which can be considered, e.g.,
as questions in a proficiency test. In addition to the responses, the data set includes three
covariates: gender, age, and a motivation score. The summary statistics for the latter are
listed in Table 1.

In order to test for DIF, the method assesses the item responses with respect to the three
covariates: gender, age, and motivation. The result is presented in Figure 1 and will be
termed a Rasch tree from here on. In each of the terminal nodes of the tree, the item
parameter estimates for the 20 items are displayed (a high value indicates that the item is
very difficult).

Following the tree from top to bottom, we find that different item parameters result for males
and females, and within the group of males for those up to and over the age of 34. For
example, the third item (highlighted by the large dot) is particularly hard for males up to
the age of 34 (represented in node 3) as well as for females (represented in node 5), while the
14-th item (highlighted by the second large dot) is particulary easy only for the young males
(represented in node 3). Note also that the variable motivation was not selected for splitting,
i.e., there is no DIF with respect to motivation, but only with respect to gender and age.

Generally speaking, the fact that we end up with more than one terminal node in Figure 1
means that the null hypothesis of one joint Rasch model for the entire sample must be rejected.
In this sense, the proposed method is a test for DIF as well as an overall model test for the
Rasch model. More importantly, however, we can directly see which groups are affected by
DIF with respect to which items. This information can help identify the reasons for DIF and
guide the decision how to proceed with the affected items.

The following consecutive steps are used to create the Rasch tree in Figure 1:

1. Estimate the item parameters jointly for all subjects in the current sample, starting
with the full sample.
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Figure 1: Rasch-tree for the instructive example (artificial data for illustration purposes),
exhibiting DIF between males up to the age of 34, males over the age of 34 and females. In
the terminal nodes, estimates of the item difficulty are displayed for each of the 20 items.

2. Assess the stability of the item parameters with respect to each available covariate.

3. If there is significant instability, split the sample along the covariate with the strongest
instability and in the cutpoint leading to the highest improvement of the model fit.

4. Repeat steps 1-3 recursively in the resulting subsamples until there are no more signif-
icant instabilities (or the subsample is too small).

These steps are now explained in more detail.

2.1. Estimating the item parameters

We use the common conditional maximum likelihood approach for estimating the item param-
eters (but the method can also be adapted to, e.g., marginal maximum likelihood estimation).
Let 0;, 1 =1,...,n, denote the person parameters, 3;, j = 1,...,m, denote the item param-

eters and u;; denote the response of subject i to item j. Since under the Rasch model
etis-(0i—55)
P(Us; = uijl0, B;) = 11 b B

the person raw-scores r; form sufficient statistics for the person parameters, the item pa-
rameters can be estimated by means of iterative procedures from the conditional likelihood

N o e uis B

LC(/3|T17 .- .,Tn) = ELC(BME) = H W? (1)

i=1

where 7,, is the symmetric function of order r; (cf., e.g., Fischer and Molenaar 1995).
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Figure 2: Structural change in stock returns over time (artificial data for illustration pur-
poses). In the left plot, the dotted line indicates the overall mean. The dashed lines indicate
deviations from the overall mean, which are positive before the structural change and nega-
tive afterwards. In the right plot, the positive and negative deviations are cumulated and the
structural change is now noticeable from the peak in the cumulative sum process.

2.2. Testing for parameter instability

In order to test whether the item parameters vary between groups of subjects defined by
covariates, we use the approach of structural change tests from econometrics. These tests are
usually employed for detecting, e.g., a drop in stock returns over time.

In this setting, the individual values are ordered with respect to the variable time, as visualized
for an artificial time series in Figure 2 (left). Due to this ordering, it becomes obvious that
there is a structural change in the year 2008, that can also be tested statistically as outlined
below.

The same principle is now applied to detect changes in the item parameters of the Rasch
model over the range of person covariates: the item parameters are first estimated jointly
for the entire sample. Then the individual deviations from this joint model are ordered with
respect to a covariate, such as age. If there is systematic DIF with respect to groups formed
by the covariate, the ordering will exhibit a systematic change in the item parameters. If, on
the other hand, no DIF is present, the values will merely fluctuate randomly.

For example, in Figure 2 (left), the overall mean of the stock returns should be constant
over the entire time range under the null hypothesis of parameter stability. Accordingly,
the deviations from the overall mean should not show any systematic variation under the
null hypothesis. Under the alternative of a structural break, however, the deviations differ
systematically from zero before and after the cutpoint, like illustrated here.

For statistically testing structural change in model parameters, we suggest the usage of gen-
eralized M-fluctuation tests (Zeileis and Hornik 2007) that form the basis of the model-based
recursive partitioning framework of Zeileis, Hothorn, and Hornik (2008). The idea of this
class of tests is to compute the subject-wise model deviations and derive test statistics with
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known distributions from them.

A general measure of deviation for likelihood-based models for i = 1,...,n observations is the
individual score function ¥ (u;, 3), i.e., the derivative of the individual contributions to the
log-likelihood W(u;, 3) with respect to the parameter vector. These individual contributions

can easily be computed from the conditional likelihood for the Rasch model as outlined below.

For the construction of the test statistic, the individual contributions to the score function
are cumulated according to the order induced by the variable time, as illustrated in Figure 2,
or any other covariate. The systematic change from positive to negative in the individual
contributions to the score function in Figure 2 (left) is then captured as a distinctive peak in
the cumulative sum process in Figure 2 (right).

The cumulative sum process is defined as

n-t]
W) = V2N glug. ) (0<t<), 2)
=1

where the index (i|¢) denotes the i-th ordered observation with respect to the ¢-th covariate, |- |
denotes the integer part, and V= > @Z)(ul,ﬁ)ib(uz, B)T is the outer-product-of-gradients
estimate of the covariance matrix. Under the null hypothesis of parameter stability, the
cumulative sum process Wy(-) can be shown to converge to an (m — 1)-dimensional Brownian
bridge (Zeileis and Hornik 2007), which can be used as the basis for statistical inference.

The cumulative aggregation runs over the order induced by the ¢-th covariate: Thei=1,...,n
individual deviations are ordered with respect to the covariate and aggregated up to the |n-t|-
th element in each step. When Wy (t) is considered as a function of the fraction ¢ of the sample
size, the null-model with no structural change corresponds to the path of a random process
with constant zero mean.

The advantage of this approach is that the model does not have to be reestimated for all
splits in all covariates, because the individual deviations remain the same and only their or-
dering (and the corresponding path of Wy(t)) needs to be adjusted for evaluating the different
covariates.

To capture systematic deviations in Wy(-), different test statistics can be used depending on
whether the /-th covariate is a numeric or a categorical variable. If it is numeric, Zeileis et al.
(2008) point out that a natural test statistic is

i

n

. N —1
i n—i
Sy = max [ —-
i=iyd \TL M

This can be interpreted as the maximum Lagrange-multiplier statistic (also known as score
statistic) for a single shift alternative over all conceivable cutpoints in [i,7]. The limiting
distribution is the supremum of a tied-down Bessel process, from which p values can be
computed (see Zeileis et al. 2008, for details).

2

3)

2

If, on the other hand, the ¢-th covariate is categorical (with values z;; taking categories
g=1,...,Q), it is more natural to use the following test statistic

S, = qngn <g I(xiy = Q)> B AWy <;>

2

, (4)

2
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Node 1 Node 2 Node 3 Node 4 Node 5

Age Statistic 43.109 61.257 26.956 25.086 19.559
p value 0.110 0.001** 0.742 0.962 1.000
Gender Statistic 41.486 — — — —

p value 0.006** — — — —
Motivation Statistic 82.038 86.252 100.787 92.296 96.166
p value 0.995 0.926 0.541 0.806 0.694

Table 2: Summary of the parameter instability test statistics and corresponding p values for
the instructive example. Those variables whose p values are highlighted with ** symbols are
selected for splitting in the respective node.

where A, is the increment within the g-th category. This test statistic is invariant to reordering
of the @) categories and the subjects within each category. The test statistic captures the
instability over the @ subsamples. Its limiting distribution is x? with (Q —1)-(m — 1) degrees
of freedom, from which p values can be computed. This test is employed for both nominal
and ordinal categorical variables. A potential ordering of the categories is accounted for in
the next step, when the cutpoint is selected (see Section 2.3 below).

For the Rasch model, the objective function used for parameter estimation is the conditional
log-likelihood. The individual contributions to the conditional log-likelihood can be easily
computed as log L.(3|r;) (cf. Equation 1), yielding

\I/(u,,,B) - _Zuij 'ﬁj — log (77“1(16)) (5)

J=1

For the computation of the structural change tests, the individual contributions to the score
function are derived from Equation 5. The contribution of the j-the item parameter for the

i-th subject is:

= —Ujj — 6
aB; Yo (B) 9B ©)
The derivatives of the symmetric functions v,,(3) are again symmetric functions with certain
terms omitted (cf., e.g., Fischer and Molenaar 1995). In our implementation of the Rasch
trees, the sum algorithm of Liou (1994) is used (by default) for computing these derivatives.

When the individual contributions to the score function of the Rasch model from Equation 6
are ordered with respect to covariate £ and inserted in Equation 2, parameter instabilities in
the item parameters can be statistically tested using the model-based recursive partitioning
approach outlined above.

The results of this procedure are easy to interpret: The parameter instability test statistics
Sy with associated p values are provided for each candidate variable, as illustrated for the
instructive example in Table 2. The test statistics for the numeric variable age corresponds
to Equation 3 and for the categorical variable gender and the ordered categorical variable
motivation to Equation 4; p values are derived from the respective limiting distributions.

In the first node, the variable with the smallest p value — in this case gender — is selected for
splitting (cf. Table 2 and Figure 1). In each daughter node the splitting continues recursively:
Here, the variable age is selected for splitting in the second node, whereas no split is found
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Figure 3: Log-likelihood of the partitioned Rasch model for the second split in the covariate
age. The dashed line indicates the location of the optimal cutpoint (at the value 34) while
the dotted line indicates the location of the median (at the value 45).

in the third node. Note that the variable gender is no longer available for splitting starting
from the second node as it offers only one possible cutpoint (that has already been used for
the first split).

As opposed to gender, the second splitting variable age is numeric and offers as many possible
cutpoints as it has distinct values. In this case, it is an important advantage of the model-
based recursive partitioning method that the exact cutpoint does not need to be pre-specified,
but is determined in a data-driven way as described in detail in the next section.

Splitting continues until all p values exceeded the significance level (commonly 5%), indicating
that there is no more significant parameter instability, or until the number of observations in
a subsample falls below a given threshold. Note that the p values are Bonferroni adjusted as
outlined in Section 2.4.

2.3. Selecting the cutpoints

After a covariate has been selected for splitting, the cutpoint is determined by maximizing
the partitioned likelihood (i.e., the sum of the likelihoods for the observations before and after
the cutpoint) over all candidate cutpoints within the range of this variable.

For the first split in the instructive example, this is straightforward as gender only allows
for a single split into female and male subgroups. In the second split, however, all possible
cutpoints in the variable age for the male subset are considered and the associated partitioned
likelihoods are displayed in Figure 3. Clearly the age 34 is the optimal cutpoint, i.e., the
strongest difference in the item parameters exists between males up to and over the age of 34.



Carolin Strobl, Julia Kopf, Achim Zeileis

Note that this cutpoint is obtained directly from the data, whereas standard approaches,
such as the graphical or likelihood ratio test, require pre-specified focal and reference groups.
For these standard approaches, often the median or mean is used as a cutpoint to split the
sample into focal and reference group. However, this choice is completely arbitrary and
may even conceal an actual parameter difference related to another cutpoint — as in this
example, where the median 45 is far off the maximum indicating the strongest parameter
change (cf. Figure 3). As a result, using the median as an arbitrarily pre-specified cutpoint
may result in an insignificant test result, even though DIF is clearly present in the variable.
As opposed to that, the data-driven approach suggested here can detect both whether there
is parameter instability with respect to the variable age and where the parameter change
occurs.

Formally, for a numeric splitting variable we can define the subsamples L(§) = {i|zy < &}
and R(§) = {i|zy > &} on the left and right, respectively, of some cutpoint {. For both
subsamples, the parameters B(L) and B(R) can be estimated separately as described above.

To determine the optimal cutpoint &, the partitioned log-likelihood

Z o (Ui,,é(L)) n (W,B(R))

04
i€L(€) 1€ R()

is maximized over all candidate cutpoints £ (typically requiring a certain minimal subsample
size).

While this approach can be applied to numeric and ordered covariates, for unordered cate-
gorical covariates the @) categories can be split into any two groups. From all these candidate
binary partitions, again the one with the maximal partitioned likelihood is chosen.

What is important to note here is that the optimal cutpoint is determined only if a variable is
associated with a significant parameter instability, which prevents variable selection bias (cf.,
e.g., Dobra and Gehrke 2001; Shih 2004; Hothorn, Hornik, and Zeileis 2006; Strobl, Boulesteix,
and Augustin 2007). In particular, it would be statistically incorrect to assess the significance
of an optimal cutptoint using the standard likelihood ratio test (employing its x? distribution).
The reason is that due to the optimal selection of the cutpoint (i.e., a special type of multiple
testing) the asymptotic distribution of the maximally selected likelihood ratio statistic is not
x? anymore (Andrews 1993). In fact, the maximally selected Lagrange-multiplier statistic
from Equation 3, that is employed in the Rasch tree method, is asymptotically equivalent to
the maximally selected likelihood ratio statistic, but avoids reestimating the model. Thus,
the Rasch tree approach provides a sound statistical framework for the automatic detection
of the variable and cutpoint inducing the strongest DIF.

2.4. Stopping criteria

For creating a Rasch tree, the four basic steps outlined above — (1) estimating the item
parameters of a joint model, (2) testing for parameter instability, (3) selecting the splitting
variable and cutpoint and (4) splitting the sample accordingly — are repeated recursively until
a stopping criterion is reached.

Two kinds of stopping criteria are currently implemented: Splitting continues only as long as
significant parameter instability is detected. If there is no (more) significant instability with
respect to any of the covariates, the splitting stops. Thus, the significance level — usually set
to 5% — serves as the most important stopping criterion.
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In addition to that, as a second stopping criterion a minimum sample size per node can be
specified. This minimal node-size should be chosen such as to provide a sufficient basis for
parameter estimation in each subsample, and should thus be increased when the number of
item parameters to be estimated is large. For the instructive example, e.g., a significance level
of 5% and a minimal node-size of 20 were employed.

Finally, one should keep in mind that when a large number of covariates is available in a data
set, and all those covariates are to be tested for DIF, multiple testing becomes an issue — as
with any statistical test for DIF. To account for the fact that multiple testing might lead to
an increased false-positive rate when the number of available covariates is large, a Bonferroni
adjustment for the p value splitting criterion is applied. Moreover, the recursive partitioning
approach forms a closed testing procedure, so that the significance level holds for the entire
tree, not only for each individual split. This ensures that DIF is not erroneously detected as
an artefact of the number of candidate variables.

3. Application examples

3.1. General knowledge quiz

An online quiz for testing one’s general knowledge was conducted by the weekly German news
magazine SPIEGEL in 2009. Overall, about 700,000 respondents participated in the quiz and
answered a set of sociodemographic questions. The general knowledge quiz consisted of a
total of 45 items from five different topics: politics, history, economy, culture, and natural
sciences. For each topic, four different sets of nine items were available, that were randomly
assigned to the participants. A thorough analysis and discussion of the original data set is
provided in Trepte and Verbeet (2010).

In order to present an application example with a not too heterogeneous sample and a more
realistic size for psychological research, we consider only a subsample: university students
enrolled in the federal state of Bavaria, who had all been assigned a particular set of questions
(questionnaire number 20). This sample still contains 1075 complete cases, that are employed
in the following analysis.

We consider the responses to the 45 quiz items and the covariates gender, age, semester of
university enrollment, an indicator for whether the student’s university received elite status by
the German “excellence initiative”, and the frequency of accessing SPIEGEL’s online magazine
(SPIEGEL Online — SPON). Table 3 provides summary statistics for these covariates.

Table 3: Summary statistics for the covariates of the general knowledge quiz example.

Variable Summary statistics
Gender male: 417 female: 658
Elite university no: 836 yes: 239

L min Lo.25 Tmed z Lozs  Tmax
Age 18 21 23 23.10 25 40
Semester 1 2 5 8§ >10

SPON never never 1/week daily daily
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The Rasch tree assesses the item responses with respect to the five covariates. As illustrated in
Figure 4, the Rasch tree has splits in the variables gender, age, and SPON access frequency,
indicating DIF in these variables, but not in the variables elite university and semester.
Figure 4 also illustrates that it is a combination of the variables gender, age, and SPON
access frequency — i.e. an interaction of three variables, rather than one variable alone — that
determines which items are easier or harder to solve. With standard approaches, this pattern
could only be detected if the interaction terms were explicitly included in the model or the
respective groups were explicitly pre-specified. However, in practice usually only DIF in single
variables is investigated, so that a complex interaction structure like in this example would
not be detected.

Items that show particularly strong DIF include:

e The third history item (highlighted by the first large dot: Which form of government
is associated with the French King Louis XIV? — Absolutism) is particularly easy for
women up to the age of 21 (represented in node 4).

e The first economy item (highlighted by the second large dot: Who is this? — Picture of
Dieter Zetsche, CEO of Mercedes-Benz) is particularly difficult for women (represented
in nodes 4 through 6) and for young men who access SPON up to 2-3 times per week
(represented in node 9).

Actually, none of the 118 women represented in node 4 (up to 21 years of age, SPON
access up to once per week) answered the item correctly, so that the difficulty parameter
could not be estimated and was internally set to infinity (as indicated by the dashed
lines pointing out of the range of the plot).

e The fourth economy item (highlighted by the third large dot: What is a CEO? — A
Chief Executive Officer) is particularly easy for men up to the age of 22 who access
SPON more than 2-3 times per week (represented in node 10).

e The fifth culture item (highlighted by the fourth large dot: What is the name of the
bestselling novel by Daniel Kehlmann? — Measuring The World) is particularly easy for
women who access SPON more than once per week (represented in node 6).

e The fourth natural sciences item (highlighted by the fifth large dot: What is also termed
Trisomy 21?7 — Down syndrome) is easier for women in general (represented in nodes 4
through 6) and particularly for young women (represented in node 4).

Moreover, it appears that — compared to the other groups — male students over the age of 22
(represented in node 11) find no items particularly easy or particularly hard.

It is also interesting to note that in the general population sample investigated by Strobl,
Kopf, and Zeileis (2010a) — as opposed to the student sample considered here — some patterns
of DIF coincided with the original subdimensions of the quiz (e.g., history questions tended to
be easier for older men), indicating an underlying multidimensionality of the general knowl-
edge construct. In our student sample, however, only single items from various topics are
particularly easy for students of a certain gender and age, or for those freqently accessing the
SPIEGEL online magazine (where it is left to discuss whether the latter should be considered
a nuisance dimension, an unfair advantage — or a valid source of general knowledge).

11
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3.2. Teaching evaluation

The second application example is from the field of teaching evaluation: A questionnaire for
evaluating the quality of a lecture was completed by 146 first year students from the faculty of
natural sciences at the University of Palermo, Italy, in 2006. The students answered items on
the general quality of the lecture, their satisfaction with the lecture, organizational issues, the
infrastructure, and the lecturer, as well as some sociodemographic questions. A first analysis
and discussion of the full data set is provided by Romano (2010).

The sociodemographic covariates are age, gender, type of residence, number of courses taken
during the evaluation phase and job employment. Summary statistics for these covariates are
provided in Table 4.

Again, the dichotomized item responses are assessed by the Rasch tree with respect to the
five covariates. Seven subjects, for whom all item responses are missing or zero, are excluded
from the analysis, leaving 139 observations. As illustrated in Figure 5, the Rasch tree has a
split only in the variable gender, indicating DIF between male and female students. No DIF is
detected in the variables age, type of residence, number of courses taken and job employment.

Items that show particularly strong DIF include:

e The second item (highlighted by the first large dot: Were the exam modalities clearly
explained in class?) is harder to agree to for male students.

e The ninth item (highlighted by the second large dot: Does the timetable allow enough
time for changing rooms?) is easier to agree to for female students.

e The 16-th item (highlighted by the third large dot: Does the lecturer clearly explain
the subject matter?) is harder to agree to for female students.

This example illustrates that DIF can not only occur and be detected in attainment tests,
but also in evaluations, as well as attitude or personality tests, where different groups of
participants may interpret the items differently or be influenced in their item responses by
different dimensions of the latent trait. In any case, whenever one or more splits are found
by the Rasch tree, a joint Rasch model — as well as a simple ranking, that also assumes
unidimensionality — is no longer appropriate for describing the data.

Table 4: Summary statistics for the covariates of the teaching evaluation example.

Variable Summary statistics Missing

Gender male: 89 female: 54 3

Residence resident: 51 commuter: 35 non resident: 46 14

Job none: 120 part time: 14 full time: 3 9
L min Lo.25  Tmed x Zo.75 Tmax

Age 18 19 19 19.21 19 28 1

Number of courses 1 2 3 2.89 3 5 4

13
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gender
p =0.032

male female

334 Node 2 (n = 84) 3.34 Node 3 (n = 55)

-3.16 T T T T T T T T T T 1T T 1T 71— 316 I s I B B B
1 16 1 16

Figure 5: Rasch tree for the teaching evaluation example.

4. Discussion and outlook

We have proposed a new method for detecting DIF that combines the advantages of previous
approaches for given groups and latent classes: Groups of subjects exhibiting DIF are auto-
matically detected, but remain directly interpretable with respect to their covariate values.
In particular, in numeric covariates it is no longer necessary to pre-specify a cutpoint for
defining focal and reference groups, but the cutpoint associated with the strongest parameter
difference is detected automatically. Thus, DIF in a numeric covariate cannot go unnoticed
due to a suboptimal definition of the groups.

When DIF is considered as an indicator of multidimensionality, the graphical display of the
Rasch trees can also help identify both groups of items and groups of subjects that may be
affected by an additional dimension — whether it be of interest or nuisance.

Of course, any covariate-based approach can only detect all groups of subjects with DIF when
all relevant covariates are observable and available for the analysis. In future research, we plan
to combine the covariate-based approach presented here with a latent class approach. Then
all information available from covariates could be utilized first before a latent class approach
is applied in the terminal nodes to detect any remaining heterogeneity.

Moreover, it should be noted that — as with all observational data — a covariate used for
splitting should not be interpreted as the causal source of the observed DIF, because the
splitting variable may only serve as a proxy for the unobservable or unavailable true cause.
In the example of Stout (2002), e.g., that is cited in the introduction of this paper, if DIF
is detected between men and women in test items on paragraphs discussing the physical
sciences, gender should not be considered as the actual cause of the DIF, but as an indicator
of a variety of educational and social influences — such as a lack of reinforcement for female
students’ interest in physical sciences — that eventually lead to disadvantages in those items.

Technically, we plan to generalize the method to extensions of the Rasch model (such as
those proposed by Birnbaum 1968; Fischer 1973; Masters 1982). In particular, it would be
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interesting to apply an extension of the Rasch tree method to a 2-parameter logistic model
including a location and a guessing parameter, because this would allow the detection of
differential guessing behavior in the case of multiple choice items (also investigated by Ben-
Shakhar and Sinai 1991 and Westers and Kelderman 1991). For these extensions, it is a great
advantage of the proposed method that it is not limited to the conditional maximum likelihood
approach employed here, but can be generalized to several other estimation approaches. A
related method for detecting different preferences between groups of subjects in the Bradley-
Terry model is already implemented in the psychotree package (see Strobl, Wickelmaier, and
Zeileis 2010D).

Computational details

Our results were obtained using the R system for statistical computing (R Development
Core Team 2010), version 2.9.2, and the add-on package psychotree (Zeileis et al. 2010),
version 0.11-1. Both are freely available under the General Public License from the Compre-
hensive R Archive Network. A vignette describing the practical application of the method (by
replicating the knowledge quiz illustration) is available along with the psychotree package at
http://CRAN.R-project.org/package=psychotree/. The analysis of the instructive data
example is also replicated in the manual for the function raschtree.
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