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6 1 EINLEITUNG

1 Einleitung

In einem Habitatmodell werden die verschiedenen Lebensrdume von Tieren und
Pflanzen untersucht, dabei sollen mogliche kausale Beziehungen zwischen den
verschiedenen Habitateigenschaften und dem Vorkommen einer Art modelliert
werden. Heuschrecken sind in Bayern traditionell eine gut dokumentierte und un-
tersuchte Tierordnung, bereits seit dem 18. Jahrhundert gibt es Aufzeichnungen
iiber die verschiedenen Arten und ihre bevorzugten Lebensrdume. Aktuell sind in
Bayern 71 Heuschrecken- und Grillenarten bekannt und nachgewiesen (Schlum-
precht und Waeber, [2003), wovon 46 Arten auf der Roten Liste in Bayern ste-
hen und damit vom Aussterben bedroht sind. Nicht nur deshalb ist es wichtig,
moglichst gute Habitatmodelle zu erstellen, um die Lebensrdume und damit die
Heuschrecken besser schiitzen zu konnen. Es werden zwei Ordnungen mit den

jeweiligen Familien unterschieden:

e Kurzfiihlerschrecken (Dornschrecken und Feldheuschrecken)

e Langfiihlerschrecken (Laubheuschrecken, Hohlenschrecken und Grillen)
Die hédufigsten Arten zihlen zu den Feld- und Laubheuschrecken:

e Feldheuschrecken: Gemeiner Grashiipfer (Chorthippus parallelus), Nachti-
gall-Grashiipfer (Chorthippus biguttulus), Wiesengrashiipfer (Chorthippus

dorsatus), Brauner Grashiipfer (Chorthippus brunneus)

e Laubheuschrecken: Roesels Beilschrecke (Metrioptera roeselii), Gemeine
Strauchschrecke (Pholidoptera griseoaptera), Griines Heupferd (Tettigonia

viridissima) .

Im speziellen Fokus in der Biologie steht die Artenvielfalt. Die durchschnittliche

Artenzahl in Bayern liegt bei 15.8 Heuschreckenarten pro Quadrant (34 km?). Die



maximale Artenvielfalt betridgt 41 Arten. An keinem Ort in Bayern kommen al-
so alle existierenden Heuschreckenarten zugleich vor. Fiir jede dieser einzelnen
Arten ist bekannt, in welchen Biotopen sie bevorzugt leben und durch welche
Umweltvariablen sie besonders beeinflusst werden. So bevorzugen sie allgemein
sonnige und extensiv bewirtschaftete Lebensriume. Einzelne heile Sommertage
oder Frost im Winter beeinflussen die Populationen weniger als insgesamt be-
sonders warme oder kiihle Jahre. Vor allem ausgeprigte Nass- oder Trockenjahre

wirken sich stark negativ auf die Bestandsentwicklungen aus.

Statistische Methoden fiir Artverbreitungsmodelle in der Biologie sind vielfil-
tig. Bei bisherigen Methoden gibt es jedoch oft Schwierigkeiten mogliche nicht-
lineare Effekte, Interaktionen, Autokorrelationen oder Nicht-Stationaritit in die
Modellgleichungen aufzunehmen. Rdumliche Autokorrelation erklért sich dadurch,
dass das Vorkommen einer Art durch rdumliche Néhe anderer Tiere positiv oder
negativ beeinflusst wird, ohne den Einfluss von Umweltvariablen zu beachten (Le-
gendre, 1993). Speziell in Habitatmodellen muss davon ausgegangen werden, dass
die modellierten Umwelteffekte zusétzlich iiber den Raum variieren. Dies wird in
der Komponente der Nicht-Stationaritidt modelliert. Allerdings muss bisher min-
destens einer, wenn nicht alle dieser eben erwédhnten Effekte ignoriert werden, um
tiberhaupt ein Modell schitzen zu konnen. Dabei sind die Konsequenzen fiir die
Modellinferenz wie nicht unabhédngig und identisch verteilte Residuen und damit
verzerrte Schitzer und erhohte Fehlerraten 1. Art durchaus bekannt (Dormann

et al.,2007).

In Hothorn et al.| (2010b) wird nun ein neuer Ansatz vorgestellt, der das eben
erwihnte Problem zu 10sen versucht, indem die Einfliisse aller Variablen in ei-

ne globale und in eine lokale Komponente zerlegt werden. Dabei besteht die
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globale Komponente aus den Umweltvariablen (Temperatur, Niederschlag, Bo-
dennutzung). Sie bietet verschiedene Moglichkeiten, komplexere Strukturen, wie
z.B. Interaktionen oder nicht-lineare und nicht-additive Effekte zu modellieren.
Die lokale Komponente umfasst die rdumliche Autokorrelation und die Nicht-
Stationaritit der Umweltvariablen. Die effektive Variablenselektion durch den an-
gewendeten Boosting-Algorithmus fithrt zu einem sehr sparsamen Modell, das zu-
sdtzlich durch eine Stabilitétsselektion nur tatsidchlich informative Variablen auf-
nimmt. Das Ziel dieser Arbeit ist, mit der Schitzmethode ,,Spatial Boosting®, ein

Habitatmodell fiir die Artenzahl der Heuschrecken zu erstellen.

2 Datenbeschreibung

2.1 Herkunft der Daten und Bearbeitung

Der Datensatz wurde zur Verfiigung gestellt vom Nationalpark Bayerischer Wald.
Die Zielvariable ,,Anzahl von Heuschreckenarten stammt aus dem Heuschre-
ckenatlas von Bayern (Schlumprecht und Waeber, 2003)), der fiir die gesamte
Fliche Bayerns aufgeteilt in durchschnittlich 33.9 km? groBe Quadranten erfasst,
welche der 71 erfassten Heuschreckenarten jeweils vorkommen. Fiir jeden Qua-
dranten wurde daraus die Artenzahl berechnet, die angibt, wie viele verschiedene
Heuschreckenarten dort insgesamt leben. Aulerdem wurde erfasst wie viele Ex-
kursionen jeweils gemacht wurden, wobei die Beobachtungen mit O Exkursionen

und keinen gefundenen Heuschrecken aus dem Datensatz entfernt wurden.

Die Kovariablen setzen sich zusammen aus den Klima- und Bodennutzungsfak-
toren. Die Klimavariablen stammen aus dem Projekt WorldClim, das sich zum

Ziel gesetzt hat, die wichtigsten Klimadaten fiir alle Regionen der Erde zu er-
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fassen. Dazu wurden Auswertungen von Wetterstationen aus vielen verschiede-
nen Klimadatenbanken weltweit zusammengefasst. Eine ausfiihrliche Beschrei-
bung dariiber findet man in|/Hijmans ef al. (2005). In einer Auflésung von 0.93 km
x 0.93 km = 0.86 km?, umgangssprachlich auch 1 km2-Auflésung genannt, ste-
hen interpolierte Monatsdurchschnittsdaten zu den Niederschlagsmengen sowie
Minimal-, Maximal- und Durchschnittstemperaturen pro Monat zur Verfiigung.
Daraus abgeleitet wurden 19 bioklimatische Variablen, die biologisch bedeutender
sind, da man sie besser interpretieren kann. Sie beschreiben beispielsweise Jah-
restrends, Saisonalitit und Extremwerte sowie eventuelle limitierende Umwelt-
faktoren. Nur diese Bioclim-Variablen werden im Weiteren betrachtet. Diese sind

in Tabelle[[]aufgefiihrt. Die Daten beruhen hauptsichlich auf Messungen der Jah-

Variable ‘ Name ‘ Messniveau
Jahresdurchschnittstemperatur biol metrisch
Tagestemperaturspanne bio2 | metrisch
Isothermalitéat bio3 | metrisch
Temperatur-Saisonalitat bio4 | metrisch
Maximaltemperatur des warmsten Monats bio5 | metrisch
Minimaltemperatur des kiltesten Monats bio6 | metrisch
Jahrestemperaturspanne bio7 | metrisch

Durchschnittstemperatur des feuchtesten Quartals | bio8 | metrisch
Durchschnittstemperatur des trockensten Quartals | bio9 | metrisch
Durchschnittstemperatur des warmsten Quartals biol0 | metrisch

Durchschnittstemperatur des kiltesten Quartals bioll | metrisch
Jahresniederschlag biol2 | metrisch
Niederschlag im feuchtesten Monat biol3 | metrisch
Niederschlag im trockensten Monat biol4 | metrisch
Niederschlags-Saisonalitét biol5 | metrisch
Niederschlag im feuchtesten Quartal biol6 | metrisch
Niederschlag im trockensten Quartal biol7 | metrisch
Niederschlag im wiarmsten Quartal biol8 | metrisch
Niederschlag im kéltesten Quartal biol9 | metrisch

Tabelle 1: Bioklimatische Variablen von WorldClim

re 1960 bis 1990, nur wenn in diesem Zeitraum zu wenige Messungen vorlagen,
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wurde die Zeitspanne auf die Jahre 1950 bis 2000 ausgedehnt.

Der zweite Teil der Einflussvariablen stammt aus dem CORINE LandCover-Projekt
CLC2000, das die europdische Umweltagentur EEA in Zusammenarbeit mit dem
European Topic Centre for Terrestrial Environment (ETC-TE) ins Leben geru-
fen hat. Durch das Projekt sollten einheitliche und vergleichbare Daten tiber die
Bodenbedeckung in Europa gesammelt werden (Deutsches Zentrum fiir Luft-und
Raumfahrt e.V., 2005)). Aus Satellitenbildern im Mafstab 1:100.000 wurden zum
ersten Mal im Jahr 1990 die 44 verschiedenen Landnutzungsklassen in einer Auf-
16sung von 100 m x 100 m eingeteilt, wobei in Deutschland nur 37 Klassen rele-
vant sind. Der vorliegende Datensatz enthilt Beobachtungen aus dem Jahr 2000,
mit 21 verschiedenen Klassen sowie zwei Zusammenfassungen fiir die Kategori-
en Wald und Wasser. Drei Variablen (Deponien, Gletscher, Verkehr) wurden von
Beginn an ausgeschlossen, da sie nur sehr selten vorkamen. So ergeben sich ins-
gesamt 20 Bodennutzungsvariablen, die in Tabelle 2] aufgefiihrt sind. Diese Varia-
blen beschreiben den jeweiligen Anteil der Bodennutzung in dem hektargrof3en
Feld. Wenn es nicht geniigend Ausprigungen pro metrischer Variable gab, wurde
sie kategorisiert mit den Auspriagungen = 0 und > 0. Die Variable Stadt wurde in

drei Kategorien eingeteilt.

Zusitzlich liegen fiir alle Quadranten die Koordinaten im Gauf3-Kriiger-System

und die Hohe iiber Normalnull als Variable vor. Aus der Hohe wurde die standar-

Hohe—min(Hohe)

disierte Hohe mit der Formel e
max(Hdohe)

berechnet. Die Hohe geht als Kova-
riable bei den Umweltvariablen in das Modell ein, wohingegen die standardisierte
Hohe in die Berechnung der Nicht-Stationaritit einbezogen wird. Da die Kovaria-
blen aus beiden Quellen in verschiedenen Auflésungen vorlagen, wurden jeweils

Durchschnittswerte gebildet fiir die ca. 40 km? groBen Quadranten, fiir die die
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Variable ‘ Messniveau

Wald (SAWald) metrisch

Wasser (SAWasser) kategorial: = 0, > 0
Abbauflachen kategorial: = 0, > 0
Acker metrisch

Deponien nicht verwendet
Felsen kategorial: = 0, > 0
Gletscher nicht verwendet
Heiden und Moore (HeidenMoore) | kategorial: = 0, > 0
Industrie kategorial: = 0, > 0
Komplex metrisch

Laubwald metrisch

Mischwald metrisch

Moore kategorial: = 0, > 0
Nadelwald metrisch

Obst kategorial: = 0, > 0
Stadt kategorial: = 0, 0 < x < 0.1, > 0.1
Sumpf kategorial: = 0, > 0
Verkehr nicht verwendet
Waldrandgebiet (WaldrandGeb) kategorial: = 0, > 0
Fliefende Gewésser (WasserFl) kategorial: = 0, > 0
Stehende Gewéisser (WasserSteh) | kategorial: = 0, > 0
Weinbau kategorial: = 0, > 0
Wiesen metrisch

Tabelle 2: Bodennutzungsvariablen von CORINE.

Heuschreckendaten vorlagen.

2.2 Deskriptive Analyse

In Abbildung [I] sind die Verteilungen einiger bioklimatischer Variablen darge-
stellt: ,,Jahresdurchschnittstemperatur (biol) in °C (multipliziert mit 10), ,,Jah-
resniederschlag® (biol2) in mm und ,,Isothermalitit* (bio3) in %. Die iibrigen

Variablen befinden sich in Anhang[A.1]

In Abbildung[2]sind beispielhaft die Verteilungen einiger Bodennutzungsvariablen
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Abbildung 1: Verteilung ausgewihlter bioklimatischer Variablen: ,Jahres-
durchschnittstemperatur (biol), ,Jahresniederschlag (biol2), ,Isotherma-
litéit* (bio3).

abgebildet: ,,Waldanteil* (SAWald), ,,Ackeranteil* (Acker), ,,Stadtanteil* (Stadt)
und ,,Hohe iiber NN*“ (GewHoehe) in m. Die iibrigen Variablen sind in Anhang
@ dargestellt. Auffallend ist, dass die meisten Bodenvariablen eine sehr links-
steile Verteilung haben, es gibt also wenig Beobachtungen, die einen hohen Anteil
an der jeweiligen Bodennutzung aufweisen. Das bedeutet auch, dass die Quadran-
ten sehr heterogen sind und es wenige Grids gibt, die von einer Bodennutzung

dominiert werden.

In Bayern sind zur Zeit 71 Heuschreckenarten bekannt und nachgewiesen. Zu den

hiufigsten Arten (in iiber 1200 Quadranten gefunden) zéhlen:
e Gemeiner Grashiipfer (Chorthippus parallelus) (1805)

e Roesels Bei3schrecke (Metrioptera roeselii) (1719)
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Abbildung 2: Verteilung ausgewéhlter Bodennutzungsvariablen: ,Waldanteil®
(SAWald), , Ackeranteil“ (Acker), ,Stadtanteil (Stadt), ,Hohe iiber NN* (Ge-

wHoehe).

e Nachtigall-Grashiipfer (Chorthippus biguttulus) (1667)

Gemeine Strauchschrecke (Pholidoptera griseoaptera) (1604)
Griines Heupferd (7ettigonia viridissima) (1429)
Wiesengrashiipfer (Chorthippus dorsatus) (1325)

Brauner Grashiipfer (Chorthippus brunneus) (1320)

In Abbildung [3| erhiilt man einen groben Uberblick iiber die Verteilung der Ge-

samtartenzahl in Bayern. Im bereinigten Datensatz ist die Mindestartenzahl 1,

maximal wurden 41 Arten in einem Grid entdeckt, also 58% aller in Bayern exis-

tierenden Arten. Offensichtlich ist die Artenzahl nicht homogen in Bayern verteilt.

Besonders wenig Arten gibt es beispielsweise im siidlichen Niederbayern. Dage-

gen ist die Artenvielfalt im Raum Bayreuth (Oberfranken) sehr hoch.
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Abbildung 3: Artenzahl der Heuschrecken in Bayern.

2.3 Besonderheiten der Daten

Im Folgenden soll ein Habitatmodell zur Untersuchung der Heuschreckenarten-
zahl erstellt werden. Bei der Modellanpassung an die vorliegenden Daten gibt es
einige Punkte, die beachtet werden sollten. Zum einen beinhaltet der Datensatz
eine grole Menge an Kovariablen. Ein Hauptziel der Anpassung ist es also her-
auszufinden, welche Kovariablen von Bedeutung sind, und auf diese Weise die
Modellkomplexitit so weit wie moglich zu reduzieren. Zum anderen sollte man
darauf achten, dass es aufgrund des Raumes Abhingigkeiten zwischen den einzel-
nen Beobachtungen geben kann. In diesem Fall wiirde die Entdeckung einer Heu-
schreckenart in einem Quadranten, die Wahrscheinlichkeit dafiir, dass sich diese

Art auch im Nachbarquadranten befindet, erhhen, obwohl dies durch die beob-
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achteten Umweltvariablen nicht vorhergesagt wiirde. Dieses Phanomen bezeich-
net man als rdumliche Autokorrelation (Legendre, 1993). Fiir die Modellierung
wurde die so genannte Methode ,,Spatial Boosting* ausgewihlt, die im Folgen-
den erldutert werden soll. Die genauen Details sind nachzulesen in Hothorn ez al.

(2010b).

3 Methoden

3.1 Generalisiertes additives Modell

Bei den vorliegenden Daten handelt es sich um eine Zihlvariable als Response,
daher gilt die Annahme, dass Y;|x; ~ Po()\;), wobei der Parameter \; dem Erwar-
tungswert und der Varianz entspricht. Im generalisierten additiven Modell geht
man davon aus, dass sich der Préadiktor 7; additiv aus glatten eindimensionalen

Funktionen der einzelnen Kovariablen zusammensetzt:
i = f(Xi, Si) = Zf(j)($ij73i)
J

Uber die Exponentialfunktion wird der Pridiktor mit der erwarteten Artenzahl );
verkniipft:
i = E(Artenzahl;|x;, s;) = exp(f(x;, s;)) (1)

Das bedeutet, dass die mittlere erwartete Artenzahl an einem Punkt s;, abhédngig
von den Umweltvariablen x; = (z;1, .. ., xip) dem Wert der Exponentialfunktion

ausgewertet an der Stelle der Regressionsgleichung entspricht.

Es wird jedoch vermutet, dass der beobachtete Response auch durch die Zahl der
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Exkursionen im Quadranten ¢ (#Exkursionen;) beeinflusst wird, dass also mit
einer erhohten Anzahl an Exkursionen in einem Feld auch die erwartete Anzahl
der dort gefundenen Arten steigt. Deshalb wird die Exkursionenzahl als Offset in
den Pridiktor aufgenommen, deren Effekt auf 1 gezwungen wird. Die erwartete
Artenzahl )\; ist demnach \; = #Exkursionen; - exp(f(x;, s;)) und es ergibt sich

die strukturelle Komponente

E(Artenzahl;|x;, s;) = A\; = #Exkursionen; - exp(f(x;, s;)) =

= exp(log(#Exkursionen;) + f(x;, $;))- (2)

i

~
Offset

3.2 Die Methode des Spatial Boosting

Bei hochdimensionalen Datensitzen sind iibliche Schitzverfahren, wie z.B. pena-
lisierte Schitzung nicht mehr anwendbar. Es kommt zu numerischen Rechenpro-
blemen. Boosting ist ein moglicher Algorithmus zur Schitzung hochdimensiona-
ler Regressionsmodelle fiir additive Pridiktoren. Das iterative Anpassen einzelner
schwacher Schitzer fiihrt zu einem insgesamt numerisch guten Schéitzergebnis
und iiberzeugt durch seine effektive Variablenselektion. Beim Spatial Boosting
werden die Kovariablen in eine globale und eine lokale Komponente aufgeteilt.
Die globale Komponente beachtet hierbei ausschlielich die Umweltvariablen so-
wie mogliche lineare oder nicht-lineare Effekte und Interaktionsterme. Ein rein
globales Modell wiirde annehmen, dass die Effekte der Umweltvariablen fest und
universal sind. Bei Auftreten von Nonstationaritét variieren diese Effekte jedoch
mit dem Raum. Die lokale Komponente beschreibt daher die rdaumliche Autokor-
relation als Funktion f,(s) nur abhingig vom Raum. Die Nonstationaritit wird
als Funktion f,s(X, s) in Abhingigkeit vom Raum und den Umweltvariablen mo-

delliert. Durch die lokale Komponente erhélt man eine Schitzung der unbeobach-
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teten Heterogenitit, die durch rdumliche Autokorrelation oder nonstationire Ef-
fekte verursacht wird. Dies ist deshalb von Bedeutung, da man davon ausgehen
muss, nicht alle tatsichlichen Einflussvariablen erfasst zu haben. Die Annahme
der Unabhingigkeit von Y;|x; kann aber nur getroffen werden, wenn alle Kovaria-
blen gegeben sind. Deswegen werden die restlichen nicht erfassten Kovariablen
sozusagen zu einem raumlichen Effekt der unbeobachteten Heterogenitit zusam-
mengefasst. Dies ist bei den meisten der bisher verwendeten Verfahren nicht der

Fall.

Durch die Zerlegung hat die Regressionsfunktion, die in die Modellgleichung (2)

einflief3t, folgende Form:

f(%,8) = fenu(X) + frs(X,8) + fs(s) (3)
N N ~ ’%
global lokal

Mit dieser Modellzerlegung wird auch die Variabilitit in drei Komponenten zer-
legt: die Variabilitiit erklédrt durch die Umweltvariablen (f,, (X)), Variabilitit, die
von rdumlicher Autokorrelation verursacht wird (f,(s)) und die Variabilidt ver-
ursacht durch nonstationiare Umwelteffekte, d.h. zusitzlich rdumlich variierende

Effekte der Umweltvariablen (f,,5(x, s)).

3.2.1 Beschreibung der Modellkomponenten

Da das Modell vom Raum abhiéngig ist, ist es nur auf das betreffende Untersu-
chungsgebiet anwendbar. f.,, kann hingegen fiir Prognosen auflerhalb Bayerns
genutzt werden, da in diesem Term die rdumlichen Effekte herausgerechnet wer-
den und somit die Préadiktionen nicht verzerrt werden. Der Term kann auf zwei

Arten modelliert werden: Die einfachste Moglichkeit ist ein parametrischer An-
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satz mit dem linearen Pridiktor f.,,(x) = x” 3, wobei 3 der zu schitzende Vektor
der Regressionskoeffizienten ist. Eine bisher genutzte Moglichkeit, hier die Au-
tokorrelation miteinzubeziehen, ist z.B. die Spezifizierung einer Arbeitskovarianz
in Generalized Estimating Equations (GEE) (Dormann et al., [2007). Eine ande-
re Moglichkeit der Modellierung ist ein nonparametrischer Ansatz mit additiven
glatten Funktionen, also fe,,(x) = >_7_, fj(x;), wobei x = (z1,...,7,). In je-
der einzelnen Kovariable kann so ein moglicher nicht-linearer Effekt auf flexible
Weise geschitzt werden. Komplexere Modelle erlauben zusétzlich Interaktionen,
wie z.B. Random Forests oder Boosted Regression Trees. f(s) stellt eine glatte
zweidimensionale Oberflachenfunktion dar, die die unbeobachtete Heterogenitiit,
eingefiihrt durch lokale Einfliisse, modelliert. So werden rdumliche Autokorrela-

tionsmuster erkannt. f,, (X, s) représentiert die rdumliche Nicht-Stationaritit.

3.2.2 Modellanpassung durch Spatial Boosting

Die Modellanpassung wird durch die Minimierung der negativen Log-Likelihood
der zugrunde liegenden Verteilung durchgefiihrt. Die Artenzahl folgt einer Po(\;)
Poissonverteilung mit A\; = E(y;|x;, s;) und \;(f) = #Exkursionen; - exp(f(x;, s;)).

Damit ist die negative Log-Likelihood-Funktion

f = argjrcnin Z P(yia )\z(f))
i=1
mit

(i, Ni(f)) = A —yilog A

als Beitrag einer Beobachtung zur Gesamt-Log-Likelihood.

Die Funktion f , die die Verlustfunktion minimiert, wird mit einem Component-



3.2 DIE METHODE DES SPATIAL BOOSTING 19

wise Functional Gradient Descent Boosting-Algorithmus geschitzt. Fiir Modelle
der Form konnen auch Methoden wie MCMC-Algorithmen (Fahrmeir et al.|
2004)), (Kneib et al., | 2008) oder penalisierte Schitzung von generalisierten additi-
ven Modellen verwendet werden. Diese Methoden sind jedoch rechenaufwiéndig
und auf Daten mit einer geringen Zahl an Einflussvariablen oder einer kleinen
bis mittleren Beobachtungszahl ausgelegt und es gibt keine effizienten Verfahren
der Variablenselektion. Auf diese Weise wiirden unbedeutende Parameter das fi-
nale Modell unnotig komplex machen. Die Modellinferenz hat hier aber vor allem
die Selektion von informativen Parametern zum Ziel. Falls keine rdaumliche Auto-
korrelation vorliegt, sollte auch die Modellkomponente f;(s) nicht in das Modell
aufgenommen werden, d.h. f;(s) = 0 und genauso f,,(x) = 0, falls keine der
Umweltvariablen einen Einfluss hat. Hier ist man allerdings mehr an den Effekten
der einzelnen Umweltvariablen, also an dem Ergebnis f;(z;) = 0 interessiert, was
bedeutet, dass die Variable x; keinen Einfluss auf die Artenzahl von Heuschrecken
hat. Der Idealfall wire ein globales Modell, in das nur wenige Umweltkomponen-

ten aufgenommen werden.

Componentwise Functional Gradient Descent Boosting-Algorithmus
Fiir den Componentwise Functional Gradient Descent Boosting-Algorithmus wird
f = 0 als konstantes Modell initialisiert. Im ersten Schritt werden die Residuen
fiir das aktuelle Modell berechnet. Unter dem Residuum versteht man hier den

negativen Gradienten u; der Verlustfunktion p berechnet fiir jede Beobachtung ;.

0 :

Nun wird diejenige Basisprozedur g;« (f;(z;), fns oder fs) ausgewihlt, welche

die Residuen am besten beschreibt, d.h. die Summe der quadrierten Differenz
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zwischen Residuen und Modellkomponente minimiert:

J* = argmin Z(uZ — 9j(z:))?
1<<p
Nur diese Komponente wird aktualisiert mit z.B. 10% der Pradiktionen (Schrittweite /)

und zum aktuellen Modellfit hinzugefiigt.
fC =00 v g

Fiir alle anderen Komponenten gilt:

Ay = £,V £ 5

Anschlieend werden die Residuen wieder neu berechnet und die entsprechende
Modellkomponente aktualisiert. Diese Schritte werden wiederholt, bis eine vorher
festgelegte Anzahl von Iterationen durchgefiihrt wurde. Das finale Modell f setzt
sich zusammen aus der Summe aller gefitteten Modelle der einzelnen Kompo-
nenten fem,, fns und fs. Die mathematischen Details werden von Biithlmann und

Hothorn! (2007)) und Kneib et al.| (2007) beschrieben.

Basisprozedur Die sogenannte Basisprozedur, die auch als Baselearner be-
zeichnet wird, bestimmt, wie die Residuen gefittet werden. Die Wahl der Base-
learner ist entscheidend, da sie festlegen, in welcher Form die einzelnen Modell-
komponenten in das finale Modell eingehen. Fiir f,, kommen lineare Modelle,
Smoothing-Splines, univariate P-Splines oder Regressionsbdume in Frage. Wobei
letztere Methode genau mit den Boosted Regression Trees iibereinstimmt. Fiir
fs werden die Baselearner als bivariater Tensorprodukt P-Spline gewihlt, was

einer glatten zweidimensionalen Oberflichenfunktion entspricht. Fiir die nicht-
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stationdre Komponente f,,; bietet sich ein Produkt eines Tensorprodukt P-Splines
mit einer Umweltvariable z; an. Interaktionen konnen z.B. liber lineare Terme
von Produkten beriicksichtigt werden oder, wenn man noch flexibler sein mochte,

iber zwei- oder dreidimensionale glatte Funktionen.

Wie bereits erwihnt, wurden metrische Umweltvariablen mit nur wenigen Aus-
pragungen kategorisiert, so dass nun zwei unterschiedliche Variablentypen vorlie-
gen. Fiir die stetigen Variablen wurden als Baselearner penalisierte Regressions-
splines (mit sechs Freiheitsgraden) verwendet und fiir die faktorisierten Variablen
einfache lineare Modelle, die iiber Ridge-Regression (Parameter A bestimmt durch

sechs Freiheitsgrade) geschitzt wurden.

3.2.3 Modellwahl und Variablenselektion

Es gibt sechs verschiedene Grundmodelle, die alle moglichen Einflussszenarien
beschreiben, indem sie verschiedene Restriktionen an die einzelnen Modellkom-

ponenten stellen (Tabelle [3).

Modell ‘ fenv(x) ‘ fns(x7 S) ‘ f5<8)
Spatial =0 =0

Additive L1 fix) =0 =0
Add/Spatial b1 fix) =0
Tree/Spatial =0
Add/Vary | 320, fi(x)

Tree/Vary

Tabelle 3: Modellrestriktionen

Das Modell Spatial, das nur den lokalen Einfluss misst und alle anderen Kom-
ponenten auf Null setzt, wire das beste Modell, wenn keine der erhobenen Um-

weltvariablen Einfluss auf den Response hat. Wenn dagegen nur diese Umwelt-
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variablen Einfluss haben ohne rdumliche Variation und dabei die einzelnen Va-
riablen additiv und ohne Interaktionen auf den Response wirken, wire das Mo-
dell Additive das richtige. Add/Spatial modelliert einen additiven Effekt der Um-
weltvariablen sowie einen zusitzlichen rdumlichen Effekt ohne Nonstationaritit
oder Interaktionen zu beriicksichtigen. Mit Regressionsbdumen als Baselearner
fiir f.,, konnen Interaktionen besser modelliert werden, ansonsten ist das Modell
Tree/Spatial gleich wie das vorherige. Am komplexesten sind die letzten beiden
Modelle, die damit auch die groBte Flexibilitit bieten: Add/Vary modelliert wie-
der additive Effekte fiir f.,, und erlaubt gleichzeitig rdumliche Autokorrelation
und Nicht-Stationaritit. Dies ist auch bei Tree/Vary der Fall. Dort sind zusitzlich
Interaktionen bei den Umweltvariablen erlaubt, was insgesamt heif3t, dass iiber-
haupt keine Restriktionen an die Modellkomponenten gestellt werden. Aus diesen
sechs Grundmodellen wird fiir die vorliegenden Daten das beste Modell ausge-

wihlt (Kapitel @.1).

Die eigentliche Modellwahl wird in zwei Schritten durchgefiihrt. Fiir jedes der
sechs oben genannten Modelle wird die ideale Iterationszahl bestimmt. Diese er-
gibt sich als m;,, mit dem minimalen empirischen Risiko, berechnet mit Bootstrap-
und Kreuzvalidierungsverfahren. Eine andere Moglichkeit wire, m g, durch das
Informationskriterium nach Akaike (AIC), das korrigierte AIC oder das Baye-
sianische Informationskriterium (BIC) zu bestimmen. Da es sich aber um einen
hochdimensionalen Datensatz handelt, ist die Berechnung iiber Bootstrap und
Kreuzvalidierung am geeignetsten. Die Wahl des idealen Stoppkriteriums hat den
Zweck, Overfitting zu vermeiden. Im zweiten Schritt wird mit der neu bestimm-
ten optimalen Anzahl an Boosting-Schritten die Modellanpassung wiederholt. Die
sechs Modelle werden anhand der negativen Log-Likelihood verglichen. Die beste

Modellanpassung hat dasjenige Modell, das in wiederholten Bootstrapstichproben
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die kleinste negative Log-Likelihood hat (vgl. Abbildungen [4]-[7).

Zudem muss auch die Schrittweite v festgelegt werden. Fiir bisherige Probleme
schien die Wahl dieser Schrittweite von eher geringer Bedeutung zu sein, solange
sie klein genug gewihlt wird, um den Effekt des aktuellen Fits zu dimpfen. Eine
kleinere Schrittgrofe bedeutet typischerweise eine grolere Anzahl an Iterations-
schritten und somit mehr Berechnungszeit, wobei sich die Priadiktionsgenauigkeit
im Allgemeinen nicht verschlechtert. Aus diesem Grund geniigt es meist, den Pa-
rameter v ,,ausreichend klein“ zu wihlen (Biihlmann und Hothorn, [2007). Daher
wurde bisher die Schrittweite oft auf den Wert v = 0.1 festgelegt. In der Aus-
wertung dieser Arbeit stellte sich jedoch heraus, dass ein weiteres Verringern der

SchrittgroBe die Ergebnisse fiir die vorliegenden Daten weiter verbessern kann

(vgl. Kapitel 4.1).

Da immer nur eine Modellkomponente pro Iterationsschritt angepasst wird, fiihrt
eine kleine Anzahl an Iterationen zu einem sparsamen Modell. Somit ist diese
Methode eine sehr gute Moglichkeit der Variablenselektion. Zusétzlich wird fiir
das beste Modell eine Stability Selection angewandt, um sicher zu stellen, dass
tatsdchlich nur einflussreiche Variablen und Komponenten aufgenommen werden
und man keine Effekte interpretiert, die in Wirklichkeit gar nicht bestehen. Dazu
wird die empirische Wahrscheinlichkeit berechnet, wie oft die Variable in Teilda-
ten ausgewdhlt wird (Meinshausen und Biithlmann, 2010). Variablen, deren Wahr-
scheinlichkeit groBer einem festgelegten Grenzwert sind, gelten als einflussreich,
wobei das Signifikanzniveau « eingehalten wird. Auf diese Weise erhilt man ein

Modell, das so komplex wie notig, aber so einfach wie moglich ist.
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4 FErgebnisse

4.1 Statistische Analyse

Fiir den vorliegenden Datensatz wurde das Boosting-Verfahren fiir alle sechs vor-
her spezifizierten Modelle mit verschiedenen SchrittgréBen v = 0.1,0.05,0.03
und 0.01 durchgefiihrt. Wie bereits in Abschnitt erwidhnt wurde, spielt die
Wahl der Schrittgrofe v eine untergeordnete Rolle. Da bereits die Hyperparameter
fiir die Glattung jedes Baselearners und die optimale Anzahl an Iterationen iiber
Kreuzvalidierung oder dhnliches bestimmt werden miissen, wird der Parameter
v der Einfachheit halber vorgegeben, um eine weitere Komplizierung des Algo-
rithmus zu vermeiden. Bereits in der Praxis bekannt ist jedoch die Tatsache, dass
v = 0.1 in einem Poissonmodell auf jeden Fall zu grof ist. Die nachfolgenden
Boxplots (Abbildungen 4| bis [/)) zeigen daher fiir alle Modelle mit dem optimalen
Mtop die Out-of-Bootstrap negative Log-Likelihood fiir mehrere Bootstrapstich-

proben und fiir verschiedene Schrittgrofien v.

Je kleiner die Schrittgroe gewdhlt wird, umso mehr nihern sich die Modellgiiten
einander an. Besonders fiir die Modelle Tree/Spatial und Tree/Vary verbessert sich
der Modellfit, je kleiner v gewihlt wird. Bei allen Werten von v hat immer das Mo-
dell Spatial die kleinste negative Log-Likelihood und dementsprechend die beste
Modellanpassung. Dies ist ein Hinweis darauf, dass ein grofler rdumlicher Effekt
besteht und f; eine dominierende Modellkomponente ist. Nicht viel schlechter
schneiden die Modelle Add/Spatial und Add/Vary ab. Da beide ungeféhr die glei-
che Modellgiite haben, entscheidet man sich bei der weiteren Interpretation fiir
das weniger komplexe Modell Add/Spatial, welches zusitzlich zum rdumlichen

Effekt additive Einfliisse der Umweltvariablen miteinbezieht.
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Abbildung 4: Out-of-Bootstrap Negative Log-Likelihoods v = 0.1.
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Abbildung 5: Out-of-Bootstrap Negative Log-Likelihoods v = 0.05.

Als Vergleichsmethode fiir die Fragestellung, welche der Modelle sich signifi-

kant im Mittelwert der negativen Log-Likelihood unterscheiden, wurde ein mul-
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Abbildung 6: Out-of-Bootstrap Negative Log-Likelihoods v = 0.03.
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Abbildung 7: Out-of-Bootstrap Negative Log-Likelihoods v = 0.01.

tipler Vergleich nach Tukey gemacht. Die Buchstaben iiber den Boxplots geben

an, welche Modelle die gleiche Modellgiite haben und welche sich unterscheiden.
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Modelle mit gleichem Buchstaben haben hier die gleiche Modellgiite.

Tabelle @ zeigt, welche Variablen fiir die verschiedenen SchrittgroBen im Mo-

dell Add/Spatial ausgewdhlt wurden: Es fillt auf, dass immer die Variablen Stadt

Schrittgrofe v ‘ Ausgewdhlte Variablen

0.10 | Stadt, Hohe, bspatial

0.05 | bio3, biol3, Stadt, Acker, Hohe, bspatial

0.03 | bio3, bio4, biol3, Stadt, Acker, SAWald, Hohe, bspatial
0.01 | bio3, biol3, Stadt, Acker, SAWald, Hoéhe, bspatial

Tabelle 4: Selektierte Variablen fiir verschiedene Schrittgrofen.

und Hohe und die rdumliche Komponente (,,bspatial®) unter den finalen Varia-
blen sind. Wenn die Schrittgrole verkleinert wird, steigt normalerweise die Zahl
der Iterationen und damit die der Modellkomponenten, die im Boosting selektiert
werden. Erwartungsgemif werden damit bei einer Verkleinerung der Schrittgro-
Be auf 0.05 drei Variablen mehr (bio3 [Isothermalitit], biol3 [Niederschlag im
feuchtesten Monat], Acker) ausgewihlt. Bei einer weiteren Reduzierung von v
auf 0.03 werden zusitzlich noch die zwei Variablen bio4 (Saisonalitit der Tem-
peratur) und SAWald (Waldanteil) ausgewihlt. Wenn nun v auf 0.01 gesetzt wird,
kommt schlieBlich keine Variable mehr hinzu, im Gegenteil, bio4 fillt weg. Der
Effekt dieser Variable war allerdings fast konstant bei 0, die Variable war also

nicht sehr einflussreich.

Man kann nun davon ausgehen, mit diesem letzten Modell die bestmogliche An-
passung an die Daten gefunden zu haben. Die weitere Interpretation beschrankt
sich auf die Modelle Spatial und Add/Spatial fiir die Schrittgrofe v = 0.01, die

anderen Modellanpassungen finden sich im elektronischen Anhang.
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4.2 Interpretation

Im Modell Spatial wird die gesamte Heterogenitit nur anhand der riumlichen Ver-
teilung erkldrt. In Abbildung(8]sind die relativen Unterschiede in der Artenzahl fiir
den zentrierten raumlichen Effekt dieses Modells gezeichnet. Man sieht, dass be-
sonders im Raum Miinchen und im Raum Niirnberg/Fiirth/Erlangen die Anzahl
der Heuschreckenarten geringer ist als im restlichen Bayern, wenn man den Oft-
set, also den Einfluss der Exkursionenzahl unberiicksichtigt 1dsst. Dies ist auf den
ersten Blick widerspriichlich zur beobachteten Verteilung der Artenzahl (Abbil-
dung[3) und zu den gefitteten Werten (Abbildung [9), verdeutlicht aber nochmals
den Einfluss der Zahl der Untersuchungen auf den beobachteten Response. Hier
macht sich vermutlich bemerkbar, dass die Biotope in der Stadt und in unmit-
telbarer Nihe dazu leichter zugéinglich sind und deswegen 6fter besucht werden.
Ansonsten fillt die extrem verringerte Artenzahl (relativ gesehen) im siidwest-
lichen Raum Oberallgiu/Lindau sowie im nordwestlichen Raum Aschaffenburg
auf. Eine erhohte Artenzahl findet man in den Regionen Unterfranken (mit Aus-
nahme Aschaffenburg), zentrale Oberpfalz und westliches Mittelfranken sowie in

Westschwaben und im 6stlichen Oberbayern.

Das Modell Add/Spatial, in das die Effekte der Umweltvariablen als additive
glatte Funktionen aufgenommen wurden, hat eine vergleichbar gute Modellan-
passung. Als einflussreiche Kovariablen ergeben sich durch Stability Selection
die sechs Kovariablen Isothermalitit (bio3), Niederschlag im feuchtesten Monat
(bio13) und die Hohe iiber Normalnull sowie der prozentuale Anteil an Waldge-
biet, Ackergebiet und Stadtgebiet und die rdumliche Komponente. Zuerst iiber-
priift man, wieviel Variabilitit iiberhaupt durch die einzelnen Modellkomponen-
ten erklirt wird. In Abbildung (10| wird deutlich, dass der Hauptteil der Variabilitét

durch den Offset (log(Anzahl der Exkursionen)) erklart wird. Das bedeutet, dass
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Abbildung 8: Geschitzter raumlicher Effekt im Modell Spatial.

Abbildung 9: Gefittete Artenzahl im Modell Spatial.

die beobachtete Artenzahl hauptsichlich davon abhingt, wie oft ein Quadrant un-

tersucht wird. Nichtsdestotrotz ist klar, dass die tatsidchliche Artenzahl nicht von
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Abbildung 10: Zerlegung der erkliarten Variabilitit fiir die einzelnen Modell-
komponenten (gefittete Werte auf der Log-Skala).

der Anzahl der Exkursionen abhéngen kann. Deswegen wird im Poissonmodell
der Parameter \; so modifiziert, dass der Effekt der Exkursionenzahl auf 1 ge-
zwungen wird (siehe Kapitel [3.2.2). Dadurch mochte man den Effekt der Exkur-
sionen bereinigen und erhélt als weitere erklarende Grofle die Umweltvariablen
und die rdumliche Komponente, deren Einfluss im Vergleich zum Offset jedoch

viel geringer ist.

Die geschitzten Effekte der einzelnen Umweltvariablen fyia lassen sich so in-
terpretieren, dass sich die mittlere erwartete Artenzahl bei Konstanthalten aller
anderen Einflussvariablen multiplikativ um den Faktor exp( fpariai) dndert. In den
nachfolgenden Grafiken bedeutet ein geschitzter Effekt grofler als Null einen po-
sitiven Einfluss und dementsprechend ein geschitzter Effekt kleiner als Null einen

negativen Einfluss.
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Abbildung 11: Geschétzte partielle Effekte der Umweltvariablen ,Isotherma-
litat“ (bio3) und ,Niederschlag im feuchtesten Monat“ (biol3).

In Abbildung sieht man die geschitzten Effekte fiir die Variablen ,,Isotherma-
litdt* (bio3) und ,,Niederschlag im feuchtesten Monat* (biol3). Beide sind nicht
eindeutig zu interpretieren, weil die Funktionen insgesamt stark schwanken. Die
Isothermalitdt beschreibt die prozentuale Tagestemperaturschwankung im Ver-
gleich zur Jahresschwankung und ist damit ein starker 6kologischer Filter, der das
Vorkommen von Tieren und Pflanzen beeinflusst. In Abbildung [I] war bereits er-
kennbar, dass die Isothermalitidt im Verlauf sehr schwankend ist, daher ist es nicht
verwunderlich, wenn auch der geschitzte Effekt dieser Variable starken Schwan-
kungen unterworfen ist. Allerdings ist ein Trend ersichtlich, der beschreibt, dass
die Artenzahl sinkt, wenn die Isothermalitit iiber 33 % steigt. Das bedeutet, je
groBer die Tagesschwankung ist, umso schwieriger sind die Uberlebensbedingun-

gen. Fiir Werte unter 33 % ist die Artenzahl leicht erhoht oder gleichbleibend.

Die Niederschlagsmenge kann die Produktivitiit eines Okosystems widerspiegeln;



32 4 ERGEBNISSE

je produktiver ein System dabei ist, umso mehr Arten kann es theoretisch be-
herbergen. Hier sieht man, dass der Niederschlag im feuchtesten Monat positi-
ven Einfluss fiir eine Menge kleiner als 80 mm und grofer als 150 mm sowie
zwischen 90 mm und 130 mm hat. Bei einer durchschnittlichen Niederschlags-
menge zwischen 80 mm und 90 mm als auch zwischen 130 mm und 150 mm ist
der Einfluss negativ, allerdings sind die Intervalle so klein, dass die Ausschlige
nach unten eher vernachléssigt werden konnen. Der grobe Trend geht leicht nach
oben, das heif3t mit hoherer Niederschlagsmenge im feuchtesten Monat steigt die
Produktivitit des Okosystems und damit die Zahl der Heuschreckenarten. Dabei
ist zu beachten, dass ,,Niederschlag im feuchtesten Monat* und ,,Jahresnieder-
schlag® (bio12) natiirlich sehr stark miteinander korrelieren (cor = 0.97). Daher
kann man verallgemeinern, dass mit steigendem Niederschlag auch die Artenzahl

leicht steigt.

0.2

>
)
~

0.2

fpama\
-0.4 -0.2
| |
oaaw
foartial
-0.4 -0.2
| |

-0.6
|
-0.6
|

-0.8
|
-0.8
|

-1.0
|
1.0
|

\ B — R B B .
500 1500 0.0 0.4 0.8

GewHoehe SAWald

Abbildung 12: Geschitzte partielle Effekte der Umweltvariablen ,Hohe {iber
NN* (GewHoehe) und ,Anteil Waldgebiet* (SAWald).
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Die Variable ,,Hohe* ist kein direkter physiologischer Faktor, sondern eine Proxy-
Variable u.a. fiir Klima und Fldche. Wenn man sich nur die Werte bis 1200 m
ansieht, erkennt man den in der Biologie typischen ,,Mid-Domain Effect*: Unter
400 m sowie zwischen 750 m und 1200 m erwartet man eine niedrigere mittlere
Artenzahl, hingegen fiir Hohen zwischen 400 m und 750 m eine hohere (Abbil-
dung [12). Dieser parabelformige Verlauf erklart sich dadurch, dass sich in den
mittleren Hohen viele Ausbreitungsgebiete verschiedener Arten iiberschneiden
und somit zu einem Maximum an Artenvielfalt fithren (Colwell und Lees|, 2000).
Der steigende Trend ab 1200 m 1isst sich dahingehend interpretieren, dass es ober-
halb der Baumgrenze viele offene Habitatflachen, wie z.B. Almen oder Schotter-
flachen gibt, in denen Heuschrecken bevorzugt leben (Schlumprecht und Waeber,
2003). Allerdings ist ab 1500 m die Beobachtungszahl sehr gering, sodass diese

Aussagen nicht verallgemeinert werden konnen.

Wenn der Anteil des ,,Waldgebietes* pro Quadrant zwischen 20 % und 60 % liegt,
steigt die erwartete Artenzahl, genauso fiir Werte iiber 80 % Waldbedeckung. Fiir
Fldachen mit geringem Waldanteil (unter 20 %) dagegen ist die Zahl der Heuschre-
cken im Mittel leicht verringert. Die kleine Schwankung ins Negative bei 70 %
kann vernachléssigt werden. Insgesamt kann man den Waldanteil als einen Natur-
niheindikator fiir urspriingliche, naturbelassene Ridume interpretieren, in denen

die Artenzahl hoher liegt als in naturfernen Rdumen.

In Abbildung [I3] erkennt man einen eindeutig positiven Einfluss der Variable
,Ackergebiet auf die Artenzahl. Bis zu einer Ackerfliche von ungefihr 20 %
ist die Artenzahl verringert, je groBer jedoch die prozentuale Bedeckung des Qua-
dranten mit Ackerfliche ist, umso groBBer wird auch die mittlere erwartete Heu-

schreckenartenzahl. Zum einen kann man dies durch Habitate in Feldrainen erkla-
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Abbildung 13: Geschéitzte partielle Effekte der Umweltvariablen ,Anteil
Ackergebiet” (Acker) und ,Anteil Stadtgebiet* (Stadt).

ren, die nicht bewirtschaftet werden, weil sie nur schwer zugénglich sind. Somit
bieten sie ideale Lebensbedingungen fiir Tiere. Zum anderen liegen Ackerflichen
zur Erhaltung der Bodenfruchtbarkeit regelmifBig brach und ermoglichen so den
Heuschrecken einen ungestorten Lebensraum. Zur Relativierung dieses Trends
muss jedoch erwihnt werden, dass Ackerfliche auch ein Indikator fiir intensive
Landwirtschaft sein kann. In diesen Flidchen sind normalerweise wenig Heuschre-
cken vorzufinden, weil sie eine starke Barriere zur Ausbreitung der Populationen

darstellen (Schlumprecht und Waeber, 2003)).

Den umgekehrten Effekt sieht man bei der kategorisierten Variable ,,Stadt*: je ho-
her der Stadtanteil ist, umso geringer ist die Artenzahl. Bei einer prozentualen
Stadtflache zwischen 10 % und 100 % ist die mittlere erwartete Artenzahl sogar
um 25 % geringer als in Gebieten mit kleinerem Stadtanteil. Dies ldsst sich durch

die fehlenden Habitate in stddtischen Gebieten erkliren.
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Durch die vorgestellten Kovariablen wird allerdings nicht die gesamte Variabili-
tit erkléart. Die raumliche Komponente dominiert, was man nicht allein dadurch
sieht, dass das Modell Spatial im Gesamtmodellvergleich am besten abgeschnitten
hat. Es besteht immer noch eine sehr grofe unbeobachtete Heterogenitit, die in
der Modellkomponente f,(x, s) dargestellt wird. Man kann nicht davon ausgehen,
dass alle wirklich einflussreichen Kovariablen erfasst wurden. Diese unbeobach-
teten Kovariablen werden im rdumlichen Effekt zusammengefasst. Abbildung [I4]

stellt diese grafisch dar. Die stark verringerte Artenzahl im Oberallgdu wird auch

il
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Abbildung 14: Geschétzter raumlicher Effekt im Modell Add/Spatial.

auf dieser Karte wieder sichtbar. Die Ballungsrdume Miinchen sowie Niirnberg/-
Fiirth/Erlangen dagegen stechen optisch nicht mehr hervor, da der Stadteffekt be-
reits durch die Landnutzungsvariable modelliert wurde. Im siidlichen Schwaben
sowie im GroBteil Oberbayerns ist die erwartete Artenzahl eher kleiner als im Rest
Bayerns. Je nordlicher die Lage, desto mehr Heuschreckenarten werden erwartet,

wenn die oben erwihnten Kovariablen bereits miteinberechnet sind und der Off-
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set nicht beachtet wird. Besonders auffallend sind hier das Ostliche Niederbayern

sowie Unterfranken.

Zum Vergleich finden sich in Abbildung [I3] die gefitteten Werte fiir das Modell
Add/Spatial. Sie unterscheiden sich kaum von denen des Modells Spatial. Fiir den
Modellfit ist es also unerheblich, ob die Umweltvariablen in das Modell aufge-
nommen werden oder ob alles als rdumlicher Effekt zusammengefasst wird. Fiir
beide Modelle gilt jedoch, dass sehr oft zu niedrige Artenzahlen vorhergesagt wer-

den (vgl. mit Abbildung[3).

Abbildung 15: Gefittete Artenzahl im Modell Add/Spatial.



37

5 Zusammenfassung und Diskussion

Das Ziel dieser Arbeit war, ein Habitatmodell fiir die Artenvielfalt von Heuschre-
cken in Bayern zu erstellen. Dazu wurde ein generalisiertes additives Modell
mit Poisson-verteiltem Response geschitzt. Der Priadiktor wurde in eine globale
und eine lokale Komponente aufgeteilt und die Effekte mit der Methode ,,Spatial

Boosting* geschitzt.

Im angepassten Modell stellte man fest, dass der Hauptteil der Variabilitit durch
die Anzahl der durchgefiihrten Exkursionen erklért wird. Mit groBem Abstand fol-
gen die Umweltvariablen und die rdumliche Komponente, die im Vergleich dazu
nur einen kleinen Teil der Variabilitdt ausmachen. Bei den Klima- und Bodenfak-
toren ist der Effekt der Hohe am differenziertesten, welcher sich durch den fiir
Flora und Fauna typischen ,,Mid-Domain Effect* erklirt. Der positive Trend in
der Variable Acker kann zwar durch Habitate in Feldrainen und Brachefldachen er-
klart werden, muss aber durch den Effekt der intensiven Landwirtschaft relativiert

werden.

Die hier angewandte Methode des Spatial Boostings bietet eine sehr grofe Flexibi-
litdt zur Modellanpassung durch die Aufspaltung der Einflussfaktoren in globale
und lokale Komponenten. So kénnen alle hdufig bei Habitatmodellen auftreten-
den Schwierigkeiten wie Interaktionen zwischen Variablen, nicht-lineare Effekte,
nicht-stationére Einfliisse und rdaumliche Autokorrelationen beachtet und ins Mo-
dell aufgenommen werden. In anderen Anwendungen kann sogar zusétzlich eine
rdumlich-zeitliche Autokorrelation modelliert werden. Die Neuerung dabei ist,
dass dies alles nicht einzeln im Modell beachtet und die anderen Effekte ignoriert
werden miissen, sondern, dass gleichzeitig auf alle diese Probleme eingegangen

werden kann. Die Zerlegung der Modellkomponenten macht es auch einfacher,
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Vorhersagen fiir andere Gebiete und Zeitraume zu treffen als die erhobenen, ohne
stark verzerrte Schétzer zu erhalten. SchlieBlich erhalten wir sehr sparsame Mo-
delle mit nur wenigen einflussreichen Variablen. Dies geschieht durch die effekti-
ve Variablenselektion im Boosting-Verfahren und die Vermeidung der Aufnahme

nicht-informativer Parameter ins Modell mit der Stability Selection.

Ein grofles Problem der vorliegenden Daten ist die Diskrepanz zwischen tatsédch-
lichem und beobachtetem Response. Die beobachtete Artenzahl ist stark davon
abhiéngig, wie oft ein Quadrant untersucht wurde und steigt natiirlich mit der Zahl
der Exkursionen. Die tatsdchliche Artenvielfalt kann dagegen nicht genau erhoben
werden. Dieses Problem liegt jedoch im Datensatz und im Studiendesign selbst.
Nur wenn iiberall gleich viele Untersuchungen vorgenommen werden, kann eine
verlédsslichere Modellschitzung vorgenommen und damit bessere Prognosen ge-

macht werden.

Ebenso problematisch ist die Wahl des Hyperparameters v/, der die Schrittgroe im
Boosting-Algorithmus bestimmt. Momentan ist es nicht moglich den Parameter v
ebenso wie die Glédttungsparameter der einzelnen Variablen A und die optimale
Anzahl an Iterationen mg,, liber Kreuzvalidierung oder dhnliche Verfahren zu
schitzen. Das wiirde den Algorithmus zu aufwindig und rechenintensiv machen.
Stattdessen muss dieser Parameter per Hand festgelegt werden, wobei man sich
an Erfahrungswerten orientieren kann. Allerdings war es auch ersichtlich, dass v
im Vergleich zu m,, nur einen geringen Einfluss auf die Variablenauswahl hat,

wenn es klein genug gewihlt wird.
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A Anhang

A.1 Verteilung der Umwelt- und Bodennutzungsvaria-

blen
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A.2 Inhalt der CD

Alle Berechnungen und Modellanpassungen fiir diese Bachelorarbeit wurden durch-
gefithrt mit der R-Version 2.10.1 (R Development Core Team, 2009) und dem
Packet ,,mboost* (R package version 2.0-3) (Bithlmann und Hothorn, 2007).

Die beiliegende CD enthilt neben der digitalen Ausgabe der vorliegenden Arbeit
den gesamten R-Code sowie den vollstindigen Datensatz, mit dem alle Berech-

nungen reproduziert werden konnen.
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