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1 Einleitung

In einem Habitatmodell werden die verschiedenen Lebensräume von Tieren und

Pflanzen untersucht, dabei sollen mögliche kausale Beziehungen zwischen den

verschiedenen Habitateigenschaften und dem Vorkommen einer Art modelliert

werden. Heuschrecken sind in Bayern traditionell eine gut dokumentierte und un-

tersuchte Tierordnung, bereits seit dem 18. Jahrhundert gibt es Aufzeichnungen

über die verschiedenen Arten und ihre bevorzugten Lebensräume. Aktuell sind in

Bayern 71 Heuschrecken- und Grillenarten bekannt und nachgewiesen (Schlum-

precht und Waeber, 2003), wovon 46 Arten auf der Roten Liste in Bayern ste-

hen und damit vom Aussterben bedroht sind. Nicht nur deshalb ist es wichtig,

möglichst gute Habitatmodelle zu erstellen, um die Lebensräume und damit die

Heuschrecken besser schützen zu können. Es werden zwei Ordnungen mit den

jeweiligen Familien unterschieden:

• Kurzfühlerschrecken (Dornschrecken und Feldheuschrecken)

• Langfühlerschrecken (Laubheuschrecken, Höhlenschrecken und Grillen)

Die häufigsten Arten zählen zu den Feld- und Laubheuschrecken:

• Feldheuschrecken: Gemeiner Grashüpfer (Chorthippus parallelus), Nachti-

gall-Grashüpfer (Chorthippus biguttulus), Wiesengrashüpfer (Chorthippus

dorsatus), Brauner Grashüpfer (Chorthippus brunneus)

• Laubheuschrecken: Roesels Beißschrecke (Metrioptera roeselii), Gemeine

Strauchschrecke (Pholidoptera griseoaptera), Grünes Heupferd (Tettigonia

viridissima) .

Im speziellen Fokus in der Biologie steht die Artenvielfalt. Die durchschnittliche

Artenzahl in Bayern liegt bei 15.8 Heuschreckenarten pro Quadrant (34 km2). Die
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maximale Artenvielfalt beträgt 41 Arten. An keinem Ort in Bayern kommen al-

so alle existierenden Heuschreckenarten zugleich vor. Für jede dieser einzelnen

Arten ist bekannt, in welchen Biotopen sie bevorzugt leben und durch welche

Umweltvariablen sie besonders beeinflusst werden. So bevorzugen sie allgemein

sonnige und extensiv bewirtschaftete Lebensräume. Einzelne heiße Sommertage

oder Frost im Winter beeinflussen die Populationen weniger als insgesamt be-

sonders warme oder kühle Jahre. Vor allem ausgeprägte Nass- oder Trockenjahre

wirken sich stark negativ auf die Bestandsentwicklungen aus.

Statistische Methoden für Artverbreitungsmodelle in der Biologie sind vielfäl-

tig. Bei bisherigen Methoden gibt es jedoch oft Schwierigkeiten mögliche nicht-

lineare Effekte, Interaktionen, Autokorrelationen oder Nicht-Stationarität in die

Modellgleichungen aufzunehmen. Räumliche Autokorrelation erklärt sich dadurch,

dass das Vorkommen einer Art durch räumliche Nähe anderer Tiere positiv oder

negativ beeinflusst wird, ohne den Einfluss von Umweltvariablen zu beachten (Le-

gendre, 1993). Speziell in Habitatmodellen muss davon ausgegangen werden, dass

die modellierten Umwelteffekte zusätzlich über den Raum variieren. Dies wird in

der Komponente der Nicht-Stationarität modelliert. Allerdings muss bisher min-

destens einer, wenn nicht alle dieser eben erwähnten Effekte ignoriert werden, um

überhaupt ein Modell schätzen zu können. Dabei sind die Konsequenzen für die

Modellinferenz wie nicht unabhängig und identisch verteilte Residuen und damit

verzerrte Schätzer und erhöhte Fehlerraten 1. Art durchaus bekannt (Dormann

et al., 2007).

In Hothorn et al. (2010b) wird nun ein neuer Ansatz vorgestellt, der das eben

erwähnte Problem zu lösen versucht, indem die Einflüsse aller Variablen in ei-

ne globale und in eine lokale Komponente zerlegt werden. Dabei besteht die
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globale Komponente aus den Umweltvariablen (Temperatur, Niederschlag, Bo-

dennutzung). Sie bietet verschiedene Möglichkeiten, komplexere Strukturen, wie

z.B. Interaktionen oder nicht-lineare und nicht-additive Effekte zu modellieren.

Die lokale Komponente umfasst die räumliche Autokorrelation und die Nicht-

Stationarität der Umweltvariablen. Die effektive Variablenselektion durch den an-

gewendeten Boosting-Algorithmus führt zu einem sehr sparsamen Modell, das zu-

sätzlich durch eine Stabilitätsselektion nur tatsächlich informative Variablen auf-

nimmt. Das Ziel dieser Arbeit ist, mit der Schätzmethode „Spatial Boosting“, ein

Habitatmodell für die Artenzahl der Heuschrecken zu erstellen.

2 Datenbeschreibung

2.1 Herkunft der Daten und Bearbeitung

Der Datensatz wurde zur Verfügung gestellt vom Nationalpark Bayerischer Wald.

Die Zielvariable „Anzahl von Heuschreckenarten“ stammt aus dem Heuschre-

ckenatlas von Bayern (Schlumprecht und Waeber, 2003), der für die gesamte

Fläche Bayerns aufgeteilt in durchschnittlich 33.9 km2 große Quadranten erfasst,

welche der 71 erfassten Heuschreckenarten jeweils vorkommen. Für jeden Qua-

dranten wurde daraus die Artenzahl berechnet, die angibt, wie viele verschiedene

Heuschreckenarten dort insgesamt leben. Außerdem wurde erfasst wie viele Ex-

kursionen jeweils gemacht wurden, wobei die Beobachtungen mit 0 Exkursionen

und keinen gefundenen Heuschrecken aus dem Datensatz entfernt wurden.

Die Kovariablen setzen sich zusammen aus den Klima- und Bodennutzungsfak-

toren. Die Klimavariablen stammen aus dem Projekt WorldClim, das sich zum

Ziel gesetzt hat, die wichtigsten Klimadaten für alle Regionen der Erde zu er-
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fassen. Dazu wurden Auswertungen von Wetterstationen aus vielen verschiede-

nen Klimadatenbanken weltweit zusammengefasst. Eine ausführliche Beschrei-

bung darüber findet man in Hijmans et al. (2005). In einer Auflösung von 0.93 km

× 0.93 km = 0.86 km2, umgangssprachlich auch 1 km2-Auflösung genannt, ste-

hen interpolierte Monatsdurchschnittsdaten zu den Niederschlagsmengen sowie

Minimal-, Maximal- und Durchschnittstemperaturen pro Monat zur Verfügung.

Daraus abgeleitet wurden 19 bioklimatische Variablen, die biologisch bedeutender

sind, da man sie besser interpretieren kann. Sie beschreiben beispielsweise Jah-

restrends, Saisonalität und Extremwerte sowie eventuelle limitierende Umwelt-

faktoren. Nur diese Bioclim-Variablen werden im Weiteren betrachtet. Diese sind

in Tabelle 1 aufgeführt. Die Daten beruhen hauptsächlich auf Messungen der Jah-

Variable Name Messniveau

Jahresdurchschnittstemperatur bio1 metrisch
Tagestemperaturspanne bio2 metrisch
Isothermalität bio3 metrisch
Temperatur-Saisonalität bio4 metrisch
Maximaltemperatur des wärmsten Monats bio5 metrisch
Minimaltemperatur des kältesten Monats bio6 metrisch
Jahrestemperaturspanne bio7 metrisch
Durchschnittstemperatur des feuchtesten Quartals bio8 metrisch
Durchschnittstemperatur des trockensten Quartals bio9 metrisch
Durchschnittstemperatur des wärmsten Quartals bio10 metrisch
Durchschnittstemperatur des kältesten Quartals bio11 metrisch
Jahresniederschlag bio12 metrisch
Niederschlag im feuchtesten Monat bio13 metrisch
Niederschlag im trockensten Monat bio14 metrisch
Niederschlags-Saisonalität bio15 metrisch
Niederschlag im feuchtesten Quartal bio16 metrisch
Niederschlag im trockensten Quartal bio17 metrisch
Niederschlag im wärmsten Quartal bio18 metrisch
Niederschlag im kältesten Quartal bio19 metrisch

Tabelle 1: Bioklimatische Variablen von WorldClim

re 1960 bis 1990, nur wenn in diesem Zeitraum zu wenige Messungen vorlagen,



10 2 DATENBESCHREIBUNG

wurde die Zeitspanne auf die Jahre 1950 bis 2000 ausgedehnt.

Der zweite Teil der Einflussvariablen stammt aus dem CORINE LandCover-Projekt

CLC2000, das die europäische Umweltagentur EEA in Zusammenarbeit mit dem

European Topic Centre for Terrestrial Environment (ETC-TE) ins Leben geru-

fen hat. Durch das Projekt sollten einheitliche und vergleichbare Daten über die

Bodenbedeckung in Europa gesammelt werden (Deutsches Zentrum für Luft-und

Raumfahrt e.V., 2005). Aus Satellitenbildern im Maßstab 1:100.000 wurden zum

ersten Mal im Jahr 1990 die 44 verschiedenen Landnutzungsklassen in einer Auf-

lösung von 100 m × 100 m eingeteilt, wobei in Deutschland nur 37 Klassen rele-

vant sind. Der vorliegende Datensatz enthält Beobachtungen aus dem Jahr 2000,

mit 21 verschiedenen Klassen sowie zwei Zusammenfassungen für die Kategori-

en Wald und Wasser. Drei Variablen (Deponien, Gletscher, Verkehr) wurden von

Beginn an ausgeschlossen, da sie nur sehr selten vorkamen. So ergeben sich ins-

gesamt 20 Bodennutzungsvariablen, die in Tabelle 2 aufgeführt sind. Diese Varia-

blen beschreiben den jeweiligen Anteil der Bodennutzung in dem hektargroßen

Feld. Wenn es nicht genügend Ausprägungen pro metrischer Variable gab, wurde

sie kategorisiert mit den Ausprägungen = 0 und > 0. Die Variable Stadt wurde in

drei Kategorien eingeteilt.

Zusätzlich liegen für alle Quadranten die Koordinaten im Gauß-Krüger-System

und die Höhe über Normalnull als Variable vor. Aus der Höhe wurde die standar-

disierte Höhe mit der Formel Höhe−min(Höhe)
max(Höhe)

berechnet. Die Höhe geht als Kova-

riable bei den Umweltvariablen in das Modell ein, wohingegen die standardisierte

Höhe in die Berechnung der Nicht-Stationarität einbezogen wird. Da die Kovaria-

blen aus beiden Quellen in verschiedenen Auflösungen vorlagen, wurden jeweils

Durchschnittswerte gebildet für die ca. 40 km2 großen Quadranten, für die die
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Variable Messniveau

Wald (SAWald) metrisch
Wasser (SAWasser) kategorial: = 0, > 0
Abbau�ächen kategorial: = 0, > 0
Acker metrisch
Deponien nicht verwendet
Felsen kategorial: = 0, > 0
Gletscher nicht verwendet
Heiden und Moore (HeidenMoore) kategorial: = 0, > 0
Industrie kategorial: = 0, > 0
Komplex metrisch
Laubwald metrisch
Mischwald metrisch
Moore kategorial: = 0, > 0
Nadelwald metrisch
Obst kategorial: = 0, > 0
Stadt kategorial: = 0, 0 < x ≤ 0.1, > 0.1
Sumpf kategorial: = 0, > 0
Verkehr nicht verwendet
Waldrandgebiet (WaldrandGeb) kategorial: = 0, > 0
Flieÿende Gewässer (WasserFl) kategorial: = 0, > 0
Stehende Gewässer (WasserSteh) kategorial: = 0, > 0
Weinbau kategorial: = 0, > 0
Wiesen metrisch

Tabelle 2: Bodennutzungsvariablen von CORINE.

Heuschreckendaten vorlagen.

2.2 Deskriptive Analyse

In Abbildung 1 sind die Verteilungen einiger bioklimatischer Variablen darge-

stellt: „Jahresdurchschnittstemperatur“ (bio1) in ◦C (multipliziert mit 10), „Jah-

resniederschlag“ (bio12) in mm und „Isothermalität“ (bio3) in %. Die übrigen

Variablen befinden sich in Anhang A.1.

In Abbildung 2 sind beispielhaft die Verteilungen einiger Bodennutzungsvariablen



12 2 DATENBESCHREIBUNG

0 20 40 60 80 100

0.
00

0.
04

0.
08

Verteilung der Variable  bio1

N = 1913   Bandwidth = 1.136

D
en

si
ty

600 800 1000 1200 1400 1600

0.
00

00
0.

00
25

Verteilung der Variable  bio12

N = 1913   Bandwidth = 31.48

D
en

si
ty

29 30 31 32 33 34

0.
0

0.
3

0.
6

Verteilung der Variable  bio3

N = 1913   Bandwidth = 0.1556

D
en

si
ty

Abbildung 1: Verteilung ausgewählter bioklimatischer Variablen: �Jahres-
durchschnittstemperatur� (bio1), �Jahresniederschlag� (bio12), �Isotherma-
lität� (bio3).

abgebildet: „Waldanteil“ (SAWald), „Ackeranteil“ (Acker), „Stadtanteil“ (Stadt)

und „Höhe über NN“ (GewHoehe) in m. Die übrigen Variablen sind in Anhang

A.1 dargestellt. Auffallend ist, dass die meisten Bodenvariablen eine sehr links-

steile Verteilung haben, es gibt also wenig Beobachtungen, die einen hohen Anteil

an der jeweiligen Bodennutzung aufweisen. Das bedeutet auch, dass die Quadran-

ten sehr heterogen sind und es wenige Grids gibt, die von einer Bodennutzung

dominiert werden.

In Bayern sind zur Zeit 71 Heuschreckenarten bekannt und nachgewiesen. Zu den

häufigsten Arten (in über 1200 Quadranten gefunden) zählen:

• Gemeiner Grashüpfer (Chorthippus parallelus) (1805)

• Roesels Beißschrecke (Metrioptera roeselii) (1719)
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Abbildung 2: Verteilung ausgewählter Bodennutzungsvariablen: �Waldanteil�
(SAWald), �Ackeranteil� (Acker), �Stadtanteil� (Stadt), �Höhe über NN� (Ge-
wHoehe).

• Nachtigall-Grashüpfer (Chorthippus biguttulus) (1667)

• Gemeine Strauchschrecke (Pholidoptera griseoaptera) (1604)

• Grünes Heupferd (Tettigonia viridissima) (1429)

• Wiesengrashüpfer (Chorthippus dorsatus) (1325)

• Brauner Grashüpfer (Chorthippus brunneus) (1320)

In Abbildung 3 erhält man einen groben Überblick über die Verteilung der Ge-

samtartenzahl in Bayern. Im bereinigten Datensatz ist die Mindestartenzahl 1,

maximal wurden 41 Arten in einem Grid entdeckt, also 58% aller in Bayern exis-

tierenden Arten. Offensichtlich ist die Artenzahl nicht homogen in Bayern verteilt.

Besonders wenig Arten gibt es beispielsweise im südlichen Niederbayern. Dage-

gen ist die Artenvielfalt im Raum Bayreuth (Oberfranken) sehr hoch.
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Abbildung 3: Artenzahl der Heuschrecken in Bayern.

2.3 Besonderheiten der Daten

Im Folgenden soll ein Habitatmodell zur Untersuchung der Heuschreckenarten-

zahl erstellt werden. Bei der Modellanpassung an die vorliegenden Daten gibt es

einige Punkte, die beachtet werden sollten. Zum einen beinhaltet der Datensatz

eine große Menge an Kovariablen. Ein Hauptziel der Anpassung ist es also her-

auszufinden, welche Kovariablen von Bedeutung sind, und auf diese Weise die

Modellkomplexität so weit wie möglich zu reduzieren. Zum anderen sollte man

darauf achten, dass es aufgrund des Raumes Abhängigkeiten zwischen den einzel-

nen Beobachtungen geben kann. In diesem Fall würde die Entdeckung einer Heu-

schreckenart in einem Quadranten, die Wahrscheinlichkeit dafür, dass sich diese

Art auch im Nachbarquadranten befindet, erhöhen, obwohl dies durch die beob-
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achteten Umweltvariablen nicht vorhergesagt würde. Dieses Phänomen bezeich-

net man als räumliche Autokorrelation (Legendre, 1993). Für die Modellierung

wurde die so genannte Methode „Spatial Boosting“ ausgewählt, die im Folgen-

den erläutert werden soll. Die genauen Details sind nachzulesen in Hothorn et al.

(2010b).

3 Methoden

3.1 Generalisiertes additives Modell

Bei den vorliegenden Daten handelt es sich um eine Zählvariable als Response,

daher gilt die Annahme, dass Yi|xi ∼ Po(λi), wobei der Parameter λi dem Erwar-

tungswert und der Varianz entspricht. Im generalisierten additiven Modell geht

man davon aus, dass sich der Prädiktor ηi additiv aus glatten eindimensionalen

Funktionen der einzelnen Kovariablen zusammensetzt:

ηi = f(xi, si) =
∑

j

f(j)(xij, si)

Über die Exponentialfunktion wird der Prädiktor mit der erwarteten Artenzahl λi

verknüpft:

λi = E(Artenzahli|xi, si) = exp(f(xi, si)) (1)

Das bedeutet, dass die mittlere erwartete Artenzahl an einem Punkt si, abhängig

von den Umweltvariablen xi = (xi1, . . . , xip) dem Wert der Exponentialfunktion

ausgewertet an der Stelle der Regressionsgleichung entspricht.

Es wird jedoch vermutet, dass der beobachtete Response auch durch die Zahl der
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Exkursionen im Quadranten i (#Exkursioneni) beeinflusst wird, dass also mit

einer erhöhten Anzahl an Exkursionen in einem Feld auch die erwartete Anzahl

der dort gefundenen Arten steigt. Deshalb wird die Exkursionenzahl als Offset in

den Prädiktor aufgenommen, deren Effekt auf 1 gezwungen wird. Die erwartete

Artenzahl λi ist demnach λi = #Exkursioneni · exp(f(xi, si)) und es ergibt sich

die strukturelle Komponente

E(Artenzahli|xi, si) = λi = #Exkursioneni · exp(f(xi, si)) =

= exp(log(#Exkursioneni)︸ ︷︷ ︸
Offset

+f(xi, si)). (2)

3.2 Die Methode des Spatial Boosting

Bei hochdimensionalen Datensätzen sind übliche Schätzverfahren, wie z.B. pena-

lisierte Schätzung nicht mehr anwendbar. Es kommt zu numerischen Rechenpro-

blemen. Boosting ist ein möglicher Algorithmus zur Schätzung hochdimensiona-

ler Regressionsmodelle für additive Prädiktoren. Das iterative Anpassen einzelner

schwacher Schätzer führt zu einem insgesamt numerisch guten Schätzergebnis

und überzeugt durch seine effektive Variablenselektion. Beim Spatial Boosting

werden die Kovariablen in eine globale und eine lokale Komponente aufgeteilt.

Die globale Komponente beachtet hierbei ausschließlich die Umweltvariablen so-

wie mögliche lineare oder nicht-lineare Effekte und Interaktionsterme. Ein rein

globales Modell würde annehmen, dass die Effekte der Umweltvariablen fest und

universal sind. Bei Auftreten von Nonstationarität variieren diese Effekte jedoch

mit dem Raum. Die lokale Komponente beschreibt daher die räumliche Autokor-

relation als Funktion fs(s) nur abhängig vom Raum. Die Nonstationarität wird

als Funktion fns(x, s) in Abhängigkeit vom Raum und den Umweltvariablen mo-

delliert. Durch die lokale Komponente erhält man eine Schätzung der unbeobach-
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teten Heterogenität, die durch räumliche Autokorrelation oder nonstationäre Ef-

fekte verursacht wird. Dies ist deshalb von Bedeutung, da man davon ausgehen

muss, nicht alle tatsächlichen Einflussvariablen erfasst zu haben. Die Annahme

der Unabhängigkeit von Yi|xi kann aber nur getroffen werden, wenn alle Kovaria-

blen gegeben sind. Deswegen werden die restlichen nicht erfassten Kovariablen

sozusagen zu einem räumlichen Effekt der unbeobachteten Heterogenität zusam-

mengefasst. Dies ist bei den meisten der bisher verwendeten Verfahren nicht der

Fall.

Durch die Zerlegung hat die Regressionsfunktion, die in die Modellgleichung (2)

einfließt, folgende Form:

f(x, s) = fenv(x)︸ ︷︷ ︸
global

+ fns(x, s) + fs(s)︸ ︷︷ ︸
lokal

(3)

Mit dieser Modellzerlegung wird auch die Variabilität in drei Komponenten zer-

legt: die Variabilität erklärt durch die Umweltvariablen (fenv(x)), Variabilität, die

von räumlicher Autokorrelation verursacht wird (fs(s)) und die Variabiliät ver-

ursacht durch nonstationäre Umwelteffekte, d.h. zusätzlich räumlich variierende

Effekte der Umweltvariablen (fns(x, s)).

3.2.1 Beschreibung der Modellkomponenten

Da das Modell vom Raum abhängig ist, ist es nur auf das betreffende Untersu-

chungsgebiet anwendbar. fenv kann hingegen für Prognosen außerhalb Bayerns

genutzt werden, da in diesem Term die räumlichen Effekte herausgerechnet wer-

den und somit die Prädiktionen nicht verzerrt werden. Der Term kann auf zwei

Arten modelliert werden: Die einfachste Möglichkeit ist ein parametrischer An-



18 3 METHODEN

satz mit dem linearen Prädiktor fenv(x) = xTβ, wobei β der zu schätzende Vektor

der Regressionskoeffizienten ist. Eine bisher genutzte Möglichkeit, hier die Au-

tokorrelation miteinzubeziehen, ist z.B. die Spezifizierung einer Arbeitskovarianz

in Generalized Estimating Equations (GEE) (Dormann et al., 2007). Eine ande-

re Möglichkeit der Modellierung ist ein nonparametrischer Ansatz mit additiven

glatten Funktionen, also fenv(x) =
∑p

j=1 fj(xj), wobei x = (x1, . . . , xp). In je-

der einzelnen Kovariable kann so ein möglicher nicht-linearer Effekt auf flexible

Weise geschätzt werden. Komplexere Modelle erlauben zusätzlich Interaktionen,

wie z.B. Random Forests oder Boosted Regression Trees. fs(s) stellt eine glatte

zweidimensionale Oberflächenfunktion dar, die die unbeobachtete Heterogenität,

eingeführt durch lokale Einflüsse, modelliert. So werden räumliche Autokorrela-

tionsmuster erkannt. fns(x, s) repräsentiert die räumliche Nicht-Stationarität.

3.2.2 Modellanpassung durch Spatial Boosting

Die Modellanpassung wird durch die Minimierung der negativen Log-Likelihood

der zugrunde liegenden Verteilung durchgeführt. Die Artenzahl folgt einer Po(λi)

Poissonverteilung mit λi = E(yi|xi, si) und λi(f) = #Exkursioneni · exp(f(xi, si)).

Damit ist die negative Log-Likelihood-Funktion

f̂ = argmin
f

n∑
i=1

ρ(yi, λi(f))

mit

ρ(yi, λi(f)) = λi − yi log λi

als Beitrag einer Beobachtung zur Gesamt-Log-Likelihood.

Die Funktion f̂ , die die Verlustfunktion minimiert, wird mit einem Component-
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wise Functional Gradient Descent Boosting-Algorithmus geschätzt. Für Modelle

der Form (3) können auch Methoden wie MCMC-Algorithmen (Fahrmeir et al.,

2004), (Kneib et al., 2008) oder penalisierte Schätzung von generalisierten additi-

ven Modellen verwendet werden. Diese Methoden sind jedoch rechenaufwändig

und auf Daten mit einer geringen Zahl an Einflussvariablen oder einer kleinen

bis mittleren Beobachtungszahl ausgelegt und es gibt keine effizienten Verfahren

der Variablenselektion. Auf diese Weise würden unbedeutende Parameter das fi-

nale Modell unnötig komplex machen. Die Modellinferenz hat hier aber vor allem

die Selektion von informativen Parametern zum Ziel. Falls keine räumliche Auto-

korrelation vorliegt, sollte auch die Modellkomponente fs(s) nicht in das Modell

aufgenommen werden, d.h. fs(s) ≡ 0 und genauso fenv(x) ≡ 0, falls keine der

Umweltvariablen einen Einfluss hat. Hier ist man allerdings mehr an den Effekten

der einzelnen Umweltvariablen, also an dem Ergebnis fj(xj) ≡ 0 interessiert, was

bedeutet, dass die Variable xj keinen Einfluss auf die Artenzahl von Heuschrecken

hat. Der Idealfall wäre ein globales Modell, in das nur wenige Umweltkomponen-

ten aufgenommen werden.

Componentwise Functional Gradient Descent Boosting-Algorithmus

Für den Componentwise Functional Gradient Descent Boosting-Algorithmus wird

f̂ ≡ 0 als konstantes Modell initialisiert. Im ersten Schritt werden die Residuen

für das aktuelle Modell berechnet. Unter dem Residuum versteht man hier den

negativen Gradienten ui der Verlustfunktion ρ berechnet für jede Beobachtung yi.

ui = − ∂

∂f
ρ(yi, f)|f=f̂ [m−1](xi)

, i = 1, . . . , n

Nun wird diejenige Basisprozedur gj∗ (fj(xj), fns oder fs) ausgewählt, welche

die Residuen am besten beschreibt, d.h. die Summe der quadrierten Differenz
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zwischen Residuen und Modellkomponente minimiert:

j∗ = argmin
1≤j≤p

n∑
i=1

(ui − ĝj(xi))
2

Nur diese Komponente wird aktualisiert mit z.B. 10% der Prädiktionen (Schrittweite ν)

und zum aktuellen Modellfit hinzugefügt.

f̂
[m]
j∗ (·) = f̂

[m−1]
j∗ (·) + ν · g[m]

j∗ (·)

Für alle anderen Komponenten gilt:

f̂
[m]
j (·) = f̂

[m−1]
j (·),∀j 6= j∗

Anschließend werden die Residuen wieder neu berechnet und die entsprechende

Modellkomponente aktualisiert. Diese Schritte werden wiederholt, bis eine vorher

festgelegte Anzahl von Iterationen durchgeführt wurde. Das finale Modell f̂ setzt

sich zusammen aus der Summe aller gefitteten Modelle der einzelnen Kompo-

nenten f̂env, f̂ns und f̂s. Die mathematischen Details werden von Bühlmann und

Hothorn (2007) und Kneib et al. (2007) beschrieben.

Basisprozedur Die sogenannte Basisprozedur, die auch als Baselearner be-

zeichnet wird, bestimmt, wie die Residuen gefittet werden. Die Wahl der Base-

learner ist entscheidend, da sie festlegen, in welcher Form die einzelnen Modell-

komponenten in das finale Modell eingehen. Für fenv kommen lineare Modelle,

Smoothing-Splines, univariate P-Splines oder Regressionsbäume in Frage. Wobei

letztere Methode genau mit den Boosted Regression Trees übereinstimmt. Für

fs werden die Baselearner als bivariater Tensorprodukt P-Spline gewählt, was

einer glatten zweidimensionalen Oberflächenfunktion entspricht. Für die nicht-
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stationäre Komponente fns bietet sich ein Produkt eines Tensorprodukt P-Splines

mit einer Umweltvariable xj an. Interaktionen können z.B. über lineare Terme

von Produkten berücksichtigt werden oder, wenn man noch flexibler sein möchte,

über zwei- oder dreidimensionale glatte Funktionen.

Wie bereits erwähnt, wurden metrische Umweltvariablen mit nur wenigen Aus-

prägungen kategorisiert, so dass nun zwei unterschiedliche Variablentypen vorlie-

gen. Für die stetigen Variablen wurden als Baselearner penalisierte Regressions-

splines (mit sechs Freiheitsgraden) verwendet und für die faktorisierten Variablen

einfache lineare Modelle, die über Ridge-Regression (Parameter λ bestimmt durch

sechs Freiheitsgrade) geschätzt wurden.

3.2.3 Modellwahl und Variablenselektion

Es gibt sechs verschiedene Grundmodelle, die alle möglichen Einflussszenarien

beschreiben, indem sie verschiedene Restriktionen an die einzelnen Modellkom-

ponenten stellen (Tabelle 3).

Modell fenv(x) fns(x, s) fs(s)

Spatial ≡ 0 ≡ 0
Additive

∑p
j=1 fj(xj) ≡ 0 ≡ 0

Add/Spatial
∑p

j=1 fj(xj) ≡ 0

Tree/Spatial ≡ 0
Add/Vary

∑p
j=1 fj(xj)

Tree/Vary

Tabelle 3: Modellrestriktionen

Das Modell Spatial, das nur den lokalen Einfluss misst und alle anderen Kom-

ponenten auf Null setzt, wäre das beste Modell, wenn keine der erhobenen Um-

weltvariablen Einfluss auf den Response hat. Wenn dagegen nur diese Umwelt-
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variablen Einfluss haben ohne räumliche Variation und dabei die einzelnen Va-

riablen additiv und ohne Interaktionen auf den Response wirken, wäre das Mo-

dell Additive das richtige. Add/Spatial modelliert einen additiven Effekt der Um-

weltvariablen sowie einen zusätzlichen räumlichen Effekt ohne Nonstationarität

oder Interaktionen zu berücksichtigen. Mit Regressionsbäumen als Baselearner

für fenv können Interaktionen besser modelliert werden, ansonsten ist das Modell

Tree/Spatial gleich wie das vorherige. Am komplexesten sind die letzten beiden

Modelle, die damit auch die größte Flexibilität bieten: Add/Vary modelliert wie-

der additive Effekte für fenv und erlaubt gleichzeitig räumliche Autokorrelation

und Nicht-Stationarität. Dies ist auch bei Tree/Vary der Fall. Dort sind zusätzlich

Interaktionen bei den Umweltvariablen erlaubt, was insgesamt heißt, dass über-

haupt keine Restriktionen an die Modellkomponenten gestellt werden. Aus diesen

sechs Grundmodellen wird für die vorliegenden Daten das beste Modell ausge-

wählt (Kapitel 4.1).

Die eigentliche Modellwahl wird in zwei Schritten durchgeführt. Für jedes der

sechs oben genannten Modelle wird die ideale Iterationszahl bestimmt. Diese er-

gibt sich alsmstop mit dem minimalen empirischen Risiko, berechnet mit Bootstrap-

und Kreuzvalidierungsverfahren. Eine andere Möglichkeit wäre, mstop durch das

Informationskriterium nach Akaike (AIC), das korrigierte AIC oder das Baye-

sianische Informationskriterium (BIC) zu bestimmen. Da es sich aber um einen

hochdimensionalen Datensatz handelt, ist die Berechnung über Bootstrap und

Kreuzvalidierung am geeignetsten. Die Wahl des idealen Stoppkriteriums hat den

Zweck, Overfitting zu vermeiden. Im zweiten Schritt wird mit der neu bestimm-

ten optimalen Anzahl an Boosting-Schritten die Modellanpassung wiederholt. Die

sechs Modelle werden anhand der negativen Log-Likelihood verglichen. Die beste

Modellanpassung hat dasjenige Modell, das in wiederholten Bootstrapstichproben
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die kleinste negative Log-Likelihood hat (vgl. Abbildungen 4 - 7).

Zudem muss auch die Schrittweite ν festgelegt werden. Für bisherige Probleme

schien die Wahl dieser Schrittweite von eher geringer Bedeutung zu sein, solange

sie klein genug gewählt wird, um den Effekt des aktuellen Fits zu dämpfen. Eine

kleinere Schrittgröße bedeutet typischerweise eine größere Anzahl an Iterations-

schritten und somit mehr Berechnungszeit, wobei sich die Prädiktionsgenauigkeit

im Allgemeinen nicht verschlechtert. Aus diesem Grund genügt es meist, den Pa-

rameter ν „ausreichend klein“ zu wählen (Bühlmann und Hothorn, 2007). Daher

wurde bisher die Schrittweite oft auf den Wert ν = 0.1 festgelegt. In der Aus-

wertung dieser Arbeit stellte sich jedoch heraus, dass ein weiteres Verringern der

Schrittgröße die Ergebnisse für die vorliegenden Daten weiter verbessern kann

(vgl. Kapitel 4.1).

Da immer nur eine Modellkomponente pro Iterationsschritt angepasst wird, führt

eine kleine Anzahl an Iterationen zu einem sparsamen Modell. Somit ist diese

Methode eine sehr gute Möglichkeit der Variablenselektion. Zusätzlich wird für

das beste Modell eine Stability Selection angewandt, um sicher zu stellen, dass

tatsächlich nur einflussreiche Variablen und Komponenten aufgenommen werden

und man keine Effekte interpretiert, die in Wirklichkeit gar nicht bestehen. Dazu

wird die empirische Wahrscheinlichkeit berechnet, wie oft die Variable in Teilda-

ten ausgewählt wird (Meinshausen und Bühlmann, 2010). Variablen, deren Wahr-

scheinlichkeit größer einem festgelegten Grenzwert sind, gelten als einflussreich,

wobei das Signifikanzniveau α eingehalten wird. Auf diese Weise erhält man ein

Modell, das so komplex wie nötig, aber so einfach wie möglich ist.
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4 Ergebnisse

4.1 Statistische Analyse

Für den vorliegenden Datensatz wurde das Boosting-Verfahren für alle sechs vor-

her spezifizierten Modelle mit verschiedenen Schrittgrößen ν = 0.1, 0.05, 0.03

und 0.01 durchgeführt. Wie bereits in Abschnitt 3.2.2 erwähnt wurde, spielt die

Wahl der Schrittgröße ν eine untergeordnete Rolle. Da bereits die Hyperparameter

für die Glättung jedes Baselearners und die optimale Anzahl an Iterationen über

Kreuzvalidierung oder ähnliches bestimmt werden müssen, wird der Parameter

ν der Einfachheit halber vorgegeben, um eine weitere Komplizierung des Algo-

rithmus zu vermeiden. Bereits in der Praxis bekannt ist jedoch die Tatsache, dass

ν = 0.1 in einem Poissonmodell auf jeden Fall zu groß ist. Die nachfolgenden

Boxplots (Abbildungen 4 bis 7) zeigen daher für alle Modelle mit dem optimalen

mstop die Out-of-Bootstrap negative Log-Likelihood für mehrere Bootstrapstich-

proben und für verschiedene Schrittgrößen ν.

Je kleiner die Schrittgröße gewählt wird, umso mehr nähern sich die Modellgüten

einander an. Besonders für die Modelle Tree/Spatial und Tree/Vary verbessert sich

der Modellfit, je kleiner ν gewählt wird. Bei allen Werten von ν hat immer das Mo-

dell Spatial die kleinste negative Log-Likelihood und dementsprechend die beste

Modellanpassung. Dies ist ein Hinweis darauf, dass ein großer räumlicher Effekt

besteht und fs eine dominierende Modellkomponente ist. Nicht viel schlechter

schneiden die Modelle Add/Spatial und Add/Vary ab. Da beide ungefähr die glei-

che Modellgüte haben, entscheidet man sich bei der weiteren Interpretation für

das weniger komplexe Modell Add/Spatial, welches zusätzlich zum räumlichen

Effekt additive Einflüsse der Umweltvariablen miteinbezieht.
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Abbildung 4: Out-of-Bootstrap Negative Log-Likelihoods ν = 0.1.
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Abbildung 5: Out-of-Bootstrap Negative Log-Likelihoods ν = 0.05.

Als Vergleichsmethode für die Fragestellung, welche der Modelle sich signifi-

kant im Mittelwert der negativen Log-Likelihood unterscheiden, wurde ein mul-
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Abbildung 6: Out-of-Bootstrap Negative Log-Likelihoods ν = 0.03.
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Abbildung 7: Out-of-Bootstrap Negative Log-Likelihoods ν = 0.01.

tipler Vergleich nach Tukey gemacht. Die Buchstaben über den Boxplots geben

an, welche Modelle die gleiche Modellgüte haben und welche sich unterscheiden.
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Modelle mit gleichem Buchstaben haben hier die gleiche Modellgüte.

Tabelle 4 zeigt, welche Variablen für die verschiedenen Schrittgrößen im Mo-

dell Add/Spatial ausgewählt wurden: Es fällt auf, dass immer die Variablen Stadt

Schrittgröÿe ν Ausgewählte Variablen

0.10 Stadt, Höhe, bspatial
0.05 bio3, bio13, Stadt, Acker, Höhe, bspatial
0.03 bio3, bio4, bio13, Stadt, Acker, SAWald, Höhe, bspatial
0.01 bio3, bio13, Stadt, Acker, SAWald, Höhe, bspatial

Tabelle 4: Selektierte Variablen für verschiedene Schrittgröÿen.

und Höhe und die räumliche Komponente („bspatial“) unter den finalen Varia-

blen sind. Wenn die Schrittgröße verkleinert wird, steigt normalerweise die Zahl

der Iterationen und damit die der Modellkomponenten, die im Boosting selektiert

werden. Erwartungsgemäß werden damit bei einer Verkleinerung der Schrittgrö-

ße auf 0.05 drei Variablen mehr (bio3 [Isothermalität], bio13 [Niederschlag im

feuchtesten Monat], Acker) ausgewählt. Bei einer weiteren Reduzierung von ν

auf 0.03 werden zusätzlich noch die zwei Variablen bio4 (Saisonalität der Tem-

peratur) und SAWald (Waldanteil) ausgewählt. Wenn nun ν auf 0.01 gesetzt wird,

kommt schließlich keine Variable mehr hinzu, im Gegenteil, bio4 fällt weg. Der

Effekt dieser Variable war allerdings fast konstant bei 0, die Variable war also

nicht sehr einflussreich.

Man kann nun davon ausgehen, mit diesem letzten Modell die bestmögliche An-

passung an die Daten gefunden zu haben. Die weitere Interpretation beschränkt

sich auf die Modelle Spatial und Add/Spatial für die Schrittgröße ν = 0.01, die

anderen Modellanpassungen finden sich im elektronischen Anhang.
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4.2 Interpretation

Im Modell Spatial wird die gesamte Heterogenität nur anhand der räumlichen Ver-

teilung erklärt. In Abbildung 8 sind die relativen Unterschiede in der Artenzahl für

den zentrierten räumlichen Effekt dieses Modells gezeichnet. Man sieht, dass be-

sonders im Raum München und im Raum Nürnberg/Fürth/Erlangen die Anzahl

der Heuschreckenarten geringer ist als im restlichen Bayern, wenn man den Off-

set, also den Einfluss der Exkursionenzahl unberücksichtigt lässt. Dies ist auf den

ersten Blick widersprüchlich zur beobachteten Verteilung der Artenzahl (Abbil-

dung 3) und zu den gefitteten Werten (Abbildung 9), verdeutlicht aber nochmals

den Einfluss der Zahl der Untersuchungen auf den beobachteten Response. Hier

macht sich vermutlich bemerkbar, dass die Biotope in der Stadt und in unmit-

telbarer Nähe dazu leichter zugänglich sind und deswegen öfter besucht werden.

Ansonsten fällt die extrem verringerte Artenzahl (relativ gesehen) im südwest-

lichen Raum Oberallgäu/Lindau sowie im nordwestlichen Raum Aschaffenburg

auf. Eine erhöhte Artenzahl findet man in den Regionen Unterfranken (mit Aus-

nahme Aschaffenburg), zentrale Oberpfalz und westliches Mittelfranken sowie in

Westschwaben und im östlichen Oberbayern.

Das Modell Add/Spatial, in das die Effekte der Umweltvariablen als additive

glatte Funktionen aufgenommen wurden, hat eine vergleichbar gute Modellan-

passung. Als einflussreiche Kovariablen ergeben sich durch Stability Selection

die sechs Kovariablen Isothermalität (bio3), Niederschlag im feuchtesten Monat

(bio13) und die Höhe über Normalnull sowie der prozentuale Anteil an Waldge-

biet, Ackergebiet und Stadtgebiet und die räumliche Komponente. Zuerst über-

prüft man, wieviel Variabilität überhaupt durch die einzelnen Modellkomponen-

ten erklärt wird. In Abbildung 10 wird deutlich, dass der Hauptteil der Variabilität

durch den Offset (log(Anzahl der Exkursionen)) erklärt wird. Das bedeutet, dass
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Abbildung 8: Geschätzter räumlicher E�ekt im Modell Spatial.
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Abbildung 9: Ge�ttete Artenzahl im Modell Spatial.

die beobachtete Artenzahl hauptsächlich davon abhängt, wie oft ein Quadrant un-

tersucht wird. Nichtsdestotrotz ist klar, dass die tatsächliche Artenzahl nicht von
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Abbildung 10: Zerlegung der erklärten Variabilität für die einzelnen Modell-
komponenten (ge�ttete Werte auf der Log-Skala).

der Anzahl der Exkursionen abhängen kann. Deswegen wird im Poissonmodell

der Parameter λi so modifiziert, dass der Effekt der Exkursionenzahl auf 1 ge-

zwungen wird (siehe Kapitel 3.2.2). Dadurch möchte man den Effekt der Exkur-

sionen bereinigen und erhält als weitere erklärende Größe die Umweltvariablen

und die räumliche Komponente, deren Einfluss im Vergleich zum Offset jedoch

viel geringer ist.

Die geschätzten Effekte der einzelnen Umweltvariablen fpartial lassen sich so in-

terpretieren, dass sich die mittlere erwartete Artenzahl bei Konstanthalten aller

anderen Einflussvariablen multiplikativ um den Faktor exp(fpartial) ändert. In den

nachfolgenden Grafiken bedeutet ein geschätzter Effekt größer als Null einen po-

sitiven Einfluss und dementsprechend ein geschätzter Effekt kleiner als Null einen

negativen Einfluss.
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Abbildung 11: Geschätzte partielle E�ekte der Umweltvariablen �Isotherma-
lität� (bio3) und �Niederschlag im feuchtesten Monat� (bio13).

In Abbildung 11 sieht man die geschätzten Effekte für die Variablen „Isotherma-

lität“ (bio3) und „Niederschlag im feuchtesten Monat“ (bio13). Beide sind nicht

eindeutig zu interpretieren, weil die Funktionen insgesamt stark schwanken. Die

Isothermalität beschreibt die prozentuale Tagestemperaturschwankung im Ver-

gleich zur Jahresschwankung und ist damit ein starker ökologischer Filter, der das

Vorkommen von Tieren und Pflanzen beeinflusst. In Abbildung 1 war bereits er-

kennbar, dass die Isothermalität im Verlauf sehr schwankend ist, daher ist es nicht

verwunderlich, wenn auch der geschätzte Effekt dieser Variable starken Schwan-

kungen unterworfen ist. Allerdings ist ein Trend ersichtlich, der beschreibt, dass

die Artenzahl sinkt, wenn die Isothermalität über 33 % steigt. Das bedeutet, je

größer die Tagesschwankung ist, umso schwieriger sind die Überlebensbedingun-

gen. Für Werte unter 33 % ist die Artenzahl leicht erhöht oder gleichbleibend.

Die Niederschlagsmenge kann die Produktivität eines Ökosystems widerspiegeln;
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je produktiver ein System dabei ist, umso mehr Arten kann es theoretisch be-

herbergen. Hier sieht man, dass der Niederschlag im feuchtesten Monat positi-

ven Einfluss für eine Menge kleiner als 80 mm und größer als 150 mm sowie

zwischen 90 mm und 130 mm hat. Bei einer durchschnittlichen Niederschlags-

menge zwischen 80 mm und 90 mm als auch zwischen 130 mm und 150 mm ist

der Einfluss negativ, allerdings sind die Intervalle so klein, dass die Ausschläge

nach unten eher vernachlässigt werden können. Der grobe Trend geht leicht nach

oben, das heißt mit höherer Niederschlagsmenge im feuchtesten Monat steigt die

Produktivität des Ökosystems und damit die Zahl der Heuschreckenarten. Dabei

ist zu beachten, dass „Niederschlag im feuchtesten Monat“ und „Jahresnieder-

schlag“ (bio12) natürlich sehr stark miteinander korrelieren (cor = 0.97). Daher

kann man verallgemeinern, dass mit steigendem Niederschlag auch die Artenzahl

leicht steigt.
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Abbildung 12: Geschätzte partielle E�ekte der Umweltvariablen �Höhe über
NN� (GewHoehe) und �Anteil Waldgebiet� (SAWald).
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Die Variable „Höhe“ ist kein direkter physiologischer Faktor, sondern eine Proxy-

Variable u.a. für Klima und Fläche. Wenn man sich nur die Werte bis 1200 m

ansieht, erkennt man den in der Biologie typischen „Mid-Domain Effect“: Unter

400 m sowie zwischen 750 m und 1200 m erwartet man eine niedrigere mittlere

Artenzahl, hingegen für Höhen zwischen 400 m und 750 m eine höhere (Abbil-

dung 12). Dieser parabelförmige Verlauf erklärt sich dadurch, dass sich in den

mittleren Höhen viele Ausbreitungsgebiete verschiedener Arten überschneiden

und somit zu einem Maximum an Artenvielfalt führen (Colwell und Lees, 2000).

Der steigende Trend ab 1200 m lässt sich dahingehend interpretieren, dass es ober-

halb der Baumgrenze viele offene Habitatflächen, wie z.B. Almen oder Schotter-

flächen gibt, in denen Heuschrecken bevorzugt leben (Schlumprecht und Waeber,

2003). Allerdings ist ab 1500 m die Beobachtungszahl sehr gering, sodass diese

Aussagen nicht verallgemeinert werden können.

Wenn der Anteil des „Waldgebietes“ pro Quadrant zwischen 20 % und 60 % liegt,

steigt die erwartete Artenzahl, genauso für Werte über 80 % Waldbedeckung. Für

Flächen mit geringem Waldanteil (unter 20 %) dagegen ist die Zahl der Heuschre-

cken im Mittel leicht verringert. Die kleine Schwankung ins Negative bei 70 %

kann vernachlässigt werden. Insgesamt kann man den Waldanteil als einen Natur-

näheindikator für ursprüngliche, naturbelassene Räume interpretieren, in denen

die Artenzahl höher liegt als in naturfernen Räumen.

In Abbildung 13 erkennt man einen eindeutig positiven Einfluss der Variable

„Ackergebiet“ auf die Artenzahl. Bis zu einer Ackerfläche von ungefähr 20 %

ist die Artenzahl verringert, je größer jedoch die prozentuale Bedeckung des Qua-

dranten mit Ackerfläche ist, umso größer wird auch die mittlere erwartete Heu-

schreckenartenzahl. Zum einen kann man dies durch Habitate in Feldrainen erklä-
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Abbildung 13: Geschätzte partielle E�ekte der Umweltvariablen �Anteil
Ackergebiet� (Acker) und �Anteil Stadtgebiet� (Stadt).

ren, die nicht bewirtschaftet werden, weil sie nur schwer zugänglich sind. Somit

bieten sie ideale Lebensbedingungen für Tiere. Zum anderen liegen Ackerflächen

zur Erhaltung der Bodenfruchtbarkeit regelmäßig brach und ermöglichen so den

Heuschrecken einen ungestörten Lebensraum. Zur Relativierung dieses Trends

muss jedoch erwähnt werden, dass Ackerfläche auch ein Indikator für intensive

Landwirtschaft sein kann. In diesen Flächen sind normalerweise wenig Heuschre-

cken vorzufinden, weil sie eine starke Barriere zur Ausbreitung der Populationen

darstellen (Schlumprecht und Waeber, 2003).

Den umgekehrten Effekt sieht man bei der kategorisierten Variable „Stadt“: je hö-

her der Stadtanteil ist, umso geringer ist die Artenzahl. Bei einer prozentualen

Stadtfläche zwischen 10 % und 100 % ist die mittlere erwartete Artenzahl sogar

um 25 % geringer als in Gebieten mit kleinerem Stadtanteil. Dies lässt sich durch

die fehlenden Habitate in städtischen Gebieten erklären.
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Durch die vorgestellten Kovariablen wird allerdings nicht die gesamte Variabili-

tät erklärt. Die räumliche Komponente dominiert, was man nicht allein dadurch

sieht, dass das Modell Spatial im Gesamtmodellvergleich am besten abgeschnitten

hat. Es besteht immer noch eine sehr große unbeobachtete Heterogenität, die in

der Modellkomponente fs(x, s) dargestellt wird. Man kann nicht davon ausgehen,

dass alle wirklich einflussreichen Kovariablen erfasst wurden. Diese unbeobach-

teten Kovariablen werden im räumlichen Effekt zusammengefasst. Abbildung 14

stellt diese grafisch dar. Die stark verringerte Artenzahl im Oberallgäu wird auch

0 100 km −1.5

−1.0

−0.5

0.0

0.5

1.0

Abbildung 14: Geschätzter räumlicher E�ekt im Modell Add/Spatial.

auf dieser Karte wieder sichtbar. Die Ballungsräume München sowie Nürnberg/-

Fürth/Erlangen dagegen stechen optisch nicht mehr hervor, da der Stadteffekt be-

reits durch die Landnutzungsvariable modelliert wurde. Im südlichen Schwaben

sowie im Großteil Oberbayerns ist die erwartete Artenzahl eher kleiner als im Rest

Bayerns. Je nördlicher die Lage, desto mehr Heuschreckenarten werden erwartet,

wenn die oben erwähnten Kovariablen bereits miteinberechnet sind und der Off-
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set nicht beachtet wird. Besonders auffallend sind hier das östliche Niederbayern

sowie Unterfranken.

Zum Vergleich finden sich in Abbildung 15 die gefitteten Werte für das Modell

Add/Spatial. Sie unterscheiden sich kaum von denen des Modells Spatial. Für den

Modellfit ist es also unerheblich, ob die Umweltvariablen in das Modell aufge-

nommen werden oder ob alles als räumlicher Effekt zusammengefasst wird. Für

beide Modelle gilt jedoch, dass sehr oft zu niedrige Artenzahlen vorhergesagt wer-

den (vgl. mit Abbildung 3).
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Abbildung 15: Ge�ttete Artenzahl im Modell Add/Spatial.
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5 Zusammenfassung und Diskussion

Das Ziel dieser Arbeit war, ein Habitatmodell für die Artenvielfalt von Heuschre-

cken in Bayern zu erstellen. Dazu wurde ein generalisiertes additives Modell

mit Poisson-verteiltem Response geschätzt. Der Prädiktor wurde in eine globale

und eine lokale Komponente aufgeteilt und die Effekte mit der Methode „Spatial

Boosting“ geschätzt.

Im angepassten Modell stellte man fest, dass der Hauptteil der Variabilität durch

die Anzahl der durchgeführten Exkursionen erklärt wird. Mit großem Abstand fol-

gen die Umweltvariablen und die räumliche Komponente, die im Vergleich dazu

nur einen kleinen Teil der Variabilität ausmachen. Bei den Klima- und Bodenfak-

toren ist der Effekt der Höhe am differenziertesten, welcher sich durch den für

Flora und Fauna typischen „Mid-Domain Effect“ erklärt. Der positive Trend in

der Variable Acker kann zwar durch Habitate in Feldrainen und Bracheflächen er-

klärt werden, muss aber durch den Effekt der intensiven Landwirtschaft relativiert

werden.

Die hier angewandte Methode des Spatial Boostings bietet eine sehr große Flexibi-

lität zur Modellanpassung durch die Aufspaltung der Einflussfaktoren in globale

und lokale Komponenten. So können alle häufig bei Habitatmodellen auftreten-

den Schwierigkeiten wie Interaktionen zwischen Variablen, nicht-lineare Effekte,

nicht-stationäre Einflüsse und räumliche Autokorrelationen beachtet und ins Mo-

dell aufgenommen werden. In anderen Anwendungen kann sogar zusätzlich eine

räumlich-zeitliche Autokorrelation modelliert werden. Die Neuerung dabei ist,

dass dies alles nicht einzeln im Modell beachtet und die anderen Effekte ignoriert

werden müssen, sondern, dass gleichzeitig auf alle diese Probleme eingegangen

werden kann. Die Zerlegung der Modellkomponenten macht es auch einfacher,
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Vorhersagen für andere Gebiete und Zeiträume zu treffen als die erhobenen, ohne

stark verzerrte Schätzer zu erhalten. Schließlich erhalten wir sehr sparsame Mo-

delle mit nur wenigen einflussreichen Variablen. Dies geschieht durch die effekti-

ve Variablenselektion im Boosting-Verfahren und die Vermeidung der Aufnahme

nicht-informativer Parameter ins Modell mit der Stability Selection.

Ein großes Problem der vorliegenden Daten ist die Diskrepanz zwischen tatsäch-

lichem und beobachtetem Response. Die beobachtete Artenzahl ist stark davon

abhängig, wie oft ein Quadrant untersucht wurde und steigt natürlich mit der Zahl

der Exkursionen. Die tatsächliche Artenvielfalt kann dagegen nicht genau erhoben

werden. Dieses Problem liegt jedoch im Datensatz und im Studiendesign selbst.

Nur wenn überall gleich viele Untersuchungen vorgenommen werden, kann eine

verlässlichere Modellschätzung vorgenommen und damit bessere Prognosen ge-

macht werden.

Ebenso problematisch ist die Wahl des Hyperparameters ν, der die Schrittgröße im

Boosting-Algorithmus bestimmt. Momentan ist es nicht möglich den Parameter ν

ebenso wie die Glättungsparameter der einzelnen Variablen λ und die optimale

Anzahl an Iterationen mstop über Kreuzvalidierung oder ähnliche Verfahren zu

schätzen. Das würde den Algorithmus zu aufwändig und rechenintensiv machen.

Stattdessen muss dieser Parameter per Hand festgelegt werden, wobei man sich

an Erfahrungswerten orientieren kann. Allerdings war es auch ersichtlich, dass ν

im Vergleich zu mstop nur einen geringen Einfluss auf die Variablenauswahl hat,

wenn es klein genug gewählt wird.
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A Anhang

A.1 Verteilung der Umwelt- und Bodennutzungsvaria-

blen
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A.2 Inhalt der CD

Alle Berechnungen und Modellanpassungen für diese Bachelorarbeit wurden durch-

geführt mit der R-Version 2.10.1 (R Development Core Team, 2009) und dem

Packet „mboost“ (R package version 2.0-3) (Bühlmann und Hothorn, 2007).

Die beiliegende CD enthält neben der digitalen Ausgabe der vorliegenden Arbeit

den gesamten R-Code sowie den vollständigen Datensatz, mit dem alle Berech-

nungen reproduziert werden können.
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